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Abstract

In this work, we deal with Truncated Newton methods for solving large scale (possibly
nonconvex) unconstrained optimization problems. In particular, we consider the use of
amodified Bunch and Kaufman factorization for solving the Newton equation, at each
(outer) iteration of the method. The Bunch and Kaufman factorization of a tridiagonal
matrix is an effective and stable matrix decomposition, which is well exploited in
the widely adopted SYMMBK (Bunch and Kaufman in Math Comput 31:163-179,
1977; Chandra in Conjugate gradient methods for partial differential equations, vol
129, 1978; Conn et al. in Trust-region methods. MPS-SIAM series on optimization,
Society for Industrial Mathematics, Philadelphia, 2000; HSL, A collection of Fortran
codes for large scale scientific computation, http://www.hsl.rl.ac.uk/; Marcia in Appl
Numer Math 58:449-458, 2008) routine. It can be used to provide conjugate directions,
both in the case of 1 x 1 and 2 x 2 pivoting steps. The main drawback is that the resulting
solution of Newton’s equation might not be gradient-related, in the case the objective
function is nonconvex. Here we first focus on some theoretical properties, in order
to ensure that at each iteration of the Truncated Newton method, the search direction
obtained by using an adapted Bunch and Kaufman factorization is gradient-related.
This allows to perform a standard Armijo-type linesearch procedure, using a bounded
descent direction. Furthermore, the results of an extended numerical experience using
large scale CUTEst problems is reported, showing the reliability and the efficiency of
the proposed approach, both on convex and nonconvex problems.

Keywords Large scale optimization - Truncated Newton method - Bunch and
Kaufman decomposition - Gradient—related directions

1 Introduction

In this paper we consider the unconstrained optimization problem

min f(x), (1.1
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Published online: 18 September 2020 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00225-8&domain=pdf
http://orcid.org/0000-0003-0402-8732
http://orcid.org/0000-0003-4721-8114
http://orcid.org/0000-0002-9858-3616
http://www.hsl.rl.ac.uk/

A. Caliciotti

where f : R" — R is a possibly nonconvex real valued function, » is large and we
solve (1.1) by means of an iterative method which generates the sequence {x,}. We
consider the standard assumptions that f is twice continuously differentiable, and that
{xn} C @, where Q C R" is compact. Furthermore, no sparsity pattern is assumed for
the Hessian matrix V2 f (x). Then, we approach the solution of (1.1) by means of the
iterative process

Xpyl = Xp +appp, h>1, (1.2)

being p; € IR" a search direction and o, > 0 a steplength. Dealing with large scale
problems, Truncated Newton methods are often considered a good choice for their
solution. Truncated Newton methods are also called Newton—Krylov methods, since
a Krylov subspace method is usually used, for iteratively (approximately) solving
the Newton equation at each iteration. In [21] a general description of a Truncated
Newton method is reported. As well known, given an initial guess x;,, a Truncated
Newton method for problem (1.1) is based on two nested loops:

e The outer iterations, where the current estimate of the solution xj is updated
using xp;

e The inner iterations, where an iterative algorithm is used for computing, at each
outer iteration /4, the approximate solution p;, of the Newton equation

V2 fn)p = =V f (). (1.3)

The Conjugate Gradient (CG) method is among the most commonly used iterative
algorithms (see e.g.[1,17]) for solving (1.3). The main drawback of CG method is
that it is well-posed only in case V2 f(xy,) is positive definite. Conversely, if matrix
V2 f(x) is indefinite, the CG algorithm could break down and some difficulties may
arise to define an approximate solution pj, of (1.3). In order to cope also with indefinite
linear systems, some modified CG algorithms have been proposed in [8,9,11,12,14].
In particular, if the CG breaks down when solving (1.3), we can take as Newton—type
direction pj, in the recursion (1.2):

e A scaled steepest descent direction (i.e., p, = —CV f(x3,), with C positive defi-
nite);

e A suitable gradient-related adaptation of the current best approximate solution of
(1.3);

e A suitable (descent) negative curvature direction.

Moreover, in[18] a non-standard approach is proposed in order to build a gradient—
related direction, by separately accumulating positive and negative curvature directions
computed by the CG.

Considering a different standpoint, the CG algorithm may be also used in the indefi-
nite case, as proposed in [13,18], where a suitable combination of conjugate directions
proves to yield a gradient—related direction.

In this work we are interested to compare the quality of the search direction obtained
by both CG and SYMMBK algorithms (the latter being proposed by Chandra in[5]),
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when solving (1.3), in order to provide eventually the gradient-related direction py,
in (1.2). On this guideline, we first need to prove that both these solvers yield a
gradient—related direction to the optimization framework. Le., the direction pj in
(1.2) is eventually bounded and of sufficient descent, namely for any h > h > 1 the
next definition holds.

Definition 1.1 Given the direction p; in (1.2), which approximately solves (1.3), let
h, o1, oo and M be finite positive values indepe_ndent of h, with h > 1. Then, we say
that py, is gradient—related at x;, if for any 4 > h the next couple of conditions hold:

Ipnll < M, (1.4)
V)T pn < —o1 |V (xn) |72 (1.5)

For this purpose, as regards the CG, the reader may refer to[11,12,18]. On the
other hand, we also need to analyze the Lanczos process, adopted inside SYMMBK
algorithm. As well known, one of the advantages of using the Lanczos process in place
of CG algorithm is that it does not break down in the indefinite case. We recall that
in the case the matrix V2 f (x;,) is positive definite, from a theoretical point of view,
using the Lanczos process or CG algorithm is to a large extent equivalent [23,24].

