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a b s t r a c t 

We address the stochastic scheduled service network design problem with quality targets and uncertainty 

on travel times. This important problem, raising in the tactical planning process of consolidation-based 

freight carriers, has been little studied up to now. We define the problem considering quality targets for 

on-time operation of services and delivery of demand loads to destinations. We introduce a two-stage 

mixed-integer stochastic model defined over a space-time network, with quality targets modeled through 

penalties. We also propose an effective progressive-hedging-based meta-heuristic, based on a partial- 

decomposition concept aiming to address the challenges raised by the presence of flow-distribution de- 

cisions in the first-stage problem and by the flow-related degeneracy particular to network design. The 

results of an extensive numerical experimentation emphasize the worthiness of the formulation, as well 

as the very good performance of the proposed meta-heuristic when compared to a well-known commer- 

cial solver. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

Transportation plays a vital role in the social, political, and eco-

nomic development of our society. It supports production, trade,

consumption, and leisure activities, and ensures the movement of

people and freight in a timely and efficient manner. The trans-

portation industry, freight carriers in particular, operates in a

highly competitive, cost and quality-of-service-driven environment.

We focus on consolidation-based, long-haul freight transporta-

tion carriers, e.g., railways, liner-shipping companies, less-than-

truckload motor carriers, etc., which operate more or less tightly

scheduled services to answer demand. Consolidation-based carri-

ers take advantage of economies of scale to lower costs and, thus,

service prices, by moving the loads of different customers in the

same vehicle or convoy, for all or part of their itineraries from ori-

gins to destinations. Consolidation-based carriers operate a set of

regular scheduled transportation services between particular ter-

minals in their network. The schedule covers a certain length of

time and it is repeatedly executed for a given planning horizon,

e.g., a weekly schedule repeated for the six months of a so-called
∗ Corresponding author. 
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eason. Deciding on the services and schedule to operate for the

ext season is a rather complex tactical-planning problem that is

raditionally addressed through a scheduled service network design

 SSND ) methodology. 

The scope of SSND is to produce the set of scheduled services,

ogether with planned routes for forecast regular demand (services

sed and terminals passed through), to achieve the economic and

uality targets of the carrier. The latter reflects carrier’s internal

ecisions concerning the actual performance to achieve during the

lanning horizon with the selected service network, and normally

elates to the degree of violation acceptable with respect to what

s externally proposed to the customers (schedule and due dates). 

While there is quite a body of literature on SSND models for

onsolidation-based transportation (see, e.g., the survey of Crainic

 Kim, 2007 ), few address quality target issues, and even fewer

ccount for the fluctuations in travel times and the resulting de-

ays and breaches, with monetary and possible market-loss conse-

uences. In fact, according to our best knowledge, none has jointly

ddressed the design of an efficient service network and the con-

ideration of travel time uncertainty impacting its reliability in

erms of on-time service arrival and freight delivery. We aim to fill

his gap by defining the Stochastic Scheduled Service Network De-

ign Problem with Quality Targets ( SSND-QT ) and proposing a for-

ulation to address this tactical planning problem while explic-

tly considering travel time uncertainty. The formulation takes the
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orm of a two-stage mixed-integer linear stochastic model over a

pace-time network. The first stage addresses the selection of ser-

ices and the routing of freight flows. Quality targets are mod-

led through penalties. Then, when travel time realizations become

nown, penalties are assigned to the appropriate services and de-

iveries. 

Network design problems are NP-Hard and display high com-

utational difficulty, stochastic ones even more so ( Powell &

opaloglu, 2003 ). Thus, only small- to medium-sized instances can

e solved optimally, and heuristic methods are generally required.

e therefore propose an effective progressive hedging (PH)-based

eta-heuristic. We believe this to be the first attempt to apply

his methodology to a SSND problem with uncertainty on travel

imes. We present a tailored approach (compared to, e.g., the more

raditional one in Crainic, Fu, Gendreau, Rei, & Wallace, 2011 ) to

vercome challenges related to the quadratic reformulation and

ow-related degeneracy that arise when PH is applied straightfor-

ardly to the SSND-QT formulation. The numerical results of the

xperiments we conducted show the meta-heuristic is efficient and

ields good-quality solutions. 

The contributions of this paper therefore are: (1) Propose a new

SND problem setting where uncertainty in travel times is explic-

tly considered and specific attention is given to quality targets; (2)

rovide a two-stage stochastic linear mixed-integer programming

ormulation for the SSND-QT where quality targets are modeled

hrough penalties; (3) Develop a PH-based meta-heuristic able to

ffectively find good-quality solutions to larger-scale problem in-

tances when compared to a well-known commercial solver; (4)

resent the results of an extensive experimentation underscoring

he relevance of the formulation when quality targets are of in-

erest, as well as the performance of the proposed meta-heuristic

ompared to an exact solution method. 

The paper is organized as follows. We recall the problem con-

ext and review the relevant yet sparse literature on stochastic

SND in Section 2 . Section 3 then presents the problem setting we

ddress and the modeling approach we propose. Section 4 intro-

uces the notation and the mathematical formulation. We describe

he meta-heuristic in Section 5 . We present the experimental plan

n Section 6 , and analyse the results in Section 7 . Conclusions and

uture research issues are discussed Section 8 . 

. Context and literature review 

Freight consolidation-based carriers operate over a physical net-

ork of uni or intermodal terminals connected by infrastructure

rail, road) or conceptual (navigation) links. They set up and ex-

loit transportation services, according to given schedules, to sat-

sfy the forecast regular demand in a cost and resource-utilization

fficiently way. Demand is represented in terms of commodities,

.e., collections of similar products. Each commodity requires the

ransportation of a certain quantity of freight from a particular

rigin terminal, available at a certain availability date , to be de-

ivered to a destination terminal by a due date . Additional phys-

cal attributes (e.g., weight, volume) and shipment requirements

e.g., type of vehicle) may characterize each commodity. The ser-

ice network moves the demand flows. Each service is character-

zed by its origin and destination terminals, its schedule , i.e., the

eparture time at origin, the departure and arrival times at inter-

ediate stops (if any), and the arrival time at destination, as well

s a number of characteristics such as its capacity, speed and pri-

rity, etc. To take advantage of economies of scale, the loads of

ifferent demands are consolidated , loaded together, into the same

ehicles, which, in some cases (e.g., rail, barge or road trains) are

urther consolidated into convoys. Freight may thus be moved by

 sequence of services between its origin and destination, under-

oing consolidation (accompanied possibly by loading/unloading)
nd service-to-service transfer operations at intermediate ter-

inals. Terminal activities follow a strict schedule as well -

oordinated with services arrival times - in order to efficiently

erform loading, unloading, transshipment, and consolidation ac-

ivities. Services arriving early need generally to wait and are

rocessed when planned (e.g., ships waiting at sea at the port

ntrance); late arrived services instead are processed immediately

o avoid increasing the delay any further. 

The methodology of choice to design such a transportation plan

epresents the problem over a space-time network appropriate

or the schedule length, made up of the set of all services that

ight potentially be operated by the carrier to address the de-

and. Each potential service is described based on its own char-

cteristics (physical route, stops, schedule) as a path in the space-

ime network. The aim is to select those services that allow for

he satisfaction of demand and meet the economic and quality tar-

ets chosen by the carrier. The corresponding Scheduled Service

etwork Design model then takes the form of a fixed-cost, capaci-

ated, time-dependent network design formulation. 

Surveys on Service Network Design issues and formulations can

e found in Assad (1980) , Crainic (1988) , Cordeau, Toth, and Vigo

1998) for rail transportation, Christiansen, Fagerholt, and Ronen

2004) and Christiansen, Fagerholt, Nygreen, and Ronen (2007) for

aritime transportation, Crainic and Roy (1988) , Crainic (20 0 0) ,

nd Crainic (2003) for land-based long-haul transportation, and

rainic and Kim (2007) for intermodal transportation. As shown

n these surveys, as well as in the more recent literature, most of

he research related to SSND considers deterministic problem set-

ings. Uncertain factors such as stochastic demand and variability

n travel times have been generally overlooked and addressed in

ecent years only. 

Most of the studies on stochastic SSND focus on demand uncer-

ainty. Thus, e.g., Lium, Crainic, and Wallace (2007) , Lium, Crainic,

nd Wallace (2009) , Bai, Wallace, Li, and Chong (2014) , Jiang, Bai,

ickelin, and Landa-Silva (2017) , and Wang, Crainic, and Wallace

2020) discuss two-stage formulations and address the question of

hat may be lost by not integrating information about the stochas-

ic nature of demand directly into the tactical planning method-

logy, highlighting consolidation as a powerful mean to hedge

gainst fluctuation. 

Travel time uncertainty is very rarely addressed in the SSND lit-

rature. We are aware of very few contributions addressing the in-

egration of travel time and the quality of the service performed.

rainic, Ferland, and Rousseau (1984) , for rail and generalized by

rainic and Rousseau (1986) for consolidation-based carrier plan-

ing, propose path-based SND formulations with generalized-cost

bjective functions combining fixed and variable operating costs

ogether with time-related costs. Time representations take the

orm of non-linear congestion functions for terminals and partic-

lar lines (e.g., rail tracks), and are transformed into costs through

ervice and commodity-specific unit time costs. Service-quality

easurements are considered through penalties on the variances

f the service and demand total travel times. A similar approach

onsidering congestion functions is also used in Crainic, Florian,

uélat, and Spiess (1990a) and Crainic, Florian, and Léal (1990b) for

ational/regional planning of multi-commodity multimodal freight

ransportation systems. These contributions assume deterministic 

ravel times. 

Among the recent contributions considering travel times uncer-

ainty, Demir et al. (2016) focus on a multimodal consolidation-

ased transportation system in which motor-carrier transportation

ervices must catch rail and maritime transportation services op-

rating according to fixed schedules. The goal is to select motor-

arrier services and route freight by minimizing costs and exploit-

ng the given rail and maritime services as much as possible to

educe gas emissions. The authors propose a multi-objective SND
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formulation and consider a chance constraint approach to ensure,

with a given probability, safe connections between the selected

motor-carrier services and the available “green” rail and maritime

services. A similar problem is addressed by Van Hui, Gao, Leung,

and Wallace (2014) , where additional costs arise when connections

are missed. In the proposed two-stage job-assignment model, the

first stage selects the motor-carrier services minimizing the opera-

tion costs plus the expected costs of adjusting the plan in the sec-

ond stage, when delays to upcoming shipments are observed. The

recourse in those cases is based on what the authors call “common

industrial practice” in their application, that is, “forget the consol-

idation pertaining to the late shipments, release the on-time ship-

ments according to the plan, and send the late shipments using

the fastest available means”. A different problem is considered in

Wang and Meng (2012a) and Wang and Meng (2012b) , who ad-

dress the optimization of the sailing speed of a container-ship fleet

to achieve target arrival times at a sequence of ports, while ac-

counting for energy consumption. The ships should respect a given

schedule, but late departure times caused by longer-than-planned

port operations are possible and these affect the sailing time to-

ward the subsequent port. The authors focus on operation time

uncertainty and propose mixed-integer non-linear convex stochas-

tic minimization models. A similar problem is considered in Song,

Li, and Drake (2015) , where it is addressed through a stochastic

multi-objective optimization formulation. 

