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Preface

The aim of these lecture notes is to present an introduction to the representation
theory of wreath products of finite groups and to harmonic analysis on the
corresponding homogeneous spaces.

The exposition is completely self-contained. The only requirements are the
fundamentals of the representation theory of finite groups, for which we refer
the possibly inexperienced reader to the monographs by Serre [67], Simon
[68], Sternberg [73] and to our recent books [11, 15].

The first chapter constitutes an introduction to the theory of induced repre-
sentations. It focuses on two main topics, namely harmonic analysis on homo-
geneous spaces which decompose with multiplicity, and Clifford theory. The
latter is developed with the aim of presenting a general formulation of the little
group method. The exposition is based on our papers [12, 13, 64].

The second chapter is the core of the monograph. We develop the representa-
tion theory of wreath products of finite groups following, in part, the approach
by James and Kerber [38] and Huppert [35] and developing our research expos-
itory paper [14]. Our approach is both analytical and geometrical. In particular,
we interpret the exponentiation and composition actions in terms of actions on
suitable finite rooted trees and describe the group of automorphisms of a finite
rooted tree as the iterated wreath product of symmetric groups.

We explicitly describe the conjugacy classes of wreath products and the cor-
responding parameterization of irreducible representations. This is illustrated
by a wealth of examples including finite lamplighter groups and the wreath
product Sm � Sn of symmetric groups.

The third chapter presents an exposition of our recent papers [9, 63, 64]
where we develop harmonic analysis on some homogeneous spaces obtained
by the composition and the exponentiation actions and their generalization,
namely the wreath product of permutation representations, introduced in [64].
As a particular case of the wreath product, we analyze in detail the lamplighter

xi



xii Preface

group and develop an exhaustive harmonic analysis on the corresponding finite
lamplighter spaces. We also devote a section to the generalized Johnson scheme
and to a general construction of finite Gelfand pairs, which we introduced in
[9], based on the action of the group of automorphisms of a finite rooted tree
on the space of its rooted subtrees.

We wish to express our deepest gratitude to Roger Astley and Gaia Poggio-
galli at Cambridge University Press and to Susan Parkinson, our copy-editor,
for their most kind, constant and valuable help at all stages of the editing
process.

Roma, April 2013 TCS, FS and FT



1

General theory

In this chapter we discuss the notion of an induced representation and the struc-
ture of the commutant of a representation, and we present a new approach to
Clifford theory. We assume the reader to be familiar with the basic rudiments
of the representation theory of finite groups. We refer to the monographs by
Bump [7], Fulton and Harris [29], Isaacs [36], Serre [67], Simon [68] and
Sternberg [73] as basic references; see also our monograph [15].

In Section 1.1 we present the main properties of induction, focusing on the
Frobenius character formula and Frobenius reciprocity. Then, in Section 1.2,
we discuss several aspects of Frobenius reciprocity for a permutation represen-
tation; in particular, we show that the spherical Fourier transform provides an
explicit isomorphism between the commutant of a permutation representation
and the algebra of bi-K-invariant functions. In the last part of the section we
examine the particular case of a multiplicity free permutation representation,
which yields the notion of a Gelfand pair. Finally, in Section 1.3, we present an
exposition of Clifford theory, which provides a powerful tool for relating the
representation theory of a group G and the representation theory of a normal
subgroup N ≤ G.

1.1 Induced representations

The presentation of this section was inspired by the books by Bump [7], Serre
[67] and Sternberg [73] and by our research-expository paper [12].

1.1.1 Definitions

LetG be a finite group. LetK be a subgroup ofG and (ρ,W) a representation
of K . Let S ⊆ G be a system of representatives for the left cosets of K in G,
so that

1



2 General theory

G =
∐
s∈S
sK (1.1)

(here, and in what follows,
∐

denotes a disjoint union). We shall always sup-
pose that the unit element 1G of G belongs to S. Consider the space WS =
{f : S → W }. Given g ∈ G, we define the linear map σ(g) : WS → WS by
setting

[σ(g)f ](s) = ρ(k−1)[f (t)] (1.2)

for all f ∈ WS and s ∈ S, where t ∈ S and k ∈ K are the unique elements
such that g−1s = tk.

Let g1, g2 ∈ G, f ∈ WS and s ∈ S. Also let s1, s2 ∈ S and k1, k2 ∈ K such
that g−1

1 s = s1k1 and g−1
2 s1 = s2k2. Note that (g1g2)

−1s = s2(k2k1). We then
have

[σ(g1)(σ (g2)f )](s) = ρ(k1
−1)[(σ (g2)f )(s1)]

= ρ(k1
−1)ρ(k2

−1)[f (s2)]
= ρ(k2k1)

−1[f (s2)]
= [σ(g1g2)f )](s).

It follows that (σ,WS) is a representation of G.
We will always suppose that the representations (ρ,W) are unitary, that is,

W is equipped with a scalar product 〈·, ·〉W and one has

〈ρ(g)w, ρ(g)w′〉W = 〈w,w′〉W
for all g ∈ G and w,w′ ∈ W .

Remark 1.1.1 Note that if (ρ,W) is unitary then (σ,WS) is also unitary with
respect to the scalar product onWS defined by

〈f, f ′〉WS =
∑
s∈S
〈f (s), f ′(s)〉W

for all f, f ′ ∈ WS . Indeed, for all f, f ′ ∈ WS and g ∈ G we have

〈σ(g)f, σ (g)f ′〉WS =
∑
s∈S
〈[σ(g)f ](s), [σ(g)f ′](s)〉W

=
∑
s∈S
〈ρ(k−1

s )f (ts), ρ(k
−1
s )f

′(ts)〉W
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=
∑
s∈S
〈f (ts), f ′(ts)〉W

=
∑
t∈S
〈f (t), f ′(t)〉W

= 〈f, f ′〉WS

where, for all s ∈ S, ts ∈ S and ks ∈ K are the unique elements such that
g−1s = tsks . Note that, since the map sK 
→ tsK , that is, left multiplication
by g−1, yields a bijection on the left cosets of K in G, then the map s 
→ ts is
a bijection on S.

Consider now the space WG = {f : G → W } and define the subspace
Z ⊆ WG by setting

Z = {f ∈ WG : f (gk) = ρ(k−1)f (g) for all g ∈ G and k ∈ K}. (1.3)

Given g1 ∈ G define the linear map θ(g1) : Z→ Z by setting

[θ(g1)f ](g2) = f (g−1
1 g2) (1.4)

for all g2 ∈ G and f ∈ Z. Let g1, g2, g3 ∈ G, k ∈ K and f ∈ Z. We then
have

[θ(g1)f ](g2k) = f (g−1
1 g2k) = ρ(k−1)f (g−1

1 g2) = ρ(k−1)[θ(g1)f ](g2),

which shows that θ(g1)f ∈ Z. Moreover,

[θ(g1g2)f ](g3) = f ((g1g2)
−1g3)

= f (g−1
2 g−1

1 g3)

= [θ(g2)f ](g−1
1 g3)

= [θ(g1)θ(g2)f ](g3).

This shows that (θ, Z) is a representation of G.

Proposition 1.1.2 The G-representations (θ, Z) and (σ,WS) are equiva-
lent. In particular, the equivalence class of the representation (σ,WS) does
not depend on the particular choice of the set of representatives for the left
cosets of the subgroup.



4 General theory

Proof Consider the map � : WS → WG defined by setting

�(f )(g) = ρ(k−1)f (s)

for all f ∈ WS and g ∈ G, where s ∈ S and k ∈ K are the unique elements
such that g = sk.

Let g ∈ G and k ∈ K . Let also s ∈ S and h ∈ K such that g = sh and note
that gk = s(hk). We have

�(f )(gk) = ρ((hk)−1)f (s)

= ρ(k−1)ρ(h−1)f (s)

= ρ(k−1)�(f )(g).

This shows that the image of � is contained in Z (see (1.3)).
Note that� is a bijection ofWS ontoZ, since every element inZ is uniquely

determined by its restriction to S.
Let us show that � intertwines the representations σ and θ . Let g1, g2 ∈ G

and f ∈ WS . Let also s2, s ∈ S and k2, k ∈ K such that g2 = s2k2 and
g−1

1 s2 = sk and observe that skk2 = g−1
1 s2k2 = g−1

1 g2. Then we have

�[σ(g1)f ](g2) = ρ(k−1
2 )[σ(g1)f (s2)]

= ρ(k−1
2 )[ρ(k−1)f (s)]

= ρ((kk2)
−1)f (s)

= �(f )(skk2)

= �(f )(g−1
1 g2)

= [θ(g1)�(f )](g2).

This shows that � intertwines the representations σ and θ . It follows that
σ ∼ θ . �

Definition 1.1.3 The G-representation (σ,WS), where σ is defined by (1.2),
is called the representation induced by (ρ,W) from K to G and is denoted by
(IndGKρ, IndGKW).

It follows from Proposition 1.1.2 that the induced representation is, up to
equivalence, independent of the choice of the system S of representatives for
the left cosets of K in G. Recalling that the dimension of a representation
(ρ,W) is defined as dim(W), we have that the dimension of the induced rep-
resentation (IndGKρ, IndGKW) is given by

dim(IndGKW) = [G : K] dim(W), (1.5)
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which immediately follows from the equalities dim(WS) = |S| dim(W) and
|S| = [G : K].

Moreover, from (1.2) we deduce that

[IndGKρ(g)f ](s) = ρ(s−1gt)[f (t)] (1.6)

where t is the unique element in S such that s−1gt ∈ K . As a consequence,
setting ρ(g′) = 0 if g′ ∈ G \K , we can represent the linear map IndGKρ(g) by
the S × S matrix with entries in End(W) given by(

ρ(s−1
1 gs2)

)
s1,s2∈S

. (1.7)

Exercise 1.1.4 Show that, for g1, g2 ∈ G, the matrix representing the linear
map IndGKρ(g1g2) is the product of the matrices representing IndGKρ(g1) and
IndGKρ(g2).

Given a finite set X we denote by Sym(X) the symmetric group on X, that
is, the set of all bijective maps (called permutations) π : X → X with multi-
plication given by composition. When |X| = n, we denote Sym(X) by Sn and
refer to it as to the symmetric group of degree n.

Example 1.1.5 Let G = S3 = {e, (12), (13), (23), (123), (132)}. Consider
the subgroup K = {e, (12)} ∼= S2. We choose as a set of representatives for
the left cosets of K in G the set S = {e, (123), (132)}. Note that (13) =
(123)(12) and (23) = (132)(12). The unique representations of K are one
dimensional, namely the trivial representation (ι,C) and the alternating rep-
resentation (ε,C). For simplicity of notation, we denote by ι and ε the corre-
sponding induced representations of G on C ⊕ (123)C ⊕ (132)C (note that
hereW = C). Given f ∈ C⊕ (123)C⊕ (132)C we then have

[ι(e)f ] (e) = f (e), [ι(e)f ] (123) = f (123), [ι(e)f ] (132) = f (132);
[ι(12)f ] (e) = f (e), [ι(12)f ] (123) = f (132), [ι(12)f ] (132) = f (123);
[ι(13)f ] (e) = f (123), [ι(13)f ] (123) = f (e), [ι(13)f ] (132) = f (132);
[ι(23)f ] (e) = f (132), [ι(23)f ] (123) = f (123), [ι(23)f ] (132) = f (e);
[ι(123)f ] (e) = f (132), [ι(123)f ] (123) = f (e), [ι(123)f ] (132) = f (123);
[ι(132)f ] (e) = f (123), [ι(132)f ] (123) = f (132), [ι(132)f ] (132) = f (e).

The corresponding matrices as in (1.7) are given by

ι(e) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ , ι(12) =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠ , ι(13) =
⎛⎝0 1 0

1 0 0
0 0 1

⎞⎠ ,
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ι(23) =
⎛⎝0 0 1

0 1 0
1 0 0

⎞⎠ , ι(123) =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠ , ι(132) =
⎛⎝0 1 0

0 0 1
1 0 0

⎞⎠.
Similarly,

[ε(e)f ] (e) = f (e), [ε(e)f ] (123) = f (123), [ε(e)f ] (132) = f (132);
[ε(12)f ] (e) = −f (e), [ε(12)f ] (123) = −f (132), [ε(12)f ] (132) = −f (123);
[ε(13)f ] (e) = −f (123), [ε(13)f ] (123) = −f (e), [ε(13)f ] (132) = −f (132);
[ε(23)f ] (e) = −f (132), [ε(23)f ] (123) = −f (123), [ε(23)f ] (132) = −f (e);
[ε(123)f ] (e) = f (132), [ε(123)f ] (123) = f (e), [ε(123)f ] (132) = f (123);
[ε(132)f ] (e) = f (123), [ε(132)f ] (123) = f (132), [ε(132)f ] (132) = f (e),

and the corresponding matrices, again as in (1.7), are given by

ε(e) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ , ε(12) =
⎛⎝−1 0 0

0 0 −1
0 −1 0

⎞⎠ , ε(13) =
⎛⎝ 0 −1 0
−1 0 0
0 0 −1

⎞⎠
ε(23) =

⎛⎝ 0 0 −1
0 −1 0
−1 0 0

⎞⎠ , ε(123) =
⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠ , ε(132) =
⎛⎝0 1 0

0 0 1
1 0 0

⎞⎠.
Definition 1.1.6 Let G be a finite group acting transitively on a finite set
X and denote by L(X) the space of all functions f : X → C. Then the
corresponding permutation representation (λ, L(X)) is defined by

[λ(g)f ](x) = f (g−1x)

for all g ∈ G, f ∈ L(X), and x ∈ X.

Fix a point x0 ∈ X and denote by K = {g ∈ G : gx0 = x0} its stabilizer;
then we can identify X and the set G/K of left cosets of K as G-spaces. We
refer to X = G/K as an homogeneous space. Denote by (ι,C) the trivial
(one-dimensional) representation of K .

Proposition 1.1.7 The permutation representation λ and the induced repre-
sentation IndGKι are equivalent.

Proof Let � : L(X)→ CS ≡ IndGKC be the map defined by

[�f ](s) = f (sx0)

for all f ∈ L(X) and s ∈ S. Clearly � is a vector space isomorphism. More-
over, for all f ∈ L(X), g ∈ G, and s ∈ S, if t ∈ S and k ∈ K are such that
g−1s = tk then we have
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[�(λ(g)f )](s) = [λ(g)f ](sx0)

= f (g−1sx0)

= f (tx0)

= [�f ](t)
= [IndGKι(g)�f ](s).

This shows that� intertwines λ and IndGKι. It is easy to see that� is a bijection
and therefore λ ∼ IndGKι. �

Definition 1.1.8 Suppose that G is a finite group, K a subgroup of G, and
(σ, V ) a representation of G. The restriction ResGKσ of σ from G to K is the
representation of K on V defined by setting ResGKσ(k) = σ(k) for all k ∈ K .

In the notation of Definition 1.1.8, if W ≤ V is a K-invariant subspace
(that is, σ(k)w ∈ W for all k ∈ K and w ∈ W ) then we may also consider
the representation ResGKσ

∣∣
W

of K onW (here, and in what follows, given sets
X, Y and Z ⊆ X and a map f : X → Y we denote by f |Z : Z → Y the
restriction map defined by f |Z(x) = f(x) for all x ∈ Z).

In the notation of Definition 1.1.3, set W0 = {f ∈ WS : f (s) = 0 if s �=
1G}. Then we have

(i) ResGKσ
∣∣
W0

is equivalent to ρ;

(ii) IndGKW =⊕
s∈S σ (s)W0.

Indeed (i) is obvious, while to prove (ii) it suffices to note that for s, t ∈ S and
f0 ∈ W0 we have

[σ(s)f0] (t) = ρ(k−1)f0(q) =
{

0 if s �= t
f0(1G) if s = t

where q ∈ S, k ∈ K are chosen in such a way that s−1t = qk. These two prop-
erties provide a characterization of induced representations (or an alternative
definition; see [67]):

Proposition 1.1.9 Let G, K , and S be as above. Let (σ, V ) be a represen-
tation of G. Let W ≤ V be a K-invariant subspace and set ρ = ResGKσ

∣∣
W

.
Suppose that

V =
⊕
s∈S

σ (s)W.

Then IndGKρ ∼ σ .
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Proof First let us set τ = IndGKρ. Consider the linear map

� : WS −→ V

f 
−→ ⊕
s∈S σ (s)f (s).

It is clearly a bijection. Moreover, we have, for f ∈ WS , g ∈ G and s ∈ S,

[τ(g)f ](s) = ρ(k−1
s )f (ts) ≡ σ(k−1

s )f (ts),

where ts ∈ S and ks ∈ K are chosen in such a way that g−1s = tsks . Therefore

�τ(g)f =
⊕
s∈S

σ (s)[τ(g)f ](s)

=
⊕
s∈S

σ (s)σ (k−1
s )f (ts)

=
⊕
s∈S

σ (g)σ (ts)f (ts) (sk−1
s = gts)

= σ(g)
⊕
s∈S

σ (ts)f (ts)

= σ(g)�f.
This proves that � also intertwines IndGKρ and σ . It follows that the two

representations are equivalent. �

1.1.2 Transitivity and additivity of induction

One of the most important properties of induction is transitivity.

Proposition 1.1.10 (Induction in stages) LetG be a finite group, K ≤ H ≤
G be subgroups and (ρ,W) a representation of K . Then

IndGH (IndHKW) ∼= IndGKW (1.8)

as G-representations.

Proof Let T ⊂ H (resp. S ⊂ G) be a set of representatives for the left cosets
of K in H (resp. of H in G). Then the map (s, t)→ st establishes a bijection
between S × T and the set ST = {st : s ∈ S, t ∈ T } ⊂ G. Moreover, ST is a
set of representatives for the left cosets of K in G.

Consider the map

� : WST → (WT )S (1.9)
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defined by [�f (s)] (t) = f (st) for all f ∈ WST , s ∈ S and t ∈ T . It follows
from the above observations that� is a linear isomorphism. Let us show that�
intertwines the representations IndGKρ and IndGH IndHKρ. Let f ∈ WST , g ∈ G,
s ∈ S and t ∈ T . Denote by s′ ∈ S, t ′ ∈ T and k ∈ K the unique elements
such that g−1(st) = s′t ′k. Also set

h = t ′kt−1 ∈ H. (1.10)

We then have on the one hand

[IndGKρ(g)f ](st) = ρ(k−1)f (s′t ′)

so that

{�[IndGKρ(g)f ](s)}(t) = ρ(k−1)
{[
�f (s′)

]
(t ′)

}
. (1.11)

On the other hand we have, using (1.10) (that is, the identities g−1s = s′h and
(h−1)−1t = ht = t ′k),{

[IndGH IndHKρ(g)(�f )](s)
}
(t) =

{
IndHKρ(h

−1)[�f (s′)]
}
(t)

= ρ(k−1)
{[�f (s′)](t ′)} . (1.12)

Comparing (1.11) and (1.12), the proof is complete. �

Another property of the induction operation is additivity.

Proposition 1.1.11 Let G be a finite group and K ≤ G a subgroup. Let
(ρ1,W1) and (ρ2,W2) be two representations of K . Then

IndGK(ρ1 ⊕ ρ2) ∼ IndGK(ρ1)⊕ IndGK(ρ2). (1.13)

Proof Let S ⊂ G be a set of representatives for the left cosets of K in G.
Consider the linear map � : (W1 ⊕W2)

S → WS
1 ⊕WS

2 defined by

[�(f )]1(s) = [f (s)]1 and [�(f )]2(s) = [f (s)]2

for all f ∈ (W1⊕W2)
S and s ∈ S. It it clear that� is a linear isomorphism. Let

us show that� intertwines IndGK(ρ1⊕ρ2) and IndGK(ρ1)⊕IndGK(ρ2). Let g ∈ G,
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s ∈ S and f = (W1 ⊕W2)
S . Then we can find unique t ∈ S and k ∈ K such

that g−1s = tk. We then have, for i = 1, 2,

[�(IndGK(ρ1 ⊕ ρ2)(g)f )]i (s) = [(IndGK(ρ1 ⊕ ρ2)(g)f )(s)]i
= [(ρ1(k

−1)⊕ ρ2(k
−1)f (t)]i

= ρi(k−1)[f (t)]i
= ρi(k−1)[�(f )]i (t)
= IndGK(ρi)(g)[�(f )]i (s)
= [(IndGK(ρ1)⊕ IndGK(ρ2))(g)�(f )]i (s).

This shows that � intertwines IndGK(ρ1 ⊕ ρ2) and IndGK(ρ1) ⊕ IndGK(ρ2) and
the proof is complete. �

1.1.3 Frobenius character formula

Theorem 1.1.12 (Frobenius character formula for induced representations)
LetG be a finite group,K ≤ G a subgroup and S ⊆ G a system of representa-
tives of left cosets of K in G. Let (ρ,W) be a representation of K and denote
by χρ its character. Then the character χIndGKρ

of the induced representation is
given by

χIndGKρ
(g) =

∑
s∈S:

s−1gs∈K

χρ(s
−1gs). (1.14)

Proof Let 〈·, ·〉W denote the scalar product on W and let {ej : j ∈ J } be
an orthonormal basis for W . Then, we define a scalar product on WS as in
Remark 1.1.1. Also, denote by fs,j ∈ WS the map defined by fs,j (s′) =
δs,s′ej ∈ W for all s, s′ ∈ S and j ∈ J . It follows that {fs,j : s ∈ S, j ∈ J } is
an orthonormal basis forWS = IndGKW .

Now let g ∈ G and s ∈ S. Then there exist unique t ∈ S and k ∈ K such
that g−1s = tk or, equivalently,

k−1 = s−1gt. (1.15)

Setting σ = IndGKρ we deduce that

[σ(g)fu,j ](s) = ρ(k−1)fu,j (t) = δu,tρ(k−1)ej (1.16)
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for all u ∈ S and j ∈ J . We then have

χIndGKρ
(g) =

∑
u∈S
j∈J

〈σ(g)fu,j , fu,j 〉WS =
∑
u,s∈S
j∈J

〈[σ(g)fu,j ](s), fu,j (s)〉W

=
∑
u,s∈S
j∈J

δu,t δu,s〈ρ(k−1)ej , ej 〉W (by (1.16))

=
∑
s∈S
j∈J

δs,t 〈ρ(k−1)ej , ej 〉W

=
∑
s∈S:

s−1gs∈K
j∈J

〈ρ(s−1gs)ej , ej 〉W (by (1.15))

=
∑
s∈S:

s−1gs∈K

χρ(s
−1gs).

�

Exercise 1.1.13 Give an alternative proof of the Frobenius character formula
(1.14) by using the matrix representation (1.7).

1.1.4 Induction and restriction

Induction and restriction are not inverse operations: this follows immediately
after comparing dimensions (see (1.5)). The following example shows that,
even in the case of the trivial representation, the composition of these two
operations is quite different from the identity.

Example 1.1.14 Let K be a subgroup of a group G and set X = G/K . Con-
sider first the trivial representation (ιG,C) of G. We clearly have ResGKιG =
ιK . Therefore IndGKResGKιG = IndGKιK = (λ, L(X)) (cf. Definition 1.1.6 and
Proposition 1.1.7). Thus, if K �= G we easily deduce that IndGKResGKιG �= ι̃G,
where (ι̃G,L(X)) is theG-representation defined by ι̃G(g)f = f for all g ∈ G
and f ∈ L(X).

