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The spherical p-spin model is a fundamental model in statistical mechanics of a disordered system with a
random first-order transition. The dynamics of this model is interesting both for the physics of glasses and
for its implications on hard optimization problems. Here, we revisit the out-of-equilibrium dynamics of the
spherical mixed p-spin model, which differs from the pure p-spin model by the fact that the Hamiltonian is
not a homogeneous function of its variables. We consider quenches (gradient descent dynamics) starting
from initial conditions thermalized in the high-temperature ergodic phase. Unexpectedly, we find that,
differently from the pure p-spin case, the asymptotic states of the dynamics keep memory of the initial
condition. The final energy is a decreasing function of the initial temperature, and the system remains
correlated with the initial state. This dependence disproves the idea of a unique “threshold” energy level
attracting dynamics starting from high-temperature initial conditions. Thermalization, which could be
achieved, e.g., by an algorithm like simulated annealing, provides an advantage in gradient descent
dynamics and, last but not least, brings mean-field models closer to real glass phenomenology, where such
a dependence is observed in numerical simulations. We investigate the nature of the asymptotic dynamics,
finding an aging state that relaxes towards deep, marginally stable minima. However, careful analysis rules
out simple generalizations of the aging solution of the pure model. We compute the constrained complexity
with the aim of connecting the asymptotic solution to the energy landscape.
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I. INTRODUCTION

Understanding the relation between the dynamical
behavior and the underlying energy landscape is a funda-
mental question in the physics of glassy systems. The same
question arises in a broader interdisciplinary perspective in
optimization, information theory, and computer science. In
these fields, the comprehension of the performances of
classes of iterative algorithms represents both a practical
and a fundamental theoretical problem. One notable exam-
ple, among many, is provided by supervised learning,
where one formalizes data learning as the problem of
minimizing a loss function that depends parametrically on
the data [1].
The development of the mean-field theory of spin glasses

has provided unifying concepts that, starting from glassy
materials, also allowed deep insight in optimization,
inference, and machine learning [2].

Simple mean-field spin-glass models have been funda-
mental to understand the emergence of glassy dynamics
within the so-called random first-order transition (RFOT)
scenario [3] since they provide a concrete realization of the
phenomena observed in more realistic glass formers. Many
recent reviews exist [4–6] that discuss in detail the RFOT
and the simple spin-glass models related to it. The same
mean-field spin-glass theory has recently been used to
address fundamental problems in the theory of computation
[2] and to model the jamming state via high-dimensional
interacting spheres [7], thus showing that key concepts of
this theory have a broad range of applications.
Theoretical progress has been paralleled by the invention

of powerful optimization algorithms—such as simulated
annealing [8], parallel tempering [9], and quantum
annealing [10]—that mimic physical dynamics, or message
passing algorithms, such as survey propagation [11] and
approximate message passing [12], which are based on the
mean-field equations for spin glasses.
The spin-glass model that, more than any other, has

shaped our theoretical ideas about the relation between the
energy landscape and the relaxation dynamics is the
spherical p-spin model [13]. This model is a system of
spherical spins that interact through a disordered and
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long-range p-body Hamiltonian. Despite its simplicity and
its abstract nature, the model is important. In a nutshell, its
very explicit exact solution provides the complete descrip-
tion of glassy phenomena in the mean field, including the
long-time dynamics [14,15], thermodynamics [13], and the
structure of metastable states [16]. Arguably, this model
makes the RFOT more explicit and makes it easier to
produce theoretical predictions [17]. Thanks to these
virtues, the same system has been proposed as a simplified
model to rationalize the properties of the loss function and
the dynamics of learning in deep networks [18] and in
problems involving tensors such as tensor completion and
tensor principal component analysis [19,20]. Last but not
least, the model has been widely used in the mathematical
physics community to understand spin-glass mean-field
theory in rigorous terms [21].
The picture of the glassy dynamics that emerges from the

p-spin model is very attractive. Below the temperature
TMCT, identified as an ideal mode-coupling transition [22],
the dynamics following a quench from a random initial
condition falls in an aging state [15]. In this state, despite
the lack of equilibration, any memory of the initial state is
lost and the energy of the system tends to a temperature-
dependent threshold value extensively higher than the
equilibrium one. A crucial prediction, which has deep
consequences both for glassy physics and for algorithms, is
that the same asymptotic energy is reached if instead of
starting from a completely random condition the system is
quenched from an initial condition well thermalized at
some temperature above TMCT (see Fig. 1, left diagram).

In the standard aging solution, the property that the
asymptotic dynamics forgets the initial condition, as well as
any configuration reached at finite times, is called weak
ergodicity breaking [23]. It is essential to the solution of the
long-time relaxation dynamics [15] because it allows us to
decouple the dynamics at short and long times. It is
believed to hold in any mean-field spin-glass model,
although very recent results are raising some doubt [24].
In the context of glasses, the independence on the initial

condition contrasts with simulations of realistic glass-
formers. In these systems, one can define a temperature
value Tonset well in the liquid region, where relaxation
crosses over from exponential to stretched exponential.
Around this temperature and below, the states reached
after quenching, deemed inherent structures (IS), have
energy that is sensibly dependent on the starting temper-
ature [25,26].
This mismatch has often been considered as a failure of

mean-field theory to describe an important aspect of finite-
dimensional glassy dynamics, the main argument being
based on the assumption that the phenomenon is due to
activated processes that are absent in mean-field models,
where barriers are divergent with the system size. The net
result is the lack of a theoretical comprehension of
dynamical onset within RFOT.
For algorithms, the above picture rules out simulated

annealing as a valid optimization protocol in systems with
an ideal RFOT transition. Any time spent in the ergodic
phase is irrelevant for optimization: In the long run, the
system gets stuck at the universal threshold energy level.
By extension, it has been hypothesized that algorithms
running in a polynomial fail to optimize below threshold.
Unfortunately, despite its popularity, the p-spin model

possesses a symmetry that makes it singular among mean-
field spin glasses. Its Hamiltonian is a homogeneous
function of its variables. While it is very well known that
this homothetic symmetry puts in a one-to-one correspon-
dence finite-temperature metastable state with energy
minima, the independence of the low-temperature asymp-
totic energy on the initial condition is generally believed to
be a generic feature of fully connected models.
In this paper, we present analytical evidence that this

belief needs to be revised. As soon as we move to the mixed
p-spin model [27,28] where the Hamiltonian is no longer
homogeneous, the physical picture changes drastically.
This model shares with the simpler pure p-spin model
the property that one can write closed dynamical mean-
field equations that can be integrated numerically with high
precision at finite time and analyzed analytically in the
asymptotic regimes.
Our main findings are schematically summarized in

Fig. 1. In the mixed model, an onset temperature exists,
such that below Tonset the system never forgets the initial
configuration, and it relaxes to marginal states whose
energies depend on the initial temperature. If we define

FIG. 1. Schematic representation of the different behavior of
gradient descent dynamics in pure and mixed p-spin models. In
the pure model (left diagram), all initial temperatures higher than
TMCT lead to the same aging dynamics at the threshold energy,
while starting below TMCT the dynamics is trapped within a state:
Here, TMCT is the only relevant dynamical critical temperature. In
the more generic mixed model (right diagram), two dynamical
critical temperatures exist, Tonset and TSF, such that, starting from
a temperature in between, the dynamics tends to a marginal state
depending on the initial configuration while aging and keeping
memory of the short-time evolution.
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the threshold energy as the value reached after a quench
from a completely random point (infinite temperature), we
find that in this model, the relaxation dynamics can go
below threshold while aging and keeping memory of the
short-time evolution. This picture is richer than the one that
is usually associated with a RFOT, thus providing support
for an improved RFOT already at the mean-field level.

(i) For glasses, we have a simple mean-field model,
more generic than the pure p-spin model, allowing
us to naturally incorporate the onset of glassy dy-
namics in the unifying theoretical framework of
RFOT. This central result shows that, differently
from what is commonly believed, genuinely finite-
dimensional phenomena such as activation—but also
interface dynamics or strongly spatially heterogeneous
fluctuations—need not necessarily be invoked to
explain the appearance of the dynamical onset.

(ii) For algorithms, we have that even in cases where the
asymptotic energy turns out to be larger than the
ground-state energy, thermalization in the high-
temperature region is helpful. Relaxation dynamics
can go below the threshold energy even without
jumping over barriers. Thus, the present model gives
rigorous support to the empirical observations that
annealing works and suggests explanations that do
not require activated processes.

Unfortunately, in the interesting regime where the energy
goes below threshold, the asymptotic dynamics is not
described by a simple generalization of the Cugliandolo-
Kurchan aging solution [15]. The relation between the
dynamics and landscape in mean-field models of glasses is
more complex and also harder to solve than previously
thought.
The paper is organized as follows. The next section

briefly notes the salient features of mean-field glasses. In
Sec. III, we define the model. In Sec. IV, we discuss the
properties of the landscape and the number of stationary
points of the energy surface of the model. Section V
presents the equations describing the off-equilibrium
dynamics and the effect of a nonrandom initial condition.
SectionVI constitutes the core of the paper,wherewe discuss
the energy of inherent structures, the puzzling properties of
the zero-temperature dynamics, and its relation to the land-
scape. The results are extended to relaxation in the presence
of a small thermal noise in Sec. VII. We discuss an
approximated dynamical solution and the emergence of an
onset temperature in Sec. VIII. We comment on the results
and their consequences in Sec. IX. The paper comprises a
large number of Appendixes devoted to the discussion of
more technical aspects of the work that support and comple-
ment the main text. In Appendix A, we present some formal
solutions of the long-time asymptotic aging regime and its
connections with the effective potential theory. An approxi-
mate solution to the asymptotic dynamics is analyzed in
Appendix B. We present the computation of the constrained

complexity of energy minima in Appendix C. In
Appendix D, we discuss finite-temperature dynamics in
equilibrium. Appendix E deals with the properties of the
response function at short times in the aging regimes. Finally,
in Appendix F, we describe the numerical solution of the
dynamical equations.

II. SETTING THE STAGE

A widely used statistical characterization of the energy
landscape sampled by the glassy dynamics is the numerical
study of the inherent structures (ISs), defined as the local
minima of the energy potential reached by a steepest
descent procedure starting from well-thermalized initial
conditions at temperature T [25,29–32]. The thermalization
temperature of the initial configuration is sometimes called
the parent temperature, but here, when there is no
ambiguity, we simply call it temperature. In simulations
of glass-forming liquids, it is observed that starting from
thermalized configurations at temperature T, the energy of
the corresponding ISs concentrates around a value EISðTÞ
that depends on T only below a characteristic onset temper-
ature Tonset. Remarkably, this temperature is higher than the
estimated “mode-coupling temperature” TMCT, where
mode-coupling theory would predict structural arrest.
Similar effects are typical in finite-dimensional disordered
systems and are also observed, e.g., in 3D Heisenberg spin
glasses [33]. Here, simulated annealing is effective: In order
to minimize the energy, equilibrating at lower and lower
temperatures is a better strategy than a sudden quench from a
high-energy state.
As stressed in the previous section, according to the

common belief, the temperature dependence of the IS
energy is a consequence of activation and should not
appear in models with long-range interactions: Initial
conditions thermalized above TMCT would all have the
same value of the IS energy; any memory of the initial
condition would be lost after a long enough time.
However, this belief is based on the solution of the

spherical pure p-spin model [13], which, in a nutshell,
gives the following dynamical picture: (1) From the point
of view of equilibrium dynamics, the model provides an
exact realization of the mode-coupling theory scenario.
One finds dynamical freezing at a temperature TMCT,
where the free energy does not present singularities [14].
(2) Randomly chosen initial conditions evolved according
to the Langevin dynamics at temperature Tf < TMCT fail to
equilibrate. They fall in an aging state, which fails to attain
a time-translation-invariant long-time regime and present a
nontrivial response to perturbations [15]. (3) Any memory
of the initial condition is lost in the aging state; the choice
of an initial condition thermalized at temperatures T in >
TMCT would not change the asymptotic of a dynamics in the
presence of a bath at temperature Tf < TMCT. There is a
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universal threshold energy Eth that attracts the zero-
temperature dynamics of any such initial conditions,
i.e., EISðTÞ ¼ Eth for all T > TMCT. (4) Initial conditions
thermalized at T < TMCT live in metastable states that can
be followed down in temperature [27,34,35]. In that case,
one reaches an energy E0ðTÞ, which is monotonous in T
and smaller than the threshold value Eth. Unfortunately,
such initial conditions cannot be generated in a finite time.
Such a detailed dynamical picture is deeply rooted in the

