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Abstract

Post event flooding maps are currently extracted from synthetic-aperture radar

(SAR) and/or optical satellite images or developing using hydraulic model sim-

ulations. Several sources of uncertainties impact the accuracy of such flood

maps constructed from each method, especially in urban areas. An integrated

approach that combines satellite imagines of flooded areas, hydraulic models,

and markers from social media that should reduce these uncertainties and

allow a more accurate reconstruction of flooded urban areas, is presented in

this paper. The flooding associated with Hurricane Harvey in Houston, TX

was chosen as a case study. Model validations demonstrate the effectiveness of

our integrated approach in reconstructing an accurate flooding map, as well as

the temporal and spatial patterns of flooding. Using the experience from this

case study we discuss the possibility to use satellite data, instead of ground-

based rainfall gauge measurements as precipitation inputs to the hydraulic

model; and possible error sources in simulating flooding in urban areas using

the hydraulic model.
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1 | INTRODUCTION

Post-event flood maps are typically built using algorithms
that detect inundated areas by satellite images or through
the use of simulations by hydraulic models. More
recently, social markers, such as photos taken during the
event and posted on social media, are also used.

The most common satellite sensors for detection of
inundated areas are synthetic-aperture radar (SAR), Inter-
ferometric synthetic aperture radar (InSAR), or optical
channels. Flooding is typically recognised in SAR using
the change detection (CD) technique (Auynirundronkool

et al., 2012), in InSAR by interferometric coherence
(D'Addabbo, Refice, Lovergine, & Pasquariello, 2017;
Pulvirenti, Chini, Pierdicca, & Boni, 2016), and combining
optical channel images with a high-resolution DEM
(Irwin, Beaulne, Braun, & Fotopoulos, 2017; Liu, Sahli,
Meng, Huang, & Lin, 2017).

Each of these satellite-based methods has significant
limitations in identifying the flooded area. Using SAR and
CD is challenging in the presence of dense vegetation and
of shadows; the high roughness of the ground (Brivio,
Colombo, Maggi, & Tomasoni, 2002; Giustarini
et al., 2013), and atmospheric disturbances (Cian,
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Marconcini, Ceccato, & Giupponi, 2018) that accompany
extreme rainfall events. A main problem for InSAR-based
methods is the lack of availability of databases containing
multitemporal and interferometric images. Furthermore,
often “false positives and negatives errors” (Chini et al.,
2016; Ferretti, Prati, & Rocca, 2001; Refice et al., 2014) are
a problem for an image. These errors are common in
urban areas or where there is water under the vegetation.
Finally, methods using an optical sensor with a DEM, do
not provide useful information in the presence of clouds
(Carincotte, Derrode, & Bourennane, 2006).

There are several constellations of radar satellites
whose high-resolution images are used to obtain flooding
maps, such as Sentinel 1 (S1), ICEYE, Cosmo Skymed
(CSK) and Terrasar X (TSX). Only, the S1 constellation
provides free, global images with constant revisit times.
In contrast, ICEYE acquires globally and continuously
but its data are not freely accessible. TSX and CSK are
neither freely accessible nor systematically acquired at
global scale (Cian et al., 2018). Another limitation, com-
mon to all the radar satellites, is the time lag between the
flood occurrence and the availability of the measure-
ments (Di Baldassarre et al., 2009). Usually, the delivery
of images can be obtained after 24–48 hours from the
extreme event (Schumann, Bates, Horritt, Matgen, &
Pappenberger, 2009).

Hydrodynamic models compute floodplain inunda-
tions by solving the hydrodynamic equations of motion for
given geometries, hydraulic boundaries and initial condi-
tions (Fohringer, Dransch, Kreibich, & Schröter, 2015). In
order to simulate hydraulic flow conditions occurring dur-
ing flooding events, models must also be able to simulate
wet and dry conditions, supercritical and subcritical flows
and their transition, and allow the direct application of
rainfall.

Usually, model simulations are carried out by a com-
bined one dimensional/two dimensional approach in which
river flow is assumed one dimensional while two-
dimensional flow is considered in the surrounding flood-
plain (Leandro, Chen, Djordjevi�c, & Savi�c, 2009; Mazzoleni
et al., 2014). The two-dimensional approach integrates shal-
low water motion equations, (Costabile & Macchione, 2012;
Proust, Bousmar, Riviere, Paquier, & Zech, 2010). Three-
dimensional or quasi-three-dimensional ones (Orton et al.
2012) methods have also been used. Computation time
depends on the spatial resolution (Falter et al., 2013) and
on the numerical algorithms used for integrating the model
equations (Horritt & Bates, 2001).

The two-dimensional approach is preferred when the
flood must be simulated on a large scale (more than
10,000 km2) (Alcrudo & Garcia-Navarro, 1993; Anastasiou
& Chan, 1997; Hunter et al., 2008; Liand, Borthwick, &
Stelling, 2014; Mignot, Paquier, & Haider, 2006; Mingham &

Causon, 1998; Toro, 2001). Model simulations provide flow
depth, velocity and hence the flooding extension, that are
fundamental quantities for damage assessment (Grigg &
Helweg, 1975).

Several sources of uncertainties affect the accuracy of
flooding maps obtained by model simulation. These
include difficulties in model calibration and validation
due to scarcity of the hydrological data and inaccuracies
in representing flow resistance factors, due to the com-
plex interaction of the flow with the structures as, for
example, buildings (Bales & Wagner, 2009; Di Bal-
dassarre & Montanari, 2009; Di Baldassarre, Schumann,
Bates, Freer, & Beven, 2010; Domeneghetti, Vorogushyn,
Castellarin, Merz, & Brath, 2013; Dottori, Di Bal-
dassarre, & Todini, 2013; Grimaldi, Petroselli,
Arcangeletti, & Nardi, 2013; Jung & Merwade, 2015). To
represent such complex flow features, a very high spatial
resolution computational mesh and high computational
time would be required. To limit the computational time,
a sub-grid approach is applied to a coarser grid
(Balzano, 1998; Bates & Hervouet, 1999; Casulli, 2009,
Defina, 2000, Viero, Peruzzo, Carniello, & Defina, 2014).
Such an approach is applied to model effects such as
overland flow over irregular topography (Defina, 2000),
roughness and topographic effects based on LiDAR data
(Casas, Lane, Yu, & Benito, 2010), additional friction due
to emerging vegetation (Mason et al., 2003), inundation
of urban areas (McMillan & Brasington, 2007; Sanders,
Schubert, & Gallegos, 2008; Yu & Lane, 2006), river
hydraulics over large areas and data sparse areas (Neal
et al., 2015; Neal, Schumann, & Bates, 2012), and coupled
hydrological-hydrodynamic simulations in low-land
catchments (Viero et al., 2014).

