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Abstract
Domes still represents a prickly subject, large dimensions coupled with a limited 
accessibility making their study difficult and time-consuming. Although throughout 
history this problem has been tackled in different ways, relevant methodological 
and operational issues have until now limited the success of these efforts. Digital 
technologies have radically changed this scenario. 3D active and passive capturing 
systems currently allow for a dense and accurate surveying while modelling software 
provides powerful tools to build virtual counterparts of surfaces and to investigate 
their geometric properties. The aim of this paper is to present three different projects 
developed by a research group in the Department of History, Representation and 
Restoration of Architecture—Sapienza University of Rome. Based on their results, 
the group has set up and tested a protocol that can guide users from acquisition 
through modelling and, finally, to the reading of the geometric properties of domes.
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Introduction

The study of domes still represents a thorny subject. In fact, large dimensions 
coupled with a limited accessibility make the study of their shapes and geometry 
a traditionally difficult task (Rondelet 1802–17; Leroy 1845). Although throughout 
history this problem has been tackled in different ways (Letaroully 1840–55; 
Emerson and Van Nice 1943; Dorffner et al. 2000; Hidaka and Satō 2004), relevant 
methodological and operational issues have until now limited the success of these 
efforts.

Digital technologies have radically changed this scenario. On one hand, 3D 
active capturing systems (Light Detection and Ranging, LIDAR) and passive ones 
(Structure from Motion, SfM) currently allow for a dense and accurate surveying 
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of surfaces (Bianchini and Russo 2018); on the other, modelling software provides 
powerful tools to build virtual counterparts (3D models) of these surfaces as well as 
to investigate their geometric properties (Migliari 2008).

The aim of this paper is to present three different projects developed in the last 
decade by a research group belonging to the Department of History, Representation 
and Restoration of Architecture (DSDRA)—Sapienza University of Rome. Based 
on the results of these activities, our group has set up and tested a protocol that 
can guide users from the acquisition phase through the modelling and, eventually, to 
the reading of the geometric properties of domes. However, this chain of activities 
must not be regarded as a mere application of different technologies but instead as 
the operational display of a rigorous scientific methodology (Bianchini 2014) that 
guides the construction of a ‘knowledge system’ suitable for collecting, interpreting 
and storing information. The components of this system are of various types: first 
quantitative (essentially resulting from surveying operations), but also qualitative. 
While the former can be channelled through a rigorous scientific approach, the 
latter mainly draw on the investigator’s subjective sensitivity and interpretative skill. 
Nonetheless, this last is often a key ingredient for achieving levels of understanding 
that are denied to simple measurement (Ribichini 2015; Chiavoni 2018; Inglese 
et al. 2019).

This duality between measuring and interpretation in the study of built 
artefacts has also had a strong impact on the hypothesis discussed and the result 
presented in this paper. Even if very briefly, we cannot afford to bypass some of the 
epistemological implications of this approach, namely to reference the qualitative 
component (interpretation) to the concept of irrefutability in the sense proposed 
by Karl Popper (1963). On the other hand, we must reference the quantitative one 
(measuring) to the bimillennial disciplinary context of survey, certainly one of the 
most powerful tools developed by scholars (archaeologist, architects, historians, 
etc.) that ‘distinguish those who know from those who remain on the surface, even 
so-called “cultured”, of knowledge’.1 It actually implies the idea of measurement, 
that is to say, the possibility of turning into quantity some qualities of the studied 
phenomenon (in this case an artefact, a building, a site, etc.) by using the ratio 
between the measured quantity and an appropriate unit of measure. Thanks to this 
method, we can build the model of the complex phenomenon we are investigating as 
a simplified version of the original.

The Epistemological Framework

Quite apart from the theoretical framework, the application of this approach to built 
artefacts, and especially to domes, strictly depends on the available measurement 
technologies. For centuries, the limited possibilities offered by instruments have 
restricted the number of measurable points. Therefore, any survey campaign 

1  Sanpaolesi (1973: 62): …distingue i conoscitori da coloro che restano alla superficie, anche cosiddetta 
colta, della conoscenza.
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required a preliminary accurate design in order to select and then acquire (measure) 
the really significant points.

In recent decades, instead, all 3D capturing technologies (LIDAR, SfM) have 
somehow inverted this order so that selection nowadays follows acquisition. 
Therefore, the term ‘survey’ refers not only to the measuring campaign, but also 
to a very structured process that leads to the construction of 2D or 3D models 
starting from a real object (Docci et al. 2011; Bianchini 2012; Gaiani 2012). This 
workflow can be broken down into several different tasks of which, certainly, the 
acquisition phase2 represents the first step. All those that follow—namely selection, 
interpretation and representation of the acquired data—actually lead to 2D and 3D 
models that somehow concur in adding to our knowledge of the phenomenon, i.e., 
the built artefacts we are investigating (Fig. 1).