structure and organization of the stationary points of the
energy and the free-energy landscapes [36]. (A) ForE < Eth,
almost all stationary points of the energy are isolated and
stable minima. The stability gap of the minima (i.e., the
minimum eigenvalue of theHessian) is uniquely a function of
the energy. Saddle points are exponentially suppressed and
have only a finite number of unstable directions. (B) For
E > Eth, almost all stationary points are saddles. (C) Minima
with E ¼ Eth are marginal. Dynamics is attracted by these
threshold states, no matter what the thermalization effort
is atT > TMCT. It is clear that simulated annealing is of nouse
for such a system. (D) Below-threshold energy minima are
separated by extensive barriers. There is a one-to-one cor-
respondence between energy minima and finite-temperature
metastable states (minima of the Thouless-Anderson-Palmer
free-energy [16]). Metastable states can be followed up and
down in temperature.
The general picture above, both for the dynamics and for

the structure of the landscape, is not restricted to the
spherical p-spin model; it is generic to mean-field models
with a discontinuous glass transition (one-step replica
symmetry breaking, or 1RSB in spin-glass jargon) and
has been confirmed by the exact description of glasses of
particles in the limit of infinite dimensions [37]. However,
there are important aspects of the physics of the spherical
p-spin that are deeply model-specific. Its Hamiltonian is
homogeneous and does not allow for bifurcations or
merging of metastable states while changing the temper-
ature. The energy landscape is simpler than more generic
mean-field models. It is well known that in other mean-field
modes like the Ising p-spin model, the Potts glass or even
spherical models with mixtures of multibody interactions
[27], when metastable states are followed down in temper-
ature, bifurcations are encountered. This result leads to the
glass-to-glass Gardner phase transition, which has received
much attention recently [38].
The study of metastable states below such a transition

reveals puzzling aspects. Themean-field solutions describing
the evolution of states in temperature may unexpectedly
disappear [39] as the temperature is lowered. This anomalous
behavior has not received a satisfactory explanation, and its
implications are not very well studied. In this paper, we
reexamine dynamics in models where these phenomena
occur and challenge crucial aspects of the p-spin dynamical
picture: the emergence of a universal dynamical threshold and
the loss of memory of high-temperature initial conditions.

III. MODEL DEFINITION

We concentrate on the mixed p-spin spherical model.
This model, while presenting a more generic phenomeno-
logy, keeps much of the analytical simplicity of the pure
spherical p-spin. In the mixed model, states bifurcate, and
the above-mentioned anomalous behavior occurs. The
Hamiltonian of the mixed p-spin model is just a sum of
p-spin interacting terms with different p values,

HJ½σ� ¼ −
X
p

ffiffiffiffiffi
ap

p XN
i1<…<ip

JðpÞi1…ip
σi1…σip : ð1Þ

Choosing the couplings JðpÞi1…ip
as independent random

Gaussian variables of zero mean and variance,

E½ðJðpÞi1…ip
Þ2� ¼ ðp!=2Np−1Þ, and the coefficients ap ≥ 0

with
P

p ap < ∞, we find that HJ is a random Gaussian
function on the N-dimensional sphere (

P
i σ

2
i ¼ N) with

covariance

H½σ�H½τ� ¼ NfðqστÞ where

fðqÞ ¼ 1

2

X
p

apqp and qστ ¼
1

N

XN
i¼1

σiτi:

We choose fðqÞ as a polynomial such that the model
has a RFOT in thermodynamics, associated with an ideal
mode-coupling transition in equilibrium dynamics. In
addition, we exclude from our analysis models that can
present a Gardner transition [38] to a continuous replica
symmetry-breaking state. It is well known that a sufficient
condition for this transition is that the function f is such
that 1=

ffiffiffiffiffiffiffiffiffiffiffi
f00ðqÞp

is a convex function of q, a property that
we assume throughout the paper. The pure p-spin model
corresponds to the case of a single monomial fðqÞ ¼ 1

2
qp;

we study a more generic class of polynomials f where
at least two coefficients are positive (mixed p-spin model).
While we keep the function f generic in formulas, all
of our numerical results are presented for fðqÞ ¼ 1

2
ðq3 þ

q4Þ and compared with the pure case with p ¼ 3. In
other examples, we checked that all of the results we
get in this particular case are typical of general mixed
models.
To investigate how much of the above picture based on

the solution of the pure p-spin model is generic, we
perform a high-precision integration of the dynamical
equations describing the evolution of the system in the
thermodynamic limit, starting from a thermalized initial
condition at temperature T and subsequently undergoing a
gradient descent dynamics. Our main finding is that the
above picture is not generic, and inhomogeneous models
show several unexpected features. The value of the asymp-
totic energy predicted under the assumption of aging with
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loss of memory is only found starting from high enough
temperatures. We find strong evidence for the existence of
an onset temperature Tonset > TMCT below which the
energy of the IS depends on the initial temperature T
and goes below the threshold value.

IV. ENERGY LANDSCAPE

In order to put our dynamical results in the right
framework, we first discuss the structure and organization
of the stationary point of the mixed Hamiltonian. The
stationary points of the Hamiltonian H½σ� on the sphereP

i σ
2
i ¼ N verify

∂H½σ�
∂σi þ μσi ¼ H0

i þ μσi ¼ 0: ð2Þ

The parameter μ, which we call the radial reaction force, is
a Lagrange multiplier that ensures the spherical constraint.
In any stationary point, it takes the value

μ ¼ −
1

N

X
i

σiH0
i: ð3Þ

The radial reaction is directly related to the nature and the
stability of the stationary points; in fact, the Hessian matrix
(intended to be restricted to fluctuations on the sphere)
reads

Mij ¼
∂H½σ�
∂σi∂σj þ μδij ¼ H00

ij þ μδij: ð4Þ

It is well known [36] and rigorously proven [40] that
H00

ij is a random matrix that belongs to the Gaussian
orthogonal ensemble (GOE) with variance Var½H00

ij� ¼
ð1=NÞf00ð1Þ. Thus, the matrixM has a semicircular spectral
distribution ρðλÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ−μÞ2−4f00ð1Þ

p
=(π

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

), which
has a lower band edge at λmin ¼ μ − 2

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

. We notice
that the value of the radial reaction determines the nature of
the stationary points [41]. It is natural to define a marginal
value of the radial reaction μmg ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

that separates
minima from saddles with an extensive number of negative
directions. Stationary points of H are overwhelmingly
minima if μ > μmg, and they are saddles or maxima if
μ < μmg. Notice that all marginal minima with vanishing
spectral gaps lie on the manifold specified by μðσÞ ¼ μmg.
In the pure model, at any stationary point, the radial
reaction and the energy verify μ ¼ −pE. In the mixed
model, there is no such one-to-one relation between μ and
E in stationary points. This case can be seen by computing
the number of stationary points in Eq. (2), for which both E
and μ are fixed, N ðE; μÞ ¼ eNΣðE;μÞ.
The computation of the complexity ΣðE; μÞ was per-

formed in Ref. [42], and we quote the result here [for

completeness, a physicist’s derivation and the explicit
formula for DðμÞ is provided in Appendix C],

ΣðE; μÞ ¼ DðμÞ − E2f00ð1Þ þ ðEþ μÞ2f0ð1Þ
2ffð1Þ½f00ð1Þ þ f0ð1Þ� − f0ð1Þ2g : ð5Þ

The above expression holds when it returns a positive
value.
Fixing μ, the complexity ΣðE; μÞ is a parabola in E with a

curvature that is finite formixedmodels [see Fig. 2,wherewe
show the complexity for the (3þ 4)-spin model] and that
tends to infinity in the pure limit. For μ < μmax, with μmax
implicitly defined by 0 ¼ ΣðEmax; μmaxÞ ¼ ∂EΣðEmax; μmaxÞ
with Emax the location of the parabola maximum, there is a
finite interval of energies ½E−ðμÞ; EþðμÞ� such that, within
the interval, ΣðE; μÞ > 0. Most importantly, this is true for
the threshold value of the radial reaction μmg. Seen from the
point of view of μ, the organization of the stationary points
resembles the one of the puremodel; however, from the point
of view of the energy, there are deep differences. In the pure
model, for a given level of energy, the index of any stationary
point [43] differs, at most, by a finite number from the index
of dominating ones. In the mixedmodels, for a given energy,
stationary points coexist with macroscopically different
indices: i.e., their spectra are shifted by a finite amount. In
particular, as it is apparent in Fig. 2, there is a whole interval
in energy where marginally stable states exist. A unique

FIG. 2. Complexity ΣðE; μÞ of the (3þ 4)-spin model as a
function of the energy E for different values of μ. The solid
line (E < Eth) represents the complexity of the dominant stable
minima (μ > μmg ¼ 6); its continuation above Eth (short-
dashed line, μ < μmg ¼ 6) represents the complexity of the
dominant saddles. The parabolic long-dashed lines below
represent the complexity fixing the radial reaction: μ ¼ 6
corresponds to marginal minima (dashed blue line), μ > 6 to
stable minima, and μ < 6 to saddles. For the same value of E,
stationary points of different nature coexist, and more impor-
tantly, marginal states (μ ¼ 6) exist in a broad energy range
E ∈ ½−1.716;−1.644�.
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relation between E and μ only holds for the exponentially
dominating stationary points.

V. DYNAMICAL EQUATIONS IN THE
OUT-OF-EQUILIBRIUM REGIME

Given the Hamiltonian in Eq. (1), we consider the
following Langevin dynamics:

∂tσiðtÞ ¼ −μðtÞσiðtÞ −
∂H
∂σi ðtÞ þ ξiðtÞ;

hξiðtÞξjðt0Þi ¼ 2Tfδijδðt − t0Þ;

P½σð0Þ� ¼ e−βH(σð0Þ)

ZðβÞ ; ð6Þ

where Tf is the temperature of the thermal bath (later set to
zero) and β ¼ 1=T is the inverse temperature at which the

initial condition is equilibrated. The time-dependent radial
reaction force μðtÞ is the Lagrange multiplier that con-
strains the dynamics on the sphere, and at time t, it takes the
value

μðtÞ ¼ Tf −
1

N

X
i

σiðtÞ
∂H
∂σi ðtÞ: ð7Þ

Taking the thermodynamic limit, N → ∞, at finite
times, Eq. (6) implies closed integrodifferential equations
[14,44,45] for the correlation Cðt; t0Þ≡ hσiðtÞσiðt0Þi and
for the response Rðt; t0Þ≡ ½∂hσiðtÞi=∂ξiðt0Þ� that vanishes
for t < t0 and verifies Rðtþ; tÞ ¼ 1. For an initial temper-
atures T greater than the Kauzmann temperature of the
thermodynamic phase transition TK, the dynamical equa-
tions, valid for t > t0, read [35]

∂tCðt;t0Þ¼−μðtÞCðt;t0Þþ
Z

t

0

dsf00(Cðt;sÞ)Rðt;sÞCðs;t0Þþ
Z

t0

0

dsf0(Cðt;sÞ)Rðt0;sÞþβf0(Cðt;0Þ)Cðt0;0Þ;

∂tRðt;t0Þ¼−μðtÞRðt;t0Þþ
Z

t

t0
dsf00(Cðt;sÞ)Rðt;sÞRðs;t0Þ;