Social media markers are a new source of information
that could be useful to manage a flooding emergency
(de Bruijn, de Moel, Jongman, Wagemaker, & Aerts,
2018; Li, Wang, Emrich, & Guo, 2018; Li, 2017; Poser &
Dransch, 2010; Rosser, Leibovici, & Jackson, 2017; Smith,
Liang, James, & Lin, 2017; Wang, Mao, Wang, Rae, &
Shaw, 2018). They are also useful for post event, rapid
flooding mapping, as they can provide timely localised
information about water depth of inundated areas and
damages (Fohringer et al., 2015). However, errors affect
the quantitative assessment of flooding by social markers.
These can be due to differences between the place where
the photo is taken and the location of the tweet posted
online, as well as, an incorrect photo-interpretations of
the photo perspective. Such errors could be reduced by
combining high resolution DEM and social markers
(Mandlburger, Hauer, Höfle, Habersack, & Pfeifer, 2009).
A generalised use of social markers makes it necessary to
filter a huge amount of information from social media.
Recently, several approaches have been pursued. These
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include: (a) filtering by keywords or by geographic
queries (Rogstadius, Kostakos, & Laredo, 2011 or Joseph
et al., 2014), (b) filtering by crowdsourcing (Howe, 2006),
(c) automatic filtering utilising machine learning and
natural language processing (Sakaki, Okazaki, &
Matsuo, 2010); Yin, Lampert, Cameron, Robinson, &
Power, 2012) and (d) interactive visual spatiotemporal
analysis/geovisual analytics (MacEachren et al., 2011);
Morstatter, Kumar, Liu, & Maciejewski, 2013). None of
such approaches is completely satisfying, and often a
rather empirical post-processing phase which involves a
subjective judgement of the operator is required.

Also video cameras, ever increasing in urban areas,
may be an useful tool for the civil protection and flood
defence purposes (Chang & Guo, 2006; Filonenko,
Hernández, Seo, & Jo, 2015; Lopez-Fuentes, Rossi, &
Skinnemoen, 2017; Tauro, Olivieri, Petroselli, Porfiri, &
Grimaldi, 2016). This could suggest the integration of the
information derived from social media markers with
those derived from their records. Unfortunately, the
access to this source of information is difficult due to pri-
vacy concerns.

The uncertainties in developing accurate post event
flooding maps, for each of the described approaches sepa-
rately, motivate an integrated approach based on the
combined use of remote sensing from satellites for the
delineation of flooding, a hydraulic model for the recon-
struction of flooding flow evolution and, finally, social
markers in those areas where remote sensing fails and
for the validation of hydraulic model results.

In this paper, we integrate the different approaches
through the following steps: (a) we use the flooding maps
indicated by satellite images to calibrate the hydraulic
model; (b) reconstruct the flooding characteristics
(i.e., flow depth and velocity) in the urban area by simu-
lation from a calibrated hydraulic model; and (c) validate
the model simulations within the urban areas, on the basis
of the hydraulic characteristics of the flow (e.g., the water
depth) inferred by the social markers. Due to the limitation
of satellite images to capture flooding in urban areas, only
the flooded suburban or rural areas can be used to calibrate
the hydraulic model.

We apply our approach to the reconstruction of the
serious flooding occurred in the Houston region due to
the Harvey hurricane. Harvey, a hurricane of category
4, hit South-eastern Texas between August 25th and
31st of 2017, with catastrophic rains, which caused
major flooding in Houston and its low-lying surround-
ing areas. Hurricane Harvey generated the largest rain-
fall of any U.S. hurricane on record. Heavy rains
scattered over the territory with a 1,270 mm total rain-
fall amount. On August 27th, a maximum daily rainfall
amount of 760 mm was observed. The highest rainfall

amount was recorded at Galveston Bay, Houston, with
over 1,016 mm of rain in 48 hours (NWS, 2017). Over
20,000 people were forced to seek emergency shelter
during the event and an estimated 120,000 structures
were affected by flooding. Emanuel (2017) estimated a
return period of Hurricane Harvey's rainfall to be
around a once in 2,000 yr event. The same author, using
climatic projections from general circulation models
(GCM), has shown as the return period of the event
(storm total rainfall greater than 500 mm) reduces to a
once in 100 yr by the end of this century. The increasing
probability of occurrence of such extreme rainfall events
- also highlighted by others authors (e.g., Van
Oldenborgh et al. (2017) - suggests the importance of
carrying out accurate post-event flooding maps to iden-
tify and design measures and infrastructures to mitigate
future more frequent extreme floods.

A further motivation for the choice of such case
study, beyond the exceptional hydrological event, is that
Houston is equipped with a large number of rainfall and
streamflow stations, which provide the data for the vali-
dation of the approach. A 2D hydraulic model from the
USACE Hydrologic Engineering Center's River Analysis
System (HEC-RAS 5.0.7) was used. It meets the mini-
mum requirements of National Flood Insurance Program
as required by FEMA. We explore how the spatial resolu-
tion of the mesh affects the accuracy of model simula-
tions. Finally, we examine whether remote sensing can
be useful, in the case of non-instrumented areas, in the
retrieval of hydrological data (e.g., precipitation) as input
of hydraulic models.

2 | METHODS AND DATA

2.1 | Methods

The main goal of the study is to explore the possibility to
obtain an accurate post-event flooding map integrating
data extracted by satellite images, social markers and
hydraulic numerical model simulations. In particular we
are interested in obtaining an accurate reconstruction of
flow characteristics (depth and velocity) within urban
areas, which, as underlined in the introduction, are not
detected by satellite images and difficult to calculate by
numerical models.

The idea, to overcome the above limitations, is to
calibrate the numerical model using the flooding areas
detected in suburban or rural areas, where the satellite
images provide reliable records of flooding, and then to
infer the flow depth and velocity within the urban
areas from the hydraulic simulations by the calibrated
model.
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The saturation factor k as defined by Şen (2008) was
assumed as calibration parameter.

dR
dP

= 1−e−kP
� � ð1Þ

where dR
dP is the runoff rate, being R the runoff and P the

precipitation amount. Typically the value of k is
depending on the land cover and of hydrologic soil group
(Table 1).

In the present study case uniform values of k were
assumed for the entire integration domain. To calibrate
k, the fit between the flooding areas detected by satellite
images Aobs and those obtained by mathematical simula-
tions Asim, the following index was used:

I kð Þ= Aobs\Asim kð Þ
Aobs[Asim kð Þ ð2Þ

The best value of the saturation factor k was identi-
fied as the one that yields the maximum value of I(k). In
Equation (2) Asimrefers only to the flooding areas which
are detected by satellite. We select such flooded areas on
the basis of land-cover types. Specifically, we do not
include areas belonging to urban and forest land cover
types. To validate model simulations within the urban

areas, we use flow depths obtained by social markers
which provide photographs or records of the flooding
event at specific location and time.

The rainfall data recorded from the rain gauges
located in the Houston area, as well as the record of
storm surge along the coast are used as model inputs. We
also use hydrometric data from streamflow stations as
further validation elements.

Houston is a particularly well monitored region. In
order to assess if such approach can be extended to non-
instrumental areas (i.e., regions in which we can use only
satellite data and social markers, and where rainfall and
streamflow gauge data are lacking) we analysed a case in
which rainfall data from ground-based gauges are not
available (Beck et al., 2017; Omranian & Sharif, 2018;
Sun et al., 2018; Tan & Santo, 2018) by considering only
the satellite based rainfall data. This way we could verify
if the rainfall data derived by satellite data were suffi-
ciently reliable to perform a post-event flooding mapping.
The data resolution in the area of Houston city, was
0.1�x 0.1�, latitude and longitude.