The paper is organized as follows. In Sect.2 some preliminaries on Truncated
Newton method and Lanczos process are reported; then, the Bunch and Kaufman
decomposition, as well as some basics on SYMMBK (see also [6]), are detailed. In
Sect.3 we show how to compute a gradient-related direction by using the Bunch
and Kaufman decomposition. Section4 details numerical experiments. Finally, Sect. 4
reports some concluding remarks.

We indicate by || - || the Eclidean norm of real vectors and matrices. Moreover,
A¢(C) represents the £th eigenvalue of the real symmetric matrix C. Finally, e; is the
ith real unit vector.

2 Preliminaries

In this section we report some basics we will use in the sequel. In particular, first we
recall a general scheme of a linesearch—based Truncated Newton algorithm. After-
wards, we report the well known Lanczos process. Finally, we detail the Bunch and

Kaufman factorization in order to decompose the tridiagonal matrix provided by the
Lanczos process.

2.1 Truncated Newton method

A practical linesearch—based Truncated Newton algorithm can be described as follows
(see e.g.[21]).
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Linesearch-based Truncated Newton algorithm

Data: Choose x; € R” and compute V f(x1). Set v, € [0, 1) for any & > 1,
with {v;} — 0;

OUTER ITERATIONS

Doh=1,2,...

If |V f(xp)|l is small then STOP.

INNER ITERATIONS

Compute p;, which approximately solves equation (1.3) and
satisfies the truncation rule |VZf(xp)pn + VGl <
VRlIV f ) Il

Compute the steplength «, by using a linesearch procedure.

Set xp+1 = xp + oy ph.
End Do

In large scale settings, iterative methods like the CG algorithm can be used in the
inner iterations. In the case the Hessian matrix in (1.3) is indefinite, then the Lanczos
algorithm may successfully be used as an alternative to the CG method, since it does
not suffer for a possible pivot breakdown. We remark that within the Truncated Newton
methods, the importance of an efficient truncation criterion for the inner iterations was
pointed out in [8,9,22]. More recently, an adaptive truncation rule, in order to enhance
the residual-based criterion, was proposed in [3,4].

Assumption 2.1 Given the function f : R” — R in (1.1), with f € CZ(R"), the
sequence {xp} in (1.2) is such that {x;} C 2, with Q@ C R” compact.

For completeness we close this section by recalling a very general result of global
convergence for Truncated Newton methods (see any textbook on Continuous Opti-
mization).

Proposition 2.2 Let us consider the sequences {x;,} and {py} in (1.2). Assume {x;}
satisfies Assumption?2.1 and { pp} fulfills Definition 1.1. If the steplength oy, in (1.2) is
computed by an Armijo-type linesearch procedure, then

e The sequence { f (xx)} converges;
e The sequence {V f(xy)} satisfies limyg_, o ||V f (xx)]| = 0.

2.2 Basics of the Lanczos process
As well known, the Lanczos process (see[6]) is an efficient tool to transform the

symmetric indefinite linear system (1.3) into a symmetric tridiagonal one. On this
guideline, consider the Newton equation (1.3) and rewrite it as follows (here we drop
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for simplicity the dependency on the subscript /):
Ad = b, 2.1

where

e A = V?f(xp)is a symmetric (possibly dense) nonsingular matrix;
e b = —V f(xy) is a constant (bounded) vector.

A practical implementation of the Lanczos process applied to (2.1), which generates
the orthogonal Lanczos vectors g;, i > 1, is reported in the scheme below.

Lanczos process

Data: ¢ € (0,1). Setk = 1, u; = b, q1 = ”hl, 8§ = qlTAql and up, =

flu

Agq1 — d1q1.

Do
k=k+1;
ve = luxl;

If yx <& STOP.

Else set
Uy
qk = —,
Yk
8 = q Aqis

upr1 = Aqr — Skqk — Ykqk—1;

End If
End Do

Suppose the Lanczos process has performed k iterations; then,

e The k vectors q1, . .., gk, namely the Lanczos vectors, were generated;
e The k scalars 61, ..., 8¢ and the k — 1 nonzero scalars y», .. ., yx were generated.

Defining Qi € R"*¥ as the matrix whose columns are the Lanczos vectors, that is
O = <q1 D qk) : 2.2)

and the symmetric tridiagonal matrix Ty € IR¥*¥

dr
V2 &
T = . , 2.3)
Sk—1 Yk
Vi Ok
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the Lanczos process generates Ty from (2.1) in k < n steps. On the other hand, after
k < n iterations the next additional relations also hold for the Lanczos process:

AQr = OiTk + Vit 14k+1¢€} ; (2.4)

0L AQy = Ti: (2.5)

0f O = I (2.6)

Of qrs1 = 0; .7
span{qi, q2, ..., qr} = span {ul, Auq, ...,Ak_lull . (2.8)

In particular, if 41 = 0 in (2.4), then from (2.4)—(2.8) we have (see also[5])
Teye = lIbller

2.9
{dk = Ok k- 29)

Relations (2.9) also reveal that, since T} is nonsingular, as long as yx41 # 0in (2.4)
then computing the vector y; from Ty yx = ||b|le; may easily yield dy = Qp yx, being
dy an approximate solution of the linear system in (2.1).