μðtÞ¼Tfþ
Z

t

0

dsf00(Cðt;sÞ)Rðt;sÞCðt;sÞþ
Z

t

0

dsf0(Cðt;sÞ)Rðt;sÞþβf0(Cðt;0Þ)Cðt;0Þ;

with energygivenbyEðtÞ¼−
Z

t

0

f0(Cðt;sÞ)Rðt;sÞds−βf(Cðt;0Þ): ð8Þ

The initial condition enters the above equations in a
rather simple way. For β ¼ βf, one gets equilibrium
dynamics, whose MCT transition is illustrated in
Appendix D. For β ¼ 0, the equations reduce to the usual
form that is valid for an uncorrelated initial condition.
In this case, for Tf < TMCT, the equations admit a
Cugliandolo-Kurchan weak ergodicity-breaking aging
solution completely analogous to the one of the pure model.
It is possible to show that in this solution, for Tf → 0, the
radial reaction μðtÞ tends to the marginal value μmg for
t → ∞, while the energy tends to the threshold value
Eth ¼ f−f0ð1Þ2 þ fð1Þ½f0ð1Þ þ f00ð1Þ�=f0ð1Þ ffiffiffiffiffiffiffiffiffiffiffi

f00ð1Þp g. In
correspondence with this value of energy, the complexity
ΣðEth; μÞ, as a function of μ, is maximum for μ ¼ μmg. In
other words, Eth is not the energy of the most numerous
marginal states but the energy where marginal states
exponentially dominate the complexity.
It is possible to see that for T < ∞, the same aging

solution solves the dynamical equations in the long-time
limit, if one assumes that memory of the initial condition is
lost and Cðt; 0Þ → 0 at a large time. If this is the correct
description for all T > TMCT, then the asymptotic energy
would be independent of T in this domain.
We study the dynamical equations in Eq. (8) by

numerical integration. The simplest possibility, which we

adopt here, is a fixed time step Δt, first-order Euler
discretization algorithm that gives very reliable results at
short times [46] and allows for reliable extrapolations in the
Δt → 0 limit (see Appendix F). Other algorithms with
variable time steps have been proposed and used in the
literature [47,48]. Unfortunately, in the case of a mixed
p-spin model with a correlated initial condition (β > 0),
these algorithms appear to be unstable at short times and do
not allow any improvement over the simplest one. With the
Euler integration scheme and a maximum step of Δt ¼ 0.1,
we reach times of order 103. These timescales are often not
large enough to allow for a simple naive extrapolation to the
infinite-time limit. Nonetheless, under some conditions,
they will allow us to make clear claims on the large-time
dynamics. In this paper, we concentrate on the case of zero-
temperature dynamics, where the energy monotonically
decreases and, once below threshold, it cannot increase
again. However, we show in Sec. VII that this Tf ¼ 0 result
extends to a range of positive temperatures, Tf > 0.

VI. AFFINITIES AND DIVERGENCES BETWEEN
MIXED AND PURE MODELS

Here, we discuss the core question of this paper and
compare the energy reached by the Tf ¼ 0 gradient descent
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dynamics from different initial conditions to the threshold
energy that can be computed from the asymptotic solution
with β ¼ 0 [15] or by computation of the complexity of
minima [16]. For the 3þ 4 model, the value of the
threshold energy is Eth ¼ −71=42 ≃ −1.6905. In Fig. 3,
we show the curves of the energy as a function of time for
different T, ranging from T ¼ ∞ to T ¼ 0.796, the
dynamical transition temperature of the model being
TMCT ¼ 0.805166 (see Appendix D). Data are obtained
from an integration with step Δt ¼ 0.1, reaching the
maximum time of 2500. This step size gives a relative
integration error smaller than 10−5 (see detailed discussion
in Appendix F).
On the timescale we can reach and for T ≳ 1, the energy

seems to have reached an asymptotic behavior well fitted
by a power law, EðtÞ ¼ Eth þ a=tγ, with a slightly depen-
dent on temperature and γ ¼ 0.66� 0.01, making us
confident that Eth is the asymptotic value of the energy
in this range of temperatures. On the other hand, if T is
small enough but still larger than TMCT, the curves of the
energy go below Eth. For comparison, in the upper inset we
present the same curves for the pure model with p ¼ 3. In
that case, the energy manifestly tends to the threshold value
for all T ≥ TMCT. These results suggest a scenario with a
new dynamical transition in the mixed model, with an
onset temperature Tonset separating a memoryless phase for

T > Tonset from a phase with memory at T < Tonset. It is
also interesting to look at T < TMCT. In our data, we do not
observe anything special happening at TMCT; it is only
below a state-following temperature TSF ≈ 0.798 that we
observe fast relaxation and the energy decaying exponen-
tially to its asymptotic value. We can predict the asymptotic
energy in this region through a quasistatic solution of the
dynamical equations (“state following” with memory of the
initial condition). In this region, the dynamics just consists
in a simple relaxation inside a stable energy minimum,
which conserves its identity as a metastable ergodic compo-
nent when the temperature is changed. In principle, the
state-following procedure could also be used above TSF,
but we know, in that regime, it provides just an approximate
solution that eventually disappears if the temperature is too
high [39]. We discuss this solution in more detail in
Appendixes A and B. In the next section, we show that
a small temperature Tf in the dynamical equations does not
change this behavior.
In order to understand the dynamical mechanisms that

allow us to beat the threshold, we look at the behavior of the
response and correlations. The first quantity that we study is
the correlationwith the initial state,Cðt; 0Þ. According to the
usual weak ergodicity-breaking scenario, this quantity
should vanish at large t. Both in the mixed and in the pure
model, we observe that the relaxation ofCðt; 0Þ is slower and
slower as T decreases. As for the energy, we can identify
three temperature regimes forT > TK: (I) a high-temperature
standard aging regime T > Tonset, where memory of the
initial condition is lost and Cðt; 0Þ → 0; (II) an intermediate
hic sunt leones regime TSF < T < Tonset, where the relax-
ation is slow, any extrapolation is difficult, but evidence
suggests aging with memory is taking place, i.e., q12 ¼
limt→∞Cðt; 0Þ > 0; (III) a low-temperature state-following
regime T < TSF, where Cðt; 0Þ relaxes exponentially fast
to q12 > 0.
While no aging is found in regime III, in regimes I and II,

we find aging that is qualitatively similar in the two cases.
In Fig. 4, we show Cðt; sÞ as a function of t − s for several
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FIG. 3. Energy relaxation in the (3þ 4)-spin model, starting
from different temperatures T and quenching to zero temperature.
Solid lines are quenches from the ergodic phase (T ≥ TMCT ¼
0.805166); from bottom to top, T=TMCT ¼ 1, 1.001, 1.002,
1.005, 1.01, 1.02, 1.05, 1.1, 1.2, 1.5, 2, 4, 10, ∞. Dashed-
dotted lines correspond to quenches from temperatures
TSF ¼ 0.9914TMCT ¼ 0.798 ≤ T < TMCT; from top to bottom,
T=TMCT ¼ 0.998, 0.996, 0.994, 0.992, and at TSF. Dotted lines
correspond to T < TSF (T=TMCT ¼ 0.99, 0.988). We clearly see
that the energy goes below threshold for temperatures that are
small enough, although larger than TMCT. Inset: Same dynamics
for the three-spin model (T ≥ TMCT); the energy never goes
below threshold.
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FIG. 4. Correlation function Cðt; sÞ for initial temperature T ¼
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correlation shows clear aging features, becoming slower for
larger times. After the slow decay, at a well-defined value
q0ðtÞ (dashed line), the correlation displays a sudden drop to
Cðt; 0Þ (dotted line).
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times t and initial temperature T ¼ 1.01TMCT. The curves
show a clear aging behavior, with the dynamics decorrela-
ting more slowly as time passes, followed by a fast drop of
the correlation for small values of s to the value Cðt; 0Þ.
Even though the energy goes below threshold, we find

compelling evidence that the dynamics remains critical and
approaches asymptotically, marginally, stable minima. We
reach this conclusion by studying the asymptotic behavior
of the radial reaction μðtÞ, which, for t → ∞, determines
the spectral gap of the asymptotically visited states. In
Fig. 5, we can clearly see that both in region I and II, the
radial reaction tends to the marginal value μmg ≡ 2

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

of marginal minima. In region III, by contrast, the system
reaches stable minima and μð∞Þ > μmg.
Aging behavior is often qualified by studying the

relation between the response and correlation [49].
Figure 6 shows the parametric plot of the integrated
response χðt; sÞ≡ R

t
s Rðt; uÞdu versus Cðt; sÞ as a function

of s for various values of t. In zero-temperature dynamics,
in the large-time limit, the integrated response has a jump in
C ¼ 1 to the intrastate susceptibility χEA. In a given
minimum,

χEA ¼
Z

dλ
ρðλÞ
λ

¼ μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4f00ð1Þ

p
2f00ð1Þ ; ð9Þ

and in marginal minima, μ ¼ μmg implies χEA ¼
χmg ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

. The curves in Fig. 6 show the formation
of a jump in C ¼ 1 that is very well compatible with
this value.

The memoryless solution [15] predicts a linear behavior
for C < 1 with the slope given by the “fluctuation-
dissipation ratio” y0 ≡

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

=f0ð1Þ − χmg.
On the timescales we can access, both the pure and the

mixed models show, for all the values of T > TSF, after the
jump to χ ≃ χmg, an approximately linear part. The linear
behavior continues until a rather well-defined time-
dependent value of the correlation, q0ðtÞ > Cðt; 0Þ, where
the response essentially stops increasing. The value q0ðtÞ
identified in Fig. 4 marks the value that separates slow
dynamics, where an effective temperature emerges, from
fast partial decorrelation from the initial condition, during
which the system does not respond (see Appendix E). In the
memoryless phase, T > Tonset, both q0ðtÞ and Cðt; 0Þ go to
zero for t → ∞, while they tend to nonzero limits in the
aging-with-memory phase.
Having established that the system relaxes towards

marginal minima, the question is which marginal minima
are selected. In an attempt to address this question, we
study the constrained complexity [50] ΣðE; μ; q12;TÞ of
energy minima of fixed radial reaction μ, energy E, and
correlation q12 from a reference configuration thermalized
at temperature T. The quantity for q12 ¼ 0 reduces to the
one in Eq. (5) studied in Sec. IV. The detailed computation
of this constrained complexity is presented in Appendix C.
The computation reveals that for q12 > 0, we have quali-
tatively the same picture illustrated in Fig. 2, but with
ΣðE; μ; q12;TÞ < ΣðE; μÞ, with ΣðE; μ; q12;TÞ monotoni-
cally decreasing in q12. One can define a generalized
threshold energy that depends on T and q12, Ethðq12; TÞ,

FIG. 5. Decay of the radial reaction with time in the (3þ 4)-
spin model on a double logarithmic scale. Its asymptotic value is
compatible with μmg ¼ 6 for T ≥ TSF and goes above μmg ¼ 6

for T < TSF. This result proves that dynamics tends towards
marginal minima for T > TSF.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.6 0.8 1

T = 0.998TMCT

(t
,t 

')

C(t,t ')
0.4 0.6 0.8 1

t=75

t=2400

q0q12

T = 1.01TMCT

C(t ,t ')
0.4 0.6 0.8 1

3+4

3

y3+4

y3

T = 1.1TMCT

C(t ,t ')

FIG. 6. Integrated response χðt; t0Þ versus correlationCðt; t0Þ for
three different initial temperatures T=TMCT ¼ 0.998, 1.01, 1.1.
The lines are plotted by fixing (from bottom to top) t ¼ 75, 150,
300, 600, 1200, 2400 and changing t0. In all the panels, upper data
are for the three-spin model, and lower data are for the (3þ 4)-
spin model. The dash-dotted/dotted lines indicate the suscep-
tibility χmg and the fluctuation dissipation ratio y0 predicted by
the memoryless solution. It is interesting to note that in the
(3þ 4)-spin model, the dynamics does not have any appreciable
change at TMCT, while in the three-spin model, starting below
TMCT, the system remains trapped in a state.
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where marginal states dominate the constrained complex-
ity. It turns out that Ethðq12; TÞ is a decreasing function
of q12 and T. Unfortunately, as explained in detail in
Appendix C, while the resulting Ethðq12; TÞ has the right
qualitative behavior, the corresponding minima have fea-
tures that are incompatible with the actual attractors of the
dynamics. The complete static characterization of the
attractors of the dynamics remains an important open
problem.