Finally, to verify whether the use of subgrid approach
(Casulli, 2009) for simulating flow in urban areas, which
is applied in HEC-RAS model, might allow to use coarser
mesh size, thus reducing the model computation time, a
sensitivity analysis of the possible errors on simulated
flow variables due to a reduction of the spatial resolution
of the computational mesh was carried out.

2.2 | Hydrological data

The hydrological data used in the study refer to:
(a) measured rainfall amount at different rain gauges
within the Huston areas; (b) measured hydrometric levels
at the streamflow gauges of drainage network;
(c) precipitation derived by satellite data by CHIRPS
(rainfall estimates from rain gauge and satellite observa-
tions), NCEP-CPC (National Center for Environmental
Prediction - Climate Prediction Center), NCEP-GOB
(National Center for Environmental Prediction—Global
observation), TRMM-3B42 (tropical rainfall measuring
mission) and GPM-IMERG (global precipitation mea-
surements). Data sources are reported in Table 2.

Rainfall amounts and water levels in bayous and
major streams in Houston, recorded during 20/08–01/09
with a resolution of 15 minutes, were obtained by Harris
County Flood Control District's Flood Warning System
(www.harriscountyfws.org). Storm surge levels during
the events were downloaded by the site http://www.ioc-
sealevelmonitoring.org/map.php. Measurements of the
sea level were obtained from the Harris County Flood
Warning System (www.harriscountyfws.org).

TABLE 1 Catchment descriptions and k values in mm−1,

adapted from Şen (2008)

Land use
description Cover description

k range
values
(mm−1)

Agricultural Row crops 0.006–0.018

Commercial Urban districts:
Commercial and
business

0.019–0.062

Forest Woods 0.001–0.011

Grass/pasture Pasture, grassland 0.002–0.013

High density
residential

Residential districts by
average lot size

0.006–0.062

Industrial Urban district: Industrial 0.008–0.043

Low density
residential

Residential districts by
average lot size

0.001–0.019

Open spaces Open space lawns, parks,
golf courses, cemeteries,
etc.

0.003–0.017

Parking and
paved spaces

Impervious areas: paved
parking lots, roofs,
driveways, etc. excluding
right-of-way

0.160–0.320

Water/wetlands 0
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2.3 | SAR images

SAR Satellite images, were downloaded from the Coper-
nicus website (http://emergency.copernicus.eu).

Flooding maps were performed by change detection
(CD) technique applied on high-resolution X-band
images (from 1 to 4 m) of the Italian COSMO-SkyMed

constellation (Chini, Pulvirenti, & Pierdicca, 2012). The
sensor detects stagnant water, generally all flat surfaces,
with a low backscatter intensity due to the specular
reflection of the incident SAR rays (Richards et al., 1987).
This processing of SAR images allow to assess (a) the
extension of the flooding and (b) the depth of flooding if
an accurate model of digital elevation is available (Cian,
Marconcini, & Ceccato, 2018). Figure 1a–c shows the sat-
ellite images of the days 28, 30 and August 31, 2018,
respectively.

2.4 | Social media data

The social media markers used in the study were
provided by the Evolution of the Emergency Coperni-
cus database (E2mC) owned by Copernicus (Scalia,
2017). The markers obtained from this research pro-
ject refer to the same dates as the satellite images
described above. This service is mainly based on the
integration of information derived from remote sens-
ing, spatial analysis algorithms, social media and
crowdsourcing. All these data are collected by remote
digital volunteers and local journalists. For a detailed
description of how the posts are extracted, geolocated
and made available, see Havas et al., 2017. In
Figure 2a the spatial distribution of the markers
obtained for the days of the extreme event are
shown. An example of photograph used in the analy-
sis is shown in Figure 2b.

TABLE 2 Data sources

Data Sources

Precipitation satellite
data (TRMM and
GPM)

www.giovanni.gsfc.nasa.gov

CHIRPS http://iridl.ldeo.columbia.edu/
SOURCES/.UCSB/.CHIRPS/.v2p0/.
daily-improved/.global/.0p05/.prcp/

NCEP-CPC http://iridl.ldeo.columbia.edu/
SOURCES/.NOAA/.NCEP/.CPC/.
Merged_Analysis/.pentad/

NCEP-GOB http://iridl.ldeo.columbia.edu/
SOURCES/.NOAA/.NCEP/.CPC/.
GOB/.V0px/.daily/.REALTIME/.
prcp/

Abbreviations: CHIRPS, rainfall estimates from rain gauge and sat-
ellite observations; TRMM, tropical rainfall measuring mission;
GPM, global precipitation measurements; NCEP-CPC, National
Center for Environmental Prediction—Climate Prediction Center;
NCEP-GOB, National Center for Environmental Prediction—
Global observation.

FIGURE 1 Flooding maps by satellite images during Harvey Hurricane of (a) August 28, 2017, (b) August 30, 2017, and (c) August

31, 2017
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2.5 | Hydraulic modelling

The 2D hydraulic model, the USACE Hydrologic Engi-
neering Center's River Analysis System (HEC-RAS 5.0.7)
was used. Such Hydraulic Numerical Models is a public
domain software that meets the minimum requirements of
National Flood Insurance Program as required by FEMA
(https://www.fema.gov/hydraulic-numerical-models-meet
ing-minimum-requirement-national-flood-insurance-
program). Recent FEMA report (https://www.fema.gov/
media-library-data/1561469561757-6fed6a4fd077673f684
920b9ad5a0e53/RapidResponseFloodModelingFinalRe
port.pdf) shows that the model produces results with
higher precision (SD) and predictive value (correlation)
than other models.

The code, whose details can be found in HEC-RAS,
River Analysis System Hydraulic Reference Manual, sol-
ves either the 2D shallow water equations (with optional
momentum additions for turbulence and Coriolis effects)
or the 2D Diffusion Wave equations. In the case study,
full momentum equations were used. The equations in
HEC-RAS are solved with an implicit finite volume algo-
rithm. This algorithm allows the use of a structured or
unstructured computational mesh. Local thickening of
computational mesh can be applied by break lines, added
along levees, buildings, roads, and in abrupt slope
change.

In HEC-RAS 2D modelling the mesh size can be
arbitrarily chosen. Generally, to limit the computa-
tional time, especially for large integration domains,

computational mesh sizes coarser than the spatial
DEM resolution are used. This would result in a rough
representation of the domain geometry in particular in
building areas or in presence of abrupt ground level
changes. However, to take into account the details of
the underlying terrain, at least at the DEM resolution,
the subgrid approach proposed by Casulli (2009) is
integrated in the algorithm.

The approach taken is to calculate volume and
mass/momentum fluxes trough the cell faces at the
coarser scale by the modification of the continuity and
momentum equations, expressed in integral form, to
account the variability of the ground level and the pres-
ence of obstructions as represented at finer DEM scale.
For this purpose, using the DEM, a relationship
describing the variation of the wet volume and area of
the faces as a function of water elevation, is first calcu-
lated for each cell. With this approach it is possible to
exploit the high topographic information resolution
obtainable from DEM and, at the same time, to use cal-
culation cells with a size coarser than the resolution of
the input data.