Consider now the trivial representation (ιK,C) of K . Let us show that if K
is not a normal subgroup then ResGK IndGKιK �= ι̃K , where (ι̃K , L(X)) is the K-
representation defined by ι̃K(k)f = f for all k ∈ K and f ∈ L(X). Denoting
by x0 ∈ X a point fixed by K , by our assumption we can find k ∈ K and
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g ∈ G such that g−1k−1g /∈ K or equivalently k−1gx0 �= gx0. Then, recalling
that IndGKιK = (λ, L(X)), we have

[ResGK IndGKιK(k)δgx0](gx0) = [ResGKλ(k)δgx0](gx0)

= [λ(k)δgx0](gx0)

= δgx0(k
−1gx0)

= 0 �= 1

= [δgx0](gx0)

= [ι̃K(k)δgx0](gx0),

where δx ∈ L(X) is the Dirac function at x ∈ X (that is, δx(y) = 1 if x = y
and 0 otherwise).

However, the following two results establish the right connection between
induction and restriction.

Proposition 1.1.15 Let (θ, V ) be a representation of a groupG and (ρ,W) a
representation of a subgroupK ≤ G. Then we have the following isomorphism
of G-representations:

V ⊗ IndGKW ∼= IndGK [(ResGKV )⊗W ]. (1.17)

Proof Let S ⊂ G be a set of representatives for the left cosets of K in G.
Consider the linear map� : V⊗WS → (V⊗W)S defined on simple tensors by

[�(v ⊗ f )](s) = θ(s−1)v ⊗ f (s)
for all v ∈ V , f ∈ WS and s ∈ S. Let us prove that � is a linear isomorphism.

To show that it is surjective, fix F ∈ IndGK [(ResGKV )⊗W ]. Then, for every
s ∈ S there exists a finite index set Is and vsi ∈ V , wsi ∈ W , i ∈ Is , such
that F(s) = ∑

i∈Is v
s
i ⊗ wsi . Consider the element π = ∑

i∈It
t∈S
θ(t)vti ⊗ f ti ∈

V ⊗ IndGKW where f ti (s) = δs,tw
s
i for all t ∈ S. We claim that �(π) = F .

Indeed we have, for all s ∈ S,

[�(π)](s) =
∑
i∈It
t∈S

θ(s−1)θ(t)vti ⊗ f ti (s)

=
∑
i∈Is

vsi ⊗ wsi

= F(s).
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This shows that � is surjective. Moreover, using (1.5) we have

dim(V ⊗ IndGKW) = dim(V ) dim(W)[G : K] = dim(IndGK [(ResGKV )⊗W ]),
so that, by linearity, we deduce that � is also injective. Thus � is a linear
isomorphism between V ⊗ IndGKW and IndGK [(ResGKV )⊗W ].

Let us show that� intertwines θ⊗IndGKρ and IndGK(ResGKθ⊗ρ). Let v ∈ V ,
f ∈ WS , g ∈ G and s ∈ S. Then we can find unique elements t ∈ T and k ∈ K
such that g−1s = tk (so that s−1g = k−1t−1). We have on the one hand{

�[(θ ⊗ IndGKρ)(g)(v ⊗ f )]
}
(s) =

{
�[θ(g)v ⊗ ρ(k−1)f (t)]

}
(s)

= θ(s−1)θ(g)v ⊗ ρ(k−1)f (t)

= θ(k−1t−1)v ⊗ ρ(k−1)f (t) (1.18)

and, on the other hand,

[IndGK(ResGKθ ⊗ ρ)(g)�(v⊗ f )](s) = [(ResGKθ(k
−1)⊗ ρ(k−1))�(v⊗ f )](t)

= [θ(k−1)⊗ ρ(k−1)][θ(t−1)v ⊗ f (t)]
= θ(k−1)θ(t−1)v ⊗ ρ(k−1)f (t).

(1.19)

A comparison between (1.18) and (1.19) shows that � is an intertwiner, com-
pleting the proof. �

Corollary 1.1.16 Let G be a group and K ≤ G a subgroup, denote by X
the homogeneous spaceG/K and let (θ, V ) be a representation ofG. Then we
have

IndGKResGKV ∼= V ⊗ L(X). (1.20)

Proof Apply Proposition 1.1.15 with (ρ,W) = (ιK,C), the trivial represen-
tation of K . In this case, IndGKW = L(X) and (ResGKV ) ⊗W = (ResGKV ) ⊗
C ∼= ResGKV . �

Remark 1.1.17 Let G be a group and K ≤ G a subgroup. If (σ1, V1) and
(σ2, V2) are two representations of G then we clearly have

ResGK(σ1 ⊗ σ2) ∼ ResGK(σ1)⊗ ResGK(σ2).

On the contrary, if K is a proper subgroup ofG and (ρ1,W1) and (ρ2,W2) are
two representations of K then we always have

IndGK(ρ1 ⊗ ρ2) �∼ IndGK(ρ1)⊗ IndGK(ρ2),

as immediately follows from (1.5).
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1.1.5 Induced representations and induced operators

Let G be a finite group and K ≤ G a subgroup. Let (ρ1,W1) and (ρ2,W2) be
two representations of K and let T : W1 → W2 be a K-intertwining operator.
Fix a set S ⊂ G of representatives for the set of left cosets of K in G. We
define an operator IndGKT : IndGKW1 → IndGKW2 by setting

[IndGKT (f )](s) = T [f (s)] (1.21)

for all f ∈ V1 = WS
1 and s ∈ S.

Proposition 1.1.18 With the above notation we have

(i) IndGKT intertwines IndGKρ1 and IndGKρ2;
(ii) Ker IndGKT = IndGKKer T ;

(iii) Ran IndGKT = IndGKRan T .

Proof Let f ∈ WS
1 , g ∈ G and s ∈ S. Then we can find unique t ∈ S and

k ∈ K such that g−1s = tk and therefore{
IndGKρ2(g)[IndGKT (f )]

}
(s) = ρ2(k

−1)
{
[IndGKT (f )](t)

}
= ρ2(k

−1)T [f (t)]
= T [ρ1(k

−1)f (t)]
= T

{
[IndGKρ1(g)f ](s)

}
=
{

IndGKT [IndGKρ1(g)f ]
}
(s).

This shows (i). To show the remaining part, let f ∈ V1 = WS
1 .

We have f ∈ Ker IndGKT if and only if 0 = [IndGKT (f )](s) = T [f (s)]
for all s ∈ S, that is, if and only if f (s) ∈ Ker T for all s ∈ S, equivalently,
f ∈ IndGKKer T . This shows (ii).

Similarly, we have f ∈Ran IndGKT if and only if there exists f ′ ∈ IndGKW1=
WS

1 such that f (s) = [IndGKT (f
′)](s) = T [f ′(s)] for all s ∈ S, that is, if and

only if f (s) ∈ Ran T for all s ∈ S, equivalently, f ∈ IndGKRan T . Thus, (iii)
follows as well. �

1.1.6 Frobenius reciprocity

Theorem 1.1.19 (Frobenius reciprocity) Let G be a finite group, K ≤ G

a subgroup, (θ, V ) a representation of G and (ρ,W) a representation of K .
For T ∈ HomG(V, IndGKW) define the linear map T̂ : V → W by setting, for
every v ∈ V ,
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T̂ v = [T v](1G). (1.22)

Then T̂ ∈ HomK(ResGKV,W) and the map T 
→ T̂ is a linear isomorphism
between the space of all operators that intertwine (θ, V )with (IndGKρ, IndGKW)
and the space of all operators that intertwine the restriction (ResGKθ, V ) of
(θ, V ) to K with (ρ,W). The corresponding formula is

HomG(V, IndGKW) ∼= HomK(ResGKV,W).

Proof We first check that T̂ ∈ HomK(ResGKV,W); this follows immediately
from

T̂ θ(k)v = [T (θ(k)v)](1G)
=∗ [IndGKρ(k)T v](1G)
=∗∗ ρ(k)[T v(1G)]
= ρ(k)T̂ v (1.23)

where k ∈ K , v ∈ V ; moreover, =∗ follows from the fact that T is an inter-
twiner and=∗∗ from the definition of induction.

Conversely, let S ⊆ G be a system of representatives for the left cosets of
K in G. Then, given U ∈ HomK(ResGKV,W), define Ǔ : V → IndGKW by
setting, for every v ∈ V and s ∈ S,

[Ǔv](s) = Uθ(s−1)v.

Again, it is easy to check that Ǔ ∈ HomG(V, IndGKW) and, moreover, from

[T v](s) =
[
IndGKρ(s

−1)T v
]
(1G) = [T θ(s−1)v](1G) = T̂ θ(s−1)v (1.24)

one deduces that T 
→ T̂ and U 
→ Ǔ are inverse to one another, thus estab-
lishing the required isomorphism. �

In particular we deduce

Corollary 1.1.20 Let G be a finite group, K ≤ G a subgroup and W and V
irreducible representations of G and K , respectively. Then the multiplicity of
W in IndGKV equals the multiplicity of V in ResGKW . �

From the point of view of character theory we have

Corollary 1.1.21 With the same hypotheses as in Theorem 1.1.19,

1

|K| 〈χResGKθ
, χρ〉K = 1

|G| 〈χθ , χIndGKρ
〉G.

�
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1.2 Harmonic analysis on a finite homogeneous space

In this section we describe the structure of the permutation representation and
of its commutant. Our approach emphasizes the harmonic analytic point of
view and is based on [64] and [65].

1.2.1 Frobenius reciprocity for permutation representations

Definition 1.2.1 LetG be a finite group and (σ, V ) a representation ofG. The
commutant of V is the algebra HomG(V, V ) consisting of all linear operators
intertwining V with itself.

Theorem 1.2.2 Let G be a finite group and (σ, V ) a representation of G.
Let V = ⊕

ρ∈I mρWρ denote an orthogonal decomposition of V into (not
necessarily irreducible) subrepresentations.

(i) We have

HomG(V, V ) ∼=
⊕
ρ,ρ′∈I

mρmρ′HomG(Wρ,Wρ′) (1.25)

as vector spaces. In particular,

dim HomG(V, V ) =
∑
ρ,ρ′∈I

mρmρ′ dim HomG(Wρ,Wρ′). (1.26)

(ii) If, in addition, the subrepresentations (ρ,Wρ), ρ ∈ I , are irreducible and
pairwise inequivalent then we have

HomG(V, V ) ∼=
⊕
ρ∈I

Mmρ,mρ (C) (1.27)

as algebras. In particular,

dim HomG(V, V ) =
∑
ρ∈I

m2
ρ. (1.28)

(iii) Conversely, if (1.28) holds then the subrepresentations (ρ,Wρ), ρ ∈ I ,
are irreducible and pairwise inequivalent.

Proof For every ρ ∈ I set Vρ = mρWρ and observe that the Vρ’s are G-
invariant and pairwise orthogonal (by assumption). Let T ∈ HomG(V, V ). For
all ρ, ρ′ ∈ I define a linear map Tρ′,ρ : Vρ → V ′ρ by setting

Tρ′,ρ = Pρ′T |Vρ ,



1.2 Harmonic analysis on a finite homogeneous space 17

where |Vρ denotes the restriction to the subspace Vρ and Pρ′ : V → Vρ′
is the orthogonal projection onto the subspace Vρ′ . We claim that Tρ′,ρ ∈
HomG(Vρ, Vρ′). Indeed, if g ∈ G and v ∈ Vρ , we have

Tρ′,ρρ(g)v = Pρ′T |Vρρ(g)v
= Pρ′T σ(g)v
= Pρ′σ(g)T v (since T ∈ HomG(V, V ))

= ρ′(g)Pρ′T v
= ρ′(g)Pρ′T |Vρ v
= ρ′(g)Tρ′,ρv.

It is immediate that the map T 
→ (Tρ′,ρ)ρ,ρ′∈I yields a vector space isomor-
phism

HomG(V, V ) ∼=
⊕
ρ,ρ′∈I

HomG(Vρ, Vρ′). (1.29)

Observe now that if ρ ∼ τ and ρ′ ∼ τ ′ then HomG(Wρ,Wρ′) ∼=
HomG(Wτ ,Wτ ′). It then follows from the previous argument that

HomG(Vρ, Vρ′) = HomG(mρWρ,mρ′Wρ′) ∼= mρmρ′HomG(Wρ,Wρ′).

From (1.29) we then obtain (1.25) and its immediate consequence (1.26).
Suppose now that the ρ’s are irreducible and pairwise inequivalent. By

Schur’s lemma, we have that HomG(Vρ, Vρ′) is nontrivial if and only if ρ ∼ ρ′.
Then (1.29) becomes the vector space isomorphism

HomG(V, V ) � T 
→ (Tρ,ρ)ρ∈I ∈
⊕
ρ∈I

HomG(Vρ, Vρ). (1.30)

Let us show that (1.30) is multiplicative. First observe that, in this case, if
Z ∈ HomG(V, V ) and ρ ∈ I then Zv = Zρ,ρv for all v ∈ Vρ . Thus, if
R, T ∈ HomG(V, V ) and v ∈ Vρ , we have

(RT )ρ,ρv = RT v = R(Tρ,ρv) = Rρ,ρTρ,ρv,
showing that (RT )ρ,ρ = Rρ,ρTρ,ρ . It follows that (1.30) is an algebra isomor-
phism.

Fix ρ ∈ I ; let us show that

HomG(Vρ, Vρ) ∼= Mmρ,mρ (C). (1.31)

Let Vρ = mρWρ = W 1
ρ⊕W 2

ρ⊕· · ·⊕Wmρ
ρ denote an orthogonal decomposition

of the isotypic component Vρ . Then, using Schur’s lemma, we can choose a
basis {T ρi,j : ρ ∈ I, i, j = 1, 2, . . . , mρ} of HomG(Vρ, Vρ) with the following
properties:
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• Ker T ρi,j = (Wj
ρ )
⊥

• Ran T ρi,j = Wi
ρ

• T ρi,j T ρj,k = T ρi,k.
Therefore any T ∈ HomG(Vρ, Vρ), can be uniquely written as

T =
mρ∑
i,j=1

α
ρ
i,j T

ρ
i,j

with αρi,j ∈ C, and the map

T 
→ (a
ρ
i,j )

mρ
i,j=1

yields the desired isomorphism (1.31) of algebras. Combining (1.30) and (1.31),
we get (1.27) and its immediate consequence (1.28).

Conversely, suppose that (1.28) holds. From (1.26) and the fact that
dim HomG(Vρ, Vρ′) ≥ 1 if ρ = ρ′ (the identity map IdVρ ∈ HomG(Vρ, Vρ))
and the mρ’s are nonnegative, we have∑
ρ∈I

m2
ρ = dim HomG(V, V )

=
∑
ρ∈I

m2
ρ dim HomG(Wρ,Wρ)+

∑
ρ,ρ′∈I
ρ �=ρ′
ρ∼ρ′

mρmρ′ dim HomG(Wρ,Wρ′)

+
∑
ρ,ρ′∈I
ρ �∼ρ′

mρmρ′ dim HomG(Wρ,Wρ′),

which forces, on the one hand, HomG(Wρ,Wρ′) = 0 for all distinct ρ, ρ′ ∈ I
such that ρ ∼ ρ′ (yielding pairwise inequivalence of the ρ’s) and, on the other
hand, dim HomG(Wρ,Wρ) = 1 (yielding the irreducibility of the ρ’s). �

Corollary 1.2.3

(i) The orthogonal projections onto the isotypic components constitute a basis
for the center of HomG(V, V ).

(ii) An operator T belongs to the center of HomG(V, V ) if and only if every
isotypic component mρWρ , ρ ∈ I , constitutes an eigenspace for T . �

Suppose that G acts transitively on a set X and denote by (λ, L(X)) the
corresponding permutation representation ofG. Fix a point x0 ∈ X and denote
by K ≤ G its stabilizer.
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Definition 1.2.4 LetG be a group and (σ, V ) aG-representation. We denote
by VK = {v ∈ V : σ(k)v = v for all k ∈ K} the subspace of K-invariant
vectors in V .

Suppose now that (σ, V ) is irreducible, and denote by dσ its dimension. Also
suppose that VK is nontrivial. With every v ∈ VK we associate a linear map
Tv : V → L(X) defined by setting

(Tvw)(x) =
√
dσ

|X| 〈w, σ(g)v〉V (1.32)

for all w ∈ V and x ∈ X, where g ∈ G is such that gx0 = x. Note that
such a group element exists by the transitivity of the action; moreover, (1.32)
is well defined since if h ∈ G also satisfies hx0 = x then h−1gx0 = x0, so that
h−1g = k ∈ K and therefore σ(g)v = σ(hk)v = σ(h)σ (k)v = σ(h)v. We
have that Tv ∈ HomG(V,L(X)); indeed, for all g, h ∈ G and w ∈ V ,

[Tvσ(h)w](gx0) =
√
dσ

|X| 〈σ(h)w, σ(g)v〉V

=
√
dσ

|X| 〈w, σ(h)
−1σ(g)v〉V

=
√
dσ

|X| 〈w, σ(h
−1g)v〉V

= [Tvw](h−1gx0)

= [λ(h)Tvw](gx0),

which shows that Tvσ(h)w = λ(h)Tvw.

Proposition 1.2.5 (Orthogonality relations) With the notation above, for all
v, u ∈ VK and w, z ∈ V one has

〈Tuw, Tvz〉L(X) = 〈w, z〉V 〈v, u〉V . (1.33)

In particular,

(i) if ‖v‖V = 1 then Tv is an isometric immersion of V into L(X);
(ii) Im(Tu) ⊥ Im(Tv)⇔ u ⊥ v.

Proof Fix u, v ∈ VK and define a linear map R = Ru,v : V → V by setting

Rw = 1

|K|
∑
g∈G

〈w, σ(g)u〉V σ(g)v (1.34)
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for all w ∈ V . It is easy to check that R ∈ HomG(V, V ) and, since V is irre-
ducible, Schur’s lemma implies that R = αIV , where α ∈ C and IV : V → V

is the identity map on V . Moreover, if {wi : i = 1, 2, . . . , dσ } is an orthonor-
mal basis for V we have

Tr(R) =
dσ∑
i=1

〈Rwi,wi〉V

=
dσ∑
i=1

〈
1

|K|
∑
g∈G

〈wi, σ (g)u〉V σ(g)v,wi
〉
V

= 1

|K|
dσ∑
i=1

∑
g∈G

〈wi, σ (g)u〉V 〈σ(g)v,wi〉V

= 1

|K|
∑
g∈G

〈σ(g)v, σ (g)u〉V

= 1

|K|
∑
g∈G

〈v, u〉V

= |X|〈v, u〉V .
Thus, αdρ = Tr(αIV ) = Tr(R) = |X|〈v, u〉V , which implies that R =
|X|
dσ
〈v, u〉V IV . Therefore, if w, z ∈ V , we have (the overbar denotes the com-

plex conjugate)

〈Tuw, Tvz〉L(X) = 1

|K|
dσ

|X|
∑
g∈G

〈w, ρ(g)u〉V 〈z, σ (g)v〉V

= dσ

|X| 〈Rw, z〉V
= 〈w, z〉V 〈v, u〉V .

This proves (1.33). Finally, (i) and (ii) follow immediately from (1.33). �

We equip the vector space HomG(V,L(X)) with the normalized Hilbert–
Schmidt scalar product, given by

〈R, T 〉HS = 1

dσ

dσ∑
i=1

〈Rwi, T wi〉V ≡ 1

dσ
Tr(R∗S) (1.35)

for all R, T ∈ HomG(V,L(X)), where {wi : i = 1, 2, . . . , dσ } denotes any
orthonormal basis in V and R∗ ∈ Hom(L(X), V ) is the adjoint of R.
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Theorem 1.2.6 (Frobenius reciprocity for permutation representations)
Let G be a finite group and K ≤ G a subgroup and set X = G/K . Let (σ, V )
be an irreducible G-representation of dimension dσ and suppose that VK is
nontrivial. For any v ∈ VK let Tv : V → L(X) be as in (1.32). Then the map

VK � v 
−→ Tv ∈ HomG(V,L(X))

is an antilinear isometric vector space isomorphism. In particular, the multi-
plicity of (σ, V ) in (λ, L(X)) is equal to dimVK .

Proof We start by observing that if α, β ∈ C, u, v ∈ VK , then Tαu+βv =
αTu + βTv , that is, the map v 
→ Tv is antilinear. We now show that it is also
a bijection. If T ∈ HomG(V,L(X)) then V � w 
→ (T w)(x0) ∈ C is a linear
map and therefore, by the Riesz theorem, there exists a unique v ∈ V such that
(T w)(x0) = 〈w, v〉V , for all w ∈ V . Therefore, for all w ∈ V and g ∈ G, we
have

[Tw](gx0) = [λ(g−1)T w](x0)

= [T σ(g−1)w](x0) (because T ∈ HomG(V,L(X)))

= 〈σ(g−1)w, v〉V
= 〈w, σ(g)v〉V . (1.36)

This shows that T =
√ |X|
dσ
Tv . Moreover, for all w ∈ V and k ∈ K we have

from (1.36)

〈w, v〉V = [Tw](x0) = [Tw](kx0) = 〈w, σ(k)v〉V .
It follows that σ(k)v = v for all k ∈ K , that is, v ∈ VK .

Finally, we show that the map is isometric: if u, v ∈ VK andw1, w2, . . . , wdσ
constitute an orthonormal basis in V then, by (1.33),

〈Tu, Tv〉HS = 1

dσ

dσ∑
j=1

〈Tuwj , Tvwj 〉V = 〈v, u〉V .

�

Corollary 1.2.7 The vectors v1, v2, . . . , vm form an orthogonal basis for VK

if and only if

Tv1V ⊕ Tv2V ⊕ · · · ⊕ TvmV
is an orthogonal decomposition of the V -isotypic component of L(X). �
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Exercise 1.2.8 Use the notation in Theorem 1.1.19 and let (ι,C) denote the
trivial representation of K .

(i) Show that the map v 
→ Sv , v ∈ VK , defined for all u ∈ V by

Sv(u) =
√
dσ

|X| 〈u, v〉V ,

yields a vector space isomorphism from VK onto HomK(ResGKV,C).
(ii) Show that the composition of the maps VK � v 
→ Tv ∈HomG(V,L(X))

(cf. Theorem 1.2.6) and HomG(V,L(X))� T 
→ T̂ ∈HomK(ResGKV,C)
(cf. Theorem 1.1.19; here, according to Proposition 1.1.7, we identify
IndGKC and L(X)), namely the map VK � v 
→ T̂v ∈ HomK(ResGKV,C),
coincides with the map v 
→ Sv in (i).

(iii) Deduce that the following diagram is commutative:

VK −→ HomG(V,L(X))

↘ ↓

HomK(ResGKV,C).