Referring to the traditional survey approach, the tasks of acquisition, selection, 
interpretation and representation of data are genetically tangled together. Massive 
acquisition technologies have instead separated all steps: capturing has become the 
only onsite activity, while selection, interpretation, and representation of data are 
now carried out later and generally offsite (Bianchini 2014). This last remark is in 
our opinion very valuable, because it allows for a revisiting of the entire matter in 
the light of the scientific method, also putting the survey process to the test of Karl 
Popper’s “principle of falsifiability”, still the benchmark for evaluating scientific 
theories.3 The capturing phase seems to be highly compatible with the validation 

Fig. 1   The phases of the survey workflow

2  In the literature we also find the terms ‘surveying’, ‘measuring’, and ‘capturing’ for this phase.
3  With this principle, Popper sought to resolve the impasse that arose between Russell’s fruitless 
attempts to construct “complete” logical deductive systems, and the cataclysm that swept through 
epistemological thinking following Kurt Gödel’s proof of the Incompleteness Theorem. Popper, well 
aware of the inherent inadequacy of the tools that human beings have for cognizing reality and that, in 
the final analysis, it is substantially impossible to provide “positive” proof that any given statement is 
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workflow consolidated within the scientific community. Instead, selection, 
interpretation and representation cannot satisfy these requirements and must thus 
always be considered subjective and irrefutable in the terms set out by Popper.

However, it is within the selection and interpretation phases that the model is 
produced. It is mainly a geometric model, i.e., a simplified reading of the objective 
multi-dimensional complexity referring to its geometric essence made of points, 
lines and surfaces. The real object and its virtual substitute are thus bound together 
by a biunivocal correspondence that can be used to simulate different operations as 
if they were made directly on the object itself.

From a strictly epistemological point of view, such a model can be considered 
the result of a selection carried out by a subject aiming at extracting some of the 
potentially infinite information embedded into an object. The selected data, though, 
are not the result of a random or automatic processing. On the contrary, they are 
the result of an interpretation, a subjective reading that strictly complies with 
rules established by the subject himself/herself. In other words, starting from the 
selected set of data, we always tend to demonstrate a hypothesis we have formulated 
beforehand even if subconsciously.

However, at this stage the model produced is, so to speak, for personal use only, 
existing mainly in the mind of the subject and often incoherently on scattered 
supports (such as sketches on napkins). Hence, representation is the method to 
transform this personal model so to make it understandable to others. This phase 
actually translates the “raw” model into a shareable one, applying a codification 
that relies on descriptive geometry and in particular on the science of representation 
(Docci and Migliari 1992).

This whole process has been traditionally rooted in the following principles:

–	 human beings have an ability, innate or acquired, to conceive the qualities of 
physical space;

–	 of the n qualities of a physical space, the geometric qualities optimize the 
operations of interaction between subject and space;

–	 space can be effectively manipulated and modified thanks to the correspondence 
between the real object and its geometric abstraction (geometric model);

–	 the geometric model, through the process of representation becomes a 2D 
graphic model or a 3D virtual model.

While for the 2D graphic models we can refer to the millennia-old tradition of 
drawing (Docci 1997), the 3D virtual models are only the 25-year-old products of 
the so-called “digital revolution” and of its wide “bundle” of hardware and software 

Footnote 3 (continued)
true, shifts the centre of gravity of knowledge from proving that something is true to showing that it 
is false. For Popper, a theory is scientific only if it is possible to devise experiments that demonstrate 
its inadequacy, i.e., that refute it as false. This approach has been revealed as highly profitable in terms 
of advancing of knowledge: if a theory withstands an attempt of falsification, it will be stronger, more 
general and thus closer to the truth; conversely, if the attempt succeeds, an aspect will be revealed that 
the theory was unable to explain, and a new and stimulating line of research will thus be opened up.
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tools that nowadays allow for an actual interaction between our real world and its 
virtual version.

Digital modelling systems represent a real novelty in comparison with the 
traditional graphic workflow: while for the 2D graphic models the process establishes 
a biunivocal correspondence between the object and its graphic representation by 
means of projection and section operations, 3D modelling software creates instead 
an entire 3D virtual space.

Therefore, more than producing a mere representation of the object, any 3D 
modelling software provides the possibility to interact with a digital environment 
that, initially empty, is step by step populated by elements that together build a 
virtual replica of the object.

This process establishes a direct correspondence between the physical and the 
virtual space: to each material point Pr

4 identified by its coordinates xr,yr,zr in the 
real space corresponds to a virtual point Pv univocally identified by the Cartesian 
triplet xv,yv,zv (Fig. 2).

Consequently, the digital environment created by 3D modelling software provides 
an actual spatial framework for all the subsequent constructions.