The HEC-RAS code simulates wet and dry conditions
and allows the direct application of the precipitation. Nei-
ther spatial variation of precipitation nor losses and infil-
tration are currently able to be used within HEC- RAS. In
cases in which pluvial contributions and their spatial and
temporal variability play a determinant role in producing
flooding these limitations could represent a serious
drawback.

FIGURE 2 (a) Location of social media marker in Houston and (b) example of photo used for the hydraulic model validation (obtained

from E2mC)
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3 | CASE STUDY

For the case study, the domain of integration as delimited by
the watershed ridge shown in Figure 3 was selected. In this
way there was no surface runoff from external regions, and
the flooding within the domain was due only to rainfall
and/or to storm surge along the coast. Thus, the calculation
of flow entering in the domain by rainfall-runoff hydrologi-
cal models, which requires a preliminary very complex
model parameter identification, was avoided. A DEMwith a
5 m resolution was obtained from the USGS (United States
Geological Survey, link: https://viewer.nationalmap.gov/
basic/). Due to the very large size of the domain, a nominal
grid resolution (250 × 250 m) was selected and the computa-
tional mesh was constructed by the HEC-RAS tools. In the
zones where a higher resolution was required, break lines
were introduced to obtain a resolution up to 5m.

The land cover map extracted from Copernicus images
related to the period of the flood (August 2017) is shown
in Figure 3. Most of the territory within the domain
boundaries is covered by forest or urban areas. The values
of Manning resistance coefficient were defined for each

point of integration in the domain as a function of the
Land Use classification, according to Table 3.

In the present case study, due to the exceptional rain-
fall event, precipitation was rather spatially uniform.
Therefore a precipitation spatial average over the integra-
tion domain was applied. Furthermore, the rainfall
amount was so exceptionally high that the soils, indepen-
dently from their nature, were completely saturated in a
short time. This is seen in Figure 4 where the temporal
variation of the instantaneous runoff coefficient
(Equation (1)) is shown as function of the precipitation
trend. The figure refers to typical values of saturation
coefficient k (Table 1) that are characteristic of different
land cover types. To further confirm the high level of soil
saturation, NASA analysed the soil moisture in south-
eastern Texas before and after Harvey landing using data
from NASA's Soil Moisture Active Passive (SMAP) satel-
lite. SMAP observations from August 2017 21st and 22nd
showed that soil surface conditions were already very wet
a few days before the hurricane made landfall, with
20–40% moisture levels (https://phys.org/news/2017-08-
nasa-harvey-saturated-areas-texas.html).

FIGURE 3 Land cover by supervised classification algorithm on Copernicus images
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The sea level trend, due to the storm surge, and
recorded during the extreme event along the coastal, was
applied as boundary condition (www.u-surge.net/
hurricane-harvey.html).

3.1 | Model calibration

First, several simulations were carried out for different
values of the saturation factor k appearing in Equa-
tion (1). Then for each model simulation, the fitting index

I(k), defined by Equation (2), was calculated. Simulated
flooding areas Asim belonging to urban and forest land
cover types were excluded from the calculations of I(k).

Figure 5 shows the flooding map for August 28th at
11 a.m. – obtained from the hydraulic simulation for
k = 0.004 mm−1, at which corresponds the highest fitting
index value.

Comparing the inundation map in Figure 5, with
that obtained by satellite image (shown at the left side
of Figure 6), clearly shows how in urban and forest land
cover areas the flooding is not recognised by satellite,
despite the evidence in Figure 5 of large inundated
areas.

However, as Figure 6 shows (right side), in rural
areas, the location and extent of flooding areas –
simulated and detected by satellite images – is satis-
factory. Values of the fitting index ranges from 0.60
to 0.80 were obtained for the rural flooding areas
selected.

To confirm the goodness of the calibration procedure,
in Figure 7 (right side) the simulated and measured time
series of free surface level in correspondence of some
hydrometric gauges (Figure 7 left side), homogenously
distributed in the areas of interest, are compared. As
shown in Figure 7 (right side) the simulated free surface
trends at the different locations satisfactorily fits the
actual trend of observed values.

Furthermore, the timing of the simulated and
observed bank overflows in different cross sections of
bayous passing through the urban Houston area, was

TABLE 3 Spatial variability roughness used in the hydraulic

model

Land cover type
Default manning
valued (m1/3 s−1)

Natural vegetation, shrubs and
cropland

0.04

Herbaceous vegetation 0.045

Developed (urban area) 0.25

Main channel 0.022

Barren land rock/sand/clay 0.04

Permanent water bodies 0.035

Mixed and evergreen forest 0.08

Bare, sparse vegetation 0.02

Herbaceous wetland 0.16

Sea 0.03

FIGURE 4 Rainfall amount (right) and runoff rate dR/dP for different values of k (left)
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compared. The network of the alert stations presents in
the Houston area and owned by the HCFCD was used. In
the Harris maps (shown in the left side of Figure 8), the
red symbols indicate the locations where the water level
exceeds the top of the bank, the yellow where the level is
near the top of the bank and the green when the water
flows inside the bank. All the maps are referred to the
same hour, for all the days considered, at 11.30 a.m. The
comparison, shown in Figure 8, demonstrates that the
hydraulic model simulation followed the temporal trend
of the floods during the days of the extreme rainfall
event.

3.2 | Model validation by social media
markers

The comparison between the simulated water depths
with those estimated by the photographs at the same
location and time, adds an additional element of judge-
ment, in particular in urban areas where satellite is not
able to recognise the flooding (Figure 9).

In Table 4, the water depth estimated by social
marker and simulated at the locations of Figure 9 are
shown.

The comparison of Table 3 demonstrates the proposed
approach was satisfactory for the quantification of flow

FIGURE 5 Flooding map obtained from hydraulic modelling

(k = 0.004 mm−1)

FIGURE 6 Correspondence between the flooding areas obtained by hydraulic simulation and synthetic-aperture radar satellite
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FIGURE 7 Location of measurement stations of the levels considered and hydrometric levels detected during the extreme event

FIGURE 8 Temporal trend of the floods in Houston during Hurricane Harvey from 26/08 to 31/08. Red symbols indicate the locations

where the water level exceeds the top of the bank, the yellow where the level is near the top of the bank and the green when the water flows

inside the bank
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depth and velocity, as well as inundation timing, in
urban areas where such flow characteristics are more
challenging to detect, even given uncertainties in deduc-
ing the water depth from the photographs.

3.3 | Further insights from the
study case

As the validation of the social markers has shown, we
were able to obtain an accurate flooding map of the
event, even in urban areas where satellite data fail to pro-
vide information. This result was also due to: (a) the
availability of well spatially distributed ground-based
rainfall data; (b) the local thickening of the calculation
mesh by break lines, to take into account the complex
geometries present in the study area such as buildings,
sudden slope changes, presence of levees, etc. However,
the application of the break line required a very tedious
and long work for the calculation grid construction.

The above observations suggested an exploration of
the two following issues:

1. In absence of rain gauges in the study areas, could
remote sensing provide the temporal and spatial dis-
tribution of precipitation to be effectively used as
hydraulic model inputs?