This brief overview highlights the novelty of the uncertain

travel time problem in consolidation-based transportation, as well

as the need for further research in the area. We propose a more

general approach with respect to the existing literature to address

this challenge. We account for variations in travel times, their con-

sequences on delays for services and demand flows, and the prop-

agation of these delays over the network. We define two types of

quality targets, for services and demand, which need to be con-

sidered separately, and account for their violation. To the best of

our knowledge, these features have never been jointly considered

in previous stochastic SSND contributions. 

3. Problem statement and proposed modeling approach 

We address a general scheduled service network design prob-

lem setting for consolidation-based freight carriers while explic-

itly accounting for the usual variability in travel times. The latter

belongs to the so-called business-as-usual uncertainty type (e.g.,

Klibi, Martel, & Guitouni, 2010 ), that is, uncertainty one observes

over the duration of the tactical planning horizon and that one

needs to address when the plan is applied day after day during

actual operations. Such variations in travel times and, possibly, the

associated delays in operating services and delivering flows, occur

even in the most tightly operated systems due to congestion con-

ditions, adverse weather, and so on, and may jeopardize what the

carrier announces and “promises” to customers, namely, on-time

operations with respect to the service schedule and the demand

due dates at destinations, with negative impacts on reputation and

revenues. Our goal therefore is a SSND formulation that explicitly

accounts for such possible day-by-day variations, and their con-

sequences for the carrier, at the planning phase, yielding a regu-

lar transportation plan requiring less adjustments and costs during

day-by-day operations when the actual variations become known. 

As indicated in the previous section, the physical network sup-

porting the operations of the carrier in tactical-planning modeling

is represented by a network with nodes standing for the terminals

and arcs modeling the connections between them the carrier may

use. An estimation of the usual travel time (for each service type

when appropriate) is associated to each link. The SSND formula-

tion is then defined over a time-space network where the nodes

are copies of the physical terminals at all periods of the sched-
le length, while the arcs are defined by the potential services the

arrier might operate and among which the final service network

s to be selected. Section 4 details the definition of the service arcs

or segments) as well as that of the holding arcs linking terminal

odes at consecutive time periods which are also included in the

odel. Each service is defined by its origin and destination termi-

als plus, possibly, a number of intermediate stops on its physical

ath among the two, as well as its schedule , called usual in the fol-

owing. The latter is based on the usual travel times of the physical

inks and gives the arrival and departure times at each terminal on

he route (capacity and other characteristics are also part of the

efinition as detailed in the next section). 

We represent the business-as-usual variability in travel times

hrough probability distributions associated to each physical link

nd service arcs. This information is then considered with respect

o the quality targets of the carrier and integrated in the selection

f the service network. We identify two major types of quality tar-

ets a carrier might want to consider in evaluating the quality of

he proposed service network: 1) the schedule target related to the

onformity to the scheduled arrival time at each stop for services,

nd 2) the delivery target defining the respect of the given delivery

ue dates for demand. 

We address the basic version of the problem setting in this

rst modeling attempt, still retaining the main characteristics of

tochastic SSND. All services are of the same type in terms of

peed, priority, and capacity. Services may arrive early at a termi-

al but must wait, at no cost, until the scheduled time (e.g., ships

t anchor at sea outside the port). Services may also arrive late,

n which case terminal operations begin immediately (recall that

ervice time at terminals is deterministic) and the departure time

rom that stop is modified to account for the late arrival and the

ervice time. The on-time arrival time at the following stops may

hus be compromised, unless the travel times on the subsequent

inks are lower than the usual ones. Delays for services are thus

ropagated through the service network, i.e., a delay on a service-

ink is propagated to the subsequent links and, thus, to the com-

lete route (path) of the service. The problem setting considered

oes not include explicit penalty costs for commodities missing a

ransfer at a terminal due to service delays. We do, however, en-

orce “safe” connections through the penalties described below on

ate service arrival. Notice that late arrival of a service at some ter-

inal is not important from the commodity point of view as long

s it is delivered on time. The target penalties defined in the fol-

owing address these issues. 

Recall that tactical plans are built for a certain planning-horizon

ength, also called season of a few months to a year long, some

ime before the beginning of the season, to be used repeatedly

ach “day” of the season when adjustments to plans are performed

ithin the limits of operational feasibility to reflect the new infor-

ation that become available. Two-stage stochastic SSND formula-

ions are then proposed to reflect this decision structure, the first

tage defining the service network based on a forecast of uncertain

arameters, the second being dedicated to adjusting the plan. We

ollow this approach in this paper, and need to address a number

f interrelated questions: how we model targets, when the new

nformation becomes available, and how we react when the real-

zation of travel times is observed. 

One way to model quality targets is through probabilistic condi-

ions by exploiting travel time distributions. Thus, e.g., a schedule

arget may specify that each service must respect its planned ar-

ival time at least with probability α, considering its occurrences

uring the planning horizon, while delays should not be greater

han a pre-specified amount of time (e.g., a specific percentile

f the travel time probability distribution or the expected value

lus the standard deviation), with probability 1. Similarly, a deliv-

ry target may specify that each demand must arrive at its final
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o  
estination respecting its due date at least with probability β . The

ssue when considering probabilistic constraints, however, is that

hey place hard restrictions on decisions, so that violations beyond

he specific probabilistic threshold are not possible ( Birge & Lou-

eaux, 2011 ). The direct effect of this is that such formulations ig-

ore some solutions which could be a good compromise between

 violation, which comes at a cost, and an acceptable solution for

he carrier. This flexibility is often recommended, if not required,

hen uncertainty must be faced at a tactical level and may be

chieved by considering a soft reformulation of those conditions,

s extensively discussed in King and Wallace (2012) . This reformu-

ation transforms hard into soft restrictions through a penalty func-

ion , which increases its value as the target is missed, becoming

art of the objective, where the costs and benefits can be com-

ared. We adopt this penalty-formulation approach in modeling

uality targets and define two penalty terms. The first relates to

he delays of each service at each of its stops, the second to the

elay of each commodity at destination. 

The information revelation process defines how and when the

alues of the stochastic parameters are observed. The arrival times

f services and demand flows at their respective destinations, as

ell as at intermediate service stops, are the stochastic parameters

n this study, their values being a direct result of the variations

n the times required to travel along physical links. This implies

hat the delays incurred by services and demand flows, as well as

he computation of the penalties corresponding to violated quality

argets, may be observed only after services complete their move-

ents, that is, at the second stage of decision making. 

The aim of the proposed two-stage SSND-QT model is thus

o select among the set of potential services that might be of-

ered by the carrier, given their respective usual schedules, random

ravel times, and physical routes, those services, and consequent

emand itineraries, that yield the lowest total cost, combining the

ost of planned operations (first stage) and the additional expected

enalty costs for violated quality targets (computed at the second

tage). 

The difference between the simple recourse of SSND-QT and the

etwork recourse of most SSND models with stochastic demand

ay be worth noticing. In the latter case, the realization of de-

and takes place before transportation activities start and, thus,

t makes sense to re-optimize, partially or completely, the demand

istribution over the service network. This is not possible in our

ase, as information is revealed once transportation has been per-

ormed. Even when partial information is available (e.g., after the

rst service leg), re-routing is not possible or too costly in most

ases when business-as-usual is addressed, as freight is loaded into

ehicles which often are captive of the infrastructure (e.g., trains

f rail tracks and ships of ports of call and navigation lines). More-

ver, the lateness of a service at a stop does not necessarily imply

hat the transported demand will be late at its final destination

s shorter travel times may occur in the rest of their itineraries.

he simple recourse of paying the penalties is then the only pos-

ible recourse, which justifies addressing the issue in the tactical-

lanning SSND model to select services and flow itineraries that

itigate these costs. The model is introduced next. 

. Model formulation 

The physical network on which the carrier operates is repre-

ented by G P = (N 

P , A 

P ) , with node set N 

P representing the phys-

cal terminals and arc set A 

P representing the direct connections

etween terminals. Usual and random travel times are associated

o each arc in A 

P . 

We model the dynamics of the SSND-QT through a space-time

etwork , G = (N , A ) . We discretize the schedule length into T time

eriods of equal length through T+1 time instants. The set of phys-
cal nodes is replicated T+1 times, resulting in set N . Demand is

epresented on G by the set of commodities K, each commodity

 ∈ K requiring the transport of a certain volume w (k ) from origin

(k ) ∈ N to destination d(k ) ∈ N according to its origin and des-

ination terminals, as well as its entry, a ( k ), and due, b ( k ), dates.

otice that the latter is the due date specified in the understand-

ng with the customer. 

The set of arcs A is composed of the set of holding arcs A 

H and

he set of moving arcs A 

M . The former includes arcs between the

epresentations of the same node in two consecutive periods and

s used to model idle time at terminal for freight or operation time

t terminal for services. The latter stands for the service legs of the

otential services, that is, the movements of services between two

ifferent nodes in two different time periods. 

Let R be the set of potential services that the carrier may use.

ach service r ∈ R has a capacity u r and a route in the physical

etwork, specifying the set σ (r) = { z(r) n ∈ N P , n = 1 , . . . , | σ (r) |}
f consecutive terminals visited between its origin z ( r ) 1 and desti-

ation z ( r ) | σ ( r )| as well as the arcs in A used to perform the move-

ent ( Crainic, Errico, Rei, & Ricciardi, 2015 ). Timing information in-

icating the usual departure time ζ o ( r ) at origin o ( r ) ( = z(r) 1 ), the

sual arrival time e d ( r ) at destination d ( r ) ( = z(r) | σ (r) | ), as well as

he arrival/departure times at the other terminals visited in usual

onditions without any delay are also defined. Combined with the

iming information, the physical route yields the route the service

erforms in the space-time network, which we define as the se-

uence of service legs L (r) = { l(r) } , ∀ r ∈ R . The collection of all

ervice legs of all potential services yields the set of moving arcs

 

M = 

⋃ 

r∈R 

⋃ 

l∈L (r) l(r) . 