VII. EXTENDING RESULTS TO FINITE-
TEMPERATURE RELAXATION DYNAMICS

As we said in Sec. V, for Tf ¼ 0, the energy monoton-
ically decreases, while if the bath temperature Tf is
positive, this is not necessarily the case. If we integrate
the dynamical equations for a small temperature Tf,
we observe that the finite-time energy is continuous,
Eðt; TfÞ ¼ Eðt; Tf ¼ 0Þ þ oðTfÞ. We show that, for small
enough Tf, this implies that limt→∞ Eðt; TfÞ < EthðTfÞ.
At Tf > 0, the Lyapunov function of the Langevin

dynamics, which decreases monotonically in time, is the
free-energy functional [51]:

FðtÞ ¼
Z

dσPt½σ�H½σ� þ Tf

Z
dσPt½σ� logPt½σ�

≡ EðtÞ − TfSðtÞ;

where Pt½σ� is the probability distribution of configurations
at time t induced by the initial condition and the dynamics.
In principle, the energy function EðtÞ could be non-

monotonous in time for Tf > 0 because an entropy increase
ΔSðtÞ ¼ S∞ − SðtÞ > 0 can induce an energy increase
ΔE > 0. However, since the free energy is a decreasing
function of time, we have ΔF ¼ ΔE − TfΔS < 0, and the
energy increase is upper-bounded by ΔE < TfΔS. This
quantity tends to zero for Tf → 0. Consequently, if the
temperature is small enough, the energyEðtÞ, which is below
threshold by anOð1Þ amount, cannot be pushed back to the
threshold value.
In Fig. 7, we show the energy reached at several times

t ∈ f125; 250; 500; 1000g during the integration of the
dynamical equations as a function of the temperature Tf.
The topmost solid line is the analytic prediction for the
threshold energy as a function of Tf. We observe that the
dynamical energy lies below the threshold energy and
shows a continuous and nicely linear behavior in Tf. The
weak time dependence of the data shown in Fig. 7 suggests
the energy is close to its asymptotic value. Even insisting
that an eventual entropy increase may induce an energy
increase at later times, this increase would tend to zero for
small Tf, and thus, by continuity, there would be a finite Tf

range where the energy would certainly remain below the
threshold value even at an infinite time.

VIII. APPROXIMATE ASYMPTOTIC SOLUTION
TO THE DYNAMICS

The dependence of the final energy on T in regime II
witnesses a form of memory of the initial condition. In
contrast, thermalized configurations lie in basins of attrac-
tion of different marginal states. The asymptotic ansatz of
Cugliandolo and Kurchan has been generalized in Ref. [27]
by supposing “aging within a metabasin” and a nonvanish-
ing correlation with the initial state limt→∞ Cðt; 0Þ ¼
q12 > 0. Unfortunately, the resulting equations for χ, y,
q12, q0 only have an aging solution that is different from the
“amnesic” one (q12 ¼ q0 ¼ 0) in the interval TSF ≤ T ≤
T0 ¼ 0.803 < TMCT. Even when the solution exists, the
values of the various parameters do not match the obser-
vations; in particular, one finds y ≈ 0.3, while in dynamics,
y ≈ 0.52. This aging solution terminates at the temperature
TSF, where q0 tends to 1. Below that temperature, there is a
stable state-following solution with no aging, q12 > 0, μ >
μmg and χ < χmg (see Appendix A for a detailed deriva-
tion). This solution correctly reproduces the asymptotic
values of the energy, correlation, and radial reaction of the
large-time dynamics for temperatures T ≲ TSF. Despite all
the efforts, we have been unable to find a different
asymptotic dynamical ansatz describing aging with
memory in the hic sunt leones regime II and/or to find
in the numerics an indication of where the memory of the
initial condition could affect the asymptotic solution. The
lack of simple aging solutions is certainly related, and
equally paradoxical, to the phenomenon of a lost solution in
the state-following procedure of Ref. [39].
Insisting on using a 1RSB dynamical ansatz with

χEA ¼ χmg, μ ¼ μmg, and y ≃ y0, which is supported by

FIG. 7. The dependence of the dynamical energy of the (3þ 4)-
spin model as a function of the temperature Tf. Data measured at
different times are smooth and linear in Tf and clearly below the
threshold energy (shown by the upper line). At small enough Tf,
such an energy difference cannot be compensated by an entropy
increase, as discussed in the text.
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the numerical solution, one can easily derive the following
relation:

y0f0ðq0Þq0 ¼ βf0ðq12Þq12: ð10Þ

A second relation can be obtained from the observation
that χtotðtÞ≡ R

t
0 dsRðt; sÞ ≈ χmg þ y0(1 − q0ðtÞ) depends

approximately linearly on Cðt; 0Þ even at finite times
(see dotted lines in Fig. 6). Moreover, this relation does
not present an appreciable temperature dependence in the
range TSF ≤ T ≲ 1 (data shown in Appendix B) and
implies a linear relation between q12 and q0 that can be
estimated from two analytically known limits: For T large
enough, q12 ¼ q0 ¼ 0, while at T ¼ TSF, we have q0 ¼ 1

and q12;SF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f0ð1Þ=f00ð1Þp

. Assuming the relation
q12 ¼ q12;SFq0, Eq. (10) admits a solution with q0 > 0 if
T < Tonset ≡ qk12;SF=y0, where k is defined by fðqÞ ∝ qk for
q → 0 (in the 3þ 4-model Tonset ¼ 0.91). This approxi-
mated solution gives an asymptotic energy close to the one
extrapolated from the numerical integration (see Fig. 8).
Even though this is not an exact solution of the asymptotic
equations, it gives us a strong indication that the passage
from memoryless aging to aging with memory could be
marked by a phase transition. In addition, it shows that
the exact solution cannot be too far from a 1RSB weak
ergodicity-breaking solution inside a basin.

IX. DISCUSSION AND PERSPECTIVES

Solving the out-of-equilibrium relaxation dynamics in
the spherical mixed p-spin model, starting from a ther-
malized configuration at temperature T, we have uncovered
several interesting and unexpected features. While the
known solution of the relaxation dynamics in the pure
p-spin model suggested the existence of a unique dynami-
cal phase transition at TMCT, where ergodicity breaks down,
and of a unique threshold energy where the dynamics
relaxes below TMCT, our results about the mixed p-spin
model reveal a much richer scenario.

Our main result is summarized in the schematic picture
in Fig. 9: In the mixed p-spin model, there is an entire
temperature range around TMCT (especially above it) where
the final energy depends on T and memory of the initial
condition is kept. A temperature Tonset marks the onset of
this effect. This behavior resembles realistic glass formers
but was unexpected in mean-field models because such a
phenomenon was ascribed to activated processes, which are
absent in the out-of-equilibrium relaxation of mean-field
models. Our results show, contrary to common wisdom,
that the dependence on the initial configuration can arise
even in long-range models, following a purely relaxation
dynamics.
From the numerical solution of the dynamical mean-field

equations, this dynamical onset of memory may be a
crossover or a new genuine phase transition. We have
found an approximate solution of the relaxation dynamics
at large times that describes the onset as a phase transition
and provides an analytic prediction for the onset temper-
ature. Thus, we finally have a solvable (although approxi-
mate) model whose predictions can be compared with
numerical experiments.
Another piece of common wisdom that the present work

demystifies is the mantra “relaxation dynamics in mean-
field models relaxes to the threshold energy where the most
numerous metastable states are found.” Calling threshold
energy the energy where the relaxation dynamics converge
if starting from a random configuration (T ¼ ∞), we have
shown that (i) metastable states of an infinite lifetime (i.e.,
locally stable states) also exist above the threshold energy
and (ii) the most numerous states are above the threshold
energy. The threshold energy can thus be understood as the
energy value where the measure is dominated by marginal
states, which can be computed via the unconstrained
complexity. Above the threshold energy, an exponential
number of marginal states already exist, but the measure
over stationary points is dominated by saddles. The same
argument is trivialized in the pure p-spin model since, in
the latter, marginal states exist only at the threshold energy;
thus, assuming convergence to marginal states, we can
uniquely determine the corresponding threshold energy.
We have shown evidence that the correct way to under-

stand the large-time limit of the relaxation dynamics is to
assume that such a dynamical out-of-equilibrium process

FIG. 8. Numerically extrapolated asymptotic energy (data with
errors) and approximated asymptotic solution of dynamical
equations (solid line).
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State following Aging

with Memory
Tonset
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Mixed models
Standard aging

FIG. 9. Schematic phase diagram change when going from pure
to mixed p-spin models. In general, the mode-coupling temper-
ature TMCT (dashed line) is not a phase boundary.
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always tends to marginal states. For T < Tonset, the per-
sistent memory of the initial configuration suggests that we
compute a constrained complexity of these marginal states
that might be correlated with the initial condition. We have
performed this task with different levels of accuracy and
success.
For an initial temperature below TSF, which is strictly

smaller than TMCT in the mixed p-spin model, the starting
configuration lies in a well-defined metastable state that can
be followed down to zero temperature. In this situation, the
dynamics never enters an aging regime, and its asymptotic
behavior can be computed from a standard state-following
computation.
The most interesting regime is the one reached with an

initial temperature TSF < T < Tonset. The relaxation proc-
ess falls asymptotically in an aging regime, but it remains
correlated with the initial configuration. In this regime, the
constrained complexity, while confirming the existence of
marginal states below threshold and correlated with the
initial condition, fails to identify the ones chosen by the
dynamics.
We notice that the mode-coupling transition temperature

lies in this regime, TSF < TMCT < Tonset, but plays no role
at all in the out-of-equilibrium relaxation, which is con-
trolled by Tonset and TSF. The central role TMCT that has
played until now is due to the accidental equality TSF ¼
TMCT ¼ Tonset holding in the pure p-spin model. All our
results remain true for dynamics performed at a small
temperature Tf.
We believe that, contrary to the pure p-spin model, the

mixed p-spin model we studied is generic enough that the
properties we uncovered should typically hold in models
with a mean-field RFOT, such as Potts glasses [52], Ising
p-spins [53–55], and, importantly, glasses of spherical
particles in the infinite-dimensional limit [37].
In conclusion, on the basis of the above results, we have

to revisit our common beliefs about the relaxation dynam-
ics in p-spin models and, more generically, in models
presenting a mean-field RFOT. The physical picture that
has been a central paradigm of our scientific community,
where a simple connection between the relaxation dynam-
ics and the complexity of metastable states exists, is
unfortunately valid only in the case of the pure p-spin
model and is false in more general models.
In pure p-spin models, strong symmetries lead to the

equalities TSF ¼ Tonset ¼ TMCT, and these make many of
the interesting phenomena disappear that we described in
this work and that have misled us for two decades with a
too-simplistic connection between the dynamics and
energy landscape. Mixed models appear to be well suited
to describe the dynamical onset of glassy phenomenology;
they have much more complex energy landscapes,
which deserve a more thorough investigation in the future.
The exact solution to the asymptotic dynamics remains
unknown, and the connection between asymptotic

dynamics and the energy landscape is still very open in
spherical mixed p-spin models. Further research is needed
in two directions: finding algorithms capable of reaching
large times in solving the dynamical equations, and
establishing new theoretical ideas on possible structures
of the aging with memory to understand the asymptotic
aging regime.
The richer scenario we have uncovered in this study is

likely to also have an impact on the many applications in
machine learning we discussed in the Introduction. Given
the simplest connection between relaxation dynamics and
the energy landscape, it is clear that more in-depth studies
of the energy landscape will be needed in order to predict
the performance of algorithms (a first example can be found
in Ref. [56]), especially those that do not start from a
random configuration but use some smart initialization to
improve their performance [57].
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APPENDIX A: ASYMPTOTIC SOLUTIONS

In Ref. [27], it was shown that the asymptotic solution to
the dynamical equations, assuming a simple aging with
memory within a state with a unique effective temperature,
has parameters χ, q0, q12, and y that satisfy the same
equations that can be obtained by extremizing the Franz-
Parisi (FP) potential computed in the one-step replica
symmetry-breaking (1RSB) scenario, provided that the
parameter y is fixed by a marginality condition.
In our case, the 1RSB FP potential has to be computed at

zero temperature (Tf ¼ 0), while the reference configura-
tion is in equilibrium at temperature T ¼ 1=β,