Therefore, the relevance of 2D/3D models exceeds the mere production of their 
final and perhaps more evident outputs (drawings, images). Their vocation is instead 
exquisitely heuristic, providing ‘the way of recognizing, from an exact description, 
the forms of bodies, and of deducing from them all the truths which result both from 
their form and from their respective positions”5 and the possibility “… to realize in 
all directions, at small scale on paper, or in large scale in an area or on a plaster, the 
measurements and shapes of a part of a building”.6

Fig. 2   Correspondence between physical and virtual space

4  With the term material point we refer to the small objectual area that is synthetized in the model by a 
single geometric point. For instance, if we consider a 3D laser scanner, the dimensions of this area span 
from some millimeters to few tenths of a millimeter depending on the instrumental resolution.
5  Monge (1811: 1): …la manière de reconnaître, d’après une description exacte, les formes des corps, et 
d’en déduire toutes les vérités qui résultent et de leur forme et de leurs positions respectives…
6  Rondelet (1802–1817: Tome II, 75): …se rendre compte dans tous les sens, en petit sur le papier, ou 
en grand sur une aire ou un enduit, des mesures et des formes d’une partie d’édifice.
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Methodology

The theoretical background discussed so far actually represents the backbone of the 
methodology we have applied to some of the most relevant domed structures in the 
world.

As mentioned in the very first lines of this paper, domes are difficult to investigate. 
Throughout history, many methods have been applied to measure their surfaces and to 
assess their geometry and shape. Despite these efforts, some “intrinsic” constraints have 
always limited the success of these tasks: on one hand, the surveying campaigns used 
to produce small and inaccurate datasets; on the other, the tools for the investigation 
of surfaces were rich from a theoretical standpoint but very poor from an operational 
one. The combination of the two has generally prevented the achievement of reliable 
results. Besides, domes are quite difficult even to reach: their large dimension and 
troublesome position in the fabric is very often coupled with a scant accessibility 
of their upper levels that deeply affects the implementation of direct surveying 
procedures. Topographic measurements are also limited by the same logistic problems 
but, accepting the adoption of a very time-comsuming workflow, they have represented 
a significant jump forward in the study of domes, as witnessed by the work on Hagia 
Sophia in Istanbul (Emerson and Van Nice 1943; Mainstone 1988).

Stereophotogrammetry (Fondelli 1992) seemed for a while able to solve many of 
these issues. This technique allows for the construction of a “virtual model” of an object 
using a coordinated pair of photographic shots. Complex hardware (now obsolete) 
operated by skilled users could lead to the measuring and drawing in a CAD 3D space 
of single points, lines and polylines, simply by exploring the virtual model visually. 
However, the clear improvements introduced by stereophotogrammetry in terms of 
operational capabilities and accuracy were differently applicable to domes shapes. 
Due to the dependence on the coverage and position of photographic acquisitions, the 
accuracy of measurement was generally high in correspondence of the keystone, but 
dramatically decreasing in moving towards the level of the springing (Bianchini and 
Paolini 2003).

Instead, LIDAR and SfM systems in the multiple configurations that we can observe 
nowadays (stable, portable, flying, diving) produce dense and accurate datasets in the 
form of point clouds. Yet, this “capturing power” would have been actually irrelevant 
without the parallel development of 3D modelling systems that grants us the possibility 
not only to do better what we used to do, but above all to do what was simply 
impossible before.

The samples presented in sections that follow (the domes of the Hagia Sophia in 
Istanbul, San Carlo ai Catinari in Rome, and St. Peter’s Basilica in the Vatican City) 
intend to present both a demonstrator of the workflow discussed so far and some 
interesting results in the geometric study of surfaces.
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Hagia Sophia in Istanbul

‘Glory to God, who deemed me worthy to finish this construction. O Solomon, thus 
have I prevailed over you.’ With these words Emperor Justinian, together with the 
Patriarch inaugurated Hagia Sophia church on 27 December 537 ad, only 5 years 
after the laying of the first stone.

Hagia Sophia is undoubtedly the product of the Emperor’s will: inspired by 
Justinian’s new-found faith, this unprecedented construction is also more prosaically 
driven by the political need to explicitly embody in this building his imperial power. 
That is why the Emperor invested enormous resources and personal energy in this 
endeavour. He chose carefully his team of designers (the Greek mathematician 
and architect Anthemius of Tralles assisted by Isidorus the Elder of Miletus) 
but he personally supervised the work imposing strict working conditions. Ten 
thousand workers, divided into two competing, “militarized” teams, accomplished 
the construction task in an unprecedented time. This speed, however, undermined 
the stability of the building from the very beginning and determined a first major 
collapse of its dome some 20  years after the dedication of the church. A new 
covering, less hollow than Antemius’, was then rebuilt by Isidorus the Younger of 
Miletus.