A usual travel time, ˆ τl(r) and a random travel time, τ l ( r ) , are as-

ociated to each service leg l(r) ∈ L (r) . A service leg has initial and

erminal stops, z l and z l+1 in σ ( r ), and travels the corresponding

ath in the physical network. Consequently, its usual and random

ravel times are computed as the sum of the usual travel times

nd the convolution of the random travel times, respectively, of the

hysical arcs making up this path. The same time � is associated

o terminal activities for all terminals and services. 

A fixed selection (operation) cost f r is associated to each poten-

ial service r ∈ R . A unit commodity transportation cost c k 
l(r) 

is also

ssociated to each service leg l(r) ∈ L (r) , r ∈ R and commodity

 ∈ K. When appropriate, the arc-based notation, c k 
i j 
, (i, j) ∈ A 

M ,

s also used. The unit commodity handling cost at terminals is then

iven by c k 
i j 
, k ∈ K, (i, j) ∈ A 

H . Table 1 summarizes the parameters

sed to describe the model. 

Let � define the set of possible outcomes of the arc travel time

andom variables and let ω be an element in that set. Two sets of

rst-stage decision variables are defined: 

• y r ∈ { 0 , 1 } , r ∈ R , represent whether service r is selected ( y r =
1 ), or not ( y r = 0 ); 

• x k 
i j 

≥ 0 , k ∈ K, (i, j) ∈ A , stand for the flow of commodities in

the space-time network, moving, (i, j) ∈ A 

M , or waiting at a

terminal, (i, j) ∈ A 

H . 

Three sets of second-stage variables are defined to model how

o address the delays given a travel time realization ω ∈ �: 

• δl(r) (ω) ≥ 0 , l(r) ∈ L (r) , r ∈ R , represent the time instant at

which service r begins to execute (move) its service leg l ( r ) (ob-

viously, it is the usual departure time ζ o ( r ) for the first leg start-

ing at o ( r )); 
• ηl(r) (ω) ≥ 0 , l(r) ∈ L (r) , r ∈ R , stand for the time instant at

which service r ends its movement on service leg l ( r ); 
• ε k (ω) ≥ 0 , k ∈ K, represent the time instant at which commod-

ity k is delivered at its destination. 

As already indicated, we express quality targets through a set

f penalties on lateness and add those to the objective function.
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Table 1 

Parameters used to describe the model. 

Sets 

Notation Description 

T set of time periods in which the schedule length is discretized 

N set of nodes of the space-time network defined as the set of physical terminals N 

P replicated over T 

A set of arcs of the space-time network defining movements or idle time 

K set of commodities 

R set of potential services 

L (r) set of service legs of service r ∈ R 

� set of possible travel time outcomes 

S set of scenarios 

Parameters 

Notation Description 

f r selection (operation) cost of service r ∈ R 

u r capacity of service r ∈ R 

o ( r ) origin of service r ∈ R 

ζ o ( r ) usual departure time at origin of service r ∈ R 

z l origin terminal of service leg l(r) ∈ L (r) of service r ∈ R 

e l ( r ) usual arrival time at destination terminal of service leg l(r) ∈ L (r) of service r ∈ R 

ˆ τl(r) usual travel time associated to service leg l(r) ∈ L (r) of service r ∈ R 

τ l ( r ) s travel time realization associated to service leg l(r) ∈ L (r) of service r ∈ R in scenario s ∈ S
λr 

l(r) 
penalty cost for short delay for service leg l(r) ∈ L (r) of service r ∈ R 

�r 
l(r) 

penalty cost for long delay for service leg l(r) ∈ L (r) of service r ∈ R 

B maximum acceptable service delay 

c k 
i j 

transportation or handling cost of commodity k ∈ K associated to arc (i, j) ∈ A 

w (k ) volume of commodity k ∈ K
o ( k ) origin of commodity k ∈ K
d ( k ) destination of commodity k ∈ K
b ( k ) due date of commodity k ∈ K
λk penalty cost for short delay of commodity k ∈ K at destination 

�k penalty cost for long delay of commodity k ∈ K at destination 

B k maximum acceptable delivery delay of commodity k ∈ K at destination 

� service time for terminal activities 

Fig. 1. Examples of arrival and departure time to and from a terminal. 
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Lateness of service is considered as soon as the observed arrival

time at a stop exceeds the usual arrival time for that stop. Thus,

for each service leg, we compute 

ηl(r) (ω) = δl(r) (ω) + max ( ̂  τl(r) , τl(r) (ω)) ∀ l(r) ∈ L (r) (1)

and 

δl(r) (ω) = 

{
ζo(r) when z l = o(r) 
ηl −(r) (ω) + � when z l � = o(r) 

∀ l(r) ∈ L (r) , ∀ r ∈ R (2)

where τ l ( r ) ( ω) is the travel time realization of service leg l ( r ). Thus,

when the service arrives earlier than planned, it must wait for the

terminal operations and the usual travel time is considered (as de-

picted in Fig. 1 a). When late, terminal operations start on arrival

and the next leg starts once these are completed (as depicted in

Fig. 1 b). Expression (2) is also directly involved in the calculation

of the delay propagation of the service r . A λr 
l(r) 

penalty propor-

tional to the ηl(r) (ω) − e l(r) difference is then applied. A similar

approach is applied to the maximum acceptable delay B , the unit

penalty cost �r 
l(r) 

being applied to the difference ηl ( r ) ( ω) and B .

The same logic is followed to model late deliveries of demand
ows, i.e., when ε k (ω) > b(k ) , k ∈ K, with unit penalty cost λk ,

nd the maximum acceptable delivery delay, B k , with unit penalty

ost �k applied to the ε k (ω) − B k difference. 

We approximate uncertainty through a set S = { s } of scenar-

os, each of which has dimension | A 

P |. A probability p s is assigned

o each scenario, with 0 ≤ p s ≤ 1 , ∀ s ∈ S and 

∑ 

s ∈S p s = 1 . Instan-

iating the previous decision variables and problem parameters for

ach scenario, the two-stage formulation of the SSND-QT may be

ritten as: 

in 

∑ 

r∈R 

f r y r + 

∑ 

(i, j) ∈A 

∑ 

k ∈K 
c k i j x 

k 
i j + 

∑ 

s ∈S 
p s [ Q(y, x ; τl(r) (s ))] (3)

∑ 

j∈N + (i ) 

x k i j −
∑ 

j∈N −(i ) 

x k ji 

= 

{ 

w (k ) if i = o(k ) , 
0 if i � = o(k ) , i � = d(k ) , 
−w (k ) if i = d(k ) , 

∀ i ∈ N , ∀ k ∈ K, (4)
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k ∈K 
x k l(r) ≤ u r y r ∀ l(r) ∈ L (r) , ∀ r ∈ R , (5)

 

k 
i j ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A , (6)

 r ∈ { 0 , 1 } ∀ r ∈ R , (7)

here 

(y, x ; τl(r) (s )) = 

∑ 

r∈ R 

∑ 

l(r) ∈ L (r) 

λr 
l(r) (ηl(r) s − e l(r) ) + 

+ 

∑ 

r∈ R 

∑ 

l(r) ∈ L (r) 

�r 
l(r) (ηl(r) s − B ) + 

+ 

∑ 

k ∈ K 
λk (ε ks − b(k )) + + 

∑ 

k ∈ K 
�k (ε ks − B 

k ) + 

(8) 

nd variables δl(r) s , l(r) ∈ L (r) , r ∈ R and ηl(r) s , l(r) ∈ L (r) , r ∈ R ,

re computed similarly to (1) and (2) , respectively. 

The objective (3) is to minimize the total cost of the system,

ncluding the fixed cost of selecting and operating services, the

ransportation costs for routing commodities, and the expected

ost of recourse for applying the chosen plan when travel delays

re observed. The second-stage function Q ( y , x ; τ l ( r ) ( s )) depends

n both design and routing decisions, as well as on the realiza-

ions of the random variables τ l ( r ) expressed through the scenarios.

hen, in the second-stage, (8) computes the total penalty costs of

ervice and demand late arrivals, where the first two terms relate

o schedule targets and the last two to delivery targets. The op-

rator (x − y ) + returns the difference between x and y if positive

nd 0 otherwise. Eq. (4) represent the commodity flow conserva-

ion constraints. Relations (5) represent the linking-capacity con-

traints, which state that the flow can use selected services only

nd that the total commodity flow on any service leg cannot ex-

eed the capacity of the corresponding service. Relations (6) and

7) represent the non-negativity and binary constraints that define

he domains of the decision variables. 

The model includes the two quality targets considered. It can

e easily modified to focus on one target type only. The solution

ethod presented in the next section applies to all cases. 

. A Progressive Hedging-Based Meta-heuristic 

The meta-heuristic we propose is based on the concepts

f scenario-decomposition and progressive-hedging ( Rockafellar &

ets, 1991 ). The idea is to call on augmented Lagrangian tech-

iques to decompose the original multi-scenario problem into

ingle-scenario-based sub-problems, iteratively solve those, build

n aggregated solution out of the sub-problem ones, and, for as

ong as the sub-problem solutions do not agree (i.e., do not pro-

uce identical solutions), adjust the decomposition parameters to

guide” the method toward a “well hedged” solution to the origi-

al problem. 

Convergence to the global optimum has been proven for contin-

ous stochastic programs ( Rockafellar, 1982 ). No such result exists

n the integer case and, thus, only PH-based meta-heuristics are

roposed for integer formulations. The method has been proven to

e computationally efficient, however, for a wide range of problem

ettings, such as, operation planning ( Gonçalves, Finardi, & da Silva,

012 ), lot-sizing ( Haugen, Løkketangen, & Woodruff, 2001 ), port-

olio management ( Mulvey & Vladimirou, 1991 ), unit commit-

ent and server location ( Gade et al., 2016; Guo, Hackebeil, Ryan,

atson, & Woodruff, 2015 ), scheduling ( Carpentier, Gendreau, &

astin, 2013 ), resource allocation ( Watson & Woodruff, 2011 ), ca-

acity planning and stochastic bin packing ( Crainic, Gobbato, Per-

oli, & Rei, 2016 ), network design ( Fan & Liu, 2010; Hvattum &

økketangen, 2009; Mulvey & Vladimirou, 1991 ), and SND with
emand uncertainty ( Crainic et al., 2011; Crainic, Hewitt, & Rei,

014a; Jiang et al., 2017 ). 