− 2V1RSBðq12; χ; q0; yÞ
¼ χf0ð1Þ þ y(fð1Þ − fðq0Þ)

þ 1

y
log

�
χ þ yð1 − q0Þ

χ

�
þ q0 − q212
χ þ yð1 − q0Þ

þ 2βfðq12Þ:

ðA1Þ

The saddle-point equations and the marginality condition
thus read
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∂χV1RSB ¼ 0 ⇒ χð1− q212Þ þ yð1− q0Þ2
− χ(χ þ yð1− q0Þ)2f0ð1Þ ¼ 0

∂q0V1RSB ¼ 0 ⇒ q0 − q212 − (χ þ yð1− q0Þ)2f0ðq0Þ ¼ 0

∂q12V1RSB ¼ 0 ⇒ q12 − β(χ þ yð1− q0Þ)f0ðq12Þ ¼ 0

marginality⇒ χ2f00ð1Þ ¼ 1: ðA2Þ

We notice en passant that Eqs. (A2) do not always select
the minima of the FP potential because, in order to do that,
one needs to set to zero the total derivative with respect to
q12 and not the partial derivative. The energy and the radial
reaction are given, respectively, by

E ¼ −χf0ð1Þ − y(fð1Þ − fðq0Þ) − βfðq12Þ;
μ ¼ χf00ð1Þ þ ðχ þ yÞf0ð1Þ − yq0f0ðq0Þ þ βq12f0ðq12Þ:

ðA3Þ

Equations (A2) always admit the solution with
q12 ¼ q0 ¼ 0, representing the memoryless or “amnesic”
aging solution with parameters

χ ¼ χmg ≡ 1ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp ;

y ¼ y0 ≡ f00ð1Þ − f0ð1Þ
f0ð1Þ ffiffiffiffiffiffiffiffiffiffiffi

f00ð1Þp ¼
ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp
f0ð1Þ − χmg;

and, consequently, the energy and radial reaction are
given by

E ¼ Eth ≡ −χmgf0ð1Þ − y0fð1Þ; μ ¼ μmg ≡ 2
ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þ

p
:

For the (3þ 4)-spin model, the numerical values for the
above parameters are χmg ¼ 1=3, y0 ¼ 11=21 ≃ 0.52381,
Eth ¼ −71=42 ≃ −1.69048, and μmg ¼ 6.
A nontrivial aging-with-memory solution with strictly

positive values for q12 and q0, disconnected from the
amnesic aging solution, exists only for temperatures below
T0. Moreover, at an even lower temperature TSF, we have
that q0 → 1, and this solution becomes replica symmetric.
In Fig. 10, we report the values of q0, q12, and y in the aging
solution with memory. In the (3þ 4)-spin model, the
existence domain for this solution is upper bounded by
T0 ¼ 0.8031557, where the solution disappears by a
square-root singularity, and lower bounded by TSF ¼
0.7982754, where q0 → 1 and the solution becomes replica
symmetric (RS). At T ¼ TSF, the parameters extremizing
the potential can be computed analytically. The value of q12
is more easily obtained from the RS solution (see below),
while the value of y can be obtained from the third-order
expansion in ε ¼ 1 − q0 of the difference between the two
equations in (A2), thus obtaining

yðTSFÞ ¼
f000ð1Þ

2½f00ð1Þ�3=2 : ðA4Þ

The numerical integration of the off-equilibrium dynamics
does not give any indication in favor of this solution; in
particular, for the (3þ 4) model, this solution has y ≈ 0.3 in
the whole range of validity, which is incompatible with the
value y ≈ 0.52 that we obtain from the numerical solution
of the dynamics. Even if we believe that the dynamics
would slowly cross over to this solution on timescales that
we cannot observe numerically, this would not solve the
puzzle of the behavior of the asymptotic energy going
below threshold for T > T0. In this solution, the value of q0
tends to 1 at temperature TSF, well above the temperature of
the static (Kauzmann) phase transition of the model. The
solution above is the only exact aging solution that we
found; we searched for, without success, more complex
solutions with more than one effective temperature.
When q0 → 1, the 1RSB potential reduces to the RS

potential,

−2VRSðq12; χÞ ¼ χf0ð1Þ þ 1 − q212
χ

þ 2βfðq12Þ; ðA5Þ

and the saddle-point equations read

1 − q212 − χ2f0ð1Þ ¼ 0

q12 − χβf0ðq12Þ ¼ 0; ðA6Þ

with the energy taking the value E ¼ −χf0ð1Þ − βfðq12Þ. In
the 3þ 4model, the energy of this solution at TSF is equal to
ESF ¼ −1.69981 and decreases below. The susceptibility χ
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FIG. 10. Aging solution with memory of the initial configu-
ration as predicted by the derivative of the FP potential for the
(3þ 4)-spin model: q0 (upper line), q12 (central line), and y
(lower line) as a function of T. The temperature in the plot is in
the range between TSF ¼ 0.7982754 and T0 ¼ 0.8031557
(marked by a dashed vertical line). Notice that in this solution,
we have y ≈ 0.3, which is quite far from the value y ≈ 0.52 that
we observe in the numerical solution to the dynamical equations.
Also notice that q12 and q0 have finite values when the solution
appears at T0.
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takes themarginal value χmg atTSF and becomes smaller than
this value at lower T, as shown in the upper panel of Fig. 11.
Our estimate TSF ¼ 0.7982756 comes from exactly impo-
sing χ ¼ χmg in this RS solution. In the lower panel of
Fig. 11, we plot the values of q0 and q12 obtained in the RS
state-following solution on the left of the vertical axis, which
is located exactly atT ¼ TSF.On the right of thevertical axis,
we show the corresponding values computed in the aging
RSB solution (the same as plotted in Fig. 10). We observe
that q12 is a smooth function at TSF. Its value at TSF can be
computed analytically from the first equation in Eq. (A6) by
imposing χ ¼ χmg, leading to

q12;SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

f0ð1Þ
f00ð1Þ

s
: ðA7Þ

For T ≤ TSF, the FP potential has a secondary minimum
described by a replica symmetric ansatz. Thus, we are
effectively describing the quenching process from temper-
ature T to zero temperature as a state-following process [39]:
The observation that, both at the starting and ending temper-
atures, the state we are following is well described by a
replica symmetric ansatz is evidence that static-dynamics

equivalence holds in this case. This is indeed what we
observe by comparing the asymptotic dynamics obtained by
numerically integrating the dynamical equations to thevalues
derived here from the thermodynamic FP potential. For
T ≤ TSF, aging disappears, and one finds a simple agingless
relaxation within a state described by the parameters
computed in the secondary minimum of the FP potential.
Given the difficulty in finding a 1RSB solution by

solving the equations for the asymptotic dynamics, one
may wonder whether a solution with more steps of RSB
would be helpful. The thermodynamics of the model, even
under the constraint of a fixed overlap with the initial
configuration, is exactly solved by the 1RSB ansatz. Thus,
a higher-order RSB solution is unlikely to be needed, and,
as shown in Appendix B, the actual asymptotic dynamics
looks very similar to the one of a 1RSB model.
Nonetheless, we cannot exclude such a possibility: Let
us just stress that, if different RSB ansatz are required for
the thermodynamic and the dynamic solutions, the statics-
dynamics connection that has been used so much in the
field of spin glasses [58–60] would be strongly weakened.

APPENDIX B: SEMIEMPIRICAL RELATIONS TO
DESCRIBE LARGE-TIME DYNAMICS

We have seen that there is no simple aging solution to the
asymptotic equations with q12 > 0 that is consistent with
the finite-time numerical integration of the dynamical
equations. Nonetheless, the FD plot in the mixed
(3þ 4)-spin model does not differ in any appreciable
way from the usual ones of the pure p-spin model with
a single effective temperature and a value of y equal to the
one that holds for the β ¼ 0 initial condition. Representing
the data in the hic sunt leones region II, as much as
possible, with a single-effective-temperature dynamical
ansatz, we study what kind of relation can be derived
between the overlaps q0 and q12. We suppose that μ and χ

take the marginal values μmg ≡ 2
ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

and χmg ≡
1=

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

. Moreover, we assume that the FD slope in
the range Cðt; t0Þ ∈ ½q0ðtÞ; 1� is independent of the
initial temperature; thus, it is equal to the value obta-
ined with β ¼ 0, i.e., y0 ≡

ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

=f0ð1Þ − 1=
ffiffiffiffiffiffiffiffiffiffiffi
f00ð1Þp

.
Finally, we assume the response is null in the range
Cðt; t0Þ ∈ ½Cðt; 0Þ; q0ðtÞ�, where the correlation decays
extremely fast.
Within this 1RSB ansatz, the asymptotic value for the

radial reaction is given by

μ ¼ χf00ð1Þ þ ðχ þ yÞf0ð1Þ − yf0ðq0Þq0 þ βf0ðq12Þq12
and by imposing μ ¼ μmg, χ ¼ χmg and y ¼ y0, we get the
relation

y0f0ðq0Þq0 ¼ βf0ðq12Þq12; ðB1Þ
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FIG. 11. Upper panel: Susceptibility χ in the RS state following
the solution for the (3þ 4)-spin model. Here, TSF ¼ 0.7982756
is defined by the condition χ ¼ χmg, marked by a vertical dashed
line. Lower panel: Since the vertical axis is located exactly at
T ¼ TSF, values for q0 and q12 on the right are from the RSB
aging solution, while those on the left are from the RS state-
following solution.
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which must hold in the asymptotic solution. We notice at
this point that using Eq. (A3), the energy can be written as
E ¼ Eth þ ΔE, with ΔE ¼ yfðq0Þ − βfðq12Þ. Only in the
pure model does Eq. (B1) imply ΔE ¼ 0; in all the other
cases, it gives a nonvanishing ΔE.
A second relation between q0 and q12 can be derived

from the observation of the FD plots in Fig. 12, where each
curve is a parametric plot of χðt; t0Þ versus Cðt; t0Þ at fixed t,
varying t0. We notice that, below the onset temperature, the
points (Cðt; 0Þ; χðt; 0Þ) closely follow the dash-dotted
curve that we derive analytically. It is important to remark
that the dash-dotted curve is the same in all the panels of
Fig. 12, so it is a temperature-independent relation. In
addition, the dashed line is temperature independent and
corresponds to the FD relation in the aging solution with
β ¼ 0, which is a line of slope −y0 connecting the points
ð0; χmg þ y0Þ and ð1; χmgÞ.
In order to obtain the dash-dotted line, we assume that in

the aging regime [i.e., for χðt; 0Þ ≥ χmg], the relation
between Cðt; 0Þ and χðt; 0Þ is linear, while in the regime
χðt; 0Þ < χmg, the dynamics asymptotically explores a
state; thus, we assume the relation holds within the RS
state-following solution. The latter can be easily derived
from the first equation in Eq. (A6),

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q212
f0ð1Þ

s
; ðB2Þ

which thus holds for q12 ∈ ½q12;SF; 1�, while the linear part
has slope−y0=q12;SF and passes through the points ð0; χmg þ
y0Þ and ðq12;SF; χmgÞ. We notice that the dash-dotted curve
has a continuous first derivative at the point ðq12;SF; χmgÞ, as
can be easily checked by taking derivatives.
Our asymptotic ansatz thus implies a very simple relation

between the overlaps describing the asymptotic aging
regime, namely,

q12 ¼ q12;SFq0; ðB3Þ

and plugging this relation into Eq. (B1), it is easy to find
that a solution with q12 > 0 can exist only if