2. In order to reduce the computation time, what are the
potential inaccuracies of the hydraulic model used
(HEC-RAS 5.0.7) in simulating flows in urban areas if

FIGURE 9 Social media marker referred at the same day of the flooding maps (August 28, 2017) used for the result validation

TABLE 4 Comparison between water depth (m) estimated by

social marker and simulated by hydraulic model

Identification
colour

Depth by
hydraulic
modelling (m)

Depth estimated
by social media
marker (m)

White 2 2 ± 0.10

Purple 0.4 0.5 ± 0.10

Pink 0.35 0.3 ± 0.10

Red 0.5 0.5 ± 0.10

Violet 2.7 2.5 ± 0.10

Light green 0.4 0.5 ± 0.10

Light yellow Bayou 7 other 1.5 Bayou 5 ± 0.1 other
1 ± 0.1

Dark green 1.8 1.5 ± 0.10

Orange 0.56 0.5 ± 0.10

Yellow 0.8 1 ± 0.10
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we integrate 2D motion equations on a coarser grid,
without using break lines?

3.4 | Comparison between measured
rainfall amount by rainfall gauges and
remote sensing

In order to provide an answer at the first issue, we first
compared the rainfall temporal and spatial distribution
from ground-based station measurements with TRMM
satellite precipitation data recorded during the Harvey
Hurricane. Then, we compared the heavy daily rainfall
amount – identified by 95th, 99, and 99.9 percentile – of a
longer time series of wet days obtained from different
sources of remote sensing precipitation datasets, and
from an ensemble of rain gauges in a more restricted area
of Houston.

Figure 10 shows the time series of spatially averaged
precipitation from the ensemble of ground measurement
stations (light grey) and from TRMM (dark grey). An evi-
dent underestimation of both peak and volume of rainfall
amount obtained by satellite can be observed.

For the analysis of heavy rainfall, a more restricted
area of Houston (0.1� × 0.1�) was taken into account. The
rain gauge and remote sensing precipitation time series,
from the year 2003 to the year 2017 were used, with the
exception of the GPM (Global Precipitation Measurement),
which covers the shorter period 2014–2017. To select the
remote sensing dataset we referred to the papers of Sun

et al., 2018, Tan & Santo, 2018, Omranian & Sharif, 2018
and Beck et al., 2017. The comparison between the heavy
rainfall from ground-based and remote sensing records
was based on the following error index:

CV RMSEð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1

Mi−Sið Þ2½ �
N

� �s

1
N

PNi
i=1

Mi

ð3Þ

where Mi and Si are respectively ground based and
remote sensing data at instance i, and N is the total num-
ber of data.

CV(RMSE) (cross-validated root mean square error)
represents the coefficient of variation of the average stan-
dard deviation, that is, the ratio between the average
square deviation of a certain period and the mean value
of the data measured in the same period (Beck
et al., 2017; Royapoor & Roskilly, 2015). Table 5 shows
the datasets used and corresponding CVRMS errors.

From Table 5 we can observe how the biases are rather
large, resulting in each case in an underestimation of the
effective heavy rainfall amount. The best dataset seems to
be the GPM, but in this case bias is also large. This analysis
suggests that the use, as input for hydraulic simulations, of
precipitation intensity measured by remote sensing datasets
should be made carefully, taking into account the existence
of such bias. It also suggests that more research efforts
should be made to overcome this drawback.

FIGURE 10 Comparison between the rainfall amount trend recorded by rain-gauges and that from satellite (tropical rainfall

measuring mission) during the Harvey Hurricane
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3.5 | The potential inaccuracies of the
hydraulic model (HEC-RAS 5.0.3) in
simulating flows in urban areas

Accurate model hydraulic simulation would require a
computational mesh size with the same DEM resolution.
However, for large integration domain, this implies high

computational times, especially in the case of high-
resolution DEM (i.e., Lidar data, etc.). Thus, we explore
how the model accuracy is affected by the use of a coarser
mesh, in which the flow motion frictions due to the pres-
ence of buildings and other urban structures are solved
by the HEC-RAS subgrid approach.

A number of simulations on a structured computa-
tional grid with mesh size: 5 × 5 m; 10 × 10 m;
25 × 25 m; 50 × 50 m; 100 × 100 m; 250 × 250 m, and
500 × 500 m were thus performed. The simulations refer
to an integration domain which covers an urban portion
of Houston city (see Figure 11).

The boundary conditions were applied as: (a) at the
upstream boundary of the domain the flow rates were
imposed in according to a simple hydrograph in which
the flow rate increases linearly in 15 min from zero to
20 m3/s, beyond that flow rate is maintained constant;
(b) at downstream boundary normal flow condition was
applied. The simulation period was long enough to allow
steady flow conditions to be established.

The following errors were defined to estimate the
effect of the different mesh sizes on the simulated depth
and velocity fields:

herr =
h5× 5−hDIM >5× 5

h5× 5
ð4Þ

TABLE 5 Values of CV(RMSE) referred to 95, 99, and 99.9

percentile

Data set
95
percentile

99
percentile

99.9
percentile

TRMM-
3B42

0.78 0.60 0.41

CHIRPS 0.79 0.72 0.76

NCEP-CPC 0.99 0.63 0.54

NCEP-GOB 0.89 0. 81 0.36

GPM 0.61 0. 58 0.22

Abbreviations: CV(RMSE) Cross-validated root mean square error;
CHIRPS, rainfall estimates from rain gauge and satellite observa-
tions; TRMM, tropical rainfall measuring mission; GPM, global pre-
cipitation measurements; NCEP-CPC, National Center for
Environmental Prediction—Climate Prediction Center; NCEP-GOB,
National Center for Environmental Prediction—Global observation.

FIGURE 11 Area used for the subgrid test (the break lines are visible as pink lines)
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verr =
v5× 5−vDIM >5× 5

v5× 5
ð5Þ

In Figure 12 the errors obtained by Equations (4) and
(5) are shown for mesh sizes of 10 × 10, 100 × 100, and
500 × 500 m, respectively.

Figure 12 shows the increase of the errors with mesh
size increasing. Such errors are significantly greater for
flow velocity than for flow depth.

Table 6 shows the ratios between the extensions of
the flooding obtained using the different mesh sizes and
the 5 × 5 m ones. As the size of the calculation cells
increases, the flooding extension significantly decreases
(see Figure 12) with a notable loss of accuracy.

4 | CONCLUSIONS

In the paper we applied an approach to post-event
flooding maps by integrating satellite images, hydraulic
model simulations and social markers. Inundation areas
detected by satellite images was used to calibrate the
hydraulic numerical model, whose simulations were vali-
dated by information extracted by the social markers.
Few attempts have been made in the past to integrate
these different tools, and we believe that this study could
be a stimulus.