A few important algorithmic issues must be carefully addressed

hen considering a PH-based meta-heuristic and are developed in

he following sections: 

• The decomposition strategy , which separates the formulation

and defines sub-problems according to the given scenario set

( Section 5.1 ); 
• The aggregation process to synthesize an estimated global so-

lution out of the local solutions provided by the sub-problems

( Section 5.2 ); 
• The search of consensus strategy, which takes advantage of the

global and local information to modify the settings of the sub-

problems and, thus, hopefully guide the meta-heuristic toward

a solution to the original problem corresponding to a consensus

among the scenario sub-problems ( Section 5.3 ); 
• The general algorithmic design of the meta-heuristic

( Section 5.4 ). 

.1. Decomposition strategy 

The formulation of the SSND-QT involves both design and rout-

ng variables as first-stage decisions, which is different from most

revious applications to network design where demand was as-

umed stochastic and routing was decided in the second stage (e.g.,

rainic et al., 2011 ). A standard application of the PH approach

o the present case yields difficult non-linear sub-problem formu-

ations, as well as raising issues regarding the consensus-seeking

trategy. We thus introduce a new methodological framework for

H-based meta-heuristics aimed at network design formulations

ith design and flow variables in the first stage. 

Following the standard approach (detailed in Annex 2), first-

tage decision variables are defined in each scenario, and non-

nticipativity constraints (10) –(13) are added to ensure all scenar-

os obtain the same design and routing solution. This yields 

in 

∑ 

s ∈S 
p s 

(∑ 

r∈R 

f r y rs + 

∑ 

(i, j) ∈A 

∑ 

k ∈K 
c k i j x 

k 
i js 

+ 

∑ 

r∈R 

∑ 

l(r) ∈L (r) 

λr 
l(r) (ηl(r) s − e l(r) ) + + 

∑ 

r∈R 

∑ 

l(r) ∈L (r) 

�r 
l(r) (ηl(r) s − B ) + 

+ 

∑ 

k ∈K 
λk (ε ks − b(k )) + + 

∑ 

k ∈K 
�k (ε ks − B 

k ) + 

)
(9) 

ubject to constraints (4) –(7) written for all scenarios s ∈ S, and

he non-anticipativity constraints 

 rs = ȳ r ∀ r ∈ R , ∀ s ∈ S, (10)

 

k 
i js = x̄ k i j ∀ k ∈ K, ∀ (i, j) ∈ A , ∀ s ∈ S, (11)

¯
 r ∈ { 0 , 1 } ∀ r ∈ R , (12)

¯
 

k 
i j ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A , (13)

here ȳ r and x̄ k 
i j 

are the overall design and routing solutions, re-

pectively. 

Let φrs and φk 
i js 

be the Lagrangian multipliers associated to

onstraints (10) and (11) , respectively, and let ρ and ψ be the

enalty factors associated to the respective quadratic terms of aug-

ented Lagrangian relaxation. Following straightforward manipu-

ations, and taking advantage of the binary nature of the service
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design variables, the objective function becomes 

min 

∑ 

s ∈S 
p s 

(∑ 

r∈R 

( f r + φrs + 

1 

2 

ρ − ρȳ r ) y rs 

+ 

∑ 

(i, j) ∈ A 

∑ 

k ∈K 
(c k i j + φk 

i js + 

1 

2 

ψx k i js − ψ ̄x k i j ) x 
k 
i js 

+ 

∑ 

r∈R 

∑ 

l(r) ∈L (r) 

λr 
l(r) (ηl(r) s − e l(r) ) + + 

∑ 

r∈R 

∑ 

l(r) ∈L (r) 

�r 
l(r) (ηl(r) s − B ) + 

+ 

∑ 

k ∈K 
λk (ε ks − b(k )) + + 

∑ 

k ∈K 
�k (ε ks − B 

k ) + 

)
(14)

The resulting formulation is scenario separable. Yet, it also raises

significant questions. First, sub-problems are non-linear, which

complicates addressing an already computationally difficult NP-

Hard problem. Second, it requires consensus on multi-commodity

flows. This is troubling, as the well-known nature of multi-

commodity network design problems regarding the degeneracy of

their flow distributions would make reaching such a consensus al-

most impossible. Even assuming consensus is reached for design

variables, several equivalent flow path solutions could still exist

and force the algorithm to continue. 

We therefore introduce a partial scenario decomposition, based

on a “hierarchy of importance” among first-stage variables. Ac-

cording to this decomposition strategy, the non-anticipativity con-

straints on the design variables are kept and relaxed as before

through the augmented Lagrangian mechanism, while, on the other

hand, the flow non-anticipativity constraints are discarded. Conse-

quently, consensus is explicitly sought by the meta-heuristic on the

design variables, while it is only indirectly looked for in the flows.

The partial scenario decomposition applied to the SSND-QT formu-

lation then yields the following sub-problem formulations: 

min 

∑ 

r∈R 

(
f r + φrs + 

1 

2 

ρ − ρȳ r 

)
y rs + 

∑ 

(i, j) ∈A 

∑ 

k ∈K 
c k i j x 

k 
i js 

+ 

∑ 

r∈R 

∑ 

l(r) ∈L (r) 

λr 
l(r) (ηl(r) s − e l(r) ) + + 

∑ 

r∈R 

∑ 

l(r) ∈L (r) 

�r 
l(r) (ηl(r) s − B ) + 

+ 

∑ 

k ∈K 
λk (ε ks − b(k )) + + 

∑ 

k ∈K 
�k (ε ks − B 

k ) + 

(15)

Subject to ∑ 

j∈N + (i ) 

x k i js −
∑ 

j∈N −(i ) 

x k jis 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w (k ) if i = o(k ) 
0 if i � = o(k ) , i � = d(k ) 
−w (k ) if i = d(k ) 

∀ i ∈ N , ∀ k ∈ K, ∀ s ∈ S, 

(16)

∑ 

k ∈K 
x k l(r) s ≤ u r y rs ∀ l(r) ∈ L (r) , ∀ r ∈ R , ∀ s ∈ S, (17)

x k i js ≥ 0 ∀ k ∈ K, ∀ (i, j) ∈ A , ∀ s ∈ S, (18)

y rs ∈ { 0 , 1 } ∀ r ∈ R , ∀ s ∈ S. (19)

In this paper, sub-problems are solved separately, yielding two vec-

tors containing respectively the design, i.e., the selected services,

and the corresponding flow distribution, i.e., the commodity flows

on the service legs. This is used to build an aggregated design for

the complete problem and to adjust multipliers and penalty factors

to guide the meta-heuristic, as detailed in the following sections. 
.2. Solution aggregation 

The overall design summarizes in a single design vector ȳ ν the

nformation obtained by solving the sub-problems at a given itera-

ion ν . It represents both an estimation of global trends and a ref-

rence point to “guide” the sub-problem solutions, iteration after

teration, toward consensus. A weighted average function is used

s aggregation operator (as in, e.g., Crainic et al., 2011; Rockafellar

 Wets, 1991 ) yielding 

¯
 

ν
r = 

∑ 

s ∈ S 
p s y 

ν
rs ∀ r ∈ R (20)

he values of ȳ νr are between 0 and 1. When all scenarios agree

n the selection status of a service r , consensus is observed, and

¯ νr equals 1 when all scenarios agree on activating service r , or

 when all scenarios agree on non-selecting it. Most of the time,

owever, one observes that 0 < ȳ νr < 1 . We assume in this case

hat a high (close to 1) or a low (close to 0) value for ȳ νr indicates

 trend toward selecting or not selecting the service, respectively,

nd use this information in the adjustment of parameters to guide

he meta-heuristic. 

.3. Search for consensus 

The local information provided by solving the sub-problems to-

ether with the aggregated reference solution are used to mod-

fy the values of the Lagrangian parameters and the fixed service

osts within each sub-problem, to guide the solutions of the sub-

roblems toward reaching a consensus. The “distance” of local so-

utions to the reference one is an important criterion in the adjust-

ent strategies, which aim to induce selection or non-selection of

 service when its status is different from that in the current over-

ll design. 

We propose two adjustment strategies. The first follows the lit-

rature and makes use of the design information only. The second

dds the flow information produced by the sub-problems to the

riteria used to locally adjust the service fixed costs. 

Both strategies start with the update of the augmented La-

rangian multipliers and parameter ρ , considering the current ref-

rence design ȳ ν and the designs y νs provided by the sub-problems

 ∈ S ( Løkketangen & Woodruff, 1996; Rockafellar & Wets, 1991 ). 

Three cases may occur when considering any design variable

 

ν
rs , which is either 1 or 0 in scenario sub-problem s at iteration ν:

• y νrs < ȳ νr . Service r is not selected in scenario s , but the trend

among the other scenarios, as reflected by the reference point

ȳ νr , is opposite. The goal is, then, to promote the activation of

service r by reducing its cost in the sub-problem s ; 
• y νrs > ȳ νr . The opposite situation, when service r is selected in

scenario s , but most other scenarios do not agree on this deci-

sion. The cost is then adjusted so as to dissuade selecting ser-

vice r in the sub-problem s ; Notice, that, the higher the num-

ber of other sub-problems not agreeing to select the service,

the stronger the disincentive; 
• y νrs = ȳ νr . Total consensus is observed among all sub-problems

and the fixed costs remain unchanged. 

The parameters are then updated as follows: 

ν
rs ← φν−1 

rs + ρν−1 (y νrs − ȳ ν−1 
r ) ∀ r ∈ R (21)

ν ← γ ρν−1 (22)

pdate rule (21) represents the steepest ascent step in the space of

he dual problem ( Mulvey & Vladimirou, 1991 ) and depends on pa-

ameter ρν . Initially, ρ0 is set to an arbitrarily positive small value

nd is dynamically adjusted at each iteration through a given pa-

ameter γ > 1. As seen in the literature, the adjustment should be
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mooth. Although dynamic adjustments of the penalty parameter

re not covered by the convergence theory for the PH algorithm,

ulvey and Vladimirou (1991) found that this strategy can improve

he overall convergence behavior. 

Fixed costs are adjusted at each iteration. According to the usual

pproach, this adjustment is global and targets the design arcs

ith a status different from what a majority of arcs seems to

gree upon at the current iteration ( Crainic et al., 2011 ). As above,

he trend is given by the value of the current reference solution

¯ νr , r ∈ R , a high/low value of ȳ νr indicating a trend to select/not

elect service r . As discussed in Crainic et al. (2011) , we assume

hat when ȳ νr is less than a given threshold thres low 

, increasing

ts cost f r will result in it becoming less interesting in the sub-

roblems, resulting eventually in its non-selection. Symmetrically,

hen ȳ νr is higher than a given threshold thres high , lowering the

ost f r of service r will make it more attractive and lead to its se-

ection. 