T < Tonset ≡ qk12;SF
y0

¼ f0ð1Þ½f00ð1Þ − f0ð1Þ�k2−1
f00ð1Þk−12 ; ðB4Þ

where k is defined by fðqÞ ∝ qk for q → 0, i.e., the smallest
power appearing in f (in the 3þ 4 model, Tonset ¼ 0.91).
Even though this is not an exact solution of the

asymptotic equations, it is a strong indication that there
is a phase transition between a memoryless phase where
dynamics decorrelates from the initial condition and falls
over the “usual” threshold states with E ¼ Eth and a phase
where aging takes place in a confined space, with an
asymptotic energy below threshold and depending on T.
In Fig. 13, we report even stronger evidence that this

approximate solution provides a very good description of
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FIG. 12. FD curves χðt; sÞ versus Cðt; sÞ, each one with a different largest time t, plotted parametrically by varying the smallest time s.
In each panel, upper data are for the pure three-spin model, while lower data are for the mixed (3þ 4)-spin model. Notice that the three
panels have different scales, but the dashed and dash-dotted lines are the same in all panels (see text for details).
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FIG. 13. Comparison between asymptotic aging parameters
extrapolated from the numerical solution of the dynamical
equations (data with errors), the analytical prediction obtained
via the semiempirical approximation derived in Appendix B
(solid curves), and the standard RSB aging solution derived in
Appendix A (dashed curves).
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the asymptotic dynamics obtained by numerically integrat-
ing the dynamical equations. We plot numerically extrapo-
lated values as data points with errors; solid lines are
predictions from the approximate solution presented in this
Appendix, and dashed lines correspond to the standard
1RSB aging solution discussed in the previous Appendix.
There is no need to comment on which one is better in
describing the asymptotic dynamics. Given that the 1RSB
solution has three main defects: it is not available above T0,
it predicts a slightly wrong q12 and a completely wrong y.
Since the onset temperature in Eq. (B4) depends only on

the smallest-degree monomial in fðqÞ, one may wonder
what the different effects are of perturbing a pure model
with a smaller- or larger-degree polynomial. In order to
answer this interesting question, let us study a mixed p-spin
model that interpolates between pure p-spin models by just
changing a single parameter a,

fðqÞ ¼
� ð1 − aÞq3 þ aq4 if 0 ≤ a ≤ 1

ð2 − aÞq4 þ ða − 1Þq5 if 1 < a ≤ 2.
ðB5Þ

According to this definition, fðqÞ is at most a binomial; it
recovers a pure p-spin model for a ¼ 0, 1, 2, while it
reduces to our reference mixed model for a ¼ 1=2.
Given the formula in Eq. (B4) for the onset temperature,

we expect a different behavior when a pure p-spin model,
e.g., the four-spin model (a ¼ 1), is perturbed by a smaller-
degree (a ¼ 1 − ε) or larger-degree (a ¼ 1þ ε) term. This
behavior is clearly visible in Fig. 14, where we draw the
phase diagram in the ða; TÞ plane according to the
approximation discussed in this Appendix.
The nonanalytic behavior of the onset temperature Tonset

around the pure models may appear strongly counterintui-
tive, as one would expect Tonset to reduce to TMCT in the

pure case. Such a limit is obtained only when the perturbing
term is of higher order, e.g., in the limit a → 1þ in the
present case, Tonset → TMCT as shown in Fig. 14. On the
contrary, when the perturbing term is of lower order, e.g.,
for a → 1− in the present case, we have a discontinuity in
Tonset (see Fig. 14). Such a discontinuity could be a genuine
effect or an artefact of our approximation.
To prove that the singular behavior in Tonset is not

incompatible with the physics of the system, let us show
that perturbing a pure p-spin model with a higher- or lower-
order term produces different effects on the relaxation
dynamics. In Fig. 15, we plot the relaxation of the
perturbing term in the energy as a function of time for
a ¼ 0.99 (left panel) and a ¼ 1.01 (right panel). For
a ¼ 1.01, the relaxation of the perturbing term is extremely
similar to the one of the pure p-spin model; conversely, for
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FIG. 15. Four-spin model slightly perturbed with three-spin
terms (a ¼ 0.99, left panel) and with five-spin terms (a ¼ 1.01,
right panel). The time evolution of the perturbing term energy
makes evident the different dynamical behavior: For a ¼ 0.99,
we see the effects of the onset of glassy dynamics, which are not
visible for a ¼ 1.01, thus supporting the singular Tonset of Fig. 14.
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FIG. 14. Approximate phase diagram for the mixed model
defined in the text, interpolating between pure p-spin models
with p ¼ 3þ a when a is an integer. The three different regimes
are delimited by Tonset (orange dashed line) and TSF (blue solid
line). In addition, we plot the mode-coupling temperature TMCT
(red solid line). Note that Tonset is shown with a dashed line to
stress the fact that it is the result of an approximation. Notice its
discontinuous behavior around the pure models.
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FIG. 16. The energy excess ΔE ¼ yfðq0Þ − βfðq12Þ as a
function of a, for the approximate solution of the same models
as in Fig. 14. The three curves correspond to the a-dependent
temperatures TSF (blue), TMCT (red), and 0.9TMCT þ 0.1Tonset
(orange). We see that ΔE → 0 in the limit of pure models with no
discontinuity, while ΔE < 0 in general mixed models. The points
are extrapolated values from the numerical integration of the
dynamical equations; the comparison shows good agreement at
all temperatures.
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a ¼ 0.99, we observe an undershoot and a clear depend-
ence of the asymptotic energy on the temperature. This
dynamical effect, clearly visible even if the perturbing term
is tiny, could be due to the existence of an onset temperature
Tonset larger than TMCT in the limit a → 1− as suggested by
our approximation.
The simplest explanation for the undershoot in the energy

relaxation observed for a ¼ 0.99 in Fig. 15 can be provided
by assuming that lower-order interactions in the energy are
satisfied (i.e., minimized) sooner during the relaxation, and
once satisfied, they become a sort of pinning field for the
relaxation of the remaining energy terms. For this reason,
even a tiny fraction of three-spin terms would have a visible
effect in the relaxation of a four-spin model, with the energy
E3 becoming too small too soon and eventually increasing
again when the four-spin part is satisfied.
Nonetheless, we show in Fig. 16 that the nonanalytic

behavior of Tonset does not correspond to a discontinuity in

the approximated value of ΔE, which tends to zero in the
limit of a pure model from both sides (as long as
T > TMCT). In Fig. 17, we show, in particular, the behavior
approaching a ¼ 1 from below. We notice that, while
Tonset − TSF remains finite (as shown in Fig. 14), the
energy excess ΔE vanishes in the whole interval
½Tonset; TSF� when a → 1−. This result means that, in such
a limit, Tonset cannot be easily detected from the energy
relaxation.

APPENDIX C: COUNTING THE MINIMA

In this Appendix, we try to answer the question of
whether or not the attractors of the dynamics can be well
described in terms of typical marginal saddles and minima
that lie close to the initial configuration. Let us consider the
stationary points of the Hamiltonian H½σ� on the sphereP

i σ
2
i ¼ N:

H0
i þ μσi ¼ 0: ðC1Þ

As in dynamics, the radial reaction μ takes, in any
stationary point, the value

μ ¼ −
1

N

X
i

σiH0
i: ðC2Þ

We classify the stationary points according to their energy
E ¼ ð1=NÞH½σ� and the value of the radial reaction μ.
Differently from pure models where μ ¼ pE, the relation

between E and μ here is not univocal, and stationary points
are found in a whole region of the ðE; μÞ plane.
We have seen that for T > TSF, dynamics is attracted by

some family of marginal minima. In order to characterize
these minima, we count the number of stationary points of
the Hamiltonian H½σ� with fixed energy E and radial
reaction μ that lie at a fixed overlap σ · σ0 ¼ Nq12 from
a reference configuration σ0, weighted with a Gibbs
measure e−βH½σ0�. Since the complexity, i.e., the logarithm
of their number, is self-averaging, we write

ΣðE; μ; q12; βÞ ¼
Z
SN

Dσ0
e−βH½σ0�

Zβ
log

�Z
S
DσδðNq12 − σ · σ0ÞδðNE −HÞδðμσ þH0Þj detðμI þH00Þj

�
: ðC3Þ

The computation of Σ is standard and can be performed in several steps. First of all, since the matrix H00 is a
GOE random matrix, the distribution of eigenvalues of μI þH00 is self-averaging and is a shifted semicircular
ρðλÞ ¼ f2=½π4f00ð1Þ�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f00ð1Þ − ðλ − μÞ2

p
. The modulus of the determinant j detðμI þH00Þj is self-averaging, and its

logarithm reads

DðμÞ ¼ 1

N
log j detðμI þHÞj

¼ Re

�
1

4f00ð1Þ(μ2 − μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4f00ð1Þ

q
− 2f00ð1Þ(− 2 log(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4f00ð1Þ

q
þ μ)þ 1þ logð4Þ)þ μ2Þ)

�
; ðC4Þ

which only depends on μ. The imaginary part of this expression is the proportion of negative eigenvalues.
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FIG. 17. The energy excess ΔE ¼ yfðq0Þ − βfðq12Þ as a
function of the reduced temperature ðT − TSFÞ=ðTonset − TSFÞ
for a ¼ 0.5 (orange), 0.9 (red), and 0.99 (blue), from bottom to
top. According to the phase diagram shown in Fig. 14, the
normalizing factor ðTonset − TSFÞ remains finite in the a → 1−

limit, but ΔE → 0 in that limit. For a ≲ 1, ΔE is different from
zero only very close to TSF.
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To evaluate the remaining terms, we use replicas and write Σ≡ logðN Þ ¼ limn→0½ðN n − 1Þ=n�. We concentrate on the
case with temperatures greater than the static transition temperature (T > TK) of the model, where the partition function
appearing in the denominator of Eq. (C3) is self-averaging and takes its annealed value Zβ ¼ eðN=2Þβ2fð1Þ. One can then
average over the disorder and the configuration σ0 at the same time. Opening the delta function in the Fourier basis,

ΣðE; μ; p; βÞ ¼ lim
n→0

1

n

�
e−

1
2
β2fð1Þ

Z
Ds e

P
n
a
Nðiβ̂aE−iσ̂a·σaμÞδðNq12 − σa · σ0Þe−βH0e

P
n
a
ðiβ̂aþiσ̂a·∇ÞHa

�
þ NDðμÞ; ðC5Þ

where
R
Ds ¼ R

S Dσ0
Q

a ð
R
S Dσa

R
Dσ̂a

R
β̂aÞ. Since the disorder is Gaussian,

e−βH0e
P

n
a
ðiβ̂aþiσ̂a·∇ÞHa ¼ e

1
2
ðβ2fðσ0·σ0=NÞþ2β

P
a
ðiβ̂aþiσ̂a·∇aÞfðσa·σ0=NÞþ

P
ab
ðiβ̂aþiσ̂a·∇aÞðiβ̂bþiσ̂b·∇̃bÞfðσa·σ̃b=NÞjσ̃→σÞ:

Now, we define overlap variables NQab ¼ σa · σb, Nχab ¼ iσa · σ̂b, and NRab ¼ −σ̂a · σ̂b, and the overlaps with the
reference configuration Nq12 ¼ σa · σ0, Nχp ¼ iσ̂a · σ0. This change of variables defines a matrix

Q≡
0
B@

1 q12 −iχp
q12 Qab −iχab
−iχp −iχab −Rab

1
CA;

where Qaa ¼ 1 due to the spherical constraint. In addition, from the equivalence between replicas, we fix iβ̂a ¼ y and
χaa ¼ χ ∀ a. With this change of variables, Eq. (C5) becomes

Σ ¼ ðyE − μχÞ þ β(yfðq12Þ þ χpf0ðq12Þ)þ lim
n→0

1

n(
1

2
logðdetQÞ)þDðμÞ

þ lim
n→0

1

n(
1

2

X
ab

½y2fðQabÞ þ 2yf0ðQabÞχab þ f0ðQabÞRab þ f00ðQabÞðχabÞ2�); ðC6Þ

where 1
2
logðdetQÞ is the volume factor that comes from the change of variables from spins to overlaps. To get the leadingN

contribution, we must extremize with respect to all the overlap parametersQ and y. We notice that a further simplification to
the expression (C6) can be obtained by first extremizing with respect to Rab. Assuming a replica symmetric ansatz for the
overlap matrices Q and χ, i.e., Q ¼ δab þ ð1 − δabÞq0 and χab ¼ δabχ þ ð1 − δabÞχ1, we get, in the limit n → 0,