2.3 Bunch and Kaufman decomposition

As reported in Sect. 2.1, unlike the CG method, the Lanczos process does not break
down if matrix A in (2.1) is indefinite nonsingular. Furthermore, by (2.5)—(2.6) the
nonsingularity of A also yields the nonsingularity of matrix 7;. On the other hand,
observe that a suitable decomposition of the tridiagonal matrix T in (2.3) is mandatory,
in order to easily compute yi by solving the tridiagonal system Tz = ||b||e;. However,
in the case the matrix A is indefinite, the Cholesky factorization of 7 may not exist.
In this regard, the Bunch and Kaufman decomposition of 7; may be adopted, as in
SYMMBK algorithm. We detail now for 7} the Bunch and Kaufman decomposition
(see [2])

Ty = Sk BiSY (2.10)

where By is a block diagonal matrix with 1 x 1 or 2 x 2 diagonal blocks, and Sy, is a unit
lower triangular matrix, such that its non-zeroes are restricted to three main diagonals.
The diagonal blocks of By represent pivoting elements in the factorization (2.10). In
particular, in order to control the growth factor when computing the decomposition
(2.10), the scalar

V3-1

1= 2max; [ (A)]

is selected (see[5]), and the choice of 1 x 1 pivot or 2 x 2 pivot for By is based on
the following rule (which only refers, without loss of generality, to the first step of the
decomposition (2.10)):
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e If|81| > n(y2)%, thend; in (2.3)isusedasal x 1 pivot to generate the factorization
(2.10) of Ty. Namely, we have Ty = Si B S with

1 10---0 6110---0 11521 0---0
Sa1 o 0
T, = SiBsl = | O 1 0] Trr || O 1 . (@2.11)
0 0 0

After a brief computation we have

1 10---0 81161521 0---0
S$2.1 0
Ti = 0 1 0 Ti—1
0 0
81 81801 Onvvvevaiannn 0
51551 8155 ,10---0
. 0
B 0 v + T |
0 0

so that Tk_l is itself a tridiagonal matrix with

Tee1 = Til2:k,2: k] — (2.12)

and Ty[2 : k,2 : k] is the (k — 1) x (k — 1) submatrix of T} corresponding to the
last k — 1 rows and k — 1 columns.
e If [81] < n(y»)?, then the 2 x 2 block

%)
(yz 52> (2.13)
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isused as a 2 x 2 pivot, to generate the factorization (2.10), so that

1 010...0 81 v210...0 10($510...0
0 110...0 2 82(0...0 01(5320...0
83,1 832 00 00
Te=SkBS, = 0 0| 1 0 0| Ti 00 ;
Do Do s I
0 0 00 00
(2.14)
being now Ti—p € RE-Dx*k=2) 5 tridiagonal matrix satisfying
S\ (8172 (Sa 0..-0
83,2 Y28 ) \ $32
- 0
Troy = Til3:k,3: k] — 0 s |19

Following a simple recursion, the tridiagonal matrices fk_ 1in(2.12)and Tk_z in (2.15)
can be similarly decomposed, so that the entries of Sy in (2.10) can be fully computed
after m pivoting steps of the Bunch and Kaufman decomposition, with m < k (see[5]
and relations (2.19)—(2.20) or (2.25)—(2.26)).

2.4 Basics of SYMMBK

Here we report some basics of the SYMMBK algorithm (first proposed by Chandra
in[5]), that uses the Bunch and Kaufman factorization in (2.10) to compute dj in
(2.9). Technicalities in this section are needed to provide formulae (2.22)—(2.24) and
(2.28)—(2.30), which are essential to prove properties for our proposal in Sect. 3. To

this aim, recalling (2.10) we introduce the n x k matrix Wy = | w; s wy | and the
vector ¢© = (¢q, ..., &))" such that

WieS{ = Ok (2.16)

¢® = 8Ty, (2.17)

By (2.10), (2.16) and (2.17), the equations in (2.9) can be rewritten as follows:
SkBic™ = |Ibller
Wi ST = Ok (2.18)
dy = Wi ®.
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Then, to calculate the vector d of (2.9), we equivalently need to compute both Wy and
¢® _ In this regard, we must provide in (2.18) the matrices Sy and By, distinguishing
between the cases where either a 1 x 1 or a 2 x 2 pivoting step was performed for their
computation. This can be easily done by considering that the first step is performed
asin (2.11) (1 x 1 pivot) or (2.14) (2 x 2 pivot). Then, for any successive step we use
information from the previous pivot, as reported hereafter (we assume that applying
the rule (j)—(jj) in Sect. 3 the Bunch and Kaufman decomposition performed m steps,
with m < k). To preserve the notation used by Chandra[5], here we simply focus on
the last pivot; then, we infer results for the intermediate pivots, too.

If the last pivot performed is 1 x 1 (i.e. according with the rule (j) we have & large
enough), then from Sect. 2.3 the first relation Sg Bx ¢ &) = |Ib|le; in (2.18) is equivalent
to

0 0 & 15]]
Sg—1 |0 Bi-3 0 %) 0
: by b3 = ) (2.19)
0 by bs| 0 Ck—1 0
0...0 s1 sl 0...0 0 08 g’ 0

where s1, 52, b1, b2, b3, by are computed from the second last step. In particular, if the
second last pivot was 1 x 1, then s; = by = b3 = 0. From (2.19) we have

0 & (el

Sk—1Br—1 0 ¢) 0
: =] | 20

0 Ck—1 0

0...0 (s1b1 + 52b2) (51b3 + 52b4) |1 Sk 0

where
B3
Bi_1 = by b3 |. (2.21)
by by

After some computations, replacing the expressions of By and Sy in (2.18) we obtain
the following formulae

Wi = gk — S1Wg—2 — S2Wk—1 (2.22)
b b2) - b ba)i—
G = _ (s51b1 +52b2) 2: (5163 + 52b4) {—1 (2.23)
k
Ik = Zk—1 + Crwy. (2.24)

With an obvious generalization the formulae (2.22)—(2.24) hold replacing the step k
with the step i < k, whenever a 1 x 1 pivot is performed by the Bunch and Kaufman
decomposition.
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Similarly, if the last pivot performed is now 2 x 2 (i.e. according with the rule ()
we have §;_1 relatively small and |8 —1 6 — yk2| large enough), then S By ¢ ®) = [I1b]ler
in (2.18) is equivalent to