The first strategy then adjusts the fixed costs according to

rainic et al. (2011) : 

f νr = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

β f ν−1 
r if ȳ ν−1 

r < thres low 

1 

β
f ν−1 
r if ȳ ν−1 

r > thres high 

f ν−1 
r otherwise 

(23) 

ith f νr representing the modified selection cost of service

 at iteration ν , and parameters β > 1, 0 < thres low 

< 0 . 5 , and

.5 < thres high < 1. 

The second adjustment strategy we propose extends the pre-

ious one by adding a local adjustment to the global one. The

ocal adjustment is particular to each sub-problem and is based

n the respective flow distribution at the current iteration. Let

 

ν (r) = 

∑ 

l(r) ∈L (r) 

∑ 

k ∈K x kνk (r) s 
be the total flow moved by service r

n the solution of sub-problem s at iteration ν . Let’s define two

hreshold parameters 0 < local low 

< u r / 2 and u r /2 < local high < u r to

ualify the local flow distribution. Four occurrences may be ob-

erved at iteration ν when contrasting the global and local trend

nformation. The local adjustment rule stated by relations (24) -

27) addresses the first three. 
 

 

 

 

 

 

 

 

 

 

 

 

 

f νrs = 

1 

β2 
f νr i f ̄y νr > thres high andX 

ν (r) > local high (24) 

1 

β
f νr i f ̄y νr > thres high andX 

ν (r) < local low 

(25) 

β f νr i f ̄y νr < thres low 

andX 

ν (r) < local low 

(26) 

f νr i f ̄y ν−1 
r = 0 . 5 (27) 

ases (24) and (26) define the two situations when the global and

he local information agree to select or not, respectively, service r .

he local adjustments we propose thus reinforce the global infor-

ation favoring/discouraging the selection of the service by lower-

ng/increasing its fixed cost. In the case (25), the local trend is to

ake a rather limited use of a service for which a strong selection

rend exists at the global level. One can interpret the local decision

s a “safety” selection to hedge against uncertainty and use for ex-

ess flow one cannot move on the most sought-after services. We

herefore reinforce the global trend but less strongly compared to

ase (24). Finally, the fixed cost is not changed when there is a

fty-fifty global split on a particular service. 

The global and local trends clash in the forth case 

¯
 

ν
r < thres low 

and X 

ν (r) > local high , (28)

 majority of sub-problems avoiding certain services, which are

eavily favored locally. The question here is “how important these

ervices may be with respect to the final design?”, that is, to what

xtent a rather small subset of highly used services in some sub-

roblems should influence the final plan? The adjustment strategy
ased on global information only simply ignores these services. We

ropose to account for this information but to try to limit its im-

act, by limiting the number of services that belong to condition

28) . 

Let C νs = { r ∈ R : ȳ νr < tres low 

and 

∑ 

k ∈ K x kνl(r) s 
> l ocal k 

high 
} for

ach sub-problem s at iteration ν . Let h ν−1 
s = | C ν−1 

s | be the num-

er of services satisfying condition (28) at iteration ν − 1 for sub-

roblem s . Also, let the parameter a νrs , ∀ r ∈ R , ∀ s ∈ S, to assume

alue 1 when r ∈ C νs and 0 otherwise. Then, we add constraint

29) to sub-problem s at iteration ν and solve the new formulation

after all other usual Lagrangian parameters and fixed costs modi-

cations). If a solution is found, it indicates that the parameter and

ost updates allowed to switch flow to other services. When a so-

ution is not found, we assume the services in C ν−1 
s are necessary

o find a feasible solution for sub-problem s and are therefore kept

n subsequent iterations. 
 

r∈R 

a νrs y rs ≤ h 

ν−1 
s − 1 (29) 

.4. The PH-based meta-heuristic for the SSND-QT 

We address a SND and face the challenges of “converging”

r, more precisely, of achieving consensus for all design variables

ithin an acceptable computing time ( Crainic et al., 2011 ). We

hus build a two-phase meta-heuristic, schematically illustrated in

lgorithm 1 . The first phase executes the PH-based search, with

lgorithm 1 Hierarchic progressive hedging-based meta-heuristic.

Initialization ν = 0 

1: φν
rs ← 0 , ∀ r ∈ R , ∀ s ∈ S; 

2: ρν ← ρ0 ; 

3: f νrs ← f r , ∀ r ∈ R , ∀ s ∈ S; 

4: Solve the corresponding | S| SSND-QT sub-problems; 

First Phase: 

5: while stopping criterion is not met do 

6: ȳ νr ← 

∑ 

s ∈S p s y νrs , ∀ r ∈ R ; 

7: Adjust globally f νr , ∀ r ∈ R , using Eq. (23); 

8: for s = 1 , ..., | S| do 

9: if PHRL = TRUE then 

10: Adjust locally f νrs , ∀ r ∈ R using the rule (24) - (27); 

11: h νs ← | C νs | ; 
12: Add constraint (29) with h ν−1 

s ; 

13: end if 

14: Solve the modified SSND-QT sub-problem s ; 

15: if PHRL = TRUE then 

16: while Solve == TRUE do 

17: h ν−1 
s + + ; 

18: Solve the modified SSND-QT sub-problem s ; 

19: end while 

0: end if 

21: end for 

2: ν ← ν + 1 ; 

3: Update: 

φν
rs ← φν−1 

rs + ρν−1 (y νrs − ȳ ν−1 
r ) , ∀ r ∈ R , ∀ s ∈ S; 

ρν ← γ ρν−1 ; 

4: end while 

Second Phase: 

5: Fix the design variables for which consensus is obtained; 

6: Solve the restricted multi-scenario formulation. 

he algorithmic components defined in the previous sections, for a

ertain number of iterations. As illustrated in Algorithm 1 , the pro-

edure solves the sub-problems with the current fixed costs, builds

he reference solution out of the sub-problem solutions, updates

he augmented Lagrangian multipliers and penalty term ρ , adjusts
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the fixed costs, and iterates. We identify the first adjustment strat-

egy, based on the reference solution only, as PHR , and PHRL the

strategy performing local adjustments as well. At the initialization

step, ν = 0 and the service fixed costs are the original ones. In the

current implementation, sub-problems are solved optimally by us-

ing a commercial solver. 

The goal of the first phase is to identify a subset of arcs for

which “consensus” appears possible. Phase one stops on one of a

number of criteria, e.g., time limit, maximum number of iterations,

a minimum percentage of arcs for which consensus is reached. The

second phase of the meta-heuristic is then called upon to compute

the complete solution to the original problem, by fixing the de-

sign variables for which consensus has been reached and solving

the reduced formulation. When the first phase yields a consen-

sual design, i.e., all sub-problems agree, this corresponds to solving

the capacitated multi-commodity network flow problem. In most

cases, however, consensus is not reached, and the corresponding

reduced network design formulation is solved. 

6. Experimental plan 

We performed two sets of experiments. The first aimed to

quantify the benefits of explicitly considering stochastic travel time

in the SSND model. This experiment therefore involved solving ex-

actly the stochastic and deterministic versions of the SSND-QT for-

mulation for small- and medium-sized problem instances only, but

with diverse characteristics in terms of level of variability, num-

ber of commodities, size of delivery time windows, and penalty

costs. The results were then evaluated through a Monte Carlo sim-

ulation and compared. In the same set of experiments, we also in-

vestigated the impact of the penalty parameter on the stochastic

solutions, in particular, on the reliability of the resulting service

networks. Problem instances were thus solved for increasing val-

ues of penalties, keeping all other parameters fixed. The second set

of experiments focused on qualifying the performance of the pro-

posed meta-heuristic. A subset of instances used in the previous

experiment were addressed with both PHR and PHRL approaches,

and the solutions were compared to quantify the gain of using lo-

cal flow information. Meta-heuristic results were then compared to

the exact solutions obtained by solving the multi-scenario formu-

lations with CPLEX. 

Deterministic and stochastic mixed-integer linear programming

models, as well as the meta-heuristic, were implemented using the

OPL language. All experiments were conducted on an Intel Xeon

X5675 computer with 3.07 GHz and 48 Gigabyte of RAM. The

CPLEX 12.6 solver (IBM ILOG, 2016) was used to implement the

solution methods applied. 

Before detailing the results of the sets of experiments, we

present the instance generation and the stability analysis we per-

formed. 

6.1. Instances and scenario generation 

Performance was assessed by comparing the meta-heuristic re-

sults to the optimal results provided by CPLEX. Consequently, for

most of our experiments, the instances had to be of dimensions

that could be tackled by the software. Somewhat larger instances

were also generated. The physical service network we consider in

all our experiments is inspired by that used in Crainic, Hewitt,

Toulouse, and Vu (2014b) , which consists of 5 physical nodes and

10 physical arcs and is shown in Fig. 2 a. The service network is

defined for a schedule length of 15 periods and displays a cyclic

nature ( Crainic et al., 2014b ), as illustrated in Fig. 2 b. 

We consider 8 demand classes defined by the number of com-

modities and the time available to deliver them. We used four

levels of demand , from 1, corresponding to a low (15) number of
ommodities, to 2 and 3 for medium sizes (20 and 25, respec-

ively), and to 4 for a relatively high number of commodities (50).

wo values were considered for the delivery-time windows , loose

 l ), with due dates between 11 and 14 periods after the availabil-

ty date (given a schedule length of 15 periods), and tight ( t ) with

ue dates between 9 and 12 periods after the availability dates. In

he tables of this and the following sections, the demand classes

re represented by DClass( · · ) with the respective values for these

wo attributes. The potential service network is the same for all

nstances and includes 150 direct services and 7 services with one

ntermediate stop. We generated services with usual duration of 3,

 or 5 periods (the usual duration of a service leg was a smaller

ut integer number of periods). The fixed cost of a direct service is

roportional to its usual duration. The fixed cost of a service with

ntermediary stop is 35% less than the cost of the two direct ser-

ices one would need for the same path. 

We aimed for a set of test instances that provides the means to

ssess the impact of travel time variability on the performance of

he model and algorithm, as well as on the resulting service net-

orks. We thus selected a class of probability distributions for the

andom event that allowed us to control the main elements defin-

ng the travel times, usual value, variability, and ranges, defined as

he difference between the maximum and minimum travel times

ossible on the arcs of the network. 

In our case, arc travel times do have a minimum value, corre-

ponding to the free running time of a single service under per-

ect conditions, and a maximum value since we do not address

either major disturbances nor highly hazardous and catastrophic

vents. Given that, in practice, delays occur much more frequently

han early arrivals, we aimed for a probability distribution that in-

reases rapidly to the value of the usual travel time, followed by a

radual decrease until the maximum travel time value (i.e., the tail

hould be skewed to the right). We thus selected the class of Trun-

ated Gamma ( TG ) probability distributions ( Chapman, 1956; Coffey

 Muller, 20 0 0 ), fitting these requirements (see Fig. 3 a). 