ΣðE; μ; q12; β; y; χ; χ1; χp; q0Þ ¼ þyE − μχ þ β½yfðq12Þ þ χpf0ðq12Þ�

þ 1

2
½y2(fð1Þ − fðq0Þ)þ 2y(f0ð1Þχ þ f0ðq0Þχ1)þRþ (χ2f00ð1Þ − χ21f

00ðq0Þ)�

þ 1

2

�
logð1 − q0Þ þ

q0 − q212
1 − q0

− log (f0ð1Þ − f0ðq0Þ) −
f0ðq0Þ

f0ð1Þ − f0ðq0Þ
�
þDðμÞ; ðC7Þ

where

R≡1þf0ð1Þ(
χ − χ1
1−q0(ðχ − χ1Þ−

q0−q212
1−q0

þ 2ðχ1−pχpÞ)þ χ2p

�
−f0ðq0Þ(

χ − χ1
1−q0(−

q0−q212
1−q0

þ 2ðχ1−pχpÞ)þ χ2p):

ðC8Þ

This result can be extremized explicitly with respect to y, χ, χ1, χp, while q0 extremization has to be done numerically. For
q12 ¼ 0, the solution is q0 ¼ 0, and we recover the expression found in Ref. [42],
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ΣðE; μÞ ¼ max

�
0;Re

�
−
(E2(f00ð1Þ þ f0ð1Þ)þ 2Eμf0ð1Þ þ fð1Þμ2)

2fð1Þ(f00ð1Þ þ f0ð1Þ) − f0ð1Þ2

þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4f00ð1Þ

p
þ μ

þ log(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4f00ð1Þ

q
þ μ)þ 1

2
log

�
1

f0ð1Þ
�
− logð2Þ)

�
: ðC9Þ

This unconstrained complexity is plotted in Fig. 2. For
any value of μ, ΣðE; μÞ has a concave parabolic shape as a
function of the energy, and many values of the energy are
possible for the same μ value. In particular, this case is true
for μ ¼ μmg: There is not a unique threshold energy (at
variance to pure p-spin models) but a whole interval for
which ΣðE; μmgÞ > 0. We define the dominating stationary
points at a given value of the energy as the ones that
maximize Σ as a function of μ. The threshold energy as
defined by dynamics corresponds to the values of the
energy that separates minima from saddles on the domi-
nating line. Notice that this value does not correspond to the
most numerous marginal minima, which occur for μ ¼ μmg

and E > Eth, but to the point where the most numerous
stationary saddles become minima. This observation sheds
some light on the dynamics from a random initial con-
dition; minima are not accessible at levels of the energy
E > Eth, where saddles dominate the landscape, even if
many minima are present.
Extending the concept of threshold energy to the case

q12 > 0 is straightforward. As shown in Fig. 18, for any

fixed value of q12, we can plot the curve corresponding to
dominating minima. This curve ends at an energy value that
we call Ethðq12Þ, which is the best candidate for the
asymptotic energy in the relaxation dynamics. Indeed,
for E > Ethðq12Þ, dominating stationary points are saddles,
and with high probability, the dynamics will be able to relax
further until the energy level Ethðq12Þ is reached. However,
even assuming the dynamics converges to Ethðq12Þ, we are
still left with an unknown: the value of q12, i.e., the
asymptotic value for Cðt; 0Þ. This problem is the same
one the authors of Ref. [50] faced after computing the
constrained complexity for the free energy at a nonzero
temperature.
In Fig. 19, we plot the quenched constrained complexity

of dominant states in the (3þ 4)-spin model, computed
with T ¼ TMCT (left panel) and T ¼ 1.02TMCT (right
panel). Please notice that the choice of the temperature
is not crucial: As long as T ∈ ðTSF; TonsetÞ, the plot would
be very similar. The almost-horizontal red curve in the plot
represents the threshold energy Ethðq12Þ defined above. We
notice that the range of energies with a positive complexity
is very large compared to variations in Eth. The green
ellipsis represents our best estimate for the large-time limit
of the actual dynamics solved numerically: While the
energy can be very well estimated, the limit of Cðt; 0Þ is
plagued by a large uncertainty due to its slow convergence
(until now, we have not attempted such an extrapolation;
however, here we want to be more speculative, and we take
the risk). From the plot, one is tempted to conjecture that
the dynamics always converges to marginal states with a
threshold energy Ethðq12Þ. However, we have not found any
principle to fix the value of q12 solely from the complexity
curve, and further studies are needed to better match the
large-time limit of the dynamics to the energy landscape.
Although Fig. 19 may suggest a relation between

dynamics and the generalized threshold energies, a more
careful analysis reveals its limitations. Assuming that at
large times the relaxation dynamics converges to the
manifold of marginal states belonging to the curve
Ethðq12Þ, one could estimate the point reached by the
dynamics by extrapolating the asymptotic energy E∞ðTÞ
and estimating q12 from the equality Ethðq12Þ ¼ E∞. Thus,
having fixed the values of E and q12, one can proceed by
estimating the remaining parameters of the asymptotic
aging dynamics, q0 and y ¼ ∂EΣ, from the saddle-point
equations used to compute the quenched complexity. The
result of this computation is shown in Fig. 20 with solid
lines and compared to the (very uncertain) extrapolation of

FIG. 18. Constrained complexity at an overlap q12 from a
reference configuration sampled at temperature T ¼ TMCT. Ver-
tical lines mark energy values E∞ (dotted line on the right) and
ETMCT

(dashed line on the left), corresponding to extrapolated
asymptotic energies reached by the dynamics starting, respec-
tively, from T ¼ ∞ and T ¼ TMCT. From a random configuration
with T ¼ ∞, the dynamics goes to the energy level Eth, where the
dominant stationary points are marginal minima, while starting
near TMCT, the dynamics goes below Eth. If q12 > 0, the energy
where marginal minima dominate decreases, and we represent it
with a bold dashed red curve.
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Cð∞; 0Þ, shown by red points with errors. We clearly see
that, while the estimate of q12 is compatible with the actual
dynamics, the other two parameters are far from the values
measured in the numerical solution to the dynamics.
Indeed, q0 becomes smaller than q12; however, in the
actual dynamics, the inequality q12 < q0 is always satis-
fied, and y becomes much smaller than y0 (marked by a
dotted horizontal line in Fig. 20), which is a good descriptor
of the actual aging in the whole temperature range studied.
Thus, the present computation of the quenched complexity

of marginal minima of the energy function in mixed p-spin
models does not allow us to identify the attractors of the
dynamics. More work will be required to connect the large-
time aging dynamics to the properties of the energy
landscape.

APPENDIX D: EQUILIBRIUM DYNAMICS

The onset temperature Tonset marks the point where the
landscape influences gradient descent dynamics. In realistic
model glasses, it has been found that the same temperature
marks the onset of nonexponential relaxation, thus making
a direct relation between equilibrium dynamics and the
energy landscape [25]. Therefore, it is natural to search for
a signature of Tonset in equilibrium dynamics.
The aim of this Appendix is to briefly review the

equilibrium dynamics at finite temperature and show that,
while the usual MCT-like transition takes place at TMCT,
no anomalies around Tonset are found. The equilibrium
dynamical equation for the correlation function reads

dCðtÞ
dt

¼ −TCðtÞ þ β

Z
t

0

ds f0(Cðt − sÞ) dCðsÞ
ds

: ðD1Þ

This equation is readily obtained by imposing Tf ¼ T in
Eq. (8), together with time-translation invariance in the
correlation function Cðt; sÞ ¼ Cðt − sÞ and the fluctuation-
dissipation relation RðtÞ ¼ −βf½dCðtÞ�=dtg. At high
temperatures, in the ergodic phase, CðtÞ vanishes at
large times. The dynamical MCT-like ergodicity-breaking

0.80 0.81 0.82 0.83 0.84
T
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q12
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0.6

0.8

1.0

FIG. 20. Assuming the dynamics relaxes on the marginal
manifold with energy Ethðq12Þ and fixing the energy from the
large-time extrapolation of the numerical data, which in turn fixes
the value for q12, we can compute analytical values for the
remaining aging parameters, namely, q0 and y ¼ ∂EΣ. While the
estimate of q12 is compatible with the large-time extrapolation of
Cðt; 0Þ (red points with error in the figure), the other aging
parameters are far from those measured in the actual dynamics.

FIG. 19. Quenched complexity of dominant states with energy E and overlap q12 with respect to an equilibrium configuration at
temperature T ¼ TMCT (left panel) and T ¼ 1.02TMCT (right panel). In the left panel, the four colored vertical lines highlight the
complexities shown in Fig. 18. The choice of the temperature is not crucial as long as T ∈ ðTSF; TonsetÞ. The almost horizontal red curves
mark the threshold energy Ethðq12Þ, and the green ellipsis is our best estimate for the large-time limit of the relaxation dynamics obtained
from the numerical integration.
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transition is signaled by the appearance of a nonzero limit
q1 ¼ limt→∞ CðtÞ, with q1 discontinuous at the transition.
Evaluating Eq. (D1) at large times, one finds that q1 is a
solution of

β2f0ðq1Þð1 − q1Þ ¼ q1: ðD2Þ

This equation coincides with the equation defining the
nontrivial minimum of the equal-temperature effective
potential discussed in detail in Appendix A.
The transition temperature, the highest temperature

for which Eq. (D2) has a nonzero solution, satisfies
β2f00ðq1Þð1 − q1Þ2 ¼ 1. Standard mode-coupling analysis
of the dynamics [22] describes the approach to the transition
in terms of the formation of a plateau in the correlation
function as a function of log time. This analysis, in particular,
shows that the approach to q1 at TMCT follows a power law
with an exponent a, which is determined by Γð1 − aÞ2=
Γð1 − 2aÞ ¼ ðT=2Þf000½q�=f00½q�3=2. For the mixed model
fðqÞ ¼ 1

2
ðq3 þ q4Þ, the transition temperature is TMCT ¼

21=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37

ffiffiffiffiffi
37

p
− 55

p
Þ ≈ 0.805166, corresponding to q1 ¼

ð1þ ffiffiffiffiffi
37

p Þ=12 ≈ 0.59023 and a ¼ −0.38504. In Fig. 21, we
display data from thenumerical integrationofEq. (D1)with a
simple first-order Euler algorithm similar to the onewe use in
the off-equilibrium case. The curves show that theoretical
expectations are met: A transition occurs at TMCT according
to the expected pattern, and below TMCT, the system is in a
nonergodic state.
We then investigate the temperature range around Tonset

to see if this temperature corresponds to a qualitative

change in the equilibrium dynamics. Following Ref. [25],
we fit the correlation function at intermediate times with a
stretched exponential fðtÞ ¼ a expð−ðt=τÞβ̂Þ and study the
behavior of the stretching exponent β̂ as a function of the
temperature [61]. In Ref. [25], for Lennard-Jones liquids, β̂
was shown to become sensibly different from 1 around
Tonset. While the long-time behavior of the correlation
function is a pure exponential, we can fit the decay at
intermediate times. In Fig. 22, we see that the stretched
exponential form provides a decent fit if we do not get too
close to TMCT.
We plot the stretching exponent β̂ for the mixed model as

a function of the temperature in Fig. 23, together with the
same exponent in the pure model. In both cases, we observe
that while β̂ ≈ 1 at high enough temperatures, it starts
to decrease from that value as temperature is lowered.

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 100
t

C
(t

 )

1000

FIG. 22. Stretched exponential fit to the equilibrium correlation
function CðtÞ for temperatures in the range T ∈ ½0.84; 2� in steps
ΔT ¼ 0.01. The fit has acceptable quality if the temperature is not
too close to TMCT.
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FIG. 21. Main panel: Equilibrium correlation function as a
function of time on a log-linear scale at different temperatures
from T ¼ 0.804 to T ¼ 0.813 in steps ΔT ¼ 0.001 (from top to
bottom). All but the first two curves are for T > TMCT ¼
0.805166. We clearly see the formation of a plateau as TMCT is
approached from above. The two curves below TMCT correspond,
respectively, to q1 ¼ 0.599574 and q1 ¼ 0.614868, which we
show with dashed lines. Inset: Correlation CðtÞ − q1 at the critical
temperature TMCT on a log-log scale. For comparison, the dashed
line represents the expected behavior, a power law with exponent
a ¼ −0.38504.