1.2.2 Spherical functions

Let G be a finite group. Then the vector space L(G) = {f : G → C} can be
endowed with the structure of an algebra by defining the convolutional product
f1 ∗ f2 of two functions f1, f2 ∈ L(G):

[f1 ∗ f2](g) =
∑
h∈G

f1(gh
−1)f2(h)

for all g ∈ G.
Now let K ≤ G be a subgroup. We denote by L(G)K = {f ∈L(G) :

f (gk)= f (g) for all g ∈G, k ∈K} and KL(G)K ={f ∈ L(G) : f (k1gk2)=
f (g) for all g ∈ G, k1, k2 ∈ K} the subsets of L(G) consisting of the right-
K-invariant and bi-K-invariant functions on G, respectively.

Exercise 1.2.9 Show that L(G)K and KL(G)K are indeed subalgebras of
L(G).

Our next target is to present a description of the commutant of a permutation
representation in terms of bi-K-invariant functions.
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Let X = G/K be the homogeneous space consisting of the left cosets of
K in G. The group G naturally acts (transitively) on X by left multiplication.
We denote by x0 ∈ X the coset K . Note that x0 ∈ X is fixed by K . Set
L(X) = {f : X → C} and L(X)K = {f ∈ L(X) : λ(k)f = f,∀k ∈ K},
where λ is the permutation representation.

Exercise 1.2.10 Given f1, f2 ∈ L(X) define f1 ∗ f2 ∈ L(X) by setting

[f1 ∗ f2](x) =
∑
ts=g

f1(tx0)f2(sx0), (1.37)

where x ∈ X and g ∈ G are such that gx0 = x. Prove that the multiplication
in (1.37) is well defined (that is, it does not depend on the particular choice
of g) and induces the structure of an algebra on L(X). Show that L(X)K is a
subalgebra of L(X).

With each f ∈ L(X) we associate f̃ ∈ L(G), defined by setting

f̃ (g) = f (gx0) (1.38)

for all g ∈ G.
Clearly, f̃ ∈ L(G)K for every f ∈ L(X) and the map f 
→ f̃ establishes

an algebra isomorphism between L(X) and L(G)K .

Remark 1.2.11 Note that the map f → f̃ clearly induces an algebra iso-
morphism between L(X)K and KL(G)K .

Theorem 1.2.12 The commutant HomG(L(X), L(X)) is isomorphic to the
algebra KL(G)K of bi-K-invariant functions on G.

Proof Let T ∈ HomG(L(X), L(X)) and let {δx : x ∈ X} denote the basis
of L(X) consisting of the Dirac functions. Let (t (x, y))x,y∈X be the com-
plex matrix associated with the linear operator T in the given basis, so that
[Tf ](x) = ∑

y∈X t(x, y)f (y) for all f ∈ L(X) and x ∈ X. Note that, by
virtue of the G-invariance of T , we have t (gx, gy) = t (x, y) for all g ∈
G. Consider the function ψT ∈L(X) defined by ψT (x)= 1

|K| t (x, x0) for all

x ∈X. Observe that ψT (kx) = 1
|K| t (kx, x0) = 1

|K| t (x, k
−1x0) = 1

|K| t (x,
x0) = ψT (x) for k ∈ K, x ∈ X, so that ψT ∈ L(X)K . We have, for all g ∈ G
and f ∈ L(X),
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T̃f (g) = [Tf ](gx0)

=
∑
y∈X

t(gx0, y)f (y)

= 1

|K|
∑
h∈G

t(gx0, hx0)f (hx0)

= 1

|K|
∑
h∈G

t(h−1gx0, x0)f (hx0) (by the G-invariance of T )

=
∑
h∈G

ψ̃T (h
−1g)f̃ (h)

= (f̃ ∗ ψ̃T )(g).

This shows that

T̃f = f̃ ∗ ψ̃T . (1.39)

The function ψ̃T ∈ KL(G)K is called the convolutional kernel of the
operator T .

For ξ ∈ L(G), define ξ� ∈ L(G) by setting ξ�(g) = ξ(g−1) for all g ∈G.
Note that the operation ξ 
→ ξ� is an involution, that is, (ξ�)� = ξ , and antim-
ultiplicative, that is,

(ξ1 ∗ ξ2)� = ξ2� ∗ ξ1� (1.40)

for all ξ, ξ1, ξ2 ∈ L(G). Finally, note that ξ� ∈ KL(G)K for all ξ ∈ KL(G)K .
Consider the map � : HomG(L(X), L(X))→ KL(G)K given by

�(T ) = (ψ̃T )�

for all T ∈ HomG(L(X), L(X)); let us show that � is the desired algebra
isomorphism. Linearity and injectivity are obvious. Moreover, if η ∈ KL(G)K
then the operator Tη : L(X)→ L(X) defined by

T̃ηf = f̃ ∗ η�

for all f ∈ L(X) is G-invariant and �(Tη) = η. Indeed, for all f ∈ L(X) and
g, g1 ∈ G, we have on the one hand
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˜[Tηλ(g)f ](g1) = [λ̃(g)f ∗ η�](g1)

=
∑
g2∈G

˜[λ(g)f ](g1g
−1
2 )η�(g2)

=
∑
g2∈G

f̃ (g−1g1g
−1
2 )η�(g2)

= [f̃ ∗ η�](g−1g1)

= T̃ηf (g−1g1)

= [λ(g)(T̃ηf )](g1),

showing the G-invariance of Tη. On the other hand, for every f ∈ L(X) we
have f̃ ∗ η� = T̃ηf = f̃ ∗ ψ̃Tη or, equivalently,

f̃ ∗ (η� − ψ̃Tη ) = 0. (1.41)

By taking f = δgx0 with g ∈ G in (1.41) one easily gets η� = ψ̃Tη , that is,
�(Tη) = η.

To complete the proof we need only to prove that� preserves multiplication.
Let T1, T2 ∈ HomG(L(X), L(X)). For every f ∈ L(X)we have, by (1.39) and
the definition of the map �,

f̃ ∗�(T1 ◦ T2)
� = f̃ ∗ �̃T1◦T2

= ˜(T1 ◦ T2)f

= ˜T1(T2f ) = T̃2f ∗�(T1)
�

= f̃ ∗�(T2)
� ∗�(T1)

�

= f̃ ∗ (�(T1) ∗�(T2))
� (by (1.40)),

which shows that �(T1 ◦ T2) = �(T1) ∗�(T2). �

Let I ⊆ Ĝ denote the set of irreducible representations contained in L(X)
(here, and in what follows, we denote by Ĝ the dual of the group G, that
is, a complete set of pairwise inequivalent irreducible representations of the
group G). We can summarize Theorem 1.2.12 and the second statement in
Theorem 1.2.2 by writing

HomG(L(X), L(X)) ∼= KL(G)K ∼=
⊕
ρ∈I

Mmρ,mρ (C), (1.42)
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where L(X) = ⊕
ρ∈I mρVρ is the decomposition of the permutation repre-

sentation into its irreducible components (with multiplicities). An irreducible
G-representation that appears in the decomposition of the permutation repre-
sentation is called a spherical representation.

Corollary 1.2.13 With the above notation we have∑
ρ∈I

m2
ρ = number of K-orbits on X. (1.43)

Proof From (1.42) we deduce that

∑
ρ∈I

m2
ρ = dim

⎛⎝⊕
ρ∈I

Mmρ,mρ (C)

⎞⎠ = dim(KL(G)K).

Moreover, we have already seen (cf. Remark 1.2.11) that the algebras KL(G)K

and L(X)K are isomorphic; in particular dim(KL(G)K) = dim(L(X)K).
Finally, we note that a function f ∈ L(X) belongs to L(X)K if and only if
it is constant on each K-orbit of X. Thus, the dimension of L(X)K equals the
number of such K-orbits and this ends the proof. �

In the remaining part of the section, we construct an explicit algebra iso-
morphism between KL(G)K and

⊕
ρ∈I Mmρ,mρ (C). We also introduce two

remarkable subalgebras of KL(G)K that are worthwhile studying, with their
relative spherical functions.

Definition 1.2.14 Let (ρ, Vρ) be a spherical representation. Select an
orthonormal basis Bρ = {vρ1 , vρ2 , . . . , vρmρ } in VKρ , the subspace ofK-invariant
vectors in Vρ .

(i) The spherical matrix coefficients of (ρ, Vρ) with respect to Bρ are the
functions φρi,j ∈ L(G), i, j = 1, 2, . . . , mρ , defined by

φ
ρ
i,j (g) = 〈vρi , ρ(g)vρj 〉Vρ . (1.44)

(ii) The spherical functions of (ρ, Vρ) with respect to Bρ are the coefficients
φ
ρ
i,i , i = 1, 2, . . . , mρ .

(iii) The spherical character of (ρ, Vρ) is the function χKρ =
∑mρ
i=1 φ

ρ
i,i .

Exercise 1.2.15 Show that χKρ is independent of the orthonormal basis Bρ .
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Remark 1.2.16 Note that since the vectors vρi , i = 1, 2, . . . , mρ , are K-
invariant then the spherical matrix coefficients φρi,j , i, j = 1, 2, . . . , mρ , are
bi-K-invariant. Moreover, by (1.32) we have

φ
ρ
i,j (g) =

[√
|X|
dρ
Tvρj
v
ρ
i

]
(gx0)

and from Proposition 1.2.5 we deduce that the spherical matrix coefficients
φ
ρ
i,j , i, j = 1, 2, . . . , mρ, ρ ∈ I , form an orthogonal basis for KL(G)K with

‖φρi,j‖2
L(G) = |G|

dρ
(note that by (1.42) we have dimKL(G)K =∑

ρ∈I m2
ρ).

The spherical matrix coefficients satisfy the usual convolutional identity of
the matrix coefficients of irreducible representations. We give a proof for the
sake of completeness.

Lemma 1.2.17 With the above notation we have

φ
ρ
i,j ∗ φσh,k =

|G|
dρ
δj,hδρ,σ φ

ρ
i,k (1.45)

for all i, j = 1, 2, . . . , mρ and h, k = 1, 2, . . . , mσ .

Proof From the orthogonality relations of the spherical matrix coefficients
we deduce

φ
ρ
i,j ∗ φσh,k(g) =

∑
t∈G

φ
ρ
i,j (gt)φ

σ
h,k(t

−1)

=
∑
t∈G
〈vρi , ρ(gt)vρj 〉Vρ 〈vσh , σ (t−1)vσk 〉Vσ

=∗
dρ∑
�=1

〈vρi , ρ(g)vρ� 〉Vρ
∑
t∈G
〈vρ� , ρ(t)vρj 〉Vρ 〈vσk , σ (t)vσh 〉Vσ

=
dρ∑
�=1

〈vρi , ρ(g)vρ� 〉Vρ δ�,kδj,hδρ,σ
|G|
dρ

= φρi,k(g)δj,hδρ,σ
|G|
dρ
,

where =∗ follows from the identity ρ(g−1)v
ρ
i =

∑dρ
�=1〈vρi , ρ(g)vρ� 〉Vρ vρ� . �

The spherical Fourier transform relative to the matrix coefficients (1.44) is
the map

KL(G)K → ⊕
ρ∈I Mmρ,mρ (C)

f 
→ f̂
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where

f̂i,j (ρ) = 〈f, φρi,j 〉L(G).

The corresponding inversion formula is given by

f (g) = 1

|G|
∑
ρ∈I

dρ

mρ∑
i,j=1

φ
ρ
i,j (g)f̂i,j (ρ). (1.46)

Theorem 1.2.18 The spherical Fourier transform

KL(G)K →
⊕
ρ∈I

Mmρ,mρ (C)

is an isomorphism of algebras.

Proof Note first that the spherical Fourier transform is a linear isomorphism
(whose inverse is given by (1.46)). Thus, it only remains to show the multi-
plicativity property, namely that

f̂ ∗ f ′ = f̂ f̂ ′ (1.47)

for all f, f ′ ∈ L(K\G/K).
By the inversion formula (1.46), given f, f ′ ∈ KL(G)K we have

f ∗ f ′ =
⎛⎝ 1

|G|
∑
ρ∈I

dρ

mρ∑
i,j=1

f̂i,j (ρ)φ
ρ
i,j

⎞⎠ ∗
⎛⎝ 1

|G|
∑
σ∈I

dσ

mσ∑
h,k=1

f̂ ′h,k(σ )φσh,k

⎞⎠
= 1

|G|2
∑
ρ,σ∈I

dρdσ

mρ∑
i,j=1

mσ∑
h,k=1

f̂i,j (ρ)f̂ ′h,k(σ )φ
ρ
i,j ∗ φσh,k

= 1

|G|
∑
ρ∈I

dρ

mρ∑
i,k=1

mρ∑
j=1

f̂i,j (ρ)f̂ ′j,k(ρ)φ
ρ
i,k (by (1.45))

= 1

|G|
∑
ρ∈I

dρ

mρ∑
i,k=1

⎛⎝ mρ∑
j=1

f̂i,j (ρ)f̂ ′j,k(ρ)

⎞⎠φρi,k.
This shows that f̂ ∗ f ′i,k(ρ) =

∑mρ
j=1 f̂i,j (ρ)f̂

′
j,k(ρ), and (1.47) follows. �

Now we examine the effect of a change of basis on the spherical Fourier
transform.
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Lemma 1.2.19 Let U = (uij )mρi,j=1 be a unitary matrix and let vρi , φρi,j be as
above. Then the spherical matrix coefficients with respect to the orthonormal
basis { mρ∑

k=1

uk,iv
ρ
k : i = 1, 2, . . . , mρ

}
are the functions ξρi,j given by

ξ
ρ
i,j =

mρ∑
k,�=1

ui,kφ
ρ
k,�uj,�.

Moreover, if f̂ (ρ) is the spherical Fourier transfrom of a function f ∈ KL(G)K
with respect to the coefficients φρi,j then

U∗f̂ (ρ)U

is the spherical transform with respect to the coefficients ξρi,j .

Proof We have

ξ
ρ
i,j (g) =

mρ∑
k,�=1

〈vρk uk,i , ρ(g)vρ� u�,j 〉Vρ =
mρ∑
k,�=1

uk,iφ
ρ
k,�u�,j

and therefore

〈ψ, ξρi,j 〉L(G) =
mρ∑
k,�=1

〈ψ, uk,iφρk,�u�,j 〉L(G) =
mρ∑
k,�=1

uk,i ψ̂
ρ
k,�u�,j .

�

We now consider the KL(G)K -subalgebra

A = span{φρi,i : ρ ∈ I, i = 1, 2, . . . , mρ}. (1.48)

Clearly, A depends on the choice of the bases {vρ1 , vρ2 , . . . , vρmρ }, ρ ∈ I .

Proposition 1.2.20

(i) A is a maximal Abelian subalgebra of KL(G)K .
(ii) For ρ ∈ I and i = 1, 2, . . . , mρ , define a linear operator Eρi : L(X) →

L(X) by setting

(E
ρ
i f )(gx0) = dρ

|G| 〈f̃ , λ(g)φ
ρ
i,i〉L(G) ≡

dρ

|G| [f̃ ∗ φ
ρ
i,i](g) (1.49)

for f ∈ L(X), g ∈ G (f̃ is as in (1.38)). Then Eρi is the orthogonal
projection from L(X) onto Tvρi

Vρ (Tvρi
Vρ is as in Proposition 1.2.5).
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Proof (i) This follows from the general fact that diagonal matrices form a
maximal Abelian subalgebra of a full matrix algebra and that maximal
Abelianness is preserved under isomorphisms.

(ii) Extend each basis of V Kρ to an orthonormal basis {vρ1 , vρ2 , . . . , vρdρ } of Vρ ,
for all ρ ∈ I . Any function f ∈ Tvσk Vσ is the Tvσk -image of a vector∑dσ
j=1 ajv

σ
j ∈ VKσ , and so it can be expressed as

f (hx0) =
√
dσ

|X|
dσ∑
j=1

aj 〈vσj , σ (h)vσk 〉Vσ =
√
dσ

|X|
dσ∑
j=1

ajφ
σ
j,k(h),

where aj ∈ C for all j = 1, 2, . . . , dσ and h ∈ G. Thus,

(E
ρ
i f )(gx0) = dρ

|G|
∑
h∈G

f (hx0)φ
ρ
i,i (g

−1h)

= dρ

|G|

√
dσ

|X|
dσ∑
j=1

aj [φσj,k ∗ φρi,i](g)

=
√
dσ

|X|
dσ∑
j=1

aj δσ,ρδk,iφ
σ
j,i(g) (by (1.45))

=
{
f (gx0) if ρ = σ and i = k
0 otherwise. �

Given a function ψ ∈ L(G) we define ψ� ∈ L(G) by setting

ψ�(g) = ψ(g−1)

for all g ∈ G.

Lemma 1.2.21

(i) The spherical Fourier transform of ψ� is(
ψ̂�

)
i,j
(ρ) = ψ̂j,i (ρ)

for all ρ ∈ I and i, j = 1, 2, . . . , mρ . In matrix terms, ψ̂�(ρ) is the adjoint
of ψ̂(ρ).

(ii) If T ∈ HomG(L(X), L(X)) and ψ is its convolution kernel (see (1.39))
then ψ� is the convolution kernel of T ∗.
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Proof (i) Since φρi,j (g
−1) = φρj,i(g), we have(̂
ψ�

)
i,j
(ρ) =〈ψ�, φρi,j 〉L(G)

=
∑
g∈G

ψ(g−1) φ
ρ
i,j (g)

=
∑
g∈G

φ
ρ
j,i(g)ψ(g)

= ψ̂j,i (ρ).

(ii) Recall that we have T̃f = f̃ ∗ ψ , for all f ∈ L(X). Then for f1, f2 ∈
L(X) we get

|K|〈Tf1, f2〉L(X) ≡ 〈T̃f1, f̃2〉L(G) =
∑
g∈G

f̃1 ∗ ψ(g) f̃2(g)

=
∑
g∈G

∑
h∈G

f̃1(h)ψ(h
−1g)f̃2(g)

=
∑
h∈G

f̃1(h)
∑
g∈G

f̃2(g)ψ�(g−1h)

= 〈f̃1, f̃2 ∗ ψ�〉L(G),

and this implies that T̃ ∗f2 = f̃2 ∗ ψ�.
�

Corollary 1.2.22 For an operator T ∈ HomG(L(X), L(X)), with convolu-
tion kernel ψ , the following conditions are equivalent:

(i) T is normal;

(ii) ψ and ψ� commute;

(iii) T belongs to a maximal commutative subalgebra of the form (1.48).

Proof From Lemma 1.2.21 it follows that T and T ∗ commute if and only
if ψ and ψ� commute and this is equivalent to the condition that for each
ρ ∈ I the matrix ψ̂(ρ) is normal. But ψ̂(ρ) is normal if and only if it is
unitarily diagonalizable. By virtue of Lemma 1.2.19, this is in turn equivalent
to the existence of a diagonalizing orthonormal basis {vρ1 , vρ2 , . . . , vρmρ } in VKρ .
Invoking the isomorphism (1.42), we end the proof. �

Proposition 1.2.23 If T ∈ HomG(L(X), L(X)) is normal then we can choose
the orthonormal bases {vρ1 , vρ2 , . . . , vρmρ }, ρ ∈ I , in such a way that we have
an orthogonal decomposition



32 General theory

L(X) =
⊕
ρ∈I

mρ⊕
i=1

Tvρi
Vρ

(see Corollary 1.2.7) where each Tvρi
Vρ is an eigenspace of T . Moreover, the

eigenvalue corresponding to Tvρi
Vρ is ψ̂i,i (ρ), where ψ is the convolution ker-

nel of T .

Proof If we choose the bases as at the end of the proof of Corollary 1.2.22,
the spherical inversion formula for ψ becomes

ψ = 1

|G|
∑
σ∈I

dσ

mσ∑
j=1

φσj,j ψ̂j,j (σ ).

Moreover, by virtue of (1.49), for all f ∈ Tvσj Vσ we have

f̃ (g) = Ẽρi f (g) =
dρ

|G|
∑
h∈G

f̃ (h)φ
ρ
i,i(h

−1g).

Therefore, for all t ∈ G, we get

T̃f (t) = f̃ ∗ ψ(t) =
∑
g∈G

f̃ (g)ψ(g−1t)

= 1

|G|
∑
σ∈I

dσ

mσ∑
j=1

ψ̂j,j (σ )
dρ

|G|
∑
h∈G

f̃ (h)
[
φ
ρ
i,i ∗ φσj,j

]
(h−1t)

= δρ,σ δi,j ψ̂i,i (ρ) dρ|G|
∑
h∈G

f̃ (h)φ
ρ
i,i(h

−1t) (by (1.45))

= ψ̂i,i (ρ)Ẽρi f (t)
= ψ̂i,i (ρ)f̃ (t). �

Consider now the KL(G)K -subalgebra

B = span{χKρ : ρ ∈ I }. (1.50)

Proposition 1.2.24

(i) B is the center of KL(G)K .
(ii) For ρ ∈ I define a linear operator Eρ : L(X)→ L(X) by setting

(Eρf )(gx0) = dρ

|G| 〈f̃ , λ(g)χ
K
ρ 〉L(G) ≡

dρ

|G| [f̃ ∗ χ
K
ρ ](g)

for f ∈ L(X), g ∈ G (f̃ is as in (1.38)). Then Eρ is the orthogonal
projection from L(X) onto the isotypic component mρVρ .
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(iii) If χρ is the character of ρ then the spherical character (see Definition
1.2.14) is given by

χKρ (g) =
1

|K|
∑
k∈K

χρ(kg).

Proof Parts (i) and (ii) are consequences of the previous proposition and
Corollary 1.2.3. The orthogonal projection of Vρ onto the subspace VKρ of K-

invariant vectors is given by the operator 1
|K|

∑
k∈K ρ(k); applying the latter to

χρ one obtains χKρ , yielding (iii). �

Proposition 1.2.25 An operator T ∈ HomG(L(X), L(X)) belongs to the
center of HomG(L(X), L(X)) if and only if any isotypic component mρVρ
constitutes an eigenspace of T . Moreover, if this is the case then the eigenvalue
corresponding to mρVρ is equal to ψ̂1,1(ρ) ≡ 1

mρ
〈ψ, χKρ 〉.

Proof This is just a particular case of Proposition 1.2.23, taking into account
that if T ∈ HomG(L(X), L(X)) then also T ∗ ∈ HomG(L(X), L(X)) and that
the center ofMmρ,mρ (C) is constituted by all scalar matrices. �

Corollary 1.2.26 If the multiplicity of Vρ in L(X) is equal to dρ then χKρ ≡
χρ and

Eρ = dρ

|G|
∑
t∈G

χρ(t)λ(t).

Proof Suppose that the multiplicity of Vρ in L(X) is equal to dρ . Then
Vρ = VKρ and therefore χKρ = χρ . It follows that, for each f ∈ L(X),
we have

Eρf (gx0) = dρ

|G| 〈f̃ , λ(g)χρ〉L(G) (by Proposition 1.2.24)

= dρ

|G|
∑
h∈G

f (hx0)χρ(g−1h)

= dρ

|G|
∑
h∈G

f (hx0)χρ(hg−1) (χρ is central)

= dρ

|G|
∑
t∈G

f (t−1gx0)χρ(t−1) (t−1 = hg−1)

= dρ

|G|
∑
t∈G

χρ(t)[λ(t)f ](gx0).