The scenario generation process was performed by sampling

andom values from TG distributions defined by particular values

or mode, variance, and range of travel times. We assumed inde-

endent sampling and, thus, travel time random variables. Note

hat this hypothesis only affects the scenario generation procedure,

nd not the performance of our scenario-based model. The mode

f a service (service leg) is its usual duration. Nine scenario classes ,

Class , were generated by considering three variability levels and

hree ranges. The former was measured in terms of standard de-

iation, low for level 1, medium for level 2, and high for level 3.

e set the same lower bound for all cases but varied the range by

sing three different upper bounds. Recall that, first, our problem

etting is interurban travel where in most cases time periods are

engthy (e.g., of the order of half a day or a day) and, second, we

ddress business-as-usual delays. Consequently, the ranges should

e reasonably “close”. We thus defined a tight range, t , computed

s the mode −30% of a time-period duration, medium, m , com-

uted as mode plus one time period, and loose, l , computed as

edium plus 30% of a time period. The looser the range, the wider

s the concept of “usual” travel time. Scenario classes, SClass ( · · )

re thus identified by the pair level of variability (1, 2, or 3) and

ange (t, m, or l). Fig. 3 b displays distributions for the same range

ut different standard deviations, while Fig. 3 c and 3 d display dif-

erent ranges and their tails, respectively, for the same level of vari-

bility. 

The mode was also used as the travel time point estimation

n the deterministic formulation of the original problem. Exper-

ments were performed under three levels of increasing penalty

osts for each of the two schedule targets, on-time arrival and

aximum acceptable delay. For services, the first level of on-time-

rrival penalty was set to 175% of the cost of the most expensive
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Fig. 2. Physical and space-time service networks. 

Fig. 3. Travel time truncated gamma distributions. 
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ervice, while the first level of the maximum-delay penalty was

et to 215% of the same value. The second and third levels are ob-

ained by doubling and tripling these values, respectively. A similar

rocess was performed for the delivery targets, where the on-time-

rrival penalty was set to the cost of the most expensive service,

hile the first level of the maximum-delay penalty was set to 175%

f the same value. To address the single-target formulations, we set

he penalties to 0 for the target not considered in that experiment.

.2. In-sample and out-of-sample stability 

We performed in-sample and out-of-sample stability verification

o assess the correctness of the scenario generation procedure and

he representativity of the generated scenarios, and, thus, avoid in-

roducing bias in the results of the optimization model. The two

ypes of stability are different and it is recommended to test them

oth ( Kaut, Vladimirou, Wallace, & Zenios, 2007 ). We performed
tability tests for the highest variability level (level 3), with vary-

ng ranges and levels of demand. 

For in-sample stability test, we considered ten instances for

ach problem class. Each instance was solved with different

cenario-sized sets and for each scenario-size the difference be-

ween the highest and lowest optimal values across instances was

ollected. In-sample stability achieving a difference of less than 1%

etween the highest and lowest optimal values for each problem

lass was obtained by using sets of 30 scenarios. Table 2 a displays

esults for the third demand class and the third penalty level. 

We then tested out-of-sample stability by using 30-scenario-

ized sets to find solutions and 100-scenario-sized sets as the

true” stochastic phenomenon (generated from the same TG dis-

ributions used to construct the scenario sets for the optimization

rocess). A procedure similar to Monte-Carlo simulation was used

o evaluate the solutions. The evaluation was performed by fixing

he first-stage variables obtained solving the stochastic programs
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Table 2 

Stability results for the scenario-generation procedure. 

In-sample stability test 

DClass(3t) DClass(3l) 

SClass(3t) 0.72 0.65 

SClass(3m) 0.77 0.75 

SClass(3l) 0.56 0.51 

Out-of-sample stability test 

DClass(3t) DClass(3l) 

SClass(3t) 2.24 0.61 

SClass(3m) 1.08 1.44 

SClass(3l) 2.33 0.79 
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for the 30-scenario-sized sets and optimizing the demand flows

by solving the second-stage for the 100-scenario-sized sets. We

computed the difference between the highest and lowest optimal-

solution values for the 100 scenarios. In the worst-case situation,

we obtained an error of 2.33%. Table 2 b displays the results for

the same problem classes, scenario classes, and penalty as for the

in-sample experiments. We also tested out-of-sample stability for

larger scenario sizes. Nevertheless, we were able to only reduce

this error at a marginal level (decimal order) but at the expenses

of a tremendous increase of running time. 

Approximating a probability distribution through scenarios will

inexorably bring some noise into results. The error of such an ap-

proximation will be reduced as the number of scenarios increases.

On the other hand, as we increase the number of scenarios, the

difficulty of obtaining optimal solutions increases as well. There is

thus a trade-off between the stability of the stochastic solutions

and the problem growing too large. We consider the results of sta-

bility tests performed with 30 scenarios satisfactory and consistent

with our scopes of finding optimal solutions in acceptable time.

Note that the reported results relate to the highest variability level,

which defines the most volatile situations. In less variable cases,

such results are even lower. In the following thus, results are ob-

tained by considering 30 as the scenario-size. 

7. Results and analyses 

Results of the experimentation are presented and discussed first

with respect to the evaluation of the SSND-QT formulation and,

then, relative to the performance of the meta-heuristic. Several

other results on the formulation are presented in Lanza, Crainic,

Rei, and Ricciardi (2018) . 

7.1. Formulation evaluation 

The evaluation analysis was performed considering 6 demand

classes derived by the combined use of the first 3 levels of de-

mand and the 2 delivery-time windows. We generated 10 instances

for each demand class, for a total of 60 deterministic instances.

For each deterministic instance, 27 stochastic instances were con-

structed, combining the 3 levels of variability, 3 ranges, and 3

penalty rates. 

A solution, whether for the deterministic variant ( SSND ) or for

the stochastic one, consists of a set of selected services and the

paths used to transport commodity flows to their destinations. So-

lutions were found to the three stochastic formulations and are

identified in the following as SSND-QT for the complete formula-

tion, SSND-QT-S and SSND-QT-D when only the schedule- or the

delivery-targets were considered, respectively. Comparisons among

methods and solutions are discussed relative to the set-up cost

of the network (service selection plus routing costs), as well as

to their behavior into a stochastic environment through a Monte

Carlo-like procedure with a set of 100 scenarios. The section fin-

ishes with an analysis of the impact of penalties. 
.1.1. Cost comparisons 

The deterministic solution SSND displays, in general, charac-

eristics typical of consolidation-based transportation networks,

here different commodities share the capacity of single services

or most of their journeys, passing through several intermediary

tops, where they often wait, before arriving at destination. One

lso observes the just-in-time arrival, with respect to due dates,

f freight at destination. Furthermore, one-stop services are usu-

lly favored when possible, rather than no-stop services in order

o lower the fixed costs. 

The stochastic SSND-QT-S set-up costs are generally similar to

hose of the corresponding deterministic SSND, but the structure of

he service network is markedly different. In almost all cases, less

ervices operate in SSND-QT-S than in SSND, even though the two

olutions share part of them. This may be explained as follows by

he increased risk of delay of multi-stop services. Thus, if a service

xperiences a delay in its first leg, it will most likely arrive at desti-

ation (its second stop) later than scheduled, unless, in the second

eg, the observed travel time is much lower than usual and absorbs

he delay. Given the assumed distributions, complete absorption is

ot very likely and one-stop services have a higher risk of paying

or delays. Consequently, the model would move the solution away

rom less-expensive multi-stop services to more expensive direct

onnections, lowering the risk of extra costs when the services op-

rate. The observed trend of SSND-QT-S solutions is to select only

he strictly necessary direct services to fulfill demand. This often

esults in higher flow distribution costs and more complex distri-

ution patterns. As fewer services are available, commodity paths

ill be more tangled and involve more services and transfers, the

atter implying additional idle time at intermediary terminals. The

SND-QT-S set-up cost is thus the result of two opposite effects:

n the one hand, fixed costs, as well as the number of selected

ervices, are reduced while, on the other hand, freight distribution

osts are increased. This characteristic seems to contrast SSND-QT-

 solutions to the documented effect of stochastic demand, which

enerally increases the number of services ( Wang, Crainic, & Wal-

ace, 2018 ). Table 3 illustrates this analysis displaying the average

ost characteristics - Set-up, Fixed (service selection), and Routing

freight distribution) - together with the associated number of se-

ected services for instances belonging to the third demand class

hat were solved with increasing level of variability and the high-

st penalty level. 

The opposite behavior is observed for the SSND-QT-D for which,

enerally, set-up costs are generally more expensive compared

o the corresponding deterministic version. Moreover, unlike the

SND-QT-S case, but similar to the case of SSND with stochas-

ic demand, more services are selected and the increase in set-

p costs follows directly. SSND-QT-D networks appear to be built

o bring commodity flows as early as possible to destination, at

east one period before due date. When avoiding just-in-time ar-

ival is not possible for the total quantity of a commodity, the flow

s sometimes split, and a major part is shipped in advance. Such

ehavior requires more services to be selected. Table 4 displays the

verage results for the same demand classes, scenario classes, and

enalty level considered above. 

Let the full cost of a network be the set-up cost plus the penal-

ies incurred for delays when simulating the behavior of the net-

ork with the Monte Carlo procedure. SSND-QT-S and SSND-QT-

 display full costs that are always lower than that of the corre-

ponding SSND. This shows that explicitly considering the stochas-

ic nature of the travel times in the tactical planning model may

edge against, or at least reduce, the effects and consequences of

ncertainty, despite an initial higher set-up cost. To illustrate, we

isplay in Tables 5 and 6 , the average results of the Monte-Carlo

imulation procedure for two stochastic versions and the same de-

and classes, scenario classes and penalty level considered above.
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Table 3 

Cost characteristics of SSND-QT-S solutions. 

DClass(3t) DClass(3l) 

Set-up Fixed Num.Serv. Routing Set-up Fixed Num.Serv. Routing 

SClass(1m) 6326.5 136.2 31.3 6190.3 6684.8 167.2 37.4 6517.6 

SClass(2m) 6330.7 135.9 31.1 6194.8 6705.2 163.1 37 6542.1 

SClass(3m) 6333.6 131 30.5 6202.6 6713.7 158.4 36.6 6555.3 

SSND 6340.8 139.8 31.4 6201 6694.8 177.1 39.5 6517.7 

Table 4 

Cost characteristics of SSND-QT-D solutions. 