FIG. 23. The stretching exponent β̂ as a function of temperature
in the mixed (3þ 4)-spin model and in the pure three-spin model.
The vertical lines correspond to the transition temperatures TMCT
of the two models. We see no qualitative differences between the
two cases. Moreover, in the case of the mixed model, deviations
from pure exponential behavior are seen much above the onset
temperature Tonset ≃ 0.91.
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We could not find any qualitative difference here in the
behavior of the pure and the mixed model, and we observe
that in the mixed model, the stretching starts at T ≃ 1.2,
well above the estimated value of Tonset ≃ 0.91. In con-
clusion, we do not see any signature of Tonset in the
equilibrium dynamics of the mixed model.

APPENDIX E: RESPONSE AT SHORT TIMES

A natural hypothesis about the memory effect in region II
is that it could be associated with an increased response
Rðt; sÞ to perturbations applied at short times s. Here, we
show that short-time dynamics provides hints against this
hypothesis. Let us then compare the responseRðt; sÞ starting
from infinite temperature and the one for an initial temper-
ature in the region II. In Fig. 24, we plot the response as a
function of the time difference t − s starting from infinite
temperature and from a temperature T ¼ 1.01TMCT. We
clearly see that starting from finite temperature, the response
at short times s is much smaller than the one starting from
infinite temperature. It is also interesting to study the
behavior in time of Rðt; 0Þ, which we plot in Fig. 25. It
is well known that starting from a uniformly distributed
initial condition, one finds that the response to the initial
condition coincides with the remanent magnetization,
namely, Rðt; 0Þ ¼ Cðt; 0Þ [46]. For finite T, this relation
does not hold; in fact, it is possible to show that Rðt; 0Þ ¼
Cðt; 0Þ − β

R
t
0 ds f

0(Cð0; sÞ)Rðt; sÞ. We see that a finite
limiting value for Cðt; 0Þ does not necessarily imply a finite
response to the initial condition. Our data show that the two
terms largely compensate each other; the larger β, the larger
the compensation effect. Both for the mixed and the pure
model, the lower the starting temperature, the lower Rðt; 0Þ.
The decay ofRðt; 0Þ becomes exponential only for T ¼ TSF.
In the puremodel, this case coincideswithTMCT,while in the
mixed model, TSF < TMCT.

APPENDIX F: NUMERICAL EXTRAPOLATIONS

The dynamical equations for the correlation and the
response functions, written in Eq. (4), were integrated via a
simple Euler algorithm with a fixed integration step Δt. In
this way, we get extremely precise results at finite time, but
the times we can reach are limited. We tried more
sophisticated integration schemes [47], where the integra-
tion steps are increased during the evolution; unfortunately,
as soon as a mixture is used, we have met numerical
instabilities at very short times. In practice, only the pure
p-spin model seems to allow those integration schemes
to work.
The results presented in the main text have been obtained

by integrating with an optimal integration step Δt ¼ 0.1,
which allows us to reach the largest times without facing
any numerical instability (consider that at short times the
differential equations we are solving have a natural time-
scale of order 1, so Δt cannot be much larger than the value
we used).
The integration error in the Euler algorithm is linear in

the integration step Δt, and we are interested in under-
standing how much physical quantities computed with
Δt ¼ 0.1 differ from the corresponding Δt → 0 limit. To
this purpose, we study the relative errors in one-time
quantities defined as follows:

ΔrxðtÞ ¼
xðt;ΔtÞ − xðt;Δt ¼ 0.1Þ

xðt;ΔtÞ : ðF1Þ

By definition, this relative error is zero for Δt ¼ 0.1, it
should be linear in Δt for small enough Δt, and, in the limit
Δt → 0, it provides the relative error from using an

FIG. 24. Response function Rðt; sÞ with T ¼ ∞ (left panel) and
T ¼ 1.01TMCT (right panel), as a function of the time difference
t − s for t ¼ 25, 50, 75, 100, 125, 150, 200, 250, 300, 400, and
500. It is evident that the response is much smaller starting from
finite temperature.

Time

Time

FIG. 25. The response to the initial condition Rðt; 0Þ for various
initial temperatures in the pure three-spin model (upper panel)
and in the mixed 3þ 4-spin model (lower panel). The qualitative
behavior is very similar; the higher the temperature, the higher the
values of Rðt; 0Þ. For high temperature, we see a slow decay of
Rðt; 0Þ, possibly a power law. At low temperature, below TMCT in
the pure model and below TSF in the mixed model, the decay is
exponential.
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integration step Δt ¼ 0.1 instead of the exact integration
(Δt → 0).
In Fig. 26, we show the relative errors in some one-time

quantities, Cðt; 0Þ, χðt; 0Þ, EðtÞ, and μðtÞ, obtained in the
integration of the dynamical equations for the (3þ 4) spin
with T ¼ TMCT. We clearly see that, at any time t, the
relative error scales roughly linearly with Δt. For any
time t, the relative errors are extremely small: of order 10−5

for correlation and response, and of order 10−7 for the
energy and radial reaction. Moreover, the coefficient of the
linear relation does not seem to grow indefinitely with time,
but it actually shows a maximum around t ¼ Oð100Þ.
In order to better appreciate the nonmonotonic behavior

of the relative errors, we plot in Fig. 27 the integration error
in the energy obtained starting from T ¼ TMCT as a
function of time. The fact that relative errors decrease at
very large times is probably related to another important
observation: Trajectories integrated with different Δt may
differ sensibly at short times, but at large times, they seem
to converge to the same asymptotic solution and are thus

very attractive and stable (this result may be the reason why
integration errors at very large times are smaller than those
at intermediate times). The results of the integration shown
in the present work are very reliable and stable.
Despite the high precision at finite times, the extrapo-

lation to large t of physical quantities, notably μðtÞ, EðtÞ, or
Cðt; 0Þ, is delicate. While Cðt; 0Þ decays very slowly and
we do not attempt any extrapolation in the t → ∞ limit,
both μðtÞ and EðtÞ converge fast enough, and their large-
time limits can be estimated.
We already noticed in Fig. 5 that for T ≥ TSF, the radial

reaction μðtÞ is perfectly compatible with an extrapolation
to the marginal value μmg ¼ 6. At very high temperatures,
the decay is a simple power law, while at lower temper-
atures, we observe preasymptotic effects and an eventual
crossover to the asymptotic decay. The latter seems to be
characterized by an exponent that is roughly temperature
independent.
Given the critical character of the dynamics in the aging

regimes I and II, we have estimated the asymptotic energy
E∞ðTÞ via power-law fits to EðtÞ data, and we show the
results in Fig. 28. While at high temperatures the data
follow a nice power law in time for a couple of decades, at
lower temperatures the presence of the preasymptotic
regime and the crossover to the asymptotic one makes it
very hard to assess the reliability of the value of E∞ðTÞ that
we extrapolate in this way.
However, comparing the data shown in Fig. 5 for μðtÞ

and in Fig. 28 for EðtÞ, we notice a very similar behavior
(including the crossover), and thus it could be useful to
parametrically plot EðtÞ versus μðtÞ, varying t, to see
whether a better estimation of E∞ðTÞ could be obtained.
This method is used in Fig. 29. The behavior of the energy
as a function of the radial reaction is very smooth, practi-
cally linear at high temperatures and close to quadratic
approaching TSF. We can then fit the relation EðμÞ and
obtain a very good estimate of E∞ðTÞ by just assuming that
μðtÞ converges to the marginal value μmg in the large-time
limit. We have interpolated the data via the function

FIG. 27. Relative errors in the integration of the dynamical
equations for the (3þ 4) spin, which show a maximum at a finite
time. Here, we plot the relative error in EðtÞ during the integration
with T ¼ TMCT. We notice that the maximum relative error is
much smaller, by several orders of magnitude, than the physical
effect we seek (energy going under the threshold).

FIG. 26. Relative errors, as defined in Eq. (F1), for Cðt; 0Þ, χðt; 0Þ, EðtÞ and μðtÞ, obtained in the integration of the dynamical
equations for the (3þ 4) spin with T ¼ TMCT. The dependence is linear in the integration step Δt, and the resulting integration error in
using Δt ¼ 0.1 is very small compared to the precision needed in the asymptotic evaluation of the observables.
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EðμÞ ¼ E∞ þ Aðμmg − μÞα; ðF2Þ

reporting the best fits using dotted curves in Fig. 29.
In Fig. 30, we show the two estimates of E∞ðTÞ obtained

from the procedures just described: the power-law fit of
energy versus time and the power-law fit of energy versus
radial reaction μmg − μðtÞ. We see that they are perfectly
compatible.
Although we do not estimate the large-time limit of

Cðt; 0Þ directly by extrapolating in time (in Appendix B, an
estimate is provided based on a different approach), we

believe it is useful to show the Cðt; 0Þ curves so that the
readers can decide for themselves. In Fig. 31, the data for
Cðt; 0Þ are shown, measured both in the pure three-spin
model and in the mixed (3þ 4)-spin model. We have
decided to show these data as a function of the scaling
variable t−1=3 that describes the decay quite well starting
from a random configuration (T ¼ ∞). En passant, we
notice that the exact value for this decay is not known. We
see in Fig. 31 that, while data for the three-spin model can
be easily extrapolated to zero in the large-time limit, the
data for the (3þ 4)-spin model seem much more compat-
ible with a nonzero limit limt→∞ Cðt; 0Þ when the temper-
ature gets close to TMCT. An alternative representation of
the same data is provided in Fig. 32.
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FIG. 30. Comparison of two different extrapolations of the
asymptotic energies E∞ðTÞ, obtained by fitting versus t and
versus μmg − μðtÞ.
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FIG. 31. Decay of the correlation with the initial configuration
Cðt; 0Þ vs t−1=3 in the three-spin model (upper panel) and the
(3þ 4)-spin model (lower panel). Our choice of using the t−1=3

variable is to make the relaxation from T ¼ ∞ as linear as
possible [notice, however, that the exact value for the decay
exponent of Cðt; 0Þ is unknown even in this case]. While data for
the three-spin model can be easily extrapolated to zero in the
large-time limit, the data for the (3þ 4)-spin model seem much
more compatible with a nonzero limit q12 ¼ limt→∞ Cðt; 0Þ when
the temperature gets close to TMCT.

FIG. 28. Energy decay with time in the (3þ 4)-spin model on a
double-logarithmic scale. The asymptotic value E∞ðTÞ has been
estimated via power-law fits that provide a good description of
the asymptotic decay for T ≥ TSF.

FIG. 29. Parametric plot of EðtÞ versus μmg − μðtÞ, varying t,
which allows for more reliable extrapolations. The dotted lines
are the best power-law fits in the form E ¼ E∞ðTÞ þ AðTÞðμmg −
μÞαðTÞ used to estimate the asymptotic energies.
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The reason why we have not been able to integrate the
dynamical equations for a longer time resides in the
difficulties in using integration algorithms with adaptive
integration steps. These kinds of adaptive algorithms have
been used in the past to integrate the dynamical equations
in the case of the pure p-spin model starting from random
initial conditions [47,48]. Unfortunately, we found that
these adaptive algorithms are not robust to changes in the
details of the dynamics, and their stability strictly depends
on the regime under consideration. At each contraction of
the grid, some information on the correlation and response
functions computed in the previous steps is lost, which does
not seem to be relevant if one starts from a random state and
memory of the initial conditions is lost in the asymptotic
state. However, in the mixed p-spin model, where memory
of the initial configuration crucially affects the large-time
behavior, the error induced by the time-step adaptation
gives rise to strong numerical instabilities. Increasing the
grid size pushes the instability to later times, but unfortu-
nately, even the largest grid size we could use
(8192 × 8192) did not allow substantial improvements
with respect to the simple Euler algorithm.
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