�

The computational aspects of Corollary 1.2.26 were explored in [21].
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1.2.3 The other side of Frobenius reciprocity for
permutation representations

In Theorem 1.1.19 Frobenius reciprocity is stated as an explicit isomorphism,
namely

HomK
(

ResGKV,U
) ∼= HomG

(
V, IndGKU

)
,

where K ≤ G, V is a G-representation and U is a K-representation. The
special case in which U is the trivial representation was examined in Theo-
rem 1.2.6. In [7, Corollary 34.1] it is observed that Frobenius reciprocity may
be also stated as an explicit isomorphism

HomK
(
U,ResGKV

) ∼= HomG
(

IndGKU, V
)
.

This formulation of Frobenius reciprocity is particularly useful when the irre-
ducible representations of G are obtained as induced representations; this is
the case for a wreath product (see Section 2.4). In this subsection, we examine
this equivalent formulation of Frobenius reciprocity in the particular case in
which V is a permutation representation.

LetG be again a finite group acting transitively onX and suppose thatH is a
subgroup ofG. Let (ρ,W) be anH -representation. Set τ = IndGHρ and denote
by λ the permutation representation ofG onX. Let S be a set of representatives
for the left cosets of H in G, that is, G =∐

s∈S sH ; as usual, we suppose that
1G ∈ S.

Theorem 1.2.27 (Frobenius reciprocity for permutation representations,

II) Let L ∈ HomH (W,ResGHL(X)) and define
�
L: WS → L(X) by setting

(
�
L f )(x) = 1√|S|

∑
s∈S
[Lf (s)](s−1x), (1.51)

for every f ∈ WS = IndGHW and x ∈ X. Then
�
L∈ HomG(IndGHW,L(X))

and the map

HomH (W,ResGHL(X)) −→ HomG(IndGHW,L(X))

L 
−→ �
L

is an isometric isomorphism.

Proof First observe that if L ∈ HomH (W,ResGHL(X)) then we have

[Lρ(h−1)w](x) = [λ(h−1)Lw](x) = [Lw](hx) (1.52)
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for all x ∈ X, h ∈ H and w ∈ W . Let τ = IndGHρ, f ∈ IndGHW = WS and
g ∈ G. Also, for every s ∈ S let t ∈ S and h ∈ H be the unique elements such
that g−1s = th. We then have

[ �L τ(g)f ](x)
= 1√|S|

∑
s∈S

(
L{[τ(g)f ](s)}

)
(s−1x)

= 1√|S|
∑
t∈S
{L[ρ(h−1)f (t)]}((gth)−1x) (by Definition 1.1.3)

= 1√|S|
∑
t∈S
[Lf (t)](hh−1t−1g−1x) (by (1.52))

= 1√|S|
∑
t∈S
[Lf (t)](t−1g−1x)

= [�L f ](g−1x) (by (1.51))

= [λ(g) �L f ](x).

This shows that
�
L∈ HomG(IndGHW,L(X)).

For w ∈ W define δw ∈ WS by setting δw(s) = δs,1Gw. Then, given P ∈
HomG(IndGHW,L(X)), we define P̃ : W → L(X) by setting

P̃w = Pδw (1.53)

for all w ∈ W .
Let us check that P̃ ∈ HomH (W,ResGHL(X)). Let h ∈ H , w ∈ W and

s ∈ S. We have

[τ(h)δw](s) =
{
ρ(h)[δw(1G)] = ρ(h)w if s = 1G

ρ(k−1)[δw(t)] = 0 otherwise,

where t ∈ S and k ∈ H are the unique elements such that h−1s = tk. This
shows that

τ(h)δw = δρ(h)w. (1.54)

Thus

λ(h)[P̃w] = λ(h)[Pδw],
= Pτ(h)δw (P ∈ HomG(τ, λ))

= Pδρ(h)w (by (1.54))

= P̃ (ρ(h)w)
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and therefore P̃ intertwines W and ResGHL(X). Moreover, for every L ∈
HomH (W,ResGHL(X)), w ∈ W and x ∈ X, we have (by (1.53) and (1.51)),

[ �̃Lw](x) = [�L δw](x) = 1√|S|
∑
s∈S
[Lδw(s)](s−1x) = 1√|S| [Lw](x). (1.55)

Moreover, first observe that ∑
s∈S
τ (s)δf (s) = f (1.56)

for all f ∈ WS . Indeed, for all t ∈ S we have[∑
s∈S
τ (s)δf (s)

]
(t) =

∑
s∈S
ρ(h−1)δf (s)(z) = f (t)

where z ∈ S and h ∈ H are the unique elements such that s−1t = zh (note
that there is only one nonzero summand corresponding to the case z = 1G,
which forces s = t and h = 1G). Then, for every P ∈ HomG(IndGHW,L(X)),
f ∈ WS and x ∈ X, we have

[
�
P̃ f ](x) = 1√|S|

∑
s∈S
[P̃ f (s)](s−1x)

= 1√|S|
∑
s∈S
[Pδf (s)](s−1x)

= 1√|S|
∑
s∈S
[λ(s)P δf (s)](x)

= 1√|S|
∑
s∈S
[Pτ(s)δf (s)](x)

= 1√|S|

(
P
∑
s∈S
[τ(s)δf (s)]

)
(x)

= 1√|S|P(f )(x) (by (1.56)). (1.57)

From (1.55) and (1.57) it follows that the map P 
→ √|S|P̃ is the inverse

of L 
→�
L (and, in particular, that L 
→�

L is an isomorphism).
In order to show that the above map is isometric, let us check that

〈 �L1,
�
L2〉HS = 〈L1, L2〉HS
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for all L1, L2 ∈ HomH (W,ResGHL(X)). Let w1, w2, . . . , wn ∈ W constitute
an orthonormal basis ofW . Then the functions δs,wi ∈ WS defined by

δs,wi (t) =
{
wj if t = s
0 otherwise

for all s, t ∈ S and i = 1, 2, . . . , n constitute an orthonormal basis inWS (see
Remark 1.1.1). Then using (1.51) we deduce that

[ �L δs,wi ](x) =
1√|S|

∑
t∈S
[Lδs,wi (t)](t−1x) = 1√|S| [Lwi](s

−1x) (1.58)

for all L ∈ HomH (W,ResGHL(X)), s ∈ S, i = 1, 2, . . . , n, and x ∈ X. We
then have

〈 �L1,
�
L2〉HS =

∑
s∈S

n∑
i=1

〈 �L1 δs,wi ,
�
L2 δs,wi 〉L(X)

=
∑
s∈S

n∑
i=1

∑
x∈X
[ �L1 δs,wi ](x)[

�
L2 δs,wi ](x)

= 1

|S|
∑
s∈S

n∑
i=1

∑
x∈X
[L1wi](s−1x)[L2wi](s−1x) (by (1.58))

=
n∑
i=1

∑
y∈X
[L1wi](y)[L2wi](y)

=
n∑
i=1

〈L1wi, L2wi〉L(X)

= 〈L1, L2〉HS.

�

1.2.4 Gelfand pairs

In this subsection we present a special case of the theory illustrated in the
previous subsection, namely that of a Gelfand pair.

The theory of Gelfand pairs, originally developed for the infinite case in the
setting of Lie groups in the seminal paper by I.M. Gelfand [32], was used, in
the finite case, by P. Diaconis [20, 22] to determine the rate of convergence
to the stationary distribution of finite Markov chains (we refer to our research
expository article [10] and our monograph [11] for a more recent account).
Other applications of the theory of finite Gelfand pairs may be found in the
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monograph by E. Bannai and T. Ito [4] (of a more algebraic combinatorial
flavour) and in Ph. Delsarte’s thesis [19] (in relation to coding theory). See
also A. Terras’ monograph [74] as well as the papers [27, 51, 62, 70, 72].

Recall that a representation (σ, Vσ ) of a group G is multiplicity free if it
decomposes into pairwise inequivalent irreducible subrepresentations; in terms
of formulas, Vσ = ⊕ρ∈I Vρ , where ρ �∼ ρ′ for all distinct ρ, ρ′ ∈ I .

Theorem 1.2.28 Let G be a finite group and K ≤ G a subgroup and denote
by X = G/K the corresponding homogeneous space. Then the following con-
ditions are equivalent:

(i) the permutation representation L(X) is multiplicity free;

(ii) HomG(L(X), L(X)) is commutative;

(iii) KL(G)K is commutative;

(iv) for every irreducible G-representation (σ, V ), the subspace VK of the
K-invariant vectors is at most one dimensional;

(v) A = KL(G)K (where A is as in (1.48), see also Proposition 1.2.20);

(vi) B = KL(G)K (where B is as in (1.50), see also Proposition 1.2.24).

Proof Let L(X) = ⊕ρ∈ImρVρ be the decomposition of the permutation rep-
resentation into irreducible components. The equivalence between (i), (ii) and
(iii) follows from (1.42). Indeed, the algebra ⊕ρ∈IMmρ,mρ (C) is Abelian if
and only if mρ = 1 for all ρ ∈ I . Note that, if this is the case, KL(G)K ∼=
HomG(L(X), L(X)) ∼= C|I |. The equivalence between (i) and (iv) follows
from the Frobenius reciprocity for a permutation representation (Theorem
1.2.6). The equivalence between (iii) and (v) (resp. (vi)) follows from Proposi-
tion 1.2.20 (resp. Proposition 1.2.24). �

If one of the equivalent conditions of the above theorem is satisfied, we say
that (G,K) is a Gelfand pair. Let G be a finite group acting transitively on a
set X. We say that the action gives rise to a Gelfand pair if the permutation
representation (λ, L(X)) is multiplicity free.

Remark 1.2.29 If (G,K) is a Gelfand pair, then for each spherical represen-
tation (ρ, Vρ) there is a unique spherical function φρ . In this way the Fourier
inversion formula (1.46) becomes

f (g) = 1

|G|
∑
ρ∈I

dρφ
ρ(g)f̂ (ρ), (1.59)

where f̂ (ρ) = 〈f, φρ〉L(G), for all g ∈ G and f ∈ KL(G)K .
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Example 1.2.30 (Weakly symmetric Gelfand pairs) LetG be a finite group
and K ≤ G a subgroup. Suppose that there exists an automorphism τ of G
such that

g−1 ∈ Kτ(g)K (1.60)

for all g ∈ G. Then (G,K) is a Gelfand pair. To prove this, first observe that
if f ∈ KL(G)K then by (1.60) we have

f (g−1) = f (τ(g)) (1.61)

for all g ∈ G. Let f1, f2 ∈ KL(G)K . We have

[f1 ∗ f2](g) =
∑
h∈G

f1(gh)f2(h
−1)

=
∑
h∈G

f1(τ ((gh)
−1))f2(τ (h)) (by (1.61))

=
∑
t∈G

f1(τ (t
−1))f2(τ (g

−1t)) (by setting t = gh)

=
∑
t∈G

f2(τ (g
−1)τ (t))f1(τ (t

−1))

= [f2 ∗ f1](τ (g−1))

= [f2 ∗ f1](g) (by (1.61))

for all g ∈ G. Thus f1 ∗ f2 = f2 ∗ f1, showing that the algebra KL(G)K is
commutative.

We then say that (G,K) is a weakly symmetric Gelfand pair.

When the automorphism τ in Example 1.2.30 is equal to the identity, we say
that (G,K) is a symmetric Gelfand pair. In this case, (1.60) takes the form

g−1 ∈ KgK (1.62)

for all g ∈ G.
We now use the following notation. Suppose that a group G acts on a set Y .

For two elements x, y ∈ Y we write x ∼ y if there exists g ∈ G such that
gx = y (equivalently, if x and y belong to the same G-orbit, Gx = Gy). We
also denote by g(x, y) = (gx, gy), g ∈ G and x, y ∈ X, the diagonal action
of G on X × X. Finally, we say that the orbits of G on X × X (with respect
to the diagonal action) are symmetric provided that for all x, y ∈ X one has
(x, y) ∼ (y, x).
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Proposition 1.2.31 Let X be a finite set andG a group acting transitively on
it. Let x0 ∈ X and K = StabG(x0) = {k ∈ G : kx0 = x0} be a point of X and
its stabilizer, respectively. Then the following conditions are equivalent:

(i) the orbits of G on X ×X are symmetric;

(ii) (G,K) is a symmetric Gelfand pair.

Proof (i) ⇒ (ii). Suppose that the orbits of G on X × X are symmetric.
Let g ∈ G. As (x0, g

−1x0) = g−1(gx0, x0) ∼ (gx0, x0) ∼(i) (x0, gx0),
there exists k ∈ G such that k(x0, g

−1x0) = (x0, gx0). This is equivalent
to kx0 = x0 (so that k ∈ K) and kg−1x0 = gx0. The last condition then gives
g−1kg−1x0 = x0, that is, g−1kg−1 ∈ K . We then have (1.62) so that (G,K)
is a symmetric Gelfand pair.

(ii) ⇒ (i). Suppose that (G,K) is a symmetric Gelfand pair. Let x, y ∈ X.
Then, by transitivity of the action, we can find t, s ∈ G such that x = tx0 and
y = tsx0. Moreover, by (1.62), we can find k1, k2 ∈ K such that s−1 = k1sk2.
We then have

(x, y) = t (x0, t
−1y) ∼ (x0, t

−1y) = (x0, sx0)

= s(s−1x0, x0) ∼ (s−1x0, x0) = (k1sk2x0, x0)

= (k1sx0, x0) = k1(sx0, k
−1
1 x0) = k1(sx0, x0)

∼ (sx0, x0) = (t−1y, x0) ∼ t (t−1y, x0) = (y, x).
This shows that the orbits of G on X ×X are symmetric. �

Example 1.2.32 (2-point homogeneous Gelfand pairs) Let G be a finite
group acting isometrically on a metric space (X, d). We say that the action
is 2-point homogeneous (or distance-transitive) if, for all (x1, y1), (x2, y2) in
X ×X such that d(x1, y1) = d(x2, y2), there exists g ∈ G such that gx1 = x2

and gy1 = y2; equivalently,

d(x1, y1) = d(x2, y2) =⇒ (x1, y1) ∼ (x2, y2).

Note that, in particular, a 2-point homogeneous action is transitive. Since the
distance function d is symmetric, that is, d(x, y) = d(y, x) for all x, y ∈
X, we deduce that the G-orbits on X × X are symmetric. Thus, by Propo-
sition 1.2.31, every 2-point homogeneous action gives rise to a symmetric
Gelfand pair.

Definition 1.2.33 Suppose that G acts on X. The action is doubly transitive
if for all (x1, x2), (y1, y2) ∈ (X × X) \ {(x, x) : x ∈ X} there exists g ∈ G
such that gxi = yi for i = 1, 2.
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Exercise 1.2.34 Suppose that G acts transitively on X. Set W0 = {f :
X → C, constant} and W1 = {f : X → C,

∑
x∈X f (x) = 0}. Prove that

L(X) = W0 ⊕W1 is the decomposition of the permutation representation into
irreducibles if and only if G acts doubly transitively on X.

In the context of Gelfand pairs, we can reformulate Corollary 1.2.13 as
follows.

Corollary 1.2.35 Let (G,K) be a Gelfand pair and let I ⊆ Ĝ denote the
set of irreducible representations contained in the corresponding permutation
representation L(X). Then

|I | = number of K-orbits on X. (1.63)

�
We end this section with the following useful criterion for Gelfand pairs,

which is, in some sense, a converse to Corollary 1.2.35.

Theorem 1.2.36 Let G be a finite group and K ≤ G a subgroup and denote
by X = G/K the corresponding homogeneous space. Suppose we have a
decomposition

L(X) = ⊕t∈T Zt
of the permutation representation into G-subrepresentations with |T | equal to
the number of K-orbits on X. Then the Zt ’s are irreducible and (G,K) is a
Gelfand pair.

Proof Refine if necessary the decompositionL(X) of theZt ’s into irreducibles
to obtain L(X) = ∑

ρ∈I mρVρ (where the Vρ’s are pairwise nonequivalent).

Then |T | ≤ |I | ≤∑
ρ∈I m2

ρ and Corollary 1.2.13 forces |T | = |I | andmρ = 1
for all ρ ∈ I , concluding the proof. �

1.3 Clifford theory

In this section we analyze the relation between representations of a given group
and those of its normal subgroups. These results were obtained by Alfred H.
Clifford in 1937 [16]. We follow Huppert’s monograph [35] quite closely but
our approach, based on our research-expository paper [13], rests on an explicit
analysis of the representation spaces and their decompositions rather than on
calculations with characters (as in [35]). This functional framework is more
suitable for applications in harmonic analysis problems. We also avoid a direct
application of Mackey’s lemma (Theorem 4.1 in [12]) but carefully examine
the representations involved. Other excellent expositions on Clifford theory
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are the monographs by Isaacs [36] and by Curtis and Reiner [17, 18]. The
latter also uses an explicit analysis of the representation spaces but with a more
algebraic language. See also the monographs by Grove [34], Berkovich and
Zhmud [5, 6] and Dornhoff [24].

As an application of Clifford theory, we prove a general form of the so-called
little group method, which provides an useful way to get a complete list of
irreducible representations for a wide class of groups. In particular, in the next
chapter we shall use it to obtain the representation theory of wreath products.

1.3.1 Clifford correspondence

In this section we introduce the main definitions and present Clifford corre-
spondence (Theorem 1.3.6).

Let G be a finite group and N � G a normal subgroup of G. Denote by
Ĝ (resp. N̂ ) a set of pairwise inequivalent irreducible representations of G
(resp. N ), which, by an abuse of notation, we also identify with the set of all
equivalence classes of irreducible representations of G (resp. N ).

In the following, we use the following notation. Given two representations
σ and ρ we write σ  ρ, and we say that σ is contained in ρ, if σ is a
subrepresentation of ρ.

Definition 1.3.1 Let σ ∈ N̂ and g ∈ G.

(i) We set

Ĝ(σ ) = {θ ∈ Ĝ : σ  ResGN(θ)} ⊂ Ĝ.
(ii) The g-conjugate of σ is the representation gσ ∈ N̂ defined by

gσ (n) = σ(g−1ng) (1.64)

for all n ∈ N .
(iii) The subgroup

IG(σ ) = {g ∈ G : gσ ∼ σ } ≤ G
is called the inertia group of σ ∈ N̂ .

It is easy to see that (1.64) defines a left action of G on N̂ , that is, g1g2σ =
g1(g2σ) for all g1, g2 ∈ G and σ ∈ N̂ . Moreover, if σ1 ∼ σ2 and g ∈ G then
gσ1 ∼ gσ2, so that the action preserves the equivalence relation. Thus IG(σ ) is
the stabilizer of the equivalence class [σ ] of σ ∈ N̂ in G under this action. In
particular, we have

IG(
gσ ) = g−1IG(σ )g (1.65)
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for all g ∈ G and σ ∈ N̂ . Observe that IG(σ ) contains the subgroupN . Indeed,
if n, n1 ∈ N we have n1σ(n) = σ(n1)

−1σ(n)σ (n1) and therefore n1σ ∼ σ . We
then denote by Q a set of representatives for the left N -cosets in IG(σ ) such
that that 1G ∈ Q. We thus have

IG(σ ) =
∐
q∈Q

qN. (1.66)

Similarly, we denote by R a set of representatives for the left IG(σ )-cosets in
G such that that 1G ∈ R, so that

G =
∐
r∈R

rIG(σ ). (1.67)

Then {[gσ ] : g ∈ G} ≡ {[rσ ] : r ∈ R} and the representations rσ , r ∈ R, are
pairwise nonequivalent.

Moreover, T = RQ is a set of representatives for the left N -cosets in G.
From (1.66) and (1.67) we deduce that

G =
∐
r∈R

rIG(σ ) =
∐
r∈R

∐
q∈Q

rqN =
∐
t∈T
tN.

Note that 1G ∈ T and that R ⊆ T (resp. Q ⊆ T ), since 1G ∈ R (resp.
1G ∈ Q).

Theorem 1.3.2 Suppose that N � G and let σ ∈ N̂ and θ ∈ Ĝ(σ ). If R, Q
and T are as above then, setting d = [IG(σ ) : N ] = |Q| and denoting by �
the multiplicity of σ in ResGNθ , we have that:

(i) ResGN IndGNσ = ⊕
t∈T tσ = d

⊕
r∈R rσ expresses the decomposition of

ResGN IndGNσ into irreducible subrepresentations;

(ii) HomG(IndGNσ, IndGNσ)
∼= Cd ;

(iii) ResGNθ
∼= �⊕r∈R rσ .

Proof (i) Let Vσ be the representation space of σ and let t ∈ T . Set Zt =
{f ∈ V Tσ : f (s) = 0 for all s ∈ T such that s �= t}. Then the linear map
Lt : Vσ → Zt defined by [Ltv](s) = δt,sv, for all s ∈ S, is bijective. Moreover,
Zt is (ResGN IndGNσ )-invariant and intertwines the N -representations
(ResGN IndGNσ)|Zt and tσ . In order to verify these facts, let n ∈ N , v ∈ Vσ ,
f ∈ Zt and s ∈ T . Then we can write n−1s = s(s−1n−1s) = sm, where
m = s−1n−1s ∈ N as N is normal in G. We now have
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[(ResGN IndGNσ)(n)f ](s) = [IndGNσ(n)f ](s)
= σ(m−1)f (s)

= δs,tσ (m−1)f (t)

= δs,t [(ResGN IndGNσ)(n)f ](s),
that is, (ResGN IndGNσ)(n)f ∈ Zt for all f ∈ Zt and n ∈ N . Similarly,

[(ResGN IndGNσ)(n)Ltv](s) = [(IndGNσ)(n)Ltv](s)
= σ(m−1)[(Ltv)(s)]
= δt,sσ (m−1)v

= δt,sσ (s−1ns)v

= δt,sσ (t−1nt)v

= δt,s tσ (n)v
= Lt [tσ (n)v](s).

This shows that (ResGN IndGNσ)(n)Lt = Lt tσ (n), that is,

Lt ∈ HomN((ResGN IndGNσ)|Zt , Zt ), (tσ , Vσ ))
(observe that Vσ = Vtσ ). As ResGN IndGNVσ =

⊕
t∈T Zt , we deduce that the

operator T =⊕
t∈T Lt is an isomorphism between ResGN IndGNσ and

⊕
t∈T tσ .

We finally have ⊕
t∈T

tσ =
⊕
r∈R

⊕
q∈Q

rqσ = |Q|
⊕
r∈R

rσ .

(ii) From the previous result we deduce that the multiplicity of σ in
ResGN IndGNσ is equal to d . Therefore, by Frobenius reciprocity (Theorem 1.1.19)
we have

HomG(IndGNσ, IndGNσ) = HomN(σ,ResGN IndGNσ) ∼= Cd .