The application to the inundation of Houston area by
Hurricane Harvey showed that this approach allows a cred-
ible reconstruction of the main flooding characteristics -

FIGURE 12 Hydraulic simulation results for the depth and velocity at the mesh size 5 × 5 vs 10 × 10, 100 × 100 and 500 × 500

TABLE 6 Ratio between flooding area from model simulations on coarser mesh (10 × 10, 25 × 25, 50 × 50, 100 × 100, 250 × 250,

500 × 500) and reference flooding area (mesh size 5 × 5 m)

10 × 10
vs 5 × 5

25 × 25
vs 5 × 5

50 × 50
vs 5 × 5

100 × 100
vs 5 × 5

250 × 250
vs 5 × 5

500 × 500
vs 5 × 5

A ref (5 × 5)/A
subgrid

0.958066373 0.87686 0.7914 0.66211 0.2649137 0.14976
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flow depth and velocity, as well as flooding timing, which
are relevant information for a correct post-event damage
evaluation or to plan future flood defence systems. Specifi-
cally, the approach has been shown to be reliable in
flooding reconstruction in urban areas where the detection
of inundate areas by satellite images is still challenging. In
fact, it has been shown that in the presence of buildings,
roads, shadows, rough terrain, dense vegetation, and detec-
tion methods based on SAR fail to recognise flooding areas.
Hydraulic model simulations allow to overcome such limi-
tation, but in order to reduce the computational time by
using mesh with a resolution coarser than the DEM resolu-
tion, we need to use a sub-grid approach, which could be a
further source of inaccuracies. In this context model valida-
tion in the urban areas by social markers assures on the
reliability of the flooding reconstruction.

However, the application to the case study has
highlighted some drawbacks of each component method.
First, detection techniques based on satellite images suf-
fer of the difficulty to extract coherent information of
flooding in urban areas being the satellite signal affected
by complex backscattering mechanisms. Indeed such
techniques mainly focus on detecting flooding in rural or
suburban areas. Furthermore, the false positives and neg-
atives that frequently appear in the images need to be
addressed through a subjective evaluation of the opera-
tors with consequent loss of accuracy.

Our comparison with rainfall amount time series
recorded by rain-gauge shows that heavy rainfall amount
recorded by remote sensing are affected by significant
underestimation. Such bias should be significantly
reduced, for satellite-based rainfall to be a viable source
of information. However, new generations of satellites,
with higher temporal and spatial resolution, should allow
the development of new methods and tools for flooding
detection to overcome the above listed drawbacks, espe-
cially in urban areas, providing more reliable flooding
data for calibration of hydraulic numerical model as well
as more reliable rainfall amount measurements, espe-
cially for heavy precipitation for providing model input.

The inability in HEC-RAS to use spatially varying
precipitation input, as well as, the impossibility to take
into account losses and infiltration in dependence of soil
and/or land cover characteristics, can be a serious imped-
iment to obtain accurate simulations. In the case study,
due to the exceptional Harvey precipitation event, these
limitations have not affected the reliability of the result.
However, in other situations they could seriously affect
them. Extensions to remedy this, would avoid the need to
switch to a different model. The case study shows that
HEC-RAS is effective for simulating flooding in urban
areas in domains that are not particularly large, where
the mesh resolution is of the same order of magnitude of

the DEM resolution. However, for large regions, in order
to maintain the same accuracy, break lines have to be
applied to fit more complex geometry elements like
building, levees, etc. The consequence of such application
is a significant increase of computational times. Alterna-
tively a coarser mesh could be used together with previ-
ously described subgrid approach. The analysis
conducted for the case study has unfortunately shown
that increasing the computational grid size the results are
affected by large errors for both flow velocity and depth.
The consequence is a considerable loss of information
about flooding extention and timing. The errors grow
with the increase of the grid size. For water depth, errors
are lower than for flow velocity but still significant. This
fact suggests that more efforts should be directed towards
improving subgrid models, particularly for simulating
free surface flows in urban areas. Alternatively, other
strategies should be explored in order to reduce computa-
tion times for high resolution simulation.

Social markers have shown to be very effective for
verify the goodness of the reconstruction by model of the
flooding in the urban areas of Houston, since in the case
study, they have provided a lot of very well-defined spa-
tial and temporal data about the depth of the flooding.
Since the demonstrated usefulness of social markers,
planning a rational distribution on the territory of cam-
eras or a citizen awareness about the opportunity to share
information about the evolution of flooding event would
be opportune. These latter would reduce the tedious
extraction of data from social markers which often
require the need also of subjective analysis.

ACKNOWLEDGEMENT
The authors are thankful to the anonymous reviewers
and associate editor for their helpful comments to revise
the paper. The authors are greatly also acknowledged to
Prof. Pietro Ceccato for his useful suggestions.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new
data were created or analyzed in this study.

ORCID
Vincenzo Scotti https://orcid.org/0000-0001-5052-5487

REFERENCES
Alcrudo, F., & Garcia-Navarro, P. (1993). A high-resolution Godu-

nov type scheme in finite volumes for the 2D shallow water
equations. International Journal for Numerical Methods in
Fluids, 16, 489–505.

Anastasiou, K., & Chan, C. T. (1997). Solution of the 2D shallow
water equations using the finite volume method on unstruc-
tured triangular meshes. International Journal for Numerical
Methods in Fluids, 24, 1225–1245.

SCOTTI ET AL. 15 of 18

https://orcid.org/0000-0001-5052-5487
https://orcid.org/0000-0001-5052-5487


Auynirundronkool, K., Chen, N., Peng, C., Yang, C., Gong, J., &
Silapathong, C. (2012). Flood detection and mapping of the
Thailand central plain using RADARSAT and MODIS under a
sensor web environment. International Journal of Applied Earth
Observation and Geoinformation, 14(1), 245–255.

Bales, J. D., & Wagner, C. R. (2009). Sources of uncertainty in flood
inundation maps. Journal of Flood Risk Management, 2, 137–147.

Balzano, A. (1998). Evaluation of methods for numerical simulation
of wetting and drying in shallow water flow models. Coastal
Engineering, 34, 83–107. http://dx.doi.org/10.1016/S0378-3839
(98)00 015-5.

Bates, P., & Hervouet, J. (1999). A new method for moving-
boundary hydrodynamic problems in shallow water. Proceed-
ings of the Royal Society of London. Series A, 455, 3107–3128
10.1098/rspa.1999.0442.

Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I.,
Weedon, G. P., … Wood, E. F. (2017). Global-scale evaluation of
22 precipitation datasets using gauge observations and hydro-
logical modeling. Hydrology and Earth System Sciences, 21(12),
6201–6217.

Brivio, P. A., Colombo, R., Maggi, M., & Tomasoni, R. (2002). Inte-
gration of remote sensing data and GIS for accurate mapping of
flooded areas. International Journal of Remote Sensing, 23(3),
429–441.

Carincotte, C., Derrode, S., & Bourennane, S. (2006). Unsupervised
change detection on SAR images using fuzzy hidden Markov
chains. IEEE Transactions on Geoscience and Remote Sensing,
44(2), 432–441.

Casas, A., Lane, S., Yu, D., & Benito, G. (2010). A method for para-
meterising roughness and topographic sub-grid scale effects in
hydraulic modelling from Li-DAR data. Hydrology and Earth
System Sciences, 14, 1567–1579. http://dx.doi.org/10.5194/hess-
14-1567-2010.

Casulli, V. (2009). A high-resolution wetting and drying algorithm
for free-surface hydrodynamics. International Journal for
Numerical Methods in Fluids, 60(4), 391–408.