The overall design of Hagia Sophia is based on a huge square with sides of 
approximately 62 m. Another smaller, concentric square (side of about 31 m, or 100 
Byzantine feet) is contoured at its corners by four large piers that support the central 
dome. The transition from square to the springing circumference of the dome is 
solved by inserting four spherical pendentives, another great invention of Antemius, 
that will become an absolute paradigm of Western architecture. Transformed in 
a mosque by Mehmed the Conqueror after Constantinople fall in 1453, at the 
beginning of the twentieth century Ataturk changed its function into a museum but, 
very recently, it has been re-converted into a mosque.

The huge dome that soars above its central space, certainly its most remarkable 
element, has also proven over time to be its Achilles’ heel. The irregular surface 
we can currently observe visiting the monument is thus the result of the layered 
and often incoherent reconstructions that followed the three major collapses that 
occurred over time.

We approached the study of this structure basing on a general point cloud of 
about 100 million points7 (Fig. 3), spanning from a minimum density of 4 × 4 cm to 
a maximum of 2 × 2 mm. The processing of this dataset allowed for the construction 

7  It is worth underlining that the point cloud analyzed in this study is the product of a “scientific” 
joint venture between our group from DSDRA and the team from the Institut für Kunstgeschichte der 
Universität Bern led by Volker Hoffmann and Nikolaos Theocharis (2016). As a quarter of the central 
area of Hagia Sophia is almost permanently occupied by a huge scaffolding used for the restoration of the 
dome, which prevents a complete capturing of its intrados, we decided to share our “individual” clouds 
in order to improve the quality and quantity of available data. Although we can read only very few points 
in a relevant portion of the dome (only those captured by the beams filtering through the scaffolding), 
this unconventional exchange of data is, in our opinion, a valuable good practice in the study of complex 
structures.
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of a number of 2D and 3D models aimed at assessing the dimensions and alignments 
of the structures bearing the dome.

We focused, in particular, on the four main piers, on the two large arches located 
east and west along the main axis of the nave and, finally, on the pair of arches and 
subarches facing respectively north and south.

The first phase investigated the shape of the arches bearing the dome along 
the east and west axis. We started by sectioning the point cloud along ten vertical 
planes perpendicular to the axis of each arch (Fig.  4). The set of 3D points 

Fig. 3   Hagia Sophia’s general point cloud
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intersected along each plane was then interpolated in order to trace the best fitting 
circumference to assume as the most probable profile used in the construction.

This operation revealed an unexpected geometry: the intrados of neither east 
nor west arches correspond to a cylindrical surface, but are instead portions of a 
truncated circular cone. The outer and inner semicircles delimiting each arch have 
been built using different radii: the largest, facing the dome, measure 16.81  m 
while the other is 16.50 m long (Fig. 5).

The reason for this difference is not clear; it is too great and regular to be 
unintentional but still too small to be noted without measuring. Nevertheless, 
it could be explained either in terms of “smoothing” the too sharp transition 
between the intrados of the arches and the dome, or as an optical correction 
conceived by the designer.

Other interesting findings refer to the north and south walls, both clearly 
deformed over time by the thrust of the dome. The north wall is bending 
considerably outwards: 66  cm in the portion between the ground floor and the 

Fig. 4   Study of the geometry of the arches bearing the dome
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upper cornice of the matroneum, reaching a total incline of approximately 1  m 
just below the springing level of the dome.

The dome is actually the element that has been subjected to the greatest 
transformations. Originally designed by Anthemius of Tralles as a very hollow 
portion of a sphere, it collapsed for a combination of reasons in 558 ad. Rebuilt 
by Isidore of Miletus, again based upon a sphere but with a much higher profile, 
the dome suffered two other partial collapses in 989 and 1346 caused by major 
earthquakes. The structure we see today is then the result of the layering of these 
reconstructions visibly carried out in an approximate way by a work force not skilled 
enough to handle properly the problem.

Our study started by sectioning the point cloud of the dome using 60 horizontal 
planes at 25  cm intervals (Fig.  6). We then selected 45 of them as representative 
of the most evident deformations. Likewise, we constructed a number of radial 
sections passing through the vertical axis of the sphere and the middle of the ribs 
that compose the intrados of the dome (Fig. 7).

This set of horizontal and vertical curves showed the location and degree of 
unevenness of the surface: from the unmistakable re-stitching along the north-east 
diagonal, to the deformations in the interval between 53.5 and 49 m above ground 
level. Finally, other remarkable differences were found at the level of the springing 
of the dome along the east and southeast directions.