(iii) Let g ∈ G and � ∈ HomN(σ,ResGNθ). Then θ(g)� ∈ HomN(gσ,
ResGNθ). Indeed, for n ∈ N we have

θ(g)�gσ(n) = θ(g)�σ(g−1ng)

= θ(g)θ(g−1ng)�

= θ(n)θ(g)�.
Moreover, the map

HomN(σ,ResGNθ) −→ HomN(gσ,ResGNθ)
� 
−→ θ(g)�

(1.68)
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is a linear isomorphism. This follows immediately after observing that
g−1
(gσ ) = σ , so that the map

HomN(gσ,ResGNθ) −→ HomN(σ,ResGNθ)
� 
−→ θ(g−1)�

is the inverse of (1.68). Therefore every gσ has multiplicity � in ResGNθ , that
is, ResGNθ ! �

⊕
r∈R rσ . By Frobenius reciprocity, IndGNσ contains exactly

� copies of θ so that every irreducible subrepresentation in ResGNθ is also
a subrepresentation of ResGN IndGNσ . But, by (i), the latter contains only irre-
ducible subrepresentations of the form rσ , and this ends the proof. �

Corollary 1.3.3 With the notation of Theorem 1.3.2, we have that

(i) IndGNσ is irreducible if and only if IG(σ ) = N ;
(ii) if σ, σ ′ ∈ N̂ and IG(σ ) = N = IG(σ ′) then IndGNσ ∼ IndGNσ

′ if and only
if σ and σ ′ are conjugate (that is, there exists g ∈ G such that σ ′ = gσ ).

Proof The first statement follows from (ii) in Theorem 1.3.2 combined with
Schur’s lemma.

Suppose now that IG(σ ) = N = IG(σ ′). By (i) in Theorem 1.3.2 we have
ResGN IndGNσ =

⊕
r∈R rσ . Then Frobenius reciprocity implies that

HomN(σ ′,
⊕
r∈R rσ ) ∼= HomN(σ ′,ResGN IndGNσ)

∼= HomG(IndGNσ
′, IndGNσ).

Since IndGNσ
′ and IndGNσ are G-irreducible and σ ′ and rσ , r ∈ R, are N -

irreducible, by Schur’s lemma we deduce that IndGNσ
′ ∼ IndGNσ if and only if

there exists r ∈ R such that σ ′ ∼ rσ . �

Definition 1.3.4 For σ ∈ N̂ and θ ∈ Ĝ(σ ), the number

� = dim HomN(σ,ResGNθ) (1.69)

is called the inertia index of θ with respect to N .

Note that, a priori, given σ ∈ N̂ and θ ∈ Ĝ(σ ) the number (1.69) is also
defined in terms of the representation σ rather than only the subgroupN . How-
ever, Theorem 1.3.2(iii) guarantees that � is, in fact, independent of σ .

Lemma 1.3.5 Let N � G be a normal subgroup of G and σ ∈ N̂ . Denote
by I = IG(σ ) the inertia group of σ . Let

IndINσ =
⊕
ψ∈Î (σ )

mψψ

be the decomposition of IndINσ into I -irreducible representations (mψ > 0 is
the multiplicity of ψ). Then the following hold.
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(i) IndGNσ =
⊕
ψ∈Î (σ ) mψ IndGI ψ is the decomposition of IndGNσ into its G-

irreducible components (that is, the IndGI ψ’s are G-irreducible and pair-
wise inequivalent).

(ii) If θ ∈ Ĝ(σ ) then θ = IndGI ψ for some (unique) ψ ∈ Î (σ ).
Proof First note that, from the definition above and Frobenius reciprocity, we
have Î (σ ) = {ψ ∈ Î : ψ  IndINσ }. (i) By the transitivity (Proposition 1.1.10)
and additivity (Proposition 1.1.11) of induction,

IndGNσ = IndGI IndINσ =
⊕
ψ∈Î (σ )

mψ IndGI ψ.

Moreover,

HomG(IndGNσ, IndGNσ) = Cd = HomI (IndINσ, IndINσ ),

where the first equality is exactly Theorem 1.3.2 (ii) and the second follows
from the same result with G replaced by I (note that, indeed, I coincides with
the inertia group of σ in I ). Then, by the commutant theorem (Theorem 1.2.2),
we have ∑

ψ∈Î (σ )
m2
ψ = d =

∑
ψ,η∈Î (σ )

mψmη dim HomG(IndGI ψ, IndGI η).

Therefore dim HomG(IndGI ψ, IndGI η) = δψ,η and (i) follows.
(ii) This is an immediate consequence of Frobenius reciprocity: if σ  

ResGNθ then θ  IndGNσ and therefore θ = IndGI ψ for some ψ ∈ Î (σ ). �

Theorem 1.3.6 (Clifford correspondence) Let N � G and σ ∈ N̂ , set
I = IG(σ ) and let Î (σ ) be as before. Then:

(i) the map

Î (σ ) −→ Ĝ(σ )

ψ 
−→ IndGI ψ
(1.70)

is a bijection;
(ii) the inertia index of ψ ∈ Î (σ ) with respect to N coincides with the inertia

index of IndGI ψ with respect to N , and they are equal to mψ (the multi-
plicity of ψ in IndINσ );

(iii) ResINψ = mψσ .

Proof Part (i) is just a reformulation of Lemma 1.3.5. Part (ii) follows from
Frobenius reciprocity: if ψ ∈ Î (σ ) then the inertia index of ψ with respect to
N is equal to mψ and coincides with the inertia index of IndGI ψ with respect
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to N (by Lemma 1.3.5(i)). Finally, (iii) is given by an application of Theo-
rem 1.3.2(iii), with G replaced by I :

ResINψ = σ ⊕ σ ⊕ · · · ⊕ σ︸ ︷︷ ︸
mψ times

.

�

Remark 1.3.7 Note that if IG(σ ) = G (that is, gσ ∼ σ for all g ∈ G) then the
first two statements of the Clifford correspondence are trivial. Indeed, if this is
the case, we have Î (σ ) = Ĝ(σ ) and the correspondence (1.70) becomes the
identity map ψ 
→ IndGI ψ = ψ . Moreover, the inertia index of ψ with respect
toN , which by definition equals the dimension of HomN(σ,ResGNψ), is in turn
equal by Frobenius reciprocity to mψ , the dimension of HomG(IndGNσ,ψ).
Finally, note that if θ ∈ Ĝ we have σ := ResGNθ ∈ N̂ if and only if IG(σ ) = G
and the inertia index of θ with respect toN is equal to 1 (see Theorem 1.3.2(iii)).

We summarize the results obtained in Table 1.1.
Now let ψ ∈ Ĝ/N . We define the inflation ψ ∈ Ĝ of ψ by setting

ψ(g) = ψ(gN) ∀g ∈ G. (1.71)

Note that ψ is indeed a representation (of G) since it equals the composition
of the quotient homomorphism G→ G/N and the representation ψ ∈ Ĝ/N .

Table 1.1

Induction
IndG

N
σ =⊕

ψ∈Î (σ ) mψ IndG
I
ψ

↑
IndI

N
σ =⊕

ψ∈Î (σ ) mψψ
↑

σ ∈ N̂
Restriction from I

ψ ∈ Î (σ )
↓

ResI
N
ψ = mψσ

Restriction from G
IndG

I
ψ ∈ Ĝ(σ )
↓

ResG
N

IndG
I
ψ = mψ

⊕
r∈R rσ
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Moreover, if ψ is irreducible then ψ is irreducible as well and if ψ = ψ1⊕ψ2

then ψ = ψ1 ⊕ ψ2.
Recall that the left-regular representation of a group G is the G-represen-

tation (λ, L(G)), where [λ(g)f ](h) = f (g−1h) for all g, h ∈ G and f ∈
L(G) (this is a particular case of the permutation representation (see Defini-
tion 1.1.6) corresponding to when G acts on itself by left multiplication).

Example 1.3.8 Suppose that ψ is the left-regular representation of the group
G/N . Then ψ is exactly the permutation representation of G over X = G/N .
In other words (cf. Proposition 1.1.7),

ψ ∼ IndGNιN (1.72)

where ιN is the trivial representation of N .

Theorem 1.3.9 (Gallagher [30]) Let N � G and θ ∈ Ĝ and suppose that
σ := ResGNθ ∈ N̂ (see Remark 1.3.7). For ψ ∈ Ĝ/N , denote by dψ the
dimension of ψ . Then the following hold:

(i)

IndGNσ =
⊕

ψ∈Ĝ/N
dψ(θ ⊗ ψ) (1.73)

where the θ ⊗ ψ are irreducible and pairwise nonequivalent;

(ii) the inertia index of θ ⊗ ψ with respect to N is equal to dψ ;

(iii) if τ ∈ Ĝ and ResGNτ = σ then τ ∼ θ ⊗ ψ for some ψ ∈ Ĝ/N with
dψ = 1.

Proof By Proposition 1.1.15 we have

IndGNσ = IndGN(σ ⊗ ιN ) = IndGN [(ResGNθ)⊗ ιN ] = θ ⊗ IndGNιN = θ ⊗ λ,

where ιN denotes the trivial representation of N and λ is the inflation of the
regular representation λ of G/N (see (1.72)). Recalling (see for instance [11,
Theorem 3.7.11(iii)]) that λ = ⊕

ψ∈Ĝ/Ndψψ , we have λ = ⊕
ψ∈Ĝ/Ndψψ ,

from which (1.73) immediately follows.
Applying Theorem 1.3.2(ii) and recalling that IG(σ ) = G we find that

HomG(IndGNσ, IndGNσ) = C|G/N |.
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Since |G/N | =∑
ψ∈Ĝ/N d

2
ψ (see again [11, Theorem 3.7.11(iii)]), from (1.73)

and the commutant theorem (Theorem 1.2.2) we obtain

|G/N | = dim[HomG(IndGNσ, IndGNσ)]
=

∑
ψ1,ψ2∈Ĝ/N

dψ1dψ2 dim[HomG(θ ⊗ ψ1, θ ⊗ ψ2)],

which implies the irreducibility and pairwise inequivalence of the θ ⊗ ψ’s as
well as the equality of dψ with the inertia index of θ⊗ψ with respect to N (by
Frobenius reciprocity). Thus (i) and (ii) are proved.

Suppose now that τ ∈ Ĝ and ResGNτ = σ . From Corollary 1.1.16 and (1.73)
we deduce that

τ ⊗ λ ∼ IndGNResGNτ ∼ IndGNσ =
⊕

ψ∈Ĝ/N
dψ(θ ⊗ ψ),

so that, observing that dim HomG(ιG, λ) = 1 (which follows immediately
from Frobenius reciprocity), we necessarily have τ ∼ τ ⊗ ιG ∼ θ ⊗ ψ for
some ψ ∈ Ĝ/N and dψ = 1. �

1.3.2 The little group method

In this subsection we give a general formulation of the little group method. As
an example, we apply it to semidirect products with an Abelian normal sub-
group. This particular case was developed by Frobenius (for finite groups) and
then by Wigner [76] for groups arising in physical problems as the Poincaré
group (see [73, Sections 3.9 and 3.20]). Finally, Mackey extended this method
to topological groups [55] (see also [56]).

Definition 1.3.10 Let G be a group, H ≤ G a subgroup of G and σ ∈ Ĥ .
An extension of σ to G is a representation σ̃ ∈ Ĝ such that ResGH σ̃ = σ .

Theorem 1.3.11 (The little group method) Let G be a finite group and
N � G a normal subgroup. Suppose that any σ ∈ N̂ has an extension σ̃ to its
inertia group IG(σ ) (see Definition 1.3.1). In N̂ define an equivalence relation
≈ by setting σ1 ≈ σ2 if there exists g ∈ G such that gσ1 ∼ σ2. Let � be a set
of representatives of the corresponding quotient space N̂/ ≈.

For ψ ∈ ̂IG(σ )/N denote by ψ ∈ ÎG(σ ) its inflation to IG(σ ) (see (1.71)).
Then

Ĝ = {IndGIG(σ)(̃σ ⊗ ψ) : σ ∈ �,ψ ∈ ̂IG(σ )/N},
that is, the right-hand side is a list of all irreducible G-representations where
for different values of σ and ψ we obtain inequivalent representations.
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Proof Let σ ∈ �. From Theorem 1.3.9 (with IG(σ ) in place of G and σ̃ in
place of θ ) we deduce that

IndIG(σ)N σ =
⊕

ψ∈ ̂IG(σ)/N

dψ (̃σ ⊗ ψ) (1.74)

where the σ̃ ⊗ ψ are irreducible and pairwise inequivalent representations in
ÎG(σ ). From the Clifford correspondence (Theorem 1.3.6) we find that the
G-representations

IndGIG(σ)(̃σ ⊗ ψ), (1.75)

ψ ∈ ÎG(σ ), are irreducible and pairwise inequivalent. By Theorem 1.3.2(i), the
restriction to N of a representation as in (1.75) (which is contained in IndGNσ )
is a sum ofG-conjugates of σ . It follows that the representations corresponding
to (σ1, ψ1) �= (σ2, ψ2) (σi ∈ �, ψi ∈ ÎG(σi), i = 1, 2) are inequivalent (recall
that � is a system of representatives for the orbits of G on N̂ ).

Finally, if τ is an irreducible representation of G, by Theorem 1.3.2(iii) we
can find a σ ∈ � such that τ ∈ Ĝ(σ ), and therefore, again by Clifford cor-
respondence, τ is of the form IndGIG(σ)ξ with ξ an irreducible representation

of IG(σ ) such that σ  ResIG(σ)N ξ . But then ξ  IndIG(σ)N σ , and therefore by

(1.74) there exists ψ ∈ ̂IG(σ )/N such that ξ = σ̃ ⊗ ψ . �

1.3.3 Semidirect products

In this section, we recall a well known construction in group theory (see, for
instance, [2, pp. 20–24] or [68, pp. 6–8]).

Definition 1.3.12 (Semidirect product) LetG be a finite group and N,H ≤
G two subgroups ofG. ThenG is the (internal) semidirect product of N byH ,
and we write G = N �H when the following conditions are satisfied:

(i) N � G;

(ii) G = NH ;

(iii) N ∩H = {1G}.
Proposition 1.3.13 Suppose thatG is a semidirect product ofN byH . Then:

(i) G/N ∼= H ;

(ii) every g ∈ G has a unique expression of the form g = nh with n ∈ N and
h ∈ H ;
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(iii) for any h ∈ H and n ∈ N set φh(n) = hnh−1. Then φh ∈ Aut(N) for all
h ∈ H , and the map

H −→ Aut(N)
h 
−→ φh

is a homomorphism (the conjugation homomorphism);
(iv) if nh, n1h1 ∈ G as in (ii) then their product is given by

(n1h1)(n2h2) = [n1h1n2h
−1
1 ]h1h2 = [n1φh1(n2)]h1h2. (1.76)

Conversely, suppose that H and N are two (finite) groups with a homomor-
phism H � h 
→ φh ∈ Aut(N). Set G = {(n, h) : n ∈ N, h ∈ H } and define a
product in G by setting

(n, h)(n1, h1) = (nφh(n1), hh1)

(see (1.76)). Then G is a group and is isomorphic to the (inner) semidirect
product of Ñ = {(n, 1H ) : n ∈ N} ∼= N by H̃ = {(1N, h) : H ∈ H } ∼= H .
The group G is called the external semidirect product of N by H with respect
to φ and is usually denoted by N �φ H .

Moreover, with the above notation, the following conditions are equivalent:

• G is isomorphic to the direct product Ñ × H̃ ;
• H̃ is normal in G;
• φh is the trivial automorphism of N for all h ∈ H .

Proof The proof is an easy exercise and is left to the reader. �

Clearly, the internal and external semidirect products are equivalent con-
structions and we shall make no distinction between them.

1.3.4 Semidirect products with an Abelian normal subgroup

We now apply the little group method to an important class of semidirect prod-
ucts, namely that of semidirect products with an Abelian normal subgroup.
The approach with our version of the little group method considerably simpli-
fies the setting.

In the following, we adopt the convention of identifying any irreducible rep-
resentation σ of an Abelian group A with its character χ = χσ . Recall that
χ(a−1) = χ(a) (the complex conjugate) for all a ∈ A.

Theorem 1.3.14 Suppose thatG = A�H with A Abelian. Given χ ∈ Â, its
inertia group IG(χ) coincides with A�Hχ where Hχ = {h ∈ H : hχ = χ}.
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Then any χ ∈ Â may be extended to a one-dimensional representation χ̃ ∈
Â�Hχ by setting

χ̃(ah) = χ(a) ∀a ∈ A, h ∈ Hχ. (1.77)

Moreover, with the notation used in Theorem 1.3.11,

Ĝ = {IndGA�Hχ (χ̃ ⊗ ψ) : χ ∈ �,ψ ∈ Ĥχ }.
Proof For a, a1 ∈ A and h ∈ H we have

ahχ(a1) = χ(h−1a−1a1ah)

= χ(h−1a−1h)χ(h−1a1h)χ(h
−1ah)

= χ(h−1a1h) = hχ(a1),

thus showing that the inertia subgroup of χ coincides with A�Hχ .
Let χ ∈ Â and let us prove that the extension of χ defined by (1.77) is

a homomorphism. By the definition of Hχ we have that χ is invariant under
conjugation with elements in Hχ , so that if a1, a2 ∈ A and h1, h2 ∈ Hχ

we have

χ̃((a1h1)(a2h2)) = χ̃ (a1h1a2h
−1
1 (h1h2))

= χ(a1h1a2h
−1
1 )

= χ(a1)χ(a2)

= χ̃ (a1h1)χ̃(a2h2).

Finally, the last statement is just an application of Theorem 1.3.11. �

1.3.5 The affine group over a finite field

This subsection is based on Chapters 16 and 17 of Terras’ monograph [74].
See also Diaconis’ book [20, Chapter 3, Section D, Example 4].

Let Fq be a finite field, where q = pr with p a prime number and r a
positive integer. We denote by F∗q = {x ∈ Fq : x �= 0} the multiplicative group
of invertible elements in Fq .

The affine group over Fq is the group of matrices

Aff(Fq) =
{(
x y

0 1

)
: x ∈ F∗q, y ∈ Fq

}
.

It acts on Fq ≡
{(
t

1

)
: t ∈ Fq

}
by multiplication:

(
x y

0 1

)(
t

1

)
=
(
xt + y

1

)
.
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Therefore, we may also consider Aff(Fq) as the group of affine transforma-
tions of Fq :

Aff(Fq) ∼= {τx,y : x ∈ F∗q, y ∈ Fq},
where τx,y(t) = xt + y for all t ∈ Fq . Note that

τx,yτu,v = τxu,xv+y.
In order to simplify the notation, we shall identify Aff(Fq) with the set

{(x, y) : x ∈ F∗q, y ∈ Fq} equipped with composition law

(x, y)(u, v) = (xu, xv + y). (1.78)

Remark 1.3.15 In the lemma below we shall prove that Aff(Fq) is a semi-
direct product. However, the notation in (1.78) differs from the standard nota-
tion (see Proposition 1.3.13) since the coordinates of the elements of the
corresponding direct product are switched.

Lemma 1.3.16 (i) The identity of Aff(Fq) is (1, 0) and the inverse of (x, y)
is (x, y)−1 = (x−1,−x−1y).

(ii) Setting A = {(1, y) : y ∈ Fq} ∼= Fq (a group with respect to addition)
andH = {(x, 0) : x ∈ F∗q} ∼= F∗q (a group with respect to multiplication),
we have

Aff(Fq) ∼= A�H

and the corresponding homomorphism F∗q � x 
→ φx ∈ Aut(Fq) is given
by φx(y) = xy for all x ∈ F∗q, y ∈ Fq .

(iii) The conjugacy classes of the group Aff(Fq) are C0 = {(1, 0)}, C1 =
{(1, y) : y ∈ F∗q} and Cx = {(x, y) : y ∈ Fq}, x ∈ F∗q , x �= 1.

Proof Part (i) is trivial, while (ii) and (iii) are immediate consequences of the
identity

(u, v)(x, y)(u, v)−1 = (x,−xv + uy + v) ≡ (x, (1− x)v + uy).
�

Since Aff(Fq) is a semidirect product with an abelian normal subgroup,
we can apply Theorem 1.3.11 (the little group method) to get a list of all
irreducible representations of Aff(Fq). As usual, F̂q (resp. F̂∗q ) will denote
the dual of the additive group Fq (resp. the multiplicative group F∗q ). From

Lemma 1.3.16(ii) it follows that the conjugacy action of F∗q on F̂q is given by

aχ(x) = χ(a−1x) (1.79)

for all χ ∈ F̂q, x ∈ Fq, a ∈ F∗q . Denote by χ0 ≡ 1 the trivial character of Fq .
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Lemma 1.3.17 The action of F∗q on F̂q has exactly two orbits, namely {χ0}
and F̂q \ {χ0}. Moreover, the stabilizer of χ ∈ F̂q is given by

(F∗q)χ =
{
{1F∗q } if χ �= χ0

F∗q if χ = χ0.

Proof It is clear that χ0 is a fixed point. From now on, let χ ∈ F̂q be a
nontrivial character. For a ∈ Fq let us set

aχ∗ =
{
a−1
χ if a ∈ F∗q

χ0 if a = 0.

We claim that the map a 
→ aχ∗ yields an isomorphism from Fq onto F̂q .
Indeed it is straightforward to check that (a+b)χ∗(x) = aχ∗(x)bχ∗(x) for all
a, b, x ∈ Fq . Moreover, if a �= 0 we have aχ∗ �= χ0 since the map x 
→ ax

is a bijection of Fq . This shows that the homomorphism a 
→ aχ∗ is injective.
Since |Fq | = |F̂q |, it is in fact bijective. As a consequence, we have that {aχ :
a �= 0} = {aχ∗ : a �= 0} coincides with the set of nontrivial characters. �

Theorem 1.3.18 The group Aff(Fq) has exactly q−1 one-dimensional repre-
sentations and one (q−1)-dimensional irreducible representation. The former
are obtained by associating with each ψ ∈ F̂∗q the function � : Aff(Fq)→ C
defined by

�(x, y) = ψ(x)
for all (x, y) ∈ Aff(Fq). The (q − 1)-dimensional irreducible representation
is given by

Ind
Aff(Fq )
Fq

χ, (1.80)

where χ is any nontrivial character of Fq .

Proof This is just an application of the little group method (Theorem 1.3.11).
Indeed, the inertia group of the trivial character χ0 ∈ F̂q is Aff(Fq), by Lemma
1.3.17. This provides the q − 1 one-dimensional representations simply by
taking any character ψ ∈ F̂∗q . The inertia group of a nontrivial character χ is
Fq since, by Lemma 1.3.17, (F∗q)χ = {1F∗q }. �

Exercise 1.3.19 Show that
(

Aff(Fq),F∗q
)

is a symmetric Gelfand pair with

homogeneous space Aff(Fq)/F∗q ≡ Fq and that the two spherical representa-
tions are the trivial representation and the one in (1.80), with corresponding
spherical functions φ0 ≡ 1 and φ1 given by
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φ1(x) =
{

1 if x = 0

− 1
q−1 if x �= 0

for all x ∈ Fq .
Hint. The group Aff(Fq) acts on Fq doubly transitively and one may apply
Exercise 1.2.34.

We now list some more advanced topics on the structure of finite fields that
shed more light on the representation theory of Aff(Fq). We refer to the books
by Lang [49, Chapter 6] and Winnie Li [53, Chapter 1] for complete proofs
and further details.

Theorem 1.3.20 Let Fq be the finite field with q = pr elements and p a
prime number.

(i) The multiplicative group F∗q is cyclic (of order q−1); in other words there
exists g ∈ F∗q such that F∗q = {1, g, g2, . . . , gq−2}.