Chang, N. B., & Guo, D. H. (2006). Urban flash flood monitoring,
mapping and forecasting via a tailored sensor network system.
In 2006 IEEE International Conference on Networking, Sensing
and Control (pp. 757–761).

Chini, M., Pulvirenti, L., & Pierdicca, N. (2012). Analysis and interpre-
tation of the COSMO-SkyMed observations of the 2011 Japan tsu-
nami. IEEE Geoscience and Remote Sensing Letters, 9(3), 467–471.

Chini, M., Papastergios, A., Pulvirenti, L., Pierdicca, N., Matgen, P.,
& Parcharidis, I. (2016). SAR coherence and polarimetric infor-
mation for improving flood mapping. In 2016 IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS)
(pp. 7577–7580).

Cian, F., Marconcini, M., & Ceccato, P. (2018). Normalized difference
flood index for rapid flood mapping: Taking advantage of EO big
data. Remote Sensing of Environment, 209, 712–730 Chuvieco, E.,
Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., … & De
La Riva, J. (2010). Development of a framework for fire risk
assessment using remote sensing and geographic information
system technologies. Ecological Modelling, 221(1), 46–58.

Cian, F., Marconcini, M., Ceccato, P., & Giupponi, C. (2018). Flood
depth estimation by means of high-resolution SAR images and
lidar data. Natural Hazards & Earth System Sciences, 18(11),
3063–3084.

Costabile, P., & Macchione, F. (2012). Analysis of one-dimensional
modeling for flood routing in compound channels. Water
Resources Management, 26, 1065–1087.

D'Addabbo, A., Refice, A., Lovergine, F. P., & Pasquariello, G.
(2017). DAFNE: A Matlab toolbox for Bayesian multi-source
remote sensing and ancillary data fusion, with application to
flood mapping. Computers & Geosciences, 122, 64–75.

de Bruijn, J. A., de Moel, H., Jongman, B., Wagemaker, J., &
Aerts, J. C. (2018). TAGGS: Grouping tweets to improve global
geoparsing for disaster response. Journal of Geovisualization
and Spatial Analysis, 2(1), 2.

Defina, A. (2000). Two dimensional shallow flow equations for par-
tially dry areas. Water Resources Research, 36, 3251–3264 http:
//dx.doi.org/10.1029/2000WR90 0167.

Di Baldassarre, G., Castellarin, A., & Brath, A. (2009). Analysis of
the effects of levee heightening on flood propagation: example
of the River Po, Italy. Hydrological sciences journal, 54(6),
1007–1017.

Di Baldassarre, G., & Montanari, A. (2009). Uncertainty in river dis-
charge observations: A quantitative analysis. Hydrology and
Earth System Sciences, 13, 913–921.

Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., &
Beven, K. J. (2010). Flood-plain mapping: A critical discussion
of deterministic and probabilistic approaches. Hydrological Sci-
ences Journal, 55(3), 364–376.

Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., &
Brath, A. (2013). Probabilistic flood hazard mapping: Effects of
uncertain boundary conditions. Hydrology and Earth System
Sciences, 17, 3127–3140.

Dottori, F., Di Baldassarre, G., & Todini, E. (2013). Detailed data is
welcome, but with a pinch of salt: Accuracy, precision, and
uncertainty in flood inundation modeling. Water Resources
Research, 49, 6079–6085.

Emanuel, K. (2017). Assessing the present and future probability of
Hurricane Harvey's rainfall. Proceedings of the National Acad-
emy of Sciences, 114(48), 12681–12684.

Falter, D., Vorogushyn, S., Lhomme, J., Apel, H., Gouldby, B., &
Merz, B. (2013). Hydraulic model evaluation for large-scale
flood risk assessments. Hydrological Processes, 27, 1331–1340.
https://doi.org/10.1002/hyp.9553.

Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in
SAR interferometry. IEEE Transactions on Geoscience and
Remote Sensing, 39(1), 8–20.

Filonenko, A., Hernández, D. C., Seo, D., & Jo, K. H. (2015). Real-
time flood detection for video surveillance. In IECON 2015-41st
annual conference of the IEEE industrial electronics society
(pp. 004082–004085).

Fohringer, J., Dransch, D., Kreibich, H., & Schröter, K. (2015).
Social media as an information source for rapid flood inunda-
tion mapping. Natural Hazards and Earth System Sciences, 15
(12), 2725–2738.

Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J. P.,
Bates, P. D., & Mason, D. C. (2013). A change detection
approach to flood mapping in urban areas using TerraSAR-X.
IEEE Transactions on Geoscience and Remote Sensing, 51(4),
2417–2430.

Grigg, N. S., & Helweg, O. J. (1975). State-of-the-art of estimating
flood damage in URBAN areas 1. JAWRA Journal of the Ameri-
can Water Resources Association, 11(2), 379–390.

16 of 18 SCOTTI ET AL.

https://doi.org/10.1002/hyp.9553


Grimaldi, S., Petroselli, A., Arcangeletti, E., & Nardi, F. (2013).
Flood mapping in ungauged basins using fully continuos
hydrologic-hydraulic modeling. Journal of Hydrology, 487,
39–47.

Havas, C., Resch, B., Francalanci, C., Pernici, B., Scalia, G.,
Fernandez-Marquez, J. L., … Kirsch, B. (2017). E2mc: Improv-
ing emergency management service practice through social
media and crowdsourcing analysis in near real time. Sensors,
17(12), 2766.

Horritt, M., & Bates, P. (2001). Effects of spatial resolution on a ras-
ter based model of flood flow. Journal of Hydrology, 253,
239–249. http://dx.doi.org/10.1016/S0022-1694(01)00490-5.

Howe, J., (2006). The rise of crowdsourcing. Wired magazine,
14(6), 1–4.

Hunter, N. M., Bates, P. D., Neelz, S., Pender, G., Villanueva, I.,
Wright, N. G., … & Crossley, A. J., (2008). Benchmarking 2D
hydraulic models for urban flood simulations. In Proceedings of
the institution of civil engineers: water management (Vol.
161, No. 1, pp. 13–30). Thomas Telford (ICE publishing).

Irwin, K., Beaulne, D., Braun, A., & Fotopoulos, G. (2017). Fusion
of SAR, optical imagery and airborne LiDAR for surface water
detection. Remote Sensing, 9(9), 890.

Joseph, K., Landwehr, P. M., & Carley, K. M. (2014). An approach
to selecting keywords to track on twitter during a disaster. In
ISCRAM.

Jung, Y., & Merwade, V. (2015). Estimation of uncertainty propaga-
tion in flood inundation mapping using a 1-D hydraulic model.
Hydrological Processes, 29(4), 624–640.

Leandro, J., Chen, A. S., Djordjevi�c, S., & Savi�c, D. A. (2009). Com-
parison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic
models for urban flood simulation. Journal of Hydraulic Engi-
neering, 135(6), 495–504.

Li, Q. (2017). Characteristics and social impact of the use of social
media by Chinese Dama. Telematics and Informatics, 34(3),
797–810.

Li, Z., Wang, C., Emrich, C. T., & Guo, D. (2018). A novel approach
to leveraging social media for rapid flood mapping: A case
study of the 2015 South Carolina floods. Cartography and Geo-
graphic Information Science, 45(2), 97–110.