DClass(3t) DClass(3l) 

Set-up Fixed Num.Serv. Routing Set-up Fixed Num.Serv. Routing 

SClass(1m) 6344.8 144.2 32.4 6200.6 6697 178.4 39.8 6518.6 

SClass(2m) 6350.6 144.4 32.9 6206.2 6715.2 176.9 40 6538.3 

SClass(3m) 6351.9 144.1 32.9 6207.8 6717.1 175.9 39.7 6541.2 

SSND 6340.8 139.8 31.4 6201 6694.8 177.1 39.5 6517.7 

Table 5 

Monte Carlo simulation cost analysis of SSND-QT-S. 

DClass(3t) DClass(3l) 

Full Cost Tot Penalty Short Long Full Cost Tot Penalty Short Long 

SClass(1m) 17871.2 11544.7 11118.2 426.4 20636.1 13951.2 13474.9 476.3 

SSND 18221.3 11880.5 11437.4 443.0 21550.5 14855.7 14336.4 519.3 

SClass(2m) 36835.2 30504.48 13162.2 17342.2 42864 36158.8 16443.6 19715.2 

SSND 39439.9 33099.1 13214.0 19885.1 51719.8 45025 16959.2 28065.8 

SClass(3m) 46531.2 40197.5 15873.4 24324.1 54481 47767.7 19589 28178.7 

SSND 50362.1 44021.3 16532.2 27489.0 65478.2 58783.4 20940.6 37842.7 

Table 6 

Monte Carlo simulation cost analysis of SSND-QT-D. 

DClass(3t) DClass(3l) 

Full Cost Tot Penalty Short Long Full Cost Tot Penalty Short Long 

SClass(1m) 8647 2302.2 2222.9 79.3 10186.5 3489.5 3314.7 174.7 

SSND 11068.5 4727.7 3069.3 1658.4 14803.6 8108.8 3826.6 4282.2 

SClass(2m) 13388.8 7038.1 2485.5 4552.6 17215.1 10499.9 3773.5 6726.3 

SSND 21332 14991.2 3421.5 11569.6 28410.2 21715.4 4275.3 17440 

SClass(3m) 15615.6 9263.7 2877.3 6386.4 20735.9 14018.8 4537.2 9481.5 

SSND 25199.9 18859.1 4327.9 14531.1 33396.2 26701.4 5335.5 21365.8 
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he tables display the average full costs, total penalty, as well as

he split of the latter according to weather the penalty corresponds

o the short (i.e., the actual target) or a long (relative to the maxi-

um time allowed B or B k ) delay. 

The general SSND-QT yields service designs that appear as a

ompromise between SSND-QT-D and SSND-QT-S, displaying both

he direct-service and early-freight-arrival trends. It is the schedule

argets, however, that influence the SSND-QT the most. The set-

p cost display exactly the same behavior as for SSND-QT-S when

enalties or variability levels increase (a decrease in the number of

elected services and fixed costs and a consequent increase in rout-

ng costs). Nevertheless, the delivery targets try to limit just-in-

ime deliveries, favoring delivery one period before the due date, if

ot earlier. Routing is complicated as, in the majority of the cases,

emand is not only delivered in advance to lower the expenses re-

ated to the late arrivals of freight, but it is also moved through

he network by less services than in the SSND. Freight paths thus

eem even more tangled than in SSND-QT-S and include longer idle

imes at some intermediary stops. Average set-up costs and perfor-

ance results are shown in Tables 7 and 8 . 

.1.2. Impact of penalties 

The amplitude of the penalties for late arrival directly influ-

nces the design. The higher the level of penalties the more
he model aims to build a service network that will perform as

lanned when travel times vary. Table 9 displays the results when

he level of penalties increases. The average increase in set-up

osts and average decrease in total delay are shown, in percent-

ges, for solutions obtained with penalty levels 2 and 3, compared

elative to solutions obtained with penalty level 1. The same de-

and and scenario classes considered in the previous experiments

ere also used here. 

Focusing on the SSND-QT-S, we observe that, as anticipated,

ncreasing the penalty enforces the reliability by decreasing the

umber of multi-stop services. The main delay decrease concerns

he most expensive delay, i.e., the long delay over the threshold

 . The higher the penalty, the lower are such delays. Increasing

enalties threefold yields an increase in the fixed cost of the net-

ork by some 0.03%, with a decrease in the amount of total delay

f some 3% for the short delays and 10% for the long ones. 

Similar results were observed for SSND-QT-D. Here, an increase

n the penalty level makes the optimization increase the number

f selected services to deliver the highest number of commodi-

ies possible at least one period before due date. The percentage of

arly freight arrivals is increased by 8% when the solutions based

n the highest and lowest penalty level are compared (total num-

er of commodities is 25). The total amount of delay decreases by

2%, the vast majority of delays being of the large variety (over
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Table 7 

Cost characteristics of SSND-QT solutions. 

DClass(3t) DClass(3l) 

Set-up Fixed Num.Serv. Routing Set-up Fixed Num.Serv. Routing 

SClass(1m) 6347.2 136.9 31.6 6210.3 6703.5 170.2 38.6 6533.3 

SClass(2m) 6333.6 136.6 31.4 6219.4 6742.2 161.9 37.3 6580.3 

SClass(3m) 6365.9 135.1 31.2 6230.8 6765.5 156.4 36.3 6609.1 

SSND 6340.8 139.8 31.4 6201 6694.8 177.1 39.5 6517.7 

Table 8 

Monte Carlo simulation cost analysis of SSND-QT. 

DClass(3t) 

Full Cost Tot Penalty Short S Long S Short D Long D 

SClass(1m) 20245.6 13898.4 11227.4 419.8 2190.4 60.7 

SSND 22949.04 16608.2 11437.4 443 3069.3 1658.3 

SClass(2m) 44871.2 38515.3 13173.7 18233.4 2541.6 4566.5 

SSND 54431.2 48090.4 13214 19885.1 3421.5 11569.6 

SClass(3m) 57512 51146.1 16247.7 25483.8 2986.8 6427.7 

SSND 69221.2 62880.4 16532.2 27489 4327.9 14531.1 

DClass(3l) 

Full Cost Tot Penalty Short S Long S Short D Long D 

SClass(1m) 24389.8 17686.3 13792.7 469.6 3270.4 153.5 

SSND 29659.4 22964.6 14336.4 519.3 3826.6 4282.2 

SClass(2m) 54048.8 47306.6 16332.5 19924.8 4032.1 7017.1 

SSND 73435.3 66740.5 16959.2 28065.8 4275.3 17440.1 

SClass(3m) 67839.4 47306.6 16332.5 19924.8 4032.1 7017.1 

SSND 92179.6 85484.8 20940.6 37842.8 5335.5 21365.8 

Table 9 

Effects of penalty increase on SSND-QT-D and SSND-QT-S behavior. 

Delivery target Schedule target 

Fixed cost (%) Short delay (%) Long delay (%) Fixed cost (%) Short delay (%) Long delay (%) 

Penalty 1 - - - - - - 

Penalty 2 + 0.01 -3.26 -9.99 + 0.01 -1.06 -5.66 

Penalty 3 + 0.05 -7.48 -18.36 + 0.03 -3.38 -9.95 
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and 85 commodities. CPLEX could not address instances of such 
the threshold B k ), at the expense of additional set-up cost of 0.05%

only. 

7.2. Meta-heuristic performance analyses 

The meta-heuristic performance was evaluated through exper-

iments conducted considering instances belonging to all demand

classes, the loosest delivery time window ( 11 − 14 ), the highest

variability level ( σ = 0 . 25 ) and the loosest time distribution range

( l ). We still use 30 scenarios for each instance (this means that

at each iteration the meta-heuristic solves 30 single-scenario sub-

problems). The parameters were set to γ = 1 . 1 and β = 1 . 1 for

the fixed-cost adjustments, while thresholds were set to thres high =
0 . 8 , thres low 

= 0 . 2 for global adjustments and local high = 1 + u r / 2

and local low 

= (u r / 2) − 1 for local adjustments. Parameter values

were chosen based on those used in Crainic et al. (2011) , after not

having observed any significant changes in the meta-heuristic be-

havior for small changes in those values during preliminary exper-

iments. We considered, instead, different values of parameter ρ0 ,

ranging from 0.1 to 50, and different thresholds of consensus re-

quired to stop Phase 1, ranging from 80% to 95% of the services. 

Table 10 displays the performance results of CPLEX and the

meta-heuristic with the PHR and PHRL cost-adjustment strategies,

with ρ0 = 5 . The first phase is stopped either when consensus is

obtained for 90% of services, on reaching a total of 20 iterations,

or after 4 hours of running time. The table also displays the total

computation time (in seconds), the number of iterations, and the

relative gaps with respect to the solution obtained with CPLEX. 
As expected, CPLEX solves almost all instances in a very short

ime, requiring only a few seconds for the easiest instances and

round 2 minutes for the most complicated. Meta-heuristic com-

uting times are longer. This is not surprising. On the one hand,

nstances were selected in such a way to allow CPLEX to find the

ptimal solution to the stochastic formulation. On the other hand,

n order to have a clear comparison in terms of solution qual-

ty, the optimal solution to each sub-problem at each iteration

as determined using the same solver (future extensions could, of

ourse, involve the use of meta-heuristics for the sub-problems).

hile this slows down the meta-heuristic, it provides the means

o show its very good performance in terms of solution quality,

oth versions finding good quality solutions; 45% of the instances

re solved optimally, while the optimality gaps for the remaining

nstances are less than 1%. 

What is the effect of flow-information adjustment? The PHRL

pproach seems to perform slightly better compared to the PHR

pproach, yielding an average optimality gap of 0.022% compared

o 0.054% for PHR. The improvement is reached, however, at the

xpense of a higher number of iterations (on average 4.63 instead

f 3.58) and a much longer running time (PHRL needs on average

8% more time compared to PHR). This additional effort is due to

he higher number of operations characterizing PHRL compared to

HR. In all cases, the PHR version stops Phase 1 because the chosen

onsensus threshold is reached, while in 25% of the cases, the PHRL

tops because the time limit is reached. 