00 0 0 g o]l
00 Bj_4 0 O 19 0
Ny} D by b3| : : _ : ,
00 brybyl O O Ck—2 0
0...0 s1 510 0...0 0 O 6k—1 v Ck—1 0
0...0 0 o0j01 0...0 0 O] » 6k Ck 0

(2.25)

where s1, $2, b1, ba, b3, by are computed from the second last step. In particular, if
the second last pivot was 1 x 1, then s = by = b3 = 0. By multiplying in (2.25) we
have

0 0 & o]l
0 0 & 0
Sk—2Br—2 o E | : . (2.26)
0 0 Ck—2
0...0 (s1b1 + s52b2) (5103 + 52b4) |81 Vi Ck—1 0
0...0 0 0 Vi Ok Ck 0
where now
Bi—4
Biy = b1 b | . 2.27)
by by

After some computations, replacing again the expressions of By and Si in (2.18), we
obtain the following formulae

Wk—1 = Gk—1 — S1Wk—3 — $2Wk—2
Wi = gk (2.28)
5 (s1b1 + $2b2) 853 + (5163 + $2b4) G2

k—1 =
S-1 Sk—18k — (7r)?
(s1b1 + $2b2)&k—3 + (51b3 + $2b4) Sp—2
Sk = Vi 3 (2.29)
Sk—16k — (Vi)
2k = Zk—2 + Ck—1Wk—1 + Spwk. (2.30)

As for (2.22)—(2.24), the formulae (2.28)—(2.30) hold replacing the step k with the
step i < k, as long as at step i a 2 x 2 pivot is used. In the end, we conclude
that SYMMBK algorithm generates the vectors z;, i = 1, ..., k, which represent a
sequence of approximations of the vector dj satisfying (2.18). Moreover, the direction
dy = zj satisfies (2.18) (or equivalently (2.9)).
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3 Our proposal

As detailed in Sect.2.3, the Bunch and Kaufman decomposition used within the
SYMMBK algorithm is able to cope with Newton’s equation (2.1), also in the indefinite
case. However, the search direction provided by (2.9) might not be gradient-related,
at the hth outer iteration. In this section we aim at suitably adapting SYMMBK algo-
rithm, in order to guarantee that, using the computed approximate solution of (1.3), we
can yield a gradient-related direction. For this purpose, first of all we need to slightly
modify the partial pivoting rule used for choosing 1 x 1 or 2 x 2 pivot in the Bunch and
Kaufman decomposition. In particular, given w € (0, 1) the choice for 1 x 1 pivot or
2 x 2 pivot in Sect. 2.3, in order to obtain (2.11) or (2.14), is replaced by the following
rule (again for simplicity we refer only to the first step of the decomposition):

(j) if 181] > wn(y»)?, then 8y isusedasa 1 x 1 pivot;
(Jj if61] < a)n(yz)z, then the 2 x 2 block (2.13) is used as a 2 x 2 pivot.

Now we show that the novel condition |81] > wn(y2)? in (j) (which yields (2.11)),
along with the novel condition |61] < wn(y2)2 in (jj) (which yields (2.14)), allow
to use an adapted SYMMBK algorithm for the construction of a gradient-related
direction. To this aim, we recall that repeatedly performing the factorizations (2.11)
and (2.14) we finally obtain for 7} the decomposition (2.10), where (m < k)

By = diag, -, {B{}. Bl isalx1or2 x 2block. 3.1

Moreover, by (2.6) the columns of Qj are orthogonal unit vectors, and from Assump-
tion2.1 then b in (2.1) has a bounded norm. Thus, according to (1.4) and (1.5) of
Definition 1.1, pj in (1.2) is gradient-related at x;, as long as the next two conditions
are satisfied:

(i) The matrix Ty in (2.9) is nonsingular with the vector y;y = Tk_1 (|Ib]le1) bounded;
(ii) pp is a descent direction at xj; and (1.5) holds.

Of course, since the matrix A in (2.1) is possibly indefinite, the direction di in (2.9)
might be of ascent and/or not gradient—related. However, we show how to possibly
modify dj in order to obtain the gradient-related direction py,, to be used in (1.2).

3.1 How SYMMBK can provide a gradient-related direction

Here we prove that both adopting the rule (j)—(jj) in the Bunch and Kaufman decom-
position, and slightly adapting the SYMMBK algorithm for the solution of Newton’s
equation (2.1), we can provide a gradient-related direction pj, at xj, for the optimiza-
tion problem (1.1). In this regard, we first refer the reader to Sect.2.4, which shows
that pairing (j)—(jj) with SYMMBK, to iteratively compute the vector dy in (2.9), we
generate the sequence of vectors z;, i < k, such that

e Ifatstepi al x 1 pivot is performed by the Bunch and Kaufman decomposition
in SYMMBK, then the vector z; = z;_1 + {;w; is generated,

e Ifatstepi a2 x 2 pivot is performed by the Bunch and Kaufman decomposition
in SYMMBK, then the vector z; = z;—2 + {i—1w;—1 + ¢;w; is generated,
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e When i = k we have d;, = zy,

and the quantities {¢;}, {w;} are computed using the entries of matrices S; and By in
(2.10). As regards the vectors {z;}, the next result gives a relevant property of these
vectors.

Proposition 3.1 Let the matrix A in (2.1) be nonsingular, and let z;, i < k be the
directions generated by the SYMMBK algorithm when solving (2.9). Assume that the
Bunch and Kaufman decomposition (2.10) is adopted according with the rule (j)—(jj).
Then, for proper values of the parameter w in (j)—(jj) we have that

e Any direction in the finite sequences 1w, ..., {ywi and 21, . . ., 2k is bounded;
e The vector dy in (2.9) coincides with zj (and is bounded).