Ancient Byzantine building techniques undoubtedly played a key role in 
both the construction of this masterpiece of Western architecture but also in 
creating its main weak points. The hollow shape of the first two domes (and their 
consequent huge thrust outwards) not only affected the dome’s stability, but also 

Fig. 5   The shape of the intrados 
of the arches
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undermined the solidity of the four main piers bearing the covering. The building 
phase itself, too quick to ensure the correct curing of the masonry, decreased on 
one hand the bearing capacity of the piers (and walls too) while on the other it 
caused important settling already evident during the construction.

In spite of the fact that the piers were made of solid stone blocks up to the level 
of the matroneum, still their deformation is indeed quite evident: the thrust of the 
east and west transversal arches made the piers lean outwards, widening them at 
the level of the springing by approximately 60 cm (Fig. 8).

All these conclusions belong to the “to do better what we used to do” class; 
in other words we have taken advantage of traditional 2D graphic models, as 
many other scholars have done for a long time (Emerson and Van Nice 1943; 
Sanpaolesi 1978; Mainstone 1988; Dorffner et al. 2000; Hidaka and Sato 2004). 
It is time now to shift to the “to do what simply was impossible before” class, 
namely to show the results of our 3D investigation (Bianchini and Paolini 2003; 
Docci 2003; Hoffmann and Theocharis 2016).

The first question we addressed was the reconstruction of the original shape 
of the dome, obviously not Anthemius’ sphere (lost forever) but instead that of 
Isodore. Working directly on the 3D point cloud, we decided to search for the 
spherical surface best fitting our point cloud. However, taking into account the 
actual “umbrella” shape of the intrados, we choose to build two different spheres: 
one interpolating the points lying on the inner ribs, the other considering those 
belonging to the outer sails (Fig. 9).

Fig. 6   The 2D study of Hagia Sophia dome: horizontal sectioning
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In the first case we selected a set of almost 430,000 points that led to a sphere 
with a radius of 16.62 m, while in the second the points chosen were about 380,000 
and the radius of the generated sphere was of 17.00  m. Assuming the springing 
plane of the dome at 41.18 m from ground level, the distance between this plane and 
the spheres’s centers were respectively of 1.85 m and 2.15 m. Finally, the centres 
were displaced 0.33 m one from the other and approximately aligned with the top of 
the arches bearing the dome (Figs. 10, 11).

In this framework, we could assume as the “ideal” sphere the average one 
derived from the combination of the previous two. This surface shows the following 
features: radius = 16.81 (54 Byzantine feet ± 4  cm); distance of the centre from 
the springing plane = 2.00 m. It is interesting to note that the radius of this sphere 
actually coincides with that of the great arches we discussed above. However, 
without overestimating the value of this coincidence (too many “subjective” choices 

Fig. 7   The 2D study of Hagia 
Sophia dome: vertical sectioning
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to become a real proof of anything), it nonetheless suggests again a very refined (and 
overall simple) proportional control set up by the designers at the very beginning 
of this huge project. Furthermore, it also evokes more technical matters directly 
connected with the construction process in terms of the reutilization for the upper 

Fig. 8   The 2D study of Hagia 
Sophia’s great walls

Fig. 9   The search for the best-fitting spheres of sails and ribs
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dome of the provisional structures (such as centrings) used for the lower arches. The 
circumference at the springing of this spherical dome measures 104.81 m and has a 
diameter of 33.38 m (106 Byzantine feet).

We then adopted this interpolated shape as a benchmark for making a comparison 
between the “ideal” geometry of Hagia Sophia’s dome and its actual configuration. 
We could thus verify that the circumference at the springing has deformed into an 
irregular oval with the east–west diameter measuring 32.46 m while the north–south 
is 31.65 m long (Fig. 12). Many remarkable offsets between the ideal line and the 
surveyed profile concentrate along the north–south direction perpendicular to 
the main axis of the building. This fact is probably due to the different degrees of 
rigidity of the bearing structures. The semi-domes coupled to the east–west arches 
seem to have balanced the thrust of the dome more efficiently than the simple arches 
enclosing the north and south walls.

As a result, many ribs on the intrados of the dome are presently crooked (in some 
points by up to 80–100 cm) with deformations that concentrate in two directions, 
spanning some 45° on both sides of the main east–west axis. This configuration 
matches quite well with the documented reconstruction of approximately one 
quarter of the dome after its collapse in 1346 (Fig. 13).

The final step of this 3D analysis was the reconstruction of a model that could 
represent the actual geometry of the intrados. On the basis of all sections made and, 

Fig. 10   Hagia Sophia ideal sphere: comparison between the ribs and sails interpolated surfaces
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Fig. 11   Hagia Sophia ideal sphere: centre, radius, springing circumference

Fig. 12   Evidence of the 
deformation leading to an 
irregular oval shape
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obviously, on the 3D point cloud we thus built a NURBS surface in which all the 
deformations discussed above are visible, as well as the current general layout of 
the intrados. This type of model could help not only further investigations but also 
suggest to non-specialists the “transformations” suffered by the structure over the 
centuries (Fig. 14).