(ii) The additive group of Fq is isomophic to the direct sum of r copies of the
(additive) cyclic group of order p.

(iii) If we set tr(x) = x + xp + xp2 + · · · + xpr−1
then tr (called the trace)

is a homomorphism of the additive group Fq onto the additive group Fp.
Moreover the kernel of tr is given by the subgroup Ker(tr) = {y − yp :
y ∈ Fq} (Hilbert’s Satz 90).

From Theorem 1.3.20(iii) we deduce that the expression

χ(x) = exp[2πi tr(x)/p], x ∈ Fq (1.81)

(we identify Fp with {0, 1, . . . , p− 1}), defines a nontrivial character χ ∈ F̂q .
Recall (see Theorem 1.3.18) that we may use this character to get the (unique)
higher-dimensional irreducible representation (1.80) of Aff(Fq).

Exercise 1.3.21 Show that F̂q = {χs : s ∈ Fq}, where

χs(x) = χ(sx) = exp[2πi tr(sx)/p] (1.82)

for all s, x ∈ Fq .

Deduce that F̂2
q = {χs,t : s, t ∈ Fq}, where

χs,t (x, y) = χ(sx + ty) = exp[2πi tr(sx + ty)/p] (1.83)

for all s, t, x, y ∈ Fq .
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Exercise 1.3.22 Use (1.81) together with Theorem 1.3.20(ii) to show that a

matrix realization of Ind
Aff(Fq )
Fq

χ is given by

U(gk, y) = D(y)Wk,

where g is a cyclic generator of F∗q , k = 0, 1, . . . , q − 2, y ∈ Fq , D(y) is the
(q − 1)× (q − 1) diagonal matrix

D(y) =

⎛⎜⎜⎜⎝
χ(y) 0 0 · · · 0

0 χ(gy) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · χ(gq−2y)

⎞⎟⎟⎟⎠
andW is the (q − 1)× (q − 1) permutation matrix

W =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ .

Hint. Use equation (1.7) with S = {g−i : i = 0, 1, . . . , q − 2} as a system of
representatives for the left cosets of Fq in Aff(Fq). Use the identities

(gk, y) = (1, y)(gk, 0) = (1, y)(g, 0)k,
(gi, 0)(1, x)(g−j , 0) = (gi−j , gix),
(gi, 0)(g, 0)(g−j , 0) = (gi−j+1, 0)

for all i, j, k = 0, 1, . . . , q − 2.

1.3.6 The finite Heisenberg group

This subsection, which is a natural continuation of the preceding one, is based
on Chapter 18 of Terras’ monograph [74].

Let Fq be a finite field and q = pr with p a prime number. The Heisenberg
group over Fq is the group of matrices

Hq =
⎧⎨⎩
⎛⎝1 x z

0 1 y

0 0 1

⎞⎠ : x, y, z ∈ Fq

⎫⎬⎭ .
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Exercise 1.3.23

(i) Show that Hq is isomorphic to the set {(x, y, z) : x, y, z ∈ Fq} endowed
with the composition law

(x, y, z)(u, v,w) = (x + u, y + v, xv + w + z). (1.84)

In particular, check that

(x, y, z)−1 = (−x,−y,−z + xy).
(ii) Deduce from (1.84) that

(x, y, z) = (0, 0, z)(0, y, 0)(x, 0, 0). (1.85)

(iii) Show that

(x, y, z)−1(u, v,w)(x, y, z) = (u, v, uy − xv + w) (1.86)

and deduce that the conjugacy classes of Hq are Cw = {(0, 0, w)}, w ∈
Fq (giving q one-element classes) and Cu,v = {(u, v,w) : w ∈ Fq},
u, v ∈ Fq , (u, v) �= (0, 0) (giving q2 − 1 classes of q elements).

(iv) From (1.86) deduce that (x, 0, 0)−1(0, v, w)(x, 0, 0) = (0, v, w − xv)
and thus, in turn, that

Hq ∼= F2
q �φ Fq,

where F2
q = {(0, v, w) : v,w ∈ Fq} and Fq = {(x, 0, 0) : x ∈ Fq} are

viewed as additive groups and φ is the Fq -action on F2
q given by

φx(v,w) = (v,w − xv)
with x, y, z ∈ Fq .

As a consequence of Exercise 1.3.23(iii), we shall denote the elements of
Hq by (x, y, z) ∈ Fq × F2

q with multiplication as in (1.84).
Using the notation from Theorem 1.3.14 (with G = Hq , A = F2

q and H =
Fq ), given χs,t ∈ F̂2

q (see (1.83)), we have

Hχs,t =
{
{1H } if t �= 0

H otherwise.

Indeed, from
(x,0,0)χs,t (v, w) = χs,t (v, w − xv)

= χ(sv + t (w − xv))
= χ((s − tx)v + tw)
= χs−tx,t (v, w)
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we deduce that (x,0,0)χs,t = χs,t if and only if either t = 0 (in this case, the ≈
equivalence class of each χs,0 reduces to the element χs,0 itself and therefore
Hχs,0 = H ) or t �= 0 and x = 0 (so that Hχs,t = {1H }).

According to the preceding analysis, we can choose

� = {χs,0 : s ∈ Fq} ∪ {χ0,t : t ∈ Fq, t �= 0}
as a set of representatives of the quotient space Â/ ≈ (cf. Theorem 1.3.11).

For every s, u ∈ Fq if we denote by ψs,u ∈ Ĥq the character defined by

ψs,u(x, y, z) = χ(sy + ux)
then, recalling that Hχs,0 = H (so that A � Hχs,0 = G) and that χu ∈ Ĝ
denotes the inflation of χu ∈ Ĝ/A = Ĥ = F̂q , we have

IndGA�Hχs,0
(χ̃s,0 ⊗ χu)(x, y, z) = (χ̃s,0 ⊗ χu)(x, y, z)

= χs,0(y, z)χu(x)
= χ(sy + ux)
= ψs,u(x, y, z)

so that

IndGA�Hχs,0
(χ̃s,0 ⊗ χu) = ψs,u.

Moreover, if t �= 0 then Hχ0,t = {1H } (so that A � Hχ0,t = A), and setting
πt := IndGA(χ̃0,t ) ∈ Ĥq we have

IndGA�Hχ0,t
(χ̃0,t ) = IndGA(χ̃0,t ) = πt . (1.87)

From Theorem 1.3.14 we deduce that Ĥq consists exactly of the q2 one-
dimensional representations ψs,u, s, u ∈ Fq , and the q − 1 representations
πt , t ∈ Fq, t �= 0, of dimension [G : A] = |H | = |Fq | = q.

Exercise 1.3.24 Use (1.87) to show that a matrix realization of πt is given by

U(x, y, z) = χ(tz)D(ty)W(x),
where D(ty) is the q × q diagonal matrix

D(ty) =

⎛⎜⎜⎜⎜⎜⎝
χ(0) 0 0 0 · · · 0

0 χ(ty) 0 0 · · · 0
0 0 χ(2ty) 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · χ((q − 1)ty)

⎞⎟⎟⎟⎟⎟⎠
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andW(x) is the q × q permutation matrix defined by

W(x)i,j = δi(j + x)
for all i, j ∈ Fq .
Hint. Use equation (1.85) and observe that S = {(i, 0, 0) : i ∈ Fq} = H = Fq
is a system of representatives for the left cosets of A = F2

q in G = Hq . Use
the identities

(i, 0, 0)(0, 0, z)(−j, 0, 0) = (i − j, 0, z),
(i, 0, 0)(0, y, 0)(−j, 0, 0) = (i − j, y, iy),
(i, 0, 0)(x, 0, 0)(−j, 0, 0) = (i − j + x, 0, 0)

for all i, j, x, y, z ∈ Fq .
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Wreath products of finite groups and their
representation theory

In this chapter, which constitutes the core of the book, we develop the repre-
sentation theory of wreath products. Our exposition is inspired by the mono-
graphs of James and Kerber [38] and Huppert [35]. Howewer, our approach
is more analytical and, in particular, we interpret the exponentiation and the
composition actions in terms of actions on suitable rooted trees. This is done
in Section 2.1.2. In Section 2.3 we describe the conjugacy classes of wreath
products F � G, with particular emphasis on groups of the form C2 � G (Sec-
tion 2.3.2), and F � Sn (Section 2.3.3), and then in Section 2.4 we use the little
group method (Theorem 1.3.11) to determine a complete list of irreducible
representations of wreath products. Finally in Sections 2.5 and 2.6 we analyze
the representation theory of groups of the form C2 � G and F � Sn, respec-
tively. This yields, in particular, a clear description of the representations of
finite lamplighter groups (Sections 2.5.1 and 2.5.2) as well as of the groups
Sm � Sn (Section 2.6.1).

2.1 Basic properties of wreath products of finite groups

2.1.1 Definitions

Let G and F be two finite groups and suppose that G acts on a finite set
X. Denote by FX the set of all maps f : X → F . The set FX is a group
under pointwise multiplication: (f · f ′)(x) = f (x)f ′(x) for all f, f ′ ∈FX
and x ∈X. We can define a natural action of G on FX by setting (gf )(x) =
f (g−1x) for all g ∈ G, f ∈ FX and x ∈ X. We have g(f · f ′) =
gf · gf ′ and (gf )−1 = gf−1; in this way G acts on FX as a group of
automorphisms.

60
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Define a multiplication on the set FX ×G = {(f, g) : f ∈ FX, g ∈ G} by
setting

(f, g)(f ′, g′) = (f · gf ′, gg′) (2.1)

for all (f, g), (f ′, g′) ∈ FX ×G, where, with the above notation,

(f · gf ′)(x) = f (x)f ′(g−1x) (2.2)

for all x ∈ X.

Lemma 2.1.1 The set FX × G equipped with the multiplication (2.1) is a
group. The identity element is (1F , 1G), where 1F (x) = 1F for all x ∈ X, and
the inverse of (f, g) is given by (g−1f−1, g−1).

Proof Let (f, g), (f ′, g′), (f ′′, g′′) ∈ FX ×G. Then, we have

[(f, g)(f ′, g′)](f ′′, g′′) = (f · gf ′, gg′)(f ′′, g′′)
= ((f · gf ′) · gg′f ′′, (gg′)g′′)
= (f · (gf ′ · gg′f ′′), g(g′g′′))
= (f · g(f ′ · g′f ′′), g(g′g′′))
= (f, g)(f ′ · g′f ′′, g′g′′)
= (f, g)[(f ′, g′)(f ′′, g′′)].

This shows that the operation (2.1) is associative. It easy to show that (1F , 1G)
is the identity. Moreover, we have

(g−1f−1, g−1)(f, g) = (g−1f−1 · g−1f, 1G)

= (g−1(f−1 · f ), 1G)
= (1F , 1G)
= (f, g)(g−1f−1, g−1)

and therefore (g−1f−1, g−1) is the inverse of (f, g). �

Definition 2.1.2

(i) The set FX ×G when equipped with the above group structure is called
the wreath product of F by the permutation group G and is denoted by
F � G.

(ii) The subgroup

FX = {(f, 1G) : f ∈ FX}
is called the base group: it is naturally identified with FX.

(iii) The subgroup diagFX := {f ∈ FX : f is constant on X} ∼= F is called
the diagonal subgroup of the base group.
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It is easy to show that the base group is a normal subgroup of F � G. More-
over, the wreath product may be written as the semidirect product (cf. Defini-
tion 1.3.12) of the base group by the subgroup G = {(1F , g) : g ∈ G} ∼= G

(note that (f, g) = (f, 1G) · (1F , g) for all (f, g) ∈ F � G). Modulo the
identification of G with G we thus have

F � G = FX �G.

Since

(1F , g)(f, 1G) = (gf, g) = (f, g) = (f, 1G)(1F , g)
for all g ∈ G and f ∈ diag FX, and since (diag FX) ∩ G = {(1F , 1G)}, we
deduce that (diag FX)G, as a subgroup of F � G, is isomorphic to the direct
product F ×G.

Proposition 2.1.3 Let G (resp. G1, resp. G2) be a finite group acting on a
finite set X (resp. X1, resp. X2). Also let F be a finite group and H ≤ G a
subgroup. Then

(F � G)/(F � H) ∼= G/H (2.3)

and

F � (G1 ×G2) ∼= (F � G1)× (F � G2) (2.4)

(here G1 × G2 acts on X1
∐
X2 as follows: (g1, g2)(xi) = gixi for xi ∈ Xi ,

i = 1, 2).

Proof For g1, g2 ∈ G we write g1 ∼H g2 if there exists h ∈ H such that
g1 = hg2 or equivalently if g1 and g2 belong to the same rightH -coset:Hg1 =
Hg2. Analogously, for f1, f2 ∈ FX and g1, g2 ∈ G we write (f1, g2) ∼F �H
(f2, g2) if there exists (f, h) ∈ F � H such that (f1, g2) = (f, h)(f2, g2).
Denoting as usual by 1F ∈ FX the constant function 1F (x) = 1F , where
1F is the identity element in F , we have (f, g) = (f, 1H )(1F , g) for all
f ∈ FX and g ∈ G. This shows that (f, g) ∼F �H (1F , g) for all f ∈ FX
and g ∈ G. Also, if g1, g2 ∈ G and g1 ∼H g2, say g1 = hg2 for h ∈ H ,
then (1F , g1) = (1F , h)(1F , g2) and therefore (1F , g1) ∼F �H (1F , g2). Vice
versa, if (1F , g1) ∼F �H (1F , g2) then one easily shows that g1 ∼H g2. This
proves (2.3).

Let us set X = X1
∐
X2. We leave it to the reader to check that the map

F � (G1 ×G2) −→ (F � G1)× (F � G2)(
f, (g1, g2)

) 
→ (
(f |X1, g1), (f |X2 , g2)

)
is a group isomorphism. �
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2.1.2 Composition and exponentiation actions

Now suppose in addition that F acts on a finite set Y . Then there is a natural
action of F � G on the product space X × Y, as shown in the following.

Lemma 2.1.4 For (f, g) ∈ F � G and (x, y) ∈ X × Y , set

(f, g)(x, y) = (gx, f (gx)y) ≡ (gx, [(g−1f )(x)]y). (2.5)

Then (2.5) defines an action of F � G on X × Y . Moreover, (2.5) is transitive
if and only if the actions of G on X and of F on Y are both transitive.

Proof It is clear that (1F , 1G)(x, y) = (x, y) for all (x, y) ∈ X × Y . More-
over, if (f, g), (f ′, g′) ∈ F �G and (x, y) ∈ X × Y then

[(f, g)(f ′, g′)](x, y) = (f · gf ′, gg′)(x, y)
= (gg′x, {[(gg′)−1f · g′−1f ′](x)}y)
= (gg′x, [(g−1f )(g′x)]{[(g′−1f ′)(x)]y})
= (f, g)(g′x, f ′(g′x)y)
= (f, g)[(f ′, g′)(x, y)].

It follows that (2.5) is an action. It is immediate to check that this action
is transitive if and only if the actions of G on X and of F on Y are both
transitive. �

Definition 2.1.5 The action defined in (2.5) is called the composition of the
actions of G on X and F on Y .

When restricted to the subgroup (diagFX)G, the composition action
coincides with the product action of G× F on X × Y . Note also that

(f, g)−1(x, y) = (g−1f−1, g−1)(x, y) = (g−1x, f (x)−1y)

for all (f, g) ∈ F � G and x ∈ X, y ∈ Y .
The theory of wreath products becomes more transparent if we think of them

as groups acting on finite rooted trees. The rooted tree TX×Y corresponding to
X × Y is the graph (V ,E) with vertex set V = {∅}∐X∐(X × Y ) and edge
set E = {{∅, x} : x ∈ X}∐{{x, (x, y)} : x ∈ X, y ∈ Y }. The vertex ∅ is called
the root of TX×Y . Moreover, if e = (u, v) ∈ E, u, v ∈ V then we say that the
vertices u and v are adjacent and we write u ∼ v. In other words, TX×Y is the
finite rooted tree, with two levels, obtained by taking ∅ as the root and X as
the first level and then attaching to each x ∈ X a copy of Y . All these copies
of Y constitute the second level X × Y , and its elements are called the leaves
of TX×Y (see Fig. 2.1).
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Fig. 2.1 The tree TX×Y is obtained by attaching to each x ∈ X a copy of Y .

We denote by Aut(TX×Y ) the automorphism group of the tree TX×Y of
TX×Y , that is, the group of all bijective maps α : V → V which respect the
adjacency relation ∼ (in other words, which map edges to edges). Note that
for every α ∈ Aut(TX×Y ) one has α(∅) = ∅ and, more generally, α(X) = X
and α(X × Y ) = X × Y . In view of this, every α ∈ Aut(TX×Y ) is uniquely
determined by its action on the leaves, that is, by α|X×Y . Now, given α ∈
Aut(TX×Y ) and (x, y) ∈ X × Y , there exist unique elements x′ = x′(x) ∈ X
and y′ = y′(x, y) ∈ Y such that

α(x, y) = (x′, y′). (2.6)

Taking G = Sym(X) and F = Sym(Y ) in Lemma 2.1.4, we have that the
composition action makes Sym(Y ) � Sym(X) act on the tree TX×Y . In fact we
have the following.

Theorem 2.1.6 Aut(TX×Y ) ∼= Sym(Y ) � Sym(X).

Proof Note first that the composition action respects the adjacency relation
∼ on the vertices of TX×Y . Also, the unique element of Sym(Y ) � Sym(X)
that corresponds to the trivial automorphism is the identity. This ensures that
Sym(Y ) � Sym(X) can be identified with a subgroup of Aut(TX×Y ). It only
remains to show that every α ∈ Aut(TX×Y ) comes from the action of an
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element (f, g) ∈ Sym(Y ) � Sym(X). This is easy: define g = g(α) ∈ Sym(X)
and f = f (α) ∈ Sym(Y )X such that

gx = x′ and f (gx)y = y′

where α(x, y) = (x′, y′), for all x ∈ X and y ∈ Y . Note that f is well defined
because for every x ∈ X we have

α({(x, y) : y ∈ Y }) = {(x′, y′) : y′ ∈ Y } = {(gx, y) : y ∈ Y }
(α respects the adjacency relation∼). It is then clear that α and (f, g) yield the
same action on TX×Y . �

Returning to the composition action (see Definition 2.1.5), since G≤
Sym(X) and F ≤ Sym(Y ), from the above theorem we immediately deduce
the following.

Corollary 2.1.7 (Geometric interpretation of the composition) The group
F � G is isomorphic to a subgroup of Aut(TX×Y ). �

There is also a natural action of F � G on the set YX of all maps ϕ : X→ Y .

Lemma 2.1.8 For (f, g) ∈ F � G, ϕ ∈ YX and x ∈ X set

[(f, g)ϕ](x) = f (x)ϕ(g−1x). (2.7)

Then (2.7) defines an action of F � G on YX. Moreover, (2.7) is transitive if
and only if the action of F on Y is transitive.

Proof It is clear that (1F , 1G)ϕ = ϕ. Moreover, if (f, g), (f ′, g′) ∈ F � G,
ϕ ∈ YX and x ∈ X, we have

{[(f, g)(f ′, g′)ϕ]}(x) = [(f · gf ′, gg′)ϕ](x)
= [f (x)f ′(g−1x)]ϕ(g′−1g−1x)

= f (x)[f ′(g−1x)ϕ(g′−1g−1x)]
= f (x){[(f ′, g′)ϕ](g−1x)}
= {(f, g)[(f ′, g′)ϕ]}(x)

and therefore (2.7) is an action. One can easily check that this action is tran-
sitive if and only if the action of F on Y is transitive (this is equivalent to a
transitive action of the base group FX itself on YX). �

Definition 2.1.9 The action defined in (2.7) is called the exponentiation of
the action of F by the action of G. Its restriction to (diag FX)G is called the
power action of F by G.
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Fig. 2.2 The map ϕ ∈ YX may be seen as a subtree of the tree of X × Y .

Exercise 2.1.10 For each ϕ ∈ YX, denote by

Gϕ = {(x, ϕ(x)) : x ∈ X} ⊂ X × Y

the graph of ϕ. Show that

(f, g)Gϕ = G(f,g)ϕ,

where (f, g)Gϕ = {(f, g)(x, ϕ(x)) : x ∈ X}. In other words, on the family
{Gϕ : ϕ ∈ YX} ≡ YX of subsets of X × Y the composition action induces
exactly the exponentiation action.

Example 2.1.11 (Geometric interpretation of the exponentiation action)
Consider again the tree TX×Y of X × Y . We may identify every ϕ ∈ YX with
the subtree

Tϕ = ∅
∐
X
∐
{(x, ϕ(x)) : x ∈ X)}.

In this way, YX may be seen as the family of all subtrees whose vertex set
consists of the root ∅, the whole first level X and, for every x ∈ X, the sole
vertex (x, ϕ(x)) ∈ X × Y (see Fig. 2.2). Then the action of F � G on this
family of subtrees (induced by the composition action) coincides exactly with
the exponentiation action (see Exercise 2.1.10).
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2.1.3 Iterated wreath products and their actions on rooted trees

Now letH be a third group and suppose again thatG (resp. F ) acts transitively
on X (resp. Y ). We consider the wreath products H � F ≡ HY � F and
(H � F) � G ≡ (H � F)X �G. Alternatively, if we regard F � G as a group
acting on X × Y by means of the composition action, we can form the wreath
productH � (F � G) ≡ HX×Y � (F � G). Both constructions lead to the same
result, as shown in the following theorem.

Theorem 2.1.12 (Associativity of the wreath product) The map

� : H � (F � G) → (H � F) � G
(h, f, g) 
→ (ϑ, g),

where h ∈ HX×Y , f ∈ FX and g ∈ G and where ϑ ∈ (H � F)X = (HY ×
F)X = (HY )X ×FX, defined by setting ϑ(x) = (h(x, ·), f (x)) for all x ∈ X,
is a group isomorphism.

Proof It is clear that � is a bijection. If we take (h, f, g), (h′, f ′, g′) ∈ H �
(F � G) then their product is

(h, f, g)(h′, f ′, g′) = (h · (f, g)h′, f · gf ′, gg′),
where [h · (f, g)h′](x, y) = h(x, y)h′(g−1x, f (x)−1y). Therefore, on the one
hand

�((h, f, g)(h′, f ′, g′)) = (ϑ ′′, gg′),
where ϑ ′′(x) = (h(x, ·)h′(g−1x, f (x)−1·), f (x)f ′(g−1x)). On the other hand,
if (ϑ, g) = �(h, f, g) and (ϑ ′, g′) = �(h′, f ′, g′) then (ϑ, g)(ϑ ′, g′) =
(ϑ · gϑ ′, gg′) and

(ϑ · gϑ ′)(x) = ϑ(x)ϑ ′(g−1x) = (h(x, ·), f (x))(h′(g−1x, ·), f ′(g−1x))

= (h(x, ·)h′(g−1x, f (x)−1·), f (x)f ′(g−1x)),

that is, ϑ · gϑ ′ = ϑ ′′. This shows that

�((h, f, g)(h′, f ′, g′)) = �(h, f, g)�(h′, f ′, g′),
so that � is an isomorphism. �

From now on, in view of Theorem 2.1.12 we will simply write the iterated
wreath product of H,F and G as H � F � G.