Proof In order to obtain the overall proof, without loss of generality it suffices to
assume k > 1 and separately consider only the first step in the cases (2.11) and
(2.14), since a similar reasoning holds for any step i (see Sect.2.4). Indeed, since Tee1
in (2.12) and Ty_> in (2.15) are tridiagonal, then we can apply for them the same
reasoning adopted, at the first step, for 7. In this regard we have:

e If the first stepisa 1 x 1 pivot step, comparing Ty in (2.11) and T} in (2.3) we get

3152,1 =12, (3.2)
that is

S =12 (3.3)

Since y» > ¢ (see the Lanczos process) and |51] > wn(y2)? we have

1 1
Il <— (34

[52,.1] = < ,
[81]  wnly2l T wne

i.e.incase of 1 x 1 pivot, we obtainin (2.11) that || = |qlTAq1| < maxg{|Ae(A)|}
and [$> 1| is bounded;
o If the first step is a 2 x 2 pivot step, comparing T in (2.14) and T in (2.3) we get

83,101 + 83272 =0
’ ’ 3.5
{ 83,172 + 83282 = 73, (3-3)
that is
V32
SBl=—
' 8182 — (12)?
o 66)
53,2 =T
8182 — (v2)

Now observe that
v = llAgi — $iq1ll < IAqill + lI(g] AgqDqill
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< max{[Ae(A)l}lqu | + (m?x{wm)u) Il < 2 [mgx{wm)n]

V3 = Ag2 — 822 — yaqull < 4 [m?x{lke(A)l}} ,

Vi+1 = |Agr — Skqk — veqr—11l < 2k - [m?X{IM(A)I}], 3.7

which implies that since k < n then y; is bounded, for any j > 1. Moreover, in
case 81 = 0 or 8 = 0 then |81, — (1)?| = | — (12)?| > €2, and by (3.6)~(3.7),
along with [§1] < wn(y2)?, we obtain that both S3.1 and S3 2 are bounded by a
constant,

lyayal _ lysl _ 4maxe {[Ae(A)]}

1) R & (3.8)
[S32] < y30m < 4on m?X{IAe(A)I}-

[83,1] <

On the other hand, in case 1 7 0 and §2 # 0 in (3.6), recalling that y» > ¢ and
using the condition |81| < wn(y2)* we distinguish two subcases:

— 82 > 0 which implies §18, — ()/2)2 < —(y2)2(1 — wndy), so that imposing
1>1—wnd > &, foragiven0 < £ < 1, we obtain w < (1 — &)/(né2) and
18182 — (12)?| > €2&. Thus, if in the test (j)—(jj) we finally set

1-¢

}, forsome 0 < & < 1,
nd2

O<a)<min{1,

then, S3,1 and S3 2 in (3.5)—(3.6) are bounded;

— 8 < 0 which implies 8182 — (32)> < —(12)%(1 + wndy), so that imposing
now 1 > 1 +wnéy > &, foragiven0 < & < 1, we obtain w < (§ — 1)/(nd2)
and |8182 — (1)?| > €2£. Thus, if in the test (j)—(jj) we finally set

E—1
nds

0<a)<min{l, } for some 0 < & < 1,

then, again S3,1 and S3 2 in (3.5)—(3.6) are bounded.

Thus, in both the above subcases S3,; and S3 2 in (3.6) are evidently bounded by
a constant value, with

8 max, {|A¢(A)]}?

183,11 < %
3.9
4maxe {[Ae(A)])? 39)
153.5] < maxe AeCW
g2k
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Finally, iterating the above procedure for any step, by (3.2), (3.6), (3.8), (3.9) and
using the test (j)—(jj) in the Bunch and Kaufman decomposition to decide pivoting
1 x 1 or2 x 2, we obtain that

(a) By (2.11)—~(2.12) and (2.14)—(2.15), any pivoting element B,ﬁ in (3.1) has a deter-
minant which is bounded away from zero;

(b) All the entries of the matrix Sk in (2.11) and (2.14) are bounded by constant values
independent of k.

This implies (see Sect.2.4) that any vector in the sequences ¢jwy, ..., {rwi and
Z1, .., 2k is bounded. Moreover, the vector dy = zx fulfilling (2.9) is unique and
bounded.

Observe that by the previous result, the condition (i) in Sect. 3 is partly guaranteed to
hold. However, using SYMMBK algorithm, the direction dj computed in Proposition
3.1 might not be a direction of sufficient descent. To guarantee also the fulfillment of
(ii), we propose to suitably use the information collected by the sequence {¢;w;}, in
order to compute p;, endowed with descent property.

From Proposition3.1 and Sect. 2.4, the real vector {;w; = z; — z;—1 (respectively
the vector §;_jw;_1 + ¢w; = z; — zi—2) is bounded. Thus, we propose to compute
the search direction pj, at the outer iteration & of the Truncated Newton method, in
accordance with the next scheme:

Reverse-Scheme

Data: Set the initial vector p;, = zo = 0, along with the parameter ¢ > 0O;
Doi>1
If at step i of the Bunch and Kaufman decomposition in SYMMBK a 1 x 1
pivot is performed, when solving the linear system 73z = ||b|le1, then
If V£ (xp)T (giw;) > 0 then set uu = —g;w; else uu = ¢;w;.

Set py = pn + uu.

If at step i of the Bunch and Kaufman decomposition in SYMMBK a 2 x 2
pivot is performed, when solving the linear system T;z = ||b||e1, then set

L= sgn(gi—1) max{|¢i—1], ¢} i =2
N o i>2
so that
If V£ (Gioiwi1) > 0 then set uu = —g_jwi_; else
uu = gi—jwi—1.
If V£(xp)T (¢;w;) > 0 then set vv = —¢;w; else vv = ¢ w;.
Set pp = pp + uu + vv.
End Do
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We remark that in case the matrix A in (2.1) is positive definite, and the parameter
w in (j)—(jj) is sufficiently small (i.e. no 2 x 2 pivot is performed), then the vector
pn computed by the Reverse—Scheme coincides with Newton’s direction.