Church of St. Carlo ai Catinari

The Church of San Carlo ai Catinari (Rendina 2000), dedicated to St. Carlo 
Borromeo, was built during the first decades of the seventeenth century to a design 
by Rosato Rosati. Owing to some structural problems, Pope Pius IX ordered the 
restoration of the entire building and especially of its dome (the third largest in 
Rome after St. Peter’s Basilica and Sant’Andrea della Valle), which had heavily 
suffered from weather damages as well as from the French artillery’s bombing of 
1849 during the battle against the Repubblica Romana for the control of Rome 
(Fig. 15).

Fig. 13   Deformation of the intrados surface
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The geometry of this dome and of its bearing structures (drum and piers) was 
first investigated by our team in 2006 and then again in 20188 in order to identify 
the possible damages caused by the earthquakes that had struck the centre of Italy in 
that period. In contrast to Hagia Sophia, San Carlo’s dome and drum did not show 
any evident deformation or irregular geometry, and appeared instead both regular 
and homogenous. We could say, then, that our task was to assess the level of this 
regularity: in other words, we aimed at identifying and measuring all the superficial 
deformations and misalignments revealed by our 3D capturing systems.

Our reference dataset was again the general point cloud, while our ideal shape 
for benchmarking was a surface of revolution generated by the rotation of a 2D 
curve around a central vertical axis (for the dome) and a cylinder (for the drum). 
Therefore, we actually organized our workflow so as to define position and geometry 
of both these elements according to the protocol tested in Hagia Sophia. Thus, the 
dome and the drum were sectioned with a set of horizontal planes at intervals of 
60 cm (Fig. 16).

Fig. 14   The superficial 3D model of the dome of Hagia Sophia

8  This work is based on two different 3D point clouds. The first, acquired in 2006 with a Leica HDS 
3000, counts about 70 million points. The second one, captured in 2018 with a FARO 405, is made of 
more than 500 million points. Both have been coupled with a topographic campaign to ensure the highest 
control on the quality of the final model. Furthermore, in 2018 a digital photogrammetric surveying took 
place together with the scanning, adding some 100 million points to the final model, which was also 
texturized with high resolution images. The average uncertainty of the final numeric model was under 
1 cm.
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This slicing operation produced a corresponding number of horizontal profiles 
representing the progression of surfaces’ layout from the base of the drum to the 
top of the dome. As the decorated intrados is enriched by progressively narrowing 
deep coffers, we assumed their bottoms as reference profiles for the following 
constructions of circles. The benchmark geometry of the system (a surface of 
revolution for the dome, cylinder for the drum) obviously implies that all curves 
generated would approximate a circle.

Our comparison between the ideal lines and those cutting the bottom of the 
coffers confirmed this hypothesis, with differences less than ± 1  cm and pretty 
close to the instrumental level of accuracy (± 0.6  cm). However, we had to 
assess the vertical alignment of all these circles. Therefore, we first considered 
the horizontal circumferences at the lantern and springing level of the dome. 
Having projected the centre of the former onto the latter, we measured the offset 
between these points, obtaining a value of 2 cm, well under our most optimistic 
expectations both for our geometric model and the static condition of San Carlo’s 
dome.

Fig. 15   Texturized point cloud of San Carlo ai Catinari



A Methodological Approach for the Study of Domes﻿	

We thus assumed the straight line between the centres of the upper and lower 
circles as the vertical axis of the dome and the drum and baseline for a family 
of vertical planes radially slicing the two (Fig.  17). This set of planes eventually 
generated several vertical profiles of the dome and the drum. They were not exactly 
the same, obviously, but their differences were not that significant and led us to 
conclude that the geometry of the structure was still quite conserved in comparison 
with the original surface of revolution. In particular, the model of the dome showed 
that it approximates quite closely a spherical surface, except for the portion right 
under the lantern, which denotes a slight increase in the inclination of the curve, 
a correction that may have been intended to mitigate the thrust of the structure on 
the lower drum. The centre of the sphere lies a few centimetres beneath the cornice 
located at the level of the springing of the dome.

Fig. 16   2D study of the dome and drum of San Carlo: horizontal sectioning
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The geometric model resulting from the processing described in the previous 
section proved very useful for studying the “stability in relation to the shape” of the 
dome and drum of San Carlo. The reliable reconstruction of some key geometric 
elements (profiles, axis, position of the centres of curvature, etc.) allowed for 
an assessment of symmetries, rotations and displacements which, passed on to 
structural experts, effectively contributed to understanding the current condition of 
the church.