More generally, suppose that G1,G2, . . . ,Gm are finite groups and that
each Gi acts on a finite set Xi , i = 1, 2 . . . , m − 1. Set V0 = {∅} and, for
k = 1, 2, . . . , m,

Vk = X1 ×X2 × · · · ×Xk.
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Then the iterated wreath product Gm � Gm−1 � · · · � G2 � G1 consists of all
m-tuples (fm, fm−1, . . . , f2, f1), where f1 ∈ G1 and fk : Vk−1 → Gk , k = 2,
3, . . . , m, with the multiplication law and action on Vm recursively defined by

(fk, fk−1, . . . , f2, f1)(f
′
k, f

′
k−1, . . . , f

′
2, f

′
1)

= (fk · (fk−1, . . . , f2, f1)f
′
k, (fk−1, . . . , f2, f1)(f

′
k−1, . . . , f

′
2, f

′
1)),

(2.8)

where

[(fk−1, fk−2, . . . , f2, f1)f
′
k](x1, x2, . . . , xk−1)

= f ′k((fk−1, . . . , f2, f1)
−1(x1, x2, . . . , xk−1)), (2.9)

and by

(fk−1, fk−2, . . . , f2, f1)(x1, x2, . . . , xk−1) = (y1, y2, . . . , yk−1), (2.10)

where

(y1, y2, . . . , yk−2) = (fk−2, . . . , f2, f1)(x1, x2, . . . , xk−2)

and

yk−1 = fk−1(y1, y2, . . . , yk−2)xk−1

for all xi ∈ Xi , fi ∈ GVi−1
i , i = 1, 2, . . . , k, and k = 1, 2 . . . , m.

Exercise 2.1.13 Verify that the multiplication operation defined in (2.8) makes
Gm � Gm−1 � · · · � G2 � G1 a group and that (2.10) defines a group action of
Gm � Gm−1 � · · · � G2 � G1 on X1 ×X2 × · · · ×Xm.
Hint. Apply induction and use Lemmas 2.1.1 and 2.1.4.

Exercise 2.1.14 (Distributivity of the wreath product) Let G1 (resp. G2)
be a finite group acting on a set X1 (resp. X2). Let F be a finite group and set
X = X1

∐
X2. Show that

F � (G1 ×G2) ∼= (F � G1)× (F � G2),

where the wreath product on the left-hand side is defined with respect to the
action of G1 ×G2 on X (see Proposition 2.1.3).
Hint. Show that the map

FX � (G1 ×G2) → (
FX1 �G1

)× (
FX2 �G2

)
(f, (g1, g2)) 
→ (

(f |X1 , g1), (f |X2 , g2)
)
,

where f |Xi ∈ FXi denotes the restriction of f ∈ FX, yields the desired iso-
morphism.
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The iterated wreath product of permutation representations is a particular
case of a more general construction considered in [3]. It involves an indicized
family of permutation groups where the index set is a poset.

2.1.4 Spherically homogeneous rooted trees and their
automorphism group

In this subsection, we give a geometric interpretation of the iterated wreath
product: as for the wreath product of two single groups, the iterated wreath
product can be interpreted in terms of actions by automorphisms of rooted
trees.

Let X1, X2, . . . , Xm, m ≥ 1, be finite sets. For k = 1, 2, . . . , m, let rk =
|Xk| and

Vk = X1 ×X2 × · · · ×Xk
and set r = (r1, r2, . . . , rm). We then denote by Tr the spherically homoge-
neous rooted tree of branching type r (briefly, r-tree) with vertex set

V = V0

∐
V1

∐
V2

∐
· · ·

∐
Vm,

where two vertices v = (x1, x2, . . . , xk) andw = (y1, y2, . . . , yh) are adjacent
if |h − k| = 1 and xi = yi for all i = 1, 2, . . . ,min{h, k}. If v and w are
adjacent and h = k + 1 we say that w is a son or successor of v and that
v is a father or predecessor of w. The set Vk , k = 0, 1, . . . , m, is called the
kth level of the tree. Clearly, every vertex of level k (0 ≤ k ≤ m − 1) has
exactly rk+1 successors. Moreover, the integer m is called the depth of Tr and
the elements in Vm are called the leaves of Tr. Let Aut(Tr) denote the group
of all rooted automorphisms of Tr, that is, of all bijective maps α : V → V

that preserve the adjacency relation and that, in addition, fix the root ∅. Note
that every such automorphism stabilizes all levels of the tree. For every vertex
(x1, x2, . . . , xk) ∈ Vk , 0 ≤ k ≤ m, we denote by T(x1,x2,...,xk) the subtree with
root (x1, x2, . . . , xk) and vertex set

{(x1, x2, . . . , xk)}
∐
({(x1, x2, . . . , xk)} ×Xk+1)

∐
· · ·

∐
({(x1, x2, . . . , xk)} ×Xk+1 ×Xk+2 × · · · ×Xm) .

The following constitutes a generalization of Theorem 2.1.6.

Theorem 2.1.15 Aut(Tr) ∼= Srm � Srm−1 � · · · � Sr2 � Sr1 .

Proof Arguing by induction, one easily proves that the iterated composition
action respects the adjacency relation ∼ on the vertices of Tr and that the
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unique element of Srm � Srm−1 � · · · � Sr2 � Sr1 which corresponds to the trivial
automorphism is the identity. This ensures that Srm � Srm−1 � · · · � Sr2 � Sr1
can be identified with a subgroup of Aut(Tr). It remains to show that every
α ∈ Aut(Tr) comes from the action of an element in the iterated wreath
product. The argument is the same as that in Theorem 2.1.6, just a bit more
elaborated.

If α ∈ Aut(Tr) and α(x1, x2, . . . , xk) = (y1, y2, . . . , yk) then, since α pre-
serves the adjacency relation as well as the levels, we have αT(x1,x2,...,xk) =
T(y1,y2,...,yk). In other words, every automorphism permutes the subtrees rooted
at vertices of the same level. In this way, every α ∈ Aut(Tr) is uniquely deter-
mined by the m-tuple h(α) = (hm, hm−1, . . . , h2, h1), where

hk = hk(α) ∈ Sym(Xk)
Vk−1

is defined by

α(x1, x2, . . . , xk)

= (h1(∅)x1, h2(x1)x2, h3(x1, x2)x3, . . . , hk(x1, x2, . . . , xk−1)xk) (2.11)

for all k = 1, 2, . . . , m. One calls h(α) the labeling (or portrait, see [33]) of
the automorphism α.

We now recursively define fk ∈ Sym(Xk)Vk−1 by setting f1 = h1 and

fk = (fk−1, fk−2, . . . , f2, f1)hk

for all k = 2, 3, . . . , m and denote by

f (α) = (fm, fm−1, . . . , f2, f1)

the corresponding m-tuple.
Then (2.11) ensures that α can be identified with f (α). �

2.1.5 The finite ultrametric space

The finite ultrametric space has been introduced and studied by G. Letac [52]
and A. Figà-Talamanca [28]. We refer to [11, Chapter 7] for more details and
information.

Let q and m be positive integers and denote by Tq,m the rooted tree Tr of
depth m where r = (q, q, . . . , q) (thus Tq,m is homogeneous). Note that, as a
particular case of Theorem 2.1.15, we have Aut(Tq,m) ∼= Sq � Sq � · · · � Sq .

Denote by Y = {0, 1, . . . , q−1}m the set of leaves of Tq,m and equip it with
a metric structure by defining a distance function d : Y × Y → N, by setting

d(x, y) = m−max{k : xi = yi for all i ≤ k} (2.12)
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for all x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) in Y . The distance d
satisfies the ultrametric inequality

d(x, z) ≤ max{d(x, y), d(y, z)}

for all x, y, z ∈ Y . For this reason, one calls (Y, d) the (finite) ultrametric
space.

Consider the action of Aut(Tq,m) on Y and denote byK(q,m) the stabilizer
of the point y0 = (0, 0, . . . , 0). We then have:

Theorem 2.1.16 (Aut(Tq,m),K(q,m)) is a symmetric Gelfand pair.

Proof By virtue of Example 1.2.32, it suffices to show that the action of
Aut(Tq,m) on Y is 2-point homogeneous.

We proceed by induction on the depth m of the tree. If m = 1, we have
Y = {0, 1, . . . , q − 1} and Aut(Tq,1) = Sq . Moreover, the ultrametric dis-
tance coincides, in this case, with the discrete distance (for x, y ∈ Y , we have
d(x, y) = 0 if x = y and d(x, y) = 1 otherwise). Let x, y, x′, y′ ∈ Y and
suppose that d(x, y) = d(x′, y′). We distinguish three cases: (i) if d(x, y) =
d(x′, y′) = 0 then x = y and x′ = y′, and we denote by g the transposition
(x x′) ∈ Sq ; (ii) if d(x, y) = d(x′, y′) = 1 (so that x �= y and x′ �= y′), x = y′
and y = x′, we then set g = (x x′) = (x y) ∈ Sq ; (iii) otherwise, we set
g = (x x′)(y y′) ∈ Sq . In all three cases we have gx = x′ and gy = y′. This
proves the base case of the induction.

Suppose now that the statement holds true for Aut(Tq,k)with 1 ≤ k ≤ m−1.
Let x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym), x

′ = (x′1, x′2, . . . , x′m) and
y′ = (y′1, y′2, . . . , y′m).

If d(x, y) = d(x′, y′) = m then x1 �= y1 and x′1 �= y′1. By applying the
same argument as in the base case, we can find an element g ∈ Sq such that
gx1 = x′1 and gy1 = y′1. Consider now the element α ∈ Aut(Tq,m) with
label h(α) = (1, 1, . . . , 1, g) and set x′′ = (x′′1 , x′′2 , . . . , x′′m) = α(x) =
(x′1, x2, . . . , xm) and y′′ = (y′′1 , y′′2 , . . . , y′′m) = α(y) = (y′1, y2, . . . , ym).
We have that x′′ and x′ (resp. y′′ and y′) belong to the same rooted subtree,
namely Tx′1 (resp. Ty′1 ), and these subtrees are distinct (since x′1 �= y′1). Since
the height of these rooted trees ism−1, after identifying Aut(Tx′1) and Aut(Ty′1)
with Aut(Tq,m−1) we apply induction and obtain an element β ∈ Aut(Tq,m−1)

(resp. δ ∈ Aut(Tq,m−1)), say with label h(β) = (bm, bm−1, . . . , b2) (resp.
h(δ) = (dm, dm−1, . . . , d2)), such that β(x′′2 , x′′3 , . . . , x′′m) = (x′2, x′3, . . . , x′m)
(resp. δ(y′′2 , y′′3 , . . . , y′′m) = (y′2, y′3, . . . , y′m)). If γ ∈ Aut(Tq,m) has a label
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h(γ ) = (hm, hm−1, . . . , h2, h1) such that h1 = g, hk(x′1, t2, t3, . . . , tk−1) =
bk(t2, t3, . . . , tk−1) and hk(y′1, t2, t3, . . . , tk−1) = dk(t2, t3, . . . , tk−1) for all
t2, t3, . . . , tk−1 = 0, 1, . . . , q − 1 and 2 ≤ k ≤ m then we clearly have
γ (x) = x′ and γ (y) = y′.

Suppose now that d(x, y) = d(x′, y′) < m. This means that there exists
1 ≤ n ≤ m such that x1 = y1, x2 = y2, . . . , xn = yn and x′1 = y′1, x′2 =
y′2, . . . , x′n = y′n. In particular x1 = y1 (resp. x′1 = y′1), that is, x and y
(resp. x′ and y′) belong to the same subtree Tx1 (resp. Tx′1 ). By the transitiv-
ity of the action of Sq on {0, 1, . . . , q − 1}, there exists g ∈ Sq such that
gx1 = x′1 (and therefore gy1 = y′1). Let α ∈ Aut(Tq,m) denote the element
with label h(α) = (1, 1, . . . , 1, g) and set x′′ = (x′′1 , x′′2 , . . . , x′′m) = α(x) =
(x′1, x2, . . . , xm) and y′′ = (y′′1 , y′′2 , . . . , y′′m) = α(y) = (x′1, y2, . . . , ym).
Then, after identifying Aut(Tx′1) and Aut(Tq,m−1), we can find, by the induc-
tive hypothesis, an element β ∈ Aut(Tq,m−1) such that β(x′′2 , . . . , x′′m) =
(x′2, . . . , x′m) and β(y′′2 , . . . , y′′m) = (y′2, . . . , y′m). Finally, let γ ∈ Aut(Tq,m)
be an element with label h(γ ) = (hm, hm−1, . . . , h2, h1) such that h1 = g

and hk(x′1, t2, t3, . . . , tk−1) = bk(t2, t3, . . . , tk−1) for all t2, t3, . . . , tk−1 =
0, 1, . . . , q − 1 and 2 ≤ k ≤ m, where h(β) = (bm, bm−1, . . . , b2). It is
clear that γ (x) = x′ and γ (y) = y′. �

In order to describe the decomposition into irreducible subrepresentations
of the permutation representation L(Y ), we introduce some subspaces. Recall-
ing that Y = {0, 1, . . . , q − 1}m, we regard any element f ∈ L(Y ) as a
function f = f (x1, x2, . . . , xm) of the variables x1, x2, . . . , xm ranging in
{0, 1, . . . , q − 1}. Moreover, if 0 ≤ j ≤ m − 1 and if f ∈ L(Y ) does
not depend on the last variables xj+1, xj+1, . . . , xm, that is, f only depends
on the vertices of the first j levels of the tree Tq,m, then we simply write
f = f (x1, x2, . . . , xj ).

SetW0 = L(∅) = C and, for j = 1, . . . , m, set

Wj =
⎧⎨⎩f ∈ L(Y ) : f = f (x1, x2, . . . , xj ),

q−1∑
x=0

f (x1, x2, . . . , xj−1, x) ≡ 0

⎫⎬⎭ .
(2.13)

Note that for j ≥ 1 one has

dim(Wj ) = qj−1(q − 1). (2.14)

In other words, Wj is the set of all functions f ∈ L(Y ) that depend only
on the variables x1x2 · · · xj and whose mean on the sets {x1x2 · · · xj−1x : x =
0, 1, . . . , q − 1} is equal to zero for all x1x2 · · · xj−1 ∈ {0, 1, . . . , q − 1}j−1.
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In more geometrical language, we may say that f ∈ L(Y ) belongs toWj if,
for every x1x2 · · · xj−1 ∈ {0, 1, . . . , q − 1}j−1 and x ∈ {0, 1, . . . , q − 1}, the
function f is constant on the set

Ax = {x1x2 · · · xj−1xxj+1xj+2 · · · x� :
xj+1, xj+2, . . . , x� = 0, 1, . . . , q − 1 and � = j + 1, j + 2, . . . , m}

of descendants of x1x2 · · · xj−1x in Y and, denoting by fx the constant value

of f on Ax , one has
∑q−1
x=0 fx = 0.

Theorem 2.1.17 L(Y ) = ⊕mj=0Wj .

Proof We first show that the subspacesWj , j = 0, 1, . . . . , m, are Aut(Tq,m)-
invariant. The first condition, namely the dependence of f ∈ Wj only on the
first j variables, is clearly invariant as Aut(Tq,m) preserves the levels.

The induced action of Aut(Tq,m) on L(Y ) is given by

[α−1f ](x1, x2, . . . , xn)

= f (h(∅)x1, h(x1)x2, h(x1, x2)x3, . . . , h(x1, x2, . . . , xm−1)xm)

for f ∈ L(Y ) and α ∈ Aut(Tq,m) with labeling as in (2.11). Thus if f ∈ Wj
we have

q−1∑
x=0

[α−1f ](x1, x2, . . . , xj−1, x)

=
q−1∑
x=0

f (h(∅)x1, h(x1)x2,

. . . , h(x1, x2, . . . , xj−2)xj−1, h(x1, x2, . . . , xj−1)x)

=
q−1∑
x′=0

f (h(∅)x1, h(x1)x2, . . . , h(x1, x2, . . . , xj−2)xj−1, x
′)

≡ 0.

This shows that the second defining condition for an f to be in Wj is also
invariant.
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We now show that these spaces are pairwise orthogonal; that is, if f ∈ Wj ,
f ′ ∈ Wj ′ then

〈
f, f ′

〉 = 0 if j �= j ′. To fix our ideas suppose that j < j ′. Then

〈
f, f ′

〉 = q−1∑
x1=0

q−1∑
x2=0

· · ·
q−1∑
xm=0

f (x1, x2, . . . , xm)f ′(x1, x2, . . . , xm)

= qm−j ′
q−1∑
x1=0

q−1∑
x2=0

· · ·
q−1∑

xj ′−1=0

f (x1, x2, . . . , xj )

×
q−1∑
k=0

f ′(x1, x2, . . . , xj ′−1, k)

= 0.

We claim that the Wj ’s fill up the whole space L(Y ). We use induction on
m. For m = 1, it is a standard fact that any function f (x1) can be expressed
as f (x1) = c + g(x1), where c ∈ C is a constant (indeed, c = 1

q

∑q−1
x=0 f (x))

and g is a function of mean zero:
∑q−1
x=0 g(x) = 0. Suppose now that the

assertion is true for n − 1. Again, we can express an element f ∈ L(Y ) as
f (x1, x2, . . . , xm) = c(x1, x2, . . . , xm−1)+ g(x1, x2, . . . , xm−1, xm), where c
does not depend on the last variable xm and g has mean zero with respect to
xm. Applying the inductive step to c, the claim follows.

For j = 0, 1, . . . , m we denote by �j = {x ∈ Y : d(x, x0) = j} the
sphere of radius j centered at y0 = (0, 0, . . . , 0). Observe that since K(q, n)
is the stabilizer of the point y0 the�j ’s areKq,m-invariant. In fact, by virtue of
the 2-point homogeneity of the action of Aut(Tq,m) on Y , the spheres �j are
exactly the Kq,m-orbits. It follows that there are m+ 1 such orbits.

By applying Theorem 1.2.36 we have that the Wj ’s are irreducible sub-
spaces, and this ends the proof. �

We remark that, incidentally, Theorem 2.1.17 offers an alternative proof
of the fact that (Aut(Tq,n),K(q, n)) is a Gelfand pair (compare with Theo-
rem 2.1.16). Indeed the subspaces Wj are pairwise inequivalent (they have
different dimensions, see (2.14)) and therefore the decomposition of L(Y ) is
multiplicity free (cf. Theorem 1.2.28).

Our next step is the determination of the spherical functions φ0, φ1, . . . , φm

relative to (Aut(Tq,m),K(q,m)): we combine the defining conditions of the
Wj ’s with K(q,m)-invariance (φj is constant on the spheres �k).
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Proposition 2.1.18 For j = 0, 1, . . . , m, the spherical function φj ∈ Wj is
given by

φj (x) =

⎧⎪⎪⎨⎪⎪⎩
1 if d(x, x0) < m− j + 1

− 1
q−1 if d(x, x0) = m− j + 1

0 if d(x, x0) > m− j + 1.

(2.15)

Proof It is clear that the function in (2.15) is K(q,m)-invariant. We are only
left with showing that φj belongs toWj . By virtue of (2.12) we have

φj (x1, x2, . . . , xm) =

⎧⎪⎪⎨⎪⎪⎩
1 if x1 = x2 = · · · = xj = 0

− 1
q−1 if x1 = x2 = · · · = xj−1 = 0 and xj �= 0

0 otherwise.

Indeed, we first observe that if (x1, x2, . . . , xj−1) �= (0, 0, . . . , 0) then all
points of the form (x1, x2, . . . , xm) have the same distance (> m − j + 1)
from the base point y0 = (0, 0, . . . , 0) (in fact all points in the spheres �h
with h > m− j + 1 satisfy this condition).

The spherical function φj in Wj is constant on the �h’s and thus if (x1,

x2, . . . , xj−1) �= (0, 0, . . . , 0) then φj (x1, x2, · · · , xj−1, x) does not depend
on x because all the (x1, x2, . . . , xj−1, x), with x = 0, 1, . . . , q − 1, belong to
the same orbit �h. This, coupled with the condition

q−1∑
x=0

φj (x1, x2, . . . , xj−1, x) = 0,

implies that φj vanishes on all points at distance > m− j + 1 from x0.
Similarly, the points of the form (0, 0, . . . , 0︸ ︷︷ ︸

j−1

, x, yj+1, . . . , ym) with x =

1, 2, . . . q − 1 constitute the ball of radius m − j + 1. Since, by definition,
φj (0, 0, . . . , 0, 0) = 1 and φj only depends on the first j variables, the condi-

tion φj (0, 0, . . . , 0, 0) +∑q−1
x=1 φj (0, 0, . . . , 0, x) = 0, coupled with the con-

dition that φj is constant on �m−j+1, uniquely determines the value of φj on
points at distance m− j + 1; this value is therefore equal to − 1

q−1 .
Finally, if d(x, x0) < m− j + 1 then x = (0, 0, . . . , 0︸ ︷︷ ︸

h

, yh+1, . . . , yn) with

h > j − 1, and therefore φj (x) = φj (0, 0, . . . , 0) = 1. �



76 Wreath products of finite groups and their representation theory

2.2 Two applications of wreath products to group theory

A fundamental application of wreath products to group theory consists in
expressing the Sylow p-subgroups Sylow(Spn) of the symmetric group Spn
of degree pn (p a prime number, n ≥ 1) as the n-iterated wreath product of the
cyclic group Cp of order p; that is, we write

Sylow(Spn) ∼= Cp � Cp � · · · � Cp︸ ︷︷ ︸
n times

. (2.16)

In general, if N = a0 + a1p + · · · + akpk , where 0 ≤ ai < p, then the
Sylow p-subgroups of the symmetric group of degree N are isomorphic to the
direct product of ai copies of Sylow(Spi ) for i = 1, 2, . . . , k.

These calculations are attributed to Kaloujnine [39–42] (see also [8]) although
Kerber [43, p. 26] refers to an 1844 work of Cauchy. We shall not discuss these
results here; the interested reader may find a detailed exposition in the book by
Rotman [60, Chapter VII, p. 176].

In this section, however, we give two other applications of wreath products
to group theory. They are relevant to the material in the present book. We
follow quite closely the monograph by Dixon and Mortimer [23].

2.2.1 The theorem of Kaloujnine and Krasner

Let G,K and N be groups. We say that G is an extension of N by K , or
equivalently that

{1} −→ N −→ G −→ K −→ {1}
is an exact sequence, if

N � G and G/N ∼= K.
A wreath product of the form N � K = NK � K (here we consider the left
regular action of K on itself) yields an extension of the base group NK by K .
We refer to this as to the regular (or standard) wreath product of N by K .

Theorem 2.2.1 (Kaloujnine–Krasner [46–48]) Let G be an extension of N
by K . Then the following hold.

(i) There exists an injective homomorphism

� : G −→ N �K
of G into the regular wreath product of N by K .
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(ii) Moreover, if NK is the base group of N �K then

�(N) = �(G) ∩NK.
Proof (i) Let ψ : G −→ K denote the canonical surjective homomorphism
with Ker ψ = N . For every k ∈ K choose sk ∈ G such that ψ(sk) = k and
s1K = 1G. In this way we have

G =
∐
k∈K

skN.