Now, in the next proposition we prove that the direction pj,, obtained by Reverse—
Scheme at any iterate of the sequence {x} of the Truncated Newton method, is
gradient—related. This result is not an immediate consequence of Proposition 3.1, since
the latter proposition merely guarantees the simple boundedness of the direction dj, for
a given k > 1. Conversely, the next result proves that, under mild additional assump-
tions, all the vectors in the sequence {p;} are of sufficient descent and eventually are
uniformly bounded by a positive finite constant.

Proposition 3.2 Let Assumption?2.1 hold. Assume that Proposition 3.1 holds with A =
sz(xh) and b = —V f(xp,). Let the search direction py, in (1.2) be computed as in
Reverse—Scheme. Then, for any k > 1 the direction di in (2.9) is bounded, namely it
satisfies ||dx || < w, for some positive value of |1, and py, is a gradient—related direction
as in (1.5).

Proof The statement trivially holds if in Proposition 3.1 the Lanczos process performs
just one iteration, being y» < ¢. In all the other cases (i.e. the Lanczos process has
performed at least 2 iterations), we first prove that pj, is of sufficient descent for f(x)
at xp,. In this regard, it suffices to prove the sufficient descent property for p;, after the
first step of the Bunch and Kaufman decomposition in SYMMBK, since the Reverse—
Scheme accumulates only non-ascent directions in pj,. To this aim, we distinguish
between two cases, which may occur at iterate x;, when applying the Bunch and
Kaufman decomposition to matrix 7} in (2.9):

e The first step corresponds to a 1 x 1 pivot. Then, by (2.16) and (2.22)—(2.24), we
have for the vector uu in Reverse—Scheme

uu = —sgn[V f ()" (crw)1ciwy = —sgnlV £’ (C1g)101q1

_ ViiGw) \_ Vf (xn)
= —sgn[—=4 ||V f(xp) g1 <—m) = —sgn[¢11¢ IV ol
Vfxn)
__ , 3.10
O G G-10)
so that
[¢1]
v Tpp = —— v o)
S pi = = s IV S I+
" —sen | V) @wn | V. ) Gwn)
i>2
< 1V G- 3.11)

More explicitly, by (2.17) and relations (2.9)—(2.11) we have
¢® =5ty = {1 Ibller = B'S;blley
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8110---0 110---0
0 S$2.1
= | Tt o1 Iblles
0 0
1/6:[0---0 1 10---0 I
0| 1 =521 81
—| 0|75 O ibller = np1| * |
0 0 *
where the asterisks represent irrelevant entries. Then, {1 = |b]|/8;. More-
over, by Assumption2.1 the set € is compact, so that |¢1] = |b|/161] >

161/ maxg [2¢[V? f(xp)1| = 1161 /Ap, for some O < Ay < +oo. Thus, relation

(3.11) becomes

1
Ve pn < —10lIV Lol < —mnw(xh)nz.

(3.12)

e The first step corresponds to a 2 x 2 pivot. Then, recalling (2.28) we have w; = ¢»,
so that by (3.10) for the vectors uu and vv in Reverse—Scheme the next relations

hold

uu = —sgn[V f (xp) T (Crw)ciw, = —|¢1]

V f(xn)
IV )|

(3.13)

vv = —sgn[V f(xp)" (w2)1ws = —sgnlV f ()’ (2292)10245.

Now, again by (2.17) and relations (2.9)—(2.10), (2.14) we get

t® =85y = S{T 7 bller = B'S:Iblles
81100...0N /1 o0lo...0\"
2 82(0...0 0 110...0
00| S3.1 S32
=10 0| Ti_» 0 0| I lblle1
00 0 0
s\ ! / 1 0 [0...0
12 &2 0 1 10...0
0 0 —S3,1 —S3,2 b
= F—1
0 0 T, 0 0 I lbller
0 0 0 0
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W<_3’2 41 ) / 5152_—)/9/2)2

k * T

— ()2

| * il [1eler = i | 2182~ ()
k * :

where again the asterisks represent irrelevant entries. Thus, it results

)

= ——Ibl,
2 8182 —V(J/z)2
-2
= ———=Ibl.
8182 — (y2)?
Finally, similarly to (3.11), recalling that V f (xz)" g2 = =V f(xn)llg{ g2 = O,

we have by (3.13) and Reverse—Scheme the relation

Vo) pn = —sgnlV f )" gDV FanT Giqr)
+ 3 —sen [V G | V£ @)

i>2

< —lalVl < =¢IVf el (3.14)

Relations (3.12) and (3.14) prove that for any 4 > 1 the condition (1.5) is eventually
fulfilled, with

1
o1=min{—,¢}, oy = 2.
AM

As regards the boundedness of dj in (2.9) and py, for any & > 1, observe that by (2.9)
we first have

dr = QY.

Then, [ldill = llyill < 1T - IV £l < 1S "B SV Al < 112 -
I B,:l - IV f(xn)l|l. Now, let m be the number of steps where the test (j) is fulfilled
(i.e. m is the number of 1 x 1 pivot steps), so that (k —m1)/2 is the number of 2 x 2
pivot steps. Also observe that the inverse S, Lof S in (2.11) is given by
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and the inverse S, Lof 8 in (2.14) is given by

1 0 [0...0
0 1 10...0
) =831 =832
S =1 o o I
0 0

Thus, the bound (3.4) on S, 1, along with the bounds (3.8) and (3.9) on S3,; and S3 2
yield

ISt < 8. (3.15)

where

= (ﬂ) + [k _2"“ max <4m;x{|mv2f<xh»|} (é + wn) ,

wne
—— max{|Ae (V2 f )} ) | + k.
g*& ¢
Moreover, as regards the diagonal blocks of B ! (see (2.11) and (2.14)), for any

i > 1 we have by the proof of Proposition 3.1 and the compactness of €2 the following
bounds:

1 x 1 pivot: |(S,~|_1 < 5
wne

-1
( 8i J/i+l) _ 1 ‘( 8it1 —)/i+1>”
Yitl Big1 18i8i+1 — (vix )] [\ —Vi+1  Gi

< L {41’ om?x{‘)»((vzf(xh))” + zmeax{‘)‘[(vzf(xh))”} '

<2

2 x 2 pivot:

Finally, by Assumption2.1 we have that |V f (x;)]| is bounded on 2 by a constant
value, showing that the direction dy is bounded by a constant value independent of 4.
To complete the proof we show the boundedness of vectors {¢; w; } in Reverse—Scheme,
by a constant value independent of /. From relation ||di|| = ||yk|| < u, forany k > 1,
and recalling (3.15) along with relation S kT =[-S, N7 we immediately infer (using
(2.17))

IE®T < 1ST vkl < Bllyell < B,

where f is given in (3.15). Similarly, by (2.18) we have Wy = QkS,:T, so that any
column w; of Wy satisfies (see (3.15))

lwill = 10kS; Teill < 1S, " < B, forall i>1. (3.16)
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This implies, by (3.16) and the boundedness of vectors {jwy, ..., {rwi (see Propo-
sition3.1), that also |uu|| and ||vv| in Reverse—Scheme are bounded by a positive
constant, for any x;, € 2. Thus, || p;| is bounded by a positive constant independent
of h.

4 Numerical experiments

In order to assess the effectiveness of the approach proposed in this paper, we per-
formed an extensive numerical testing. We used the HSL,_MIO02 Fortran routine
available from the HSL Mathematical Software Library [19] which implements the
SYMMBK algorithm, where we modified the pivoting rule as described in Sect. 3,
namely (j)—(jj) on page 9. Then, we embedded this routine within a standard imple-
mentation of a linesearch based Truncated Newton method, namely the one proposed
in[15] (we refer to this paper for any implementation details), without considering
any preconditioning strategy. Moreover, we replaced the CG used as iterative solver
by the Truncated Newton method in [15] with the modified SYMMBK algorithm. It
is worthwhile to note that in[15], in order to handle the indefinite case, the inner CG
iterations are not terminated whenever a negative curvature direction is encountered.
Indeed, by drawing inspiration from [18], positive and negative curvature CG direc-
tions {d;} are separately accumulated, and then suitably combined to obtain the search
direction. We report the following scheme of the CG method adopted in[15], in order
to briefly describe the latter strategy.

The Conjugate Gradient (CG) method

Data:k =1,y =0,r; = b — Ay;. If r| =0, then STOP. Else, set d| = ry;
Dok=1,2,...

T
r, dy
Compute a; = Tk—, Vk+1 = Yk + axdy, Tr+1 = 1y — agAdy
dT Ady
T 2
r, ., Adk
If ri41 = 0, then STOP. Else, set f = ——+L— — ”r"“! .
dk Ady, 7l

Set djy1 = 41 + Brdk.
End Do

In particular, at the kth CG inner iteration, the following vectors are defined

= Zaidia Py =- Zaidi,

ielt el
where for a given € € (0, 1)

I = [i e(l,... k) dTV2f(und; > e||di||2},

I = {i ef{l,....k) : dIV*fad; < —€||di||2}v
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|IkJr | + |1, | = k. Then, the vector p,f + p,ﬂv is used as search direction. This choice
has several advantages for which we refer to [15]. In particular, it can be proved that
p ,f +p ,f is a gradient-related direction. However, as shown in [7], the use of p ,f and p ,iv
obtained by separating the contribution of negative and positive curvature directions
actually corresponds to considering a modified positive definite linear system, in place
of the original indefinite one. For this reason, in our numerical experiments, in order to
avoid unfair conclusions, we prefer not to use the modified search direction p,f + p,lcv
and adopt a more standard approach in the literature. Therefore, in our implementation
we use the approximate solution of the original linear system as search direction.
An additional safeguard is needed whenever the Hessian matrix is nearly singular at
the Ath iterate of the Truncated Newton method. In this case, the steepest descent
direction is considered as “alternative” direction (both when the CG or the modified
SYMMBK algorithms are adopted). As regards the termination criterion of the inner
iteration, the standard residual-based criterion is used (see e.g. [3,4,21]), which we
make slightly tighter (with respect to that in[15]) by multiplying the tolerance of the
criterion by 1072, In this manner, a more accurate solution of the Newton system
at each outer iteration of the methods is required, and possibly a more significant
comparison between the use of the modified SYMMBK in place of the standard CG
can be obtained. Finally, the parameter £ in the proof of Proposition 3.1 is set as & =
max{(1 — 5|82]), 10~} so that we consequently chose @ = min{1, (1 — &)/(n|82])}
in (j)—(jj). In addition, the parameter ¢ in Reverse—Scheme was set as ¢ = 10710 in
this regard we strongly remark that in our numerical experience we always observed
gi—l = {;_1 in the Reverse—Scheme.

As regards the test problems, we selected all the large scale unconstrained test
problems in the CUTEst collection [16], including both convex and nonconvex func-
tions. In particular, we considered 112 problems whose dimension ranges from 1000
to 10,000. We report the results obtained in terms of number inner iterations, num-
ber of function evaluations and CPU time. The comparison between the use of the
CG algorithm and the modified SYMMBK, when performing the inner iterations, is
reported by using performance profiles [10]. Here the abscissa axis details values of
the positive parameter T > 1. In particular, for a given value 7 of the parameter t, each
profile represents the percentage of problems solved by the corresponding method,
using at most T times the resource (inner iterations/function evaluations/CPU time)
used by the best method.