Fig. 17   2D study of the dome 
and drum of San Carlo: the 
vertical sections
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St. Peter’s Basilica in the Vatican City

It would be impossible in a few lines to provide even a synthetic description of the 
long and winding process leading to the greatest dome of Christianity (Di Stefano 
1980; Spagnesi 2003). However, it is worth mentioning that the “final” project by 
Michelangelo simply erased the previous idea of Antonio da Sangallo the Younger, 
which we can only fully appreciate thanks to the huge wooden model he realized 
while chief architect of the Fabbrica di San Pietro (1520–1546).

Michelangelo’s dome (Fig.  18) is a double-domed structure that takes 
advantage of the herring-bone brick laying pattern (already used by Brunelleschi 
for Santa Maria del Fiore) for both its structural features and the consequent 
reduction of provisional structures such as centrings. After Michelangelo’s death 
in 1564, Giacomo Della Porta and Domenico Fontana continued the construction, 
reinterpreting in some way the original design. They modified the curvature of the 
dome and positioned into the masonry the first great iron chains to compensate 
for the thrust of the shell (Fontana 1694). In the middle of the eighteenth century, 
a similar intervention was carried out by Poleni in order to respond to the visible 
cracks crossing the dome and the drum (Rocchi 2009; Carusi 2010).

Many “self-defining” surveys have been published since the construction of the 
dome. However, in our opinion only the work of Letaroully seems to be consistent 
enough to be considered an actual survey. With all the limits of a not very refined 
procedure, overlaying our profiles with the drawings of his Édifices de Rome 
moderne (Letaroully 1840–55), we have found a very good correspondence.

We could say that both Hagia Sophia and San Carlo represented preliminary tests 
for the challenging task described in the next lines: the study of St. Peter’s dome. 
Despite the different dimensions and nature of the double-dome structure, the 
approach used for St. Peter was not much different from that used in the first two 

Fig. 18   St. Peter’s in the Vatican City: texturized point cloud
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cases: the 3D point cloud9 was sectioned horizontally and vertically, obtaining in the 
first case “parallels” and in the second “meridians”. As in the case of St. Carlo, our 
aim was to fix the geometry of the system, identify possible deformations, and assess 
its verticality. When our work was concluded, we were to have passed our model 
and results to the structural engineers of the group for further investigations. We 
focused our surveying campaign on the area of the basilica covered by the dome: the 
four main piers, the drum and finally the inner and outer domes. Several acquisitions 
were performed at different levels (ground floor, first and second cornices, lantern) 
and, by a lucky coincidence,10 we succeeded in capturing a portion of the inner 
surfaces of the double dome (Fig. 19).

The first element investigated was the drum starting with two horizontal sections 
(Fig. 20): the first almost at its top and the second at its base (respectively at 70 m 
and 58.35 m above the floor of the Basilica).

From these curves we could determine the diameter of the cylindrical surface in 
correspondence of the external walls in which open the great windows of the drum. 
Despite some minor offsets and two major ones, varying between 23 and 25  cm 
along the diagonal aligned with the so-called Pier of Saint Veronica (south-west 
corner beyond the transept), still these irregularities did not appear relevant enough 
to contradict the hypothesis that these profiles closely approximated circles.

Fig. 19   Portion of the inner surfaces of the double dome

9  The point cloud of about 100 million points was acquired with a Leica HDS 3000 and coupled with 
a topographic campaign to ensure the highest control on the quality of the final model. Only the 3D 
cloud captured from the lantern window was not accompanied by a topographic reference, due to time 
constraints. The average uncertainty of the final numeric model was under 1 cm.
10  We were able to take advantage of an intervention of maintenance (substitution of a broken pane of 
glass) to scan the intrados of the dome from the inside of the gap between the inner and outer domes, 
thus allowing the common registration of both set of points.
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In this framework, the lower diameter (or, if you like, the width of the drum at the 
level of its springing) measures 43.00 m, decreasing to 42.50 m at the opposite end. 
There is thus a slight outwards tapering of the drum at its bottom, probably due to a 
well-known settlement of its foundations.

The study of the dome surface proceeded according to the workflow already 
presented in the previous sections: seven horizontal sections were generated in this 
case (between 77.50  m and 98.00  m above the ground floor level) and compared 
with the corresponding “ideal” circumferences. However, for better understanding, 
we chose on this occasion to consider two circles for each level: an inner one (shown 

Fig. 20   2D study of the drum of 
St. Peter: horizontal sectioning
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in red in the figures) constructed through the ribs and one more external (shown in 
blue) passing instead for the bottom of the coffers (Fig. 21).

As for the drum, also in this case we generally registered offsets spanning from 
a few centimetres to a maximum of 20 cm, always on the outer section. The only 
exception is the curve drawn at 94 m, where we measured again the highest offset 
value (37 cm) right above the Pier of Saint Veronica. However, considering the long 
and complex chaining interventions on the dome and the rich decorations applied 
to the intrados, in our opinion these values do not affect the overall geometry of 
the curves. The step after this focused on the horizontality of the main structures, 
namely cornices (first and second) and the base of the lantern: in this case the 
differences we found were consistently under 5 cm.