We also tested the meta-heuristic over a set of larger instances

uilt on the same physical network with 35 scenarios, 220 services



G. Lanza, T.G. Crainic and W. Rei et al. / European Journal of Operational Research 288 (2021) 30–46 43 

Table 10 

Performances of CPLEX and meta-heuristic (PHR and PHRL strategies; ρ0 = 5 ). 

| K | CPLEX PHR PHRL 

Time (sec.) Obj Time (sec.) Obj Iter. Gap (%) Time (sec.) Obj Iter. Gap (%) 

15 13.11 3964.38 61.25 3964.38 2 0 82.66 3964.38 2 0 

15 13.86 4538.18 114.24 4538.18 2 0 151.33 4538.18 2 0 

15 12.95 3701.94 70.42 3712.86 2 0.29 104.88 3701.94 2 0 

15 13.87 3834.58 101.16 3841.76 3 0.19 185.51 3841.76 3 0.19 

15 14.21 4562.23 128.22 4565.61 2 0.07 395.12 4565.61 5 0.07 

15 13.74 4679.08 120.91 4679.08 2 0 324.04 4679.08 4 0 

20 32.53 6007.60 189.53 6007.60 2 0 230.42 6007.60 2 0 

20 18.23 5061.42 172.41 5061.42 3 0 312.03 5061.42 4 0 

20 23.14 6178.43 249.02 6181.83 3 0.06 544.75 6180.20 4 0.03 

20 30.71 6532.49 350.09 6565.06 2 0.50 715.83 6532.49 4 0 

20 16.15 4830.19 87.80 4830.19 3 0 151.25 4830.19 3 0 

20 17.83 5216.48 116.97 5216.48 3 0 338.74 5216.48 5 0 

25 24.90 7151.51 207.49 7153.12 2 0.02 313.53 7153.12 2 0.02 

25 21.57 6245.17 104.80 6245.17 2 0 222.61 6250.66 3 0.09 

25 27.10 6729.70 244.82 6729.70 4 0 828.99 6729.70 7 0 

25 23.45 6968.70 176.93 6968.70 2 0 257.61 6968.70 2 0 

25 29.54 7295.06 374.55 7300.43 4 0.07 887.82 7302.14 5 0.10 

25 22.34 6638.79 89.24 6638.79 2 0 147.18 6639.35 3 0.01 

50 48.26 14494.40 1682.03 14494.40 6 0 9313.16 14494.40 8 0 

50 51.19 15562.70 1806.54 15575.10 6 0.08 9574.86 15564.30 8 0.01 

50 90.65 15068.40 2514.37 15068.40 8 0 11129.99 15068.40 7 0 

50 49.37 15317.40 1871.77 15317.40 7 0 8927.28 15317.40 8 0 

50 123.89 14776.00 2024.23 14779.40 7 0.02 8850.26 14779.40 8 0.02 

50 50.38 15035.60 2177.47 15035.60 7 0 9184.05 15035.60 10 0 

Average 32.62 626.51 3.58 0.05 2632.25 4.63 0.02 

Table 11 

Average performance of PHR and PHRL with different values of ρ0 . 

ρ0 PHR PHRL 

Iterations % of Optima Gap (%) Iterations % of Optima Gap (%) 

0.1 3.17 70.83 0.0498 2.54 79.17 0.02215 

0.5 2.5 66.67 0.0504 2.33 75 0.02239 

1 2.17 66.67 0.0522 2.29 75 0.02471 

5 1.88 62.5 0.0542 2.25 75 0.02617 

10 1.83 62.5 0.0558 2.17 70.83 0.02863 

20 1.71 62.5 0.0598 2.13 70.83 0.02938 

50 1.63 58.33 0.0675 1.63 62.5 0.04406 
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izes, while the meta-heuristic with the global fixed-cost adjust-

ent strategy PHR (with ρ0 = 5 and a consensus threshold of 90%)

rovided solutions in 4 hours, on average. 

.2.1. Impact of parameter ρ0 

The performance of the method is generally sensitive to the

hoice of the penalty parameter ρ0 , which scales the penalty term

 Bertsekas, 2014 ). Theory suggests that high values of the penalty

arameter should induce faster but often premature convergence

eading to ill-conditioned solutions. Conversely, small values of ρ0 

ield a weaker enforcement of the non-anticipativity constraints,

esulting in a more gradual convergence to typically better solu-

ions after many iterations ( Mulvey & Vladimirou, 1991; Wallace

 Helgason, 1991 ). This is supported by empirical evidence in our

ase as well. We solved the chosen instance set considering differ-

nt values of ρ0 , ranging from 0.1 to 50. The first phase is stopped

hen consensus is obtained for 80% of services. 

Table 11 displays average performance results for the PHR and

HRL versions of the meta-heuristic, namely, the number of itera-

ions, the percentage of instances solved to optimality, and the op-

imality gaps (with respect to CPLEX). In line with the results from

he literature, a small ρ0 value yields longer first-phase computa-

ions, but the mechanism has sufficient time to “absorb” the infor-

ation from the scenarios and obtains good results. For large ρ0 

alues, however, the meta-heuristic stops quite rapidly at a local

ptimum. The number of instances solved to optimality decreases

from 70% to 58% for PHR and from 79% to 62% for PHRL), as well
s the accuracy of solutions, even though the optimality gaps are

ery low and less than 1%. This behavior characterizes both meta-

euristic variants but, as observed earlier, the PHRL always outper-

orms the PHR in relative gaps and number of instances optimally

olved. It is noteworthy that the PHRL variant is able to solve at

east 75% of instances optimally, maintaining this standard until
0 = 5 , while not only is the PHR unable to reach this threshold,

ut this percentage decreases as soon as ρ0 increases. Regarding

terations, it seems that if ρ0 is very low, the iterations needed by

he PHRL are less than those needed by the PHR, as if the addi-

ional flow information not only influences the accuracy of the so-

utions but also allows the approach to converge sooner. This char-

cteristic is lost when ρ0 = 1 . 

.2.2. Impact of the consensus threshold parameter 

We solved the instance set considering different values of con-

ensus threshold to stop Phase 1, ranging from 80% to 95% of the

ervices. The value of ρ0 was set to 5. Intuitively, the value of

he threshold directly influences the number of iterations the algo-

ithm needs to perform before stopping the first phase: the higher

he value, the more iterations are needed in Phase 1 to reach the

esired consensus threshold and go to Phase 2. At the same time,

owever, this allows Phase 2 to start with a higher number of fixed

ervices, decreasing its computational effort. The results presented

n Table 12 are consistent with this behavior. The table displays

he average number of iterations performed by the PHR and PHRL
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Table 12 

Performance of PHR and PHRL with different consensus threshold values. 

Threshold PHR PHRL 

Iterations % of Optima Gap (%) Iterations % of Optima Gap (%) 

80% 1.88 62.5 0.0542 2.25 66.67 0.0263 

85% 2.63 66.67 0.0338 3.21 75 0.0255 

90% 3.58 66.67 0.0337 4.63 75 0.0173 

95% 8.73 66.67 0.0331 11.21 75 0.0136 

Fig. 4. Percentage of instances reaching consensus thresholds. 
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versions, the percentage of instances solved to optimality, and the

average optimality gaps. 

Both variants display the same behavior, with similar increases

in the number of iterations and accuracy as the consensus thresh-

old increases. PHRL constantly outperforms PHR in terms of accu-

racy but, as already observed, at the expense of a higher number

of iterations (27% more on average). Thresholds higher than 85%

seem to improve the accuracy level for both approaches, while the

percentage of instances solved optimally does not change and the

decrease in optimality gaps is marginal. 

It should be noted, however, that the highest threshold (95%)

seems too strict, and the first phases of both variants stopped, for

most of the hardest cases, not because the consensus threshold

was attained, but because the time limit (4 hours) was reached.

Figure 4 plots the percentage of times the Phase 1 of PHR and

PHRL stopped by reaching the chosen consensus threshold. 

We also solved a number of instances without a time-limit

stopping rule. Solutions and gaps do not change significantly (only

after the third decimal place). What consistently changes is the
Fig. 5. Optimality gap evolution for PHR
umber of iterations needed to reach this threshold and stop Phase

, on average 20. This emphasizes that consensus thresholds and

ime limits should be appropriately chosen. The results of this sec-

ion are a step in defining these criteria. 

.2.3. Final remarks about PHR and PHRL 

To sum up the observations regarding the two versions of the

xed-cost adjustment strategy, both approaches result in good

uality solutions, but display slightly different behaviors.PHRL

eems to greatly benefit from small ρ0 parameters (even when
0 = 0 . 1 and ρ0 = 0 . 5 , PHRL outperforms PHR in terms of number

f iterations) and high consensus thresholds. The PHR approach

eems to have a more stable behavior with respect to optimal-

ty gaps but is characterized by a decreasing number of iterations

hen the parameters are changed. Optimality gaps are displayed

or increasing values of ρ0 and consensus threshold for the two

ariants in Fig. 5 a and 5 b. 

The PHRL variant appears to enable the algorithm to perform

etter compared to PHR when solution accuracy is of concern, and

he higher computational effort is of lesser importance. On the

ther hand, it seems that, at least for the instances studied, the

nformation on global trends is sufficient to find good solutions,

aking the PHR variant a suitable methodology to address prob-

em instances quickly and efficiently. 

. Conclusion 

We addressed the SSND-QT, the stochastic SSND problem with

uality targets and travel time uncertainty. It is an important prob-

em for the tactical planning process of consolidation-based freight

arriers, as well as for the network design problem class. Very few

apers in the literature address issues related to this problem, our

ontribution being, according to our best knowledge, the first to

tate and address the full problem. We defined the problem con-

idering quality targets for on-time, according to a schedule, oper-

tion of services and on-time, according to carrier-customer con-

racts, delivery of commodity flows to destinations. We proposed
 (full line) and PHRL (dashed line). 
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 two-stage mixed-integer linear stochastic model defined over a

pace-time network, with quality targets modeled through penal-

ies. The first stage addresses the selection of services and the

outing of the freight flows, while the second stage verifies targets

nd computes penalties. We also proposed an effective PH-based

eta-heuristic, based on a partial-decomposition concept aimed

o address the challenges raised by the presence in the first-stage

roblem of flow-distribution decisions and by the flow-related de-

eneracy peculiar to network design. The results of an extensive

umerical experimentation underscored the worthiness of the for-

ulation when quality targets are of interest, highlighting specific

eatures to hedge against time fluctuations. They also showed that

he proposed meta-heuristic performs very well, being comparable

o that of a well-known MIP solver, and outperforming the solver

hen instance dimensions increase. Several interesting research

venues are open. One relates to the introduction of uncertainty on

erminal operations and, clearly in the longer-term, integrating in a

nique formulation uncertainty related to both demand and time.

 second avenue concerns the representation of more complex de-

isions/actions when delays are observed, addressing, for example,

he case of missed connections. Extensions to explicitly account for

he management of resources required to operate services is an-

ther interesting research avenue, as is the study and relaxation

f the independence hypothesis regarding travel time distributions.

lgorithmically speaking, continuing the study of partial decompo-

ition and associated adjustment and consensus-seeking strategies

s certainly of interest, as is the definition of multi-scenario sub-

roblems. The latter issue belongs to the broader challenge of de-

eloping efficient solution methods for large instances of stochastic

etwork design problems. We look forward to presenting results

n some of these issues in the near future. 
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