Liand, Q., Borthwick, A. G. L., & Stelling, G. (2014). Simulation of
dam and dyke-break hydrodynamics on dynamically adaptive
quadtree grids. International Journal for Numerical Methods in
Fluids, 46, 127–162.

Liu, X., Sahli, H., Meng, Y., Huang, Q., & Lin, L. (2017). Flood
inundation mapping from optical satellite images using spatio-
temporal context learning and modest AdaBoost. Remote Sens-
ing, 9(6), 617.

Lopez-Fuentes, L., Rossi, C., & Skinnemoen, H. (2017,
December). River segmentation for flood monitoring. In 2017
IEEE international conference on big data (Big Data)
(pp. 3746–3749). IEEE.

MacEachren, A. M., Jaiswal, A., Robinson, A. C., Pezanowski, S.,
Savelyev, A., Mitra, P., Zhang, X., and Blanford, J., (2011).
Sense-Place2: GeoTwitter analytics support for situational
awareness, In 2011 IEEE conference on visual analytics science
and technology (VAST) (pp. 181–190), Providence, Rhode
Island, USA. https://doi.org/10.1109/VAST.2011.6102456.

Mandlburger, G., Hauer, C., Höfle, B., Habersack, H., & Pfeifer, N.
(2009). Optimisation of LiDAR derived terrain models for river

flow modelling. Hydrology and Earth System Sciences, 13,
1453–1466. https://doi.org/10.5194/hess-13-1453-2009

Mason, D. C., Cobby, D. M., Horritt, M. S., & Bates, P. D. (2003).
Floodplain friction parameterization in two-dimensional river
flood models using vegetation heights derived from airborne
scanning laser altimetry. Hydrological processes, 17(9),
1711–1732.

Mazzoleni, M., Bacchi, B., Barontini, S., Di Baldassarre, G.,
Pilotti, M., & Ranzi, R. (2014). Flooding hazard mapping in
floodplain areas affected by piping breaches in the Po River,
Italy. Journal of Hydrologic Engineering, 19(4), 717–731.

McMillan, H., & Brasington, J. (2007). Reduced complexity strate-
gies for modelling urban floodplain inundation. Geomorphol-
ogy, 90, 226–243 http://dx.doi.org/10.1016/j.geomorph.2006.
10.031.

Mignot, E., Paquier, A., & Haider, S. (2006). Modeling floods in a
dense urban area using 2D shallow water equations. Journal of
Hydrology, 327(1), 186–199.

Mingham, C. G., & Causon, D. M. (1998). A high resolution finite
volume method for the shallow water equations. Journal of
Hydraulic Engineering ASCE, 124(6), 605–614.

Morstatter, F., Kumar, S., Liu, H., & Maciejewski, R., (2013). Under-
standing twitter data with TweetXplorer, in Proceedings of the
19th ACMSIGKDD international conference on knowledge dis-
covery and data mining, KDD '13 (pp. 1482–1485), ACM,
New York, NY, USA. https://doi.org/10.1145/2487575.2487703.

Neal, J., Odoni, N., Trigg, M., Freer, J., Garcia-Pintado, J.,
Mason, D., … Bates, P. (2015). Efficient incorporation of chan-
nel cross-section geometry uncertainty into regional and global
scale flood inundation models. Journal of Hydrology, 529,
169–183. https://doi.org/10.1016/j.jhydrol.2015.07.026.

Neal, J., Schumann, G., & Bates, P. (2012). A subgrid channel
model for simulating river hydraulics and floodplain inunda-
tion over large and data sparse areas. Water Resources Research,
48, W11506. https://doi.org/10.1029/2012WR012514.

NWS. (2017). Major Hurricane Harvey.
Omranian, E., & Sharif, H. O. (2018). Evaluation of the global pre-

cipitation measurement (GPM) satellite rainfall products over
the lower Colorado River basin, Texas. JAWRA Journal of the
American Water Resources Association, 54(4), 882–898.

Orton, P., Georgas, N., Blumberg, A., & Pullen, J. (2012). Detailed
modeling of recent severe storm tides in estuaries of the New
York City region. Journal of Geophysical Research: Oceans,
117(C9).

Poser, K., & Dransch, D. (2010). Volunteered geographic informa-
tion for disaster management with application to rapid flood
damage estimation. Geomatica, 64(1), 89–98.

Proust, S., Bousmar, D., Riviere, N., Paquier, A., & Zech, Y. (2010).
Energy losses in compound open channels. Advances in Water
Resources, 33, 1–16.

Pulvirenti, L., Chini, M., Pierdicca, N., & Boni, G. (2016). Use of
SAR data for detecting floodwater in urban and agricultural
areas: The role of the interferometric coherence. IEEE Transac-
tions on Geoscience and Remote Sensing, 54(3), 1532–1544.

Refice, A., Capolongo, D., Pasquariello, G., D'Addabbo, A.,
Bovenga, F., Nutricato, R., … Pietranera, L. (2014). SAR and
InSAR for flood monitoring: Examples with COSMO-SkyMed
data. IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 7(7), 2711–2722.

SCOTTI ET AL. 17 of 18

https://doi.org/10.1109/VAST.2011.6102456
https://doi.org/10.5194/hess-13-1453-2009
https://doi.org/10.1145/2487575.2487703
https://doi.org/10.1016/j.jhydrol.2015.07.026
https://doi.org/10.1029/2012WR012514


Richards, J. A., Woodgate, P. W., & Skidmore, A. K. (1987). An
explanation of enhanced radar backscattering from flooded for-
ests. International Journal of Remote Sensing, 8(7), 1093–1100.

Rogstadius, J., Kostakos, V., s& Laredo, J. (2011). Towards real-time
emergency response using crowd supported analysis of social
media, In Proceedings of CHI workshop on crowdsourcing and
human computation, systems, studies and platforms (pp. 1–3),
Vancouver, British Columbia, Canada.

Rosser, J. F., Leibovici, D. G., & Jackson, M. J. (2017). Rapid flood
inundation mapping using social media, remote sensing and
topographic data. Natural Hazards, 87(1), 103–120.

Royapoor, M., & Roskilly, T. (2015). Building model calibration
using energy and environmental data. Energy and Buildings, 94,
109–120.

Sakaki, T., Okazaki, M., & Matsuo, Y., (2010). Earthquake shakes
twitter users: Real-time event detection by social sensors, in:
Proceedings of the 19th international conference on world-
WideWeb, WWW'10 (pp. 851–860), ACM, New York, NY, USA.
https://doi.org/10.1145/1772690.1772777.

Sanders, B., Schubert, J., & Gallegos, H. (2008). Integral formulation
of shallow-water equations with anisotropic porosity for urban
flood modeling. Journal of Hydrology, 362, 19–38. https://doi.
org/10.1016/j.jhydrol.2008.08.009.

Scalia, G., (2017). Network-Based Content Geolocation on Social
Media for Emergency Management. Master's Thesis, Politecnico
di Milano, Milan, Italy.

Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., &
Pappenberger, F. (2009). Progress in integration of remote
sensing–derived flood extent and stage data and hydraulic
models. Reviews of Geophysics, 47(4), RG4001. https://doi.org/
10.1029/2008RG000274.
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