All the previous constructions led to the tracing of the vertical axis of the surface 
of revolution that represents our ideal model of the dome (as in San Carlo). The 
sectioning of the point cloud with a family of radial vertical planes generated a set 
of meridian profiles, one for each rib and one for each wedged portion. Furthermore, 
for the part “in between” the domes that we had the chance to capture, these curves 
were complemented by other two profiles lying respectively on the extrados of the 
inner dome and on the intrados of the outer one (Fig. 22).

The study of all these lines revealed that they closely approximate circular arcs, 
thus suggesting a precise 3D positioning of their centres.

Further analysis dealt with the profile of the entire dome. We chose then two 
pairs of curves that, cut on the wedged surface, lay on the same vertical plane and 

Fig. 21   2D study of the dome of St. Peter: horizontal sectioning
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were aligned with two opposite piers. These compose two perpendicular sections 
of the entire dome and reveal that the diameters of these diagonal profiles of the 
inner dome differ only by some 15 cm, always in correspondence with the Pier of St. 
Veronica (Fig. 23). It is interesting to note that the centres of the profiles lay below 
the springing line and were offset by 5.35 m with respect to the vertical axis of the 
dome (Fig. 24). Similar analysis have regarded the extrados of the inner dome and 
the intrados of the outer one (Fig. 25).

The 3D modelling phase completed our work also in this case. Taking into 
account the overall regularity of the geometry, we started by modelling one 
section of the dome between two ribs. In contrast to Hagia Sophia, in this case 
we had to distinguish the architectural elements (ribs, cornices, arches, etc.) from 
the decorative ones (statues, stuccos, etc.). For the former we used a geometric 
modelling, namely a constructive approach in which all elements were modelled 
directly using NURBS generative primitives and tools (Fig.  26). For the latter, 
instead, due to their lack of any geometric footprint, we chose instead to “simply” 
interpolate the point cloud into a mesh surface (Fig. 27).

Conclusions

Domes are thorny subjects indeed but the technologies we can use nowadays 
certainly have radically changed the approach to this problem. Nevertheless, the 
3D capturing systems (accurate, fast and massive) provide data that have very 

Fig. 22   The circles considered in order to understand the difference between the actual and the ideal 
circumferences
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Fig. 23   2D study of the dome of St. Peter: sections through the ribs

Fig. 24   2D study of the dome of St. Peter: radial profiles
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Fig. 25   2D study of the dome of 
St. Peter: offset of the centres of 
the extrados of the inner dome 
and the intrados of the outer one

Fig. 26   3D study of the dome of 
St. Peter: reconstruction of the 
intrados
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little intelligence inside and represent only the first step of that complex workflow 
which transforms data into information thanks to a process of selection and 
interpretation. This is a high-end ability presently reserved to human beings, but 
which could, in perspective, be extended and taught to some automatic systems 
too. However, many of the secrets domes have so far concealed can be revealed 
thanks to these systems, also effectively contributing to their conservation. The 
more deeply this task is rooted in the scientific method, the better the results will 
be. It is hoped that the work presented in this paper is able to outline a replicable 
operative protocol in the study of domes that could guide scholars and even 
professionals through this difficult activity. In this framework, the three cases 
illustrated would represent the necessary tests for our protocol or, in a more 
optimistic vision, some “good practice” in the study of domes. However, we must 
not give the impression that our study is the first to investigate the metric and 
geometric features of the three domes presented in this paper. On the contrary, we 
must compare our conclusions with a vast body of literature with different level 
of concordance.

With regard to Hagia Sophia, there is an actual correspondence between the 2D 
geometry presented by Emerson and Van Nice (1943), Mainstone (1988), Hikada 
and Satō (2004) and ours. Instead, very different is the 3D side of the study, where 
instead the results are novel in comparison with the earlier works, and also represent 
an evolution of our previous study (Bianchini and Paolini 2003). San Carlo ai 
Catinari, for reasons we have not been able to clarify, has been much less studied 
and our survey appears to be the first systematic one carried out at least in the last 
100 years. Instead, for the dome of St. Peter’s we perhaps have too much literature 
but, again, very little data to refer to: the majority of published works are based 
on partial measuring and local surveys without any systematic reference. The only 
exception seems to be the work of Letaroully, which, in our opinion, might be the 

Fig. 27   3D study of the dome of St. Peter: model of the decorative elements
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result of a systematic campaign. In this case too, then, our work could be considered 
somehow unprecedented for the technology used and for the analyses carried out. 
In any case it has been the first to geometrically connect the inner and outer domes.
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