Figure | reports the comparison in terms of inner iterations. By observing these
plots, the performance of the two approaches seems to be similar and the use of the
modified SYMMBK is slightly preferable in terms of robustness. The profiles in terms
of function evaluations are reported in Fig. 2. In this case, the superiority of using the
modified SYMMBK algorithm is more evident. Finally, as regards the comparison
in terms of CPU, Fig.3 indicates that the use of the standard CG leads to a slight
improvement in terms of efficiency, but it is definitely less performing in terms of
robustness. We recall indeed that though the CG can easily provide a gradient—related
search direction in convex problems, it might prematurely stop in nonconvex problems.

Now, in order to better assess the quality of the search direction obtained by using
the modified SYMMBK algorithm, we performed further numerical experiments. In
particular we computed the normalized directional derivative of the search direction
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___________________________

= = = TRUNC-CG_inner-iter
0.76 = TRUNC-SYMMBK-MOD_inner-iter

= = =TRUNC-CG_inner-iter
= TRUNC-SYMMBK-MOD_inner-iter

2‘ 2‘5 Z‘S 3‘5 4
Fig. 1 Comparison between our approach based on the modified SYMMBK algorithm (continuous line)

and the use of the CG algorithm (dashed line). Performance profiles are with respect to the number of inner
iterations (a detail on the left, the full profile on the right)

= = =TRUNC-CG_feval 1
=——TRUNC-SYMMBK-MOD_feval

0.78 +

! 1 1 L 1 1 1

2 4 6 8 10 12 14

Fig. 2 Comparison between our approach based on the modified SYMMBK algorithm (continuous line)
and the use of the CG algorithm (dashed line). Performance profiles are with respect to the number of
function evaluations

prin (1.2),namely V £ (xi) T pr/IIV £ ) Ll pn |, at each outer iteration of the CG and
the modified SYMMBK method respectively, for some test problems. As an exam-
ple, we report in Fig.4 the normalized directional derivative obtained as the number
of outer iterations increases, for the test problems DIXMAANIJ-1500 (upper-left),
DIXMAANK-3000 (upper-right), DIXMAANL-1500 (mid-left), DIXMAANL-3000
(mid-right), DIXMAANIJ-3000 (lower-leff), SPARSINE-1000 (lower-right), where
the number indicates the dimension of the test problem.

On these problems the method based on the modified SYMMBK algorithm out-
performs the one based on the standard CG (a much smaller number of iterations
is required to achieve convergence). Plots reveal that this is due to the fact that the
quality of the Newton—type direction, obtained by means of the modified SYMMBK
algorithm, is definitely better. Indeed, on one hand the use of the modified SYMMBK
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~ = = TRUNC-CG_time 08 ~ = = TRUNC-CG_time
—— TRUNC-SYMMBK-MOD_time ——TRUNC-SYMMBK-MOD_time

L L L L L L L L s L L L L
1 15 2 25 3 35 4 20 40 60 80 100 120 140 160

Fig. 3 Comparison between our approach based on the modified SYMMBK algorithm (continuous line)
and the use of the CG algorithm (dashed line). Performance profiles are with respect to CPU time (in
seconds) (a detail on the left, the full profile on the right)

algorithm for computing the search direction enables to discard the steepest descent
direction more frequently than the use of the standard CG. On the other hand, the
introduction of the parameter w in the modified SYMMBK algorithm (see (j)—(jj))
allows to have values of the directional derivative which are more likely bounded away
from zero. Similar behaviour is evidenced when solving many other test problems of
the CUTEst collection. Note also that in the plots of Fig. 4, both the compared methods
tend to initially select the steepest descent method as a search direction. This should
not be surprising, inasmuch as in the early outer iterations the truncation criterion of
the Truncated Newton method is less tight.

5 Conclusions

In this work, which deals with an efficient Truncated Newton method for solving
large scale unconstrained optimization problems, we considered the use of an adapted
Bunch and Kaufman decomposition for the solution of Newton’s equation. By slightly
modifying the test performed at each iteration of the Bunch and Kaufman decomposi-
tion, we were able to ensure that the Newton—type direction computed by our proposal
is gradient-related. Extensive numerical testing, on both convex and nonconvex prob-
lems, highlights the effectiveness and robustness of a Truncated Newton framework,
where our modified SYMMBK algorithm is used in place of the CG method.

We remark that the enhanced robustness of our proposal, with respect to the CG
method, is not only the consequence of the possible premature stopping of the CG on
nonconvex problems. On the contrary, we often tend to generate at the current outer
iteration an approximate Newton’s direction which yields a more effective directional
derivative with respect to the CG.

Note that a comparison of the standard SYMMBK and our modified SYMMBK
routines, within the same Truncated Newton method, yields to large extent, similar
numerical results. However, the standard SYMMBK routine is unable to provide essen-
tial theoretical properties, which are sought for the search direction of the optimization
framework.
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Fig. 4 Plot of the normalized directional derivative, when our proposal with the modified SYMMBK
is used (+), and when the CG is used (empty squares). The plot refers to DIXMAANI-1500 (upper-
left), DIXMAANK-3000 (upper-right), DIXMAANL-1500 (mid-left), DIXMAANL-3000 (mid-right),
DIXMAANIJ-3000 (lower-left), SPARSINE-1000 (lower-right)

Finally, we are persuaded that the modified test (j)—(jj) in SYMMBK might be
worth investigating, also to construct a suitable negative curvature direction (see [14]),
in nonconvex problems. This issue plays a keynote role in case the adopted Truncated
Newton method is asked to provide also convergence to stationary points, where second
order optimality conditions hold.
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Furthermore, there is the chance that adaptively updating the parameter w in (j)—
(jj) may further enhance the performance of our method, preserving the theory
developed in Sect. 3.
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