Since ψ(s−1
k gsψ(g)−1k) = k−1ψ(g)ψ(g)−1k = 1K , then s−1

k gsψ(g)−1k ∈ N
for all g ∈ G and k ∈ K . Therefore for every g ∈ G we have a map fg :
K −→ N defined by setting

fg(k) = s−1
k gsψ(g)−1k, (2.17)

for all k ∈ K . We claim that the map

� : G −→ N �K
g 
−→ (fg, ψ(g))

(2.18)

is an injective homomorphism. First, for g, h ∈ G and k ∈ K we have{
fg[ψ(g)fh]

}
(k) = fg(k)fh

[
ψ(g)−1k

]
(by (2.2))

= s−1
k gsψ(g)−1ks

−1
ψ(g)−1k

hs−1
ψ(h)−1ψ(g)−1k

(by (2.17))

= s−1
k ghsψ((gh)−1)k (ψ is a homomorphism)

= fgh(k) (again by (2.17)),

that is,

fg[ψ(g)fh] = fgh for all g, f ∈ G. (2.19)

Then

�(g)�(h) = (fg, ψ(g))(fh, ψ(h)) (by (2.18))

= (fgψ(g)fh, ψ(g)ψ(h)) (by (2.1))

= (fgh, ψ(gh)) (by (2.19))

= �(gh) (by (2.18))

for all g, h ∈ G, showing that � is a homomorphism. It remains to show that
� is injective, that is, that Ker � = 1G. This is easy: if �(g) = 1N �K then
fg = 1N and ψ(g) = 1K and therefore

1G ≡ 1N = 1N(1K) = fg(1K) = s−1
1K
gsψ(g)−11K = g.
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In order to show (ii), it suffices to note that �(g) ∈ NK if and only if
ψ(g) = 1K , that is, if and only if g ∈ N . �

2.2.2 Primitivity of the exponentiation action

Let G be a finite group acting transitively on a finite set X and denote by K
the stabilizer of a point x0 ∈ X.

A block of the action ofG on X is a subset B ⊆ X such that for each g ∈ G
one has

either gB = B or gB ∩ B = ∅. (2.20)

Let B ⊂ X be a block. We say that B is trivial if |B| = 1 or B = X. Setting
� = {kB : k ∈ K}, we have that X = ∐

A∈� A and that G acts on � in the
obvious way.

If there exists a nontrivial block, say B, we say that the action of G on X is
imprimitive and we call � a system of blocks (or system of imprimitivity) for
the action ofG on X. If the action ofG on X (is transitive and) has only trivial
blocks we say that it is primitive.

Lemma 2.2.2 Let B ⊂ X be a block and h ∈ G. Then hB is also a block.
Moreover, B is trivial if and only if hB is.

Proof The statement follows immediately after taking h−1gh in place of g in
(2.20). The remaining part of the proof is trivial. �

Exercise 2.2.3 Prove that the action of G on X is primitive if and only if K
is a maximal subgroup of G.
Hint. The map H 
−→ Hx0 yields a correspondence between the set of all
subgroups H such that K ≤ H and the set of all blocks containing x0.

We recall that, in the preceding notation, the stabilizer of an element x ∈ X
is gKg−1, where g is any group element such that gx0 = x. A transitive
action of G on X is called regular whenever the stabilizer of a point is trivial:
K = {1G} (and therefore all other stabilizers are trivial). Clearly, the action
of G is regular on X if and only if the following condition is satisfied: for any
x, y ∈ X there exists exactly one g ∈ G such that gx = y. In particular,
|G| = |X|.

The kernel of the action of G on X is the normal subgroup N = {g ∈ G :
gx = x for all x ∈ X}. This is the kernel of the homomorphismG→ Sym(X)
induced by the action. Note that the kernel coincides with K if and only if K
is normal in G. We say that the action is faithful when its kernel is trivial.
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Exercise 2.2.4 Suppose that the action of G on X is faithful and primitive.
Then the action is not regular if and only if NG(K) = K , where NG(K) =
{g ∈ G : gKg−1 = K} ≤ G is the normalizer of K in G.
Hint. Observe that K ≤ NG(K) � G.

Denoting by N the kernel of the action ofG on X, we have that the action is
primitive if and only if the induced action ofG/N onX is primitive. Therefore,
in the study of primitive actions, the assumption that these actions are faithful
is not restrictive.

Now let F be another group acting on a finite set Y .
On the one hand, the composition action of wreath products is not primitive

because, in the notation of Definition 2.1.5, we have that {x} × Y is a block
(for the action of F � G on X × Y ) for every x ∈ X.

On the other hand, we will show that exponentiation (see Definition 2.1.9)
provides a wealth of primitive actions. We first introduce some notation. Fix
y0 ∈ Y and let H be the stabilizer of y0 in F . For each x ∈ X we set �x =
{ψ ∈ YX : ψ(x′) = y0 for all x′ �= x}.
Lemma 2.2.5 Let� be a block for the action of F �G on YX. Then, for every
x ∈ X, the set B = {ϕ(x) : ϕ ∈ �x ∩�} is a block for the action of F on Y .

Proof Let x ∈ X, ϕ ∈ �x and suppose that f ∈ FX satisfies f (x′) = 1F for
all x′ �= x. Then one has

[(f, 1G)ϕ](x) = f (x)ϕ(x) and [(f, 1G)ϕ](x′) = y0 for all x′ �= x,
and therefore (f, 1G)�x = �x and (f, 1G) (�x ∩�) = �x ∩ (f, 1G)�. Since
� is a block, we have

(f, 1G) (�x ∩�) = �x ∩� or [(f, 1G) (�x ∩�)] ∩ (�x ∩�) = ∅.
Suppose now that s ∈ F and f ∈ FX satisfies f (x) = s and f (x′) = 1F for
all x′ �= x. Then we have

sB = {ϕ(x) : ϕ ∈ (f, 1G) (�x ∩�)}
so that, necessarily, either sB = B or sB ∩ B = ∅, proving that B is a
block. �

Theorem 2.2.6 Suppose that the actions of G on X and of F on Y are both
faithful. Then the exponentiation action of F �G on YX is primitive if and only
if the following conditions are satisfied:

(i) the action of G on X is transitive;
(ii) the action of F on Y is primitive but not regular.
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Proof We start by proving that conditions (i) and (ii) are necessary. We achieve
this by analyzing all possible cases separately.

• If the action of G on X is not transitive and A � X, A �= ∅, is an orbit, then
the set � = {ϕ ∈ YX : ϕ(x) = y0 for all x ∈ A} is a nontrivial block of
F �G on YX. Indeed, if (f, g) ∈ F � G and (f, g)�∩� �= ∅ then f (x) ∈ H
for all x ∈ A and therefore (f, g)� = �.

• If the action of F on Y is not transitive then neither is the action of F �G on
YX transitive (see Lemma 2.1.8).

• If the action of F on Y is not primitive and B ⊆ Y is a nontrivial block then
the set � = {ϕ ∈ YX : ϕ(x) ∈ B for all x ∈ X} is a nontrivial block for the
action of F �G on YX.

• If the action of F on Y is regular then the set � of all constant functions
ϕ : X −→ Y is a block. Indeed, if (f, g) ∈ F �G and (f, g)�∩� �= ∅ then
there exists ϕ ∈ � such that (f, g)ϕ ∈ �. This implies that [(f, g)ϕ](x) =
f (x)ϕ(g−1x) is constant as a function of x. Regularity forces f to be con-
stant also, yielding (f, g)� = �.

We now prove that conditions (i) and (ii) imply that the action F � G on
YX is primitive. Let � ⊆ YX be a block for the action of F � G on YX and
suppose that |�| ≥ 2. Since the action of F �G on YX is transitive, by virtue of
Lemma 2.2.2 we may assume that � contains the constant function ϕ0, where
ϕ0(x) = y0 for all x ∈ X. By our assumptions, there exists ϕ ∈ � such that
ϕ �= ϕ0. Thus we can find x1 ∈ X and y1 ∈ Y , y1 �= y0, satisfying ϕ(x1) = y1.
Taking f ∈ FX such that

f (x)ϕ0(x) = ϕ(x) for all x ∈ X,
we have that (f, 1G)ϕ0 = ϕ and therefore

(f, 1G)� = � (2.21)

(because � is a block). In particular, for u = f (x1) we have uy0 = y1 and
u /∈ H . Since NF (H) = H (see Exercise 2.2.4) we can find h ∈ H such
that

u−1hu /∈ H.
Define f1, f2 ∈ FX by setting

f1(x) =
⎧⎨⎩h if x = x1

1F otherwise
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and f2(x) = f1(x)
−1f (x)−1f1(x)f (x), for all x ∈ X. Then we have

f2(x) =
⎧⎨⎩h

−1u−1hu /∈ H if x = x1

1F otherwise.

Since (f1, 1G)ϕ0 = ϕ0 we also have (f1, 1G)� = � and therefore, recall-
ing (2.21),

(f2, 1G)� ≡ (f1, 1G)
−1(f, 1G)

−1(f1, 1G)(f, 1G)� = �. (2.22)

Let us set v = f2(x1). By virtue of Lemma 2.2.5, the set B = {ϕ(x1) :
ϕ ∈ �x1 ∩ �} is a block for the action of F on Y . But B contains both
y0 (because ϕ0 ∈ �x1 ∩ �) and vy0 (because (f2, 1G)ϕ0 ∈ �x1 ∩ � and
[(f2, 1G)ϕ0](x1) = vy0); since vy0 �= y0 (because v /∈ H ) and F is primitive
on Y , necessarily B ≡ Y . It follows that� contains�x1 . Since (1F , g)ϕ0 = ϕ0

it follows that (1F , g)� = �, for all g ∈ G. Therefore from the elementary
identity (1F , g)�x1 = �gx1 and the transitivity of the action of G on X, we
deduce that

� ⊇
⋃
x∈X

�x. (2.23)

Now we end the proof by showing that � = YX. Indeed, any ϑ ∈ YX may be
represented in the form

ϑ =
[ ∏
x∈X
(fx, 1G)

]
ϕ0,

where fx ∈ FX is defined by setting fx(x′) = 1F for x′ �= x and by choosing
fx(x) in such a way that fx(x)y0 = ϑ(x). Noticing that (fx, 1G)ϕ0 ∈ �x ,
from (2.23) we deduce that (fx, 1G)ϕ0 ∈ �; since ϕ0 ∈ � this implies that
(fx, 1G)� = � for all x ∈ X. Therefore

ϑ =
[ ∏
x∈X
(fx, 1G)

]
ϕ0 ∈

[ ∏
x∈X
(fx, 1G)

]
� = �.

We have shown that � = YX, so the exponentiation action of F � G on YX is
necessarily primitive. �

2.3 Conjugacy classes of wreath products

This section takes its inspiration from the monograph of James and Kerber
[38]. We recall that for any finite group G there exists a bijective
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correspondence between the set of conjugacy classes inG and the dual Ĝ ofG
(that is, a complete set of pairwise inequivalent representations of G) (see [15,
Corollary 1.3.16]).

2.3.1 A general description of conjugacy classes

Recall that, given distinct elements x1, x2, . . . , xr in a set X, the permutation
c = (x1x2 · · · xr) in Sym(X) that maps x1 to x2, x2 to x3, . . . , xr−1 to xr and xr
to x1 and maps every other element of X to itself is called a cycle. The integer
r = �(c) is called the length of the cycle. Also, recalling that the support
of a permutation π ∈ Sym(X) is the set consisting of all x ∈ X such that
π(x) �= x, we have that given π ∈ Sym(X) there exists an integer h ≥ 0 and
cycles c1, c2, . . . , ch with mutually disjoint supports such that π = c1c2 · · · ch.
This is called the cycle decomposition of π (and its expression is unique up to
a permutation of the factors).

We now introduce a useful notation for cycles (see [59] and [15, Remark
3.1.1]). If π ∈ Sym(X) and c is a cycle of π , we write c in the form

c = (x → π(x)→ π2(x)→ · · · → π�(c)−1(x)→ x), (2.24)

where x belongs to the support of c. In this way, if σ is another element of
Sym(X) and we denote by σc the cycle in σπσ−1 corresponding to the cycle
c of π as in (2.24) then, from the elementary identity (σπσ−1)k[σ(x)] =
σπkσ−1[σ(x)] = σπk(x) for all k ≥ 0, we get

σc = (σ (x)→ σπ(x)→ σπ2(x)→ · · · → σπ�(c)−1(x)→ σ(x)). (2.25)

Let nowG be a finite group and, for g ∈ G, denote by C(g) = {h−1gh : h ∈
G} the conjugacy class of g in G. Suppose that G acts on a finite set X and
denote by π this action: π(g) ∈ Sym(X) is the permutation of X associated
with g ∈ G. Denote by C(π(g)) the cycles of the permutation π(g). Then any
c ∈ C(π(g)) is of the form (2.24):

c = (x → π(g)x → · · · → π(g)�(c)−1x → x),

where x ∈ X. The cycle decomposition of π(g) is given by

π(g) =
∏

c∈C(π(g))
c ≡

∏
x∈O(π(g))

(x → π(g)x → · · · → π(g)�(c)−1x → x),

where O(π(g)) ⊂ X denotes a set of representatives for the orbits of π(g) on
X. If g, h ∈ G then C(π(hgh−1)) = hC(π(g)), where if c = (x → π(g)x →
· · · → π(g)�(c)−1x → x) ∈ C(π(g)) then hc = (π(h)x → π(h)π(g)x →
· · · → π(h)π(g)�(c)−1x → π(h)x) (cf. (2.25)).
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Now let F be another finite group and denote by D = {C(f ) : f ∈ F } the
set of its conjugacy classes. Form the wreath product F � G = FX � G. In
what follows, for the sake of simplicity we will use the notation gx to denote
π(g)x. Also, for two elements a and b in a group H , we shall write a ∼H b

if a and b are conjugate in H (that is, C(a) = C(b)). For (f, g) ∈ F � G and
c = (x → gx → · · · → g�(c)−1x → x) ∈ C(π(g)), we set

ac,x(f, g) = f (g�(c)−1x)f (g�(c)−2x) · · · f (gx)f (x) ∈ F. (2.26)

Lemma 2.3.1 The conjugacy class of ac,x(f, g) in F does not depend on
the particular expression (that is, the choice of the first element x) of the cycle
c = (x → gx → · · · → g�(c)−1x → x) ∈ C(π(g)).

Proof If (gtx → gt+1x → · · · → gt+�(c)−1x → gtx) ∈ C(π(g)) is another
equivalent way to write c then

f (gt+�(c)−1x)f (gt+�(c)−2x) · · · f (gtx) ∼F f (g�(c)−1x)f (g�(c)−2x) · · · f (x),
because in any group the elements

a1a2 · · · ai−1aiai+1 · · · ak and aiai+1 · · · aka1a2 · · · ai−1

are conjugate. �

We now set Y = {(ϕ, g) : g ∈ G and ϕ : C(g) → D}. In other words, Y
consists of all pairs (ϕ, g) such that g ∈ G and ϕ is a function which maps a
cycle of the permutation onX associated with g to a conjugacy class of F . The
group G acts on Y in a natural way: if h ∈ G and (ϕ, g) ∈ Y then

h(ϕ, g) = (hϕ, hgh−1),

where hϕ : C(hgh−1) → D is defined by setting hϕ(c) = ϕ(h−1c), for all
c ∈ C(g). By virtue of Lemma 2.3.1, the following definition is well posed.

Definition 2.3.2 Let (f, g) ∈ F �G and define ϕ : C(g)→ D by setting ϕ(c)
equal to the conjugacy class containing ac,x(f, g). We then denote by A(f, g)
the orbit of G on Y containing the element (ϕ, g).

Lemma 2.3.3 Let f ∈ FX, g, h ∈ G and

c = (x → gx → · · · → g�(c)−1x → x) ∈ C(g).

Then

ac,x(f, g) = ahc,hx(hf, hgh−1)

and

A(f, g) = A((1F , h)(f, g)(1F , h)−1).
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Proof First recall that hc = (hx → hgx → · · · → hg�(c)−1x → hx) is a
cycle of hgh−1. We then have

ahc,hx(hf, hgh
−1) = f (h−1hg�(c)−1x) · · · f (h−1hx)

= f (g�(c)−1x) · · · f (x) = ac,x(f, g).
Therefore, if for every c ∈ C(g) we denote by ϕ(c) (resp. ψ(hc)) the con-
jugacy class of ac,x(f, g) (resp. ahc,hx(hf, hgh−1)) then we have h(ϕ, g) =
(ψ, hgh−1) and A(f, g) = A(hf, hgh−1) = A((1F , h)(f, g)(1F , h)−1). �

Lemma 2.3.4 Let f, f ′ ∈ FX, g ∈ G and

c = (x → gx → · · · → g�(c)−1x → x) ∈ C(g).

Then

ac,x(f, g) ∼F ac,x(f ′f (gf ′)−1, g),

where (gf ′)−1(y) = f ′(g−1y)−1 for all y ∈ X, and

A(f, g) = A((f ′, 1G)(f, g)(f ′, 1G)−1).

Proof We have

ac,x(f
′f (gf ′)−1, g) = [f ′f (gf ′)−1](g�(c)−1x)[f ′f (gf ′)−1](g�(c)−2x)

× · · ·× [f ′f (gf ′)−1](x)
= f ′(g�(c)−1x)f (g�(c)−1x)[f ′(g�(c)−2x)]−1

× f ′(g�(c)−2x)f (g�(c)−2x)[f ′(g�(c)−3x)]−1

× · · · × f ′(gx)f (gx)[f ′(x)]−1f ′(x)f (x)[f ′(g−1x)]−1

= f ′(g�(c)−1x)f (g�(c)−1x)f (g�(c)−2x)

× · · · × f (gx)f (x)[f ′(g−1x)]−1

= f ′(g�(c)−1x)ac,x(f, g)[f ′(g−1x)]−1

= f ′(g−1x)ac,x(f, g)[f ′(g−1x)]−1

∼F ac,x(f, g).
Therefore, if for every c ∈ C(g) we denote by ϕ(c) (resp. ψ(c)) the conjugacy
class of ac,x(f, g) (resp. ac,x(f ′f (gf ′)−1, g)), then ϕ = ψ and A(f, g) =
A(f ′f (gf ′)−1, g) = A((f ′, 1G)(f, g)(f ′, 1G)−1). �

Theorem 2.3.5 Let (f, g), (f ′, g′)∈F � G. Then we have (f, g)∼F �G
(f ′, g′) if and only if A(f, g) = A(f ′, g′). In particular, the conjugacy classes
of F �G may be parameterized by the orbits of G on Y .
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Proof The “only if” part follows from Lemmas 2.3.3 and 2.3.4 after observ-
ing that if (f ′′, g′′) ∈ F �G then

(f ′′, g′′)(f, g)(f ′′, g′′)−1 = (f ′′, 1G)(1F , g′′)(f, g)(1F , g′′)−1(f ′′, 1G)−1.

Conversely, suppose that A(f, g) = A(f ′, g′). This implies the existence of
g′′ ∈ G such that

g = g′′g′(g′′)−1 (2.27)

and

ac,x(f, g) ∼F a(g′′)−1c,(g′′)−1x(f
′, g′)

for all c = (x → gx → · · · → g�(c)−1x → x) ∈ C(g). From Lemma 2.3.3
we deduce that

A(f, g) = A(f ′, g′) = A((1F , g′′)(f ′, g′)(1F , g′′)−1) = A(g′′f ′, g)

and

ac,x(f, g) ∼F a(g′′)−1c,(g′′)−1x(f
′, g′) = ac,x(g′′f ′, g)

for all c = (x → gx → · · · → g�(c)−1x → x) ∈ C(g). Therefore, for every
such c ∈ C(g) there exists qc ∈ F such that

f (g�(c)−1x)f (g�(c)−2x) · · · f (x)
= qcf ′((g′′)−1g�(c)−1x)f ′((g′′)−1g�(c)−2x) · · · f ′((g′′)−1x)q−1

c . (2.28)

Let f ′′ : X → F be defined as follows. For every c = (x → gx → · · · →
g�(c)−1x → x) ∈ C(g) we recursively set f ′′(g�(c)−1x) = qc and

f ′′(gtx) = f (gt+1x)−1f ′′(gt+1x)f ′((g′′)−1gt+1x) (2.29)

for t = �(c)− 2, �(c)− 3, . . . , 1, 0. It follows that

f (gtx) = f ′′(gtx)f ′((g′′)−1gtx)f ′′(gt−1x)−1

for t = �(c)− 1, �(c)− 2, . . . , 1 and that, by (2.28),

f (x) = f ′′(x)f ′((g′′)−1x)f ′′(g�(c)−1x)−1.
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We deduce that

f (g�(c)−1x)f (g�(c)−2x) · · · f (gx)f (x)
= [f ′′(g�(c)−1x)f ′((g′′)−1g�(c)−1x)f ′′(g�(c)−2x)−1]
× [f ′′(g�(c)−2x)f ′((g′′)−1g�(c)−2x)f ′′(g�(c)−3x)−1]
× · · · × [f ′′(gx)f ′((g′′)−1gx)f ′′(x)−1]
× [f ′′(x)f ′((g′′)−1x)f ′′(g�(c)−1x)−1]

=∗ [f ′′(g�(c)−1x)f ′((g′′)−1g�(c)−1x)f ′((g′′)−1g�(c)−1x)−1

× f ′′(g�(c)−1x)−1f (g�(c)−1x)]
× [f ′′(g�(c)−2x)f ′((g′′)−1g�(c)−2x)f ′((g′′)−1g�(c)−2x)−1

× f ′′(g�(c)−2x)−1f (g�(c)−2x)]
× · · · × [f ′′(gx)f ′((g′′)−1gx)f ′((g′′)−1gx)−1f ′′(gx)−1f (gx)]
× [f ′′(x)f ′((g′′)−1x)f ′′(g�(c)−1x)−1]

= f (g�(c)−1x)f (g�(c)−2x) · · · f (gx)[f ′′(x)f ′((g′′)−1x)f ′′(g�(c)−1x)−1],
(2.30)

where equality =∗ follows from (2.28). By comparing the first and last terms
of (2.30) we deduce that

f ′′(g−1x) = f ′′(g�(c)−1x) = f (x)−1f ′′(x)f ′((g′′)−1x). (2.31)

It follows that f = f ′′(g′′f ′)(g(f ′′)−1) (compare this with (2.29) and (2.31))
and therefore, also using (2.27), we get

(f ′′, g′′)(f ′, g′)(f ′′, g′′)−1 = (f ′′(g′′f ′)(g(f ′′)−1), g′′g′(g′′)−1) = (f, g).
�

2.3.2 Conjugacy classes of groups of the form C2 � G
Let G be a finite group acting on a set X. Let F = C2 ≡ {0, 1} denote the
cyclic group of order two (we use additive notation). Then the wreath product
of C2 by G (with respect to the action of G on X) is the set C2 � G = CX2 ×
G = {(ω, g) : ω ∈ CX2 , g ∈ G)} with the composition law (θ, g) · (ω, h) =
(θ + gω, gh) for all θ, ω ∈ CX2 , g, h ∈ G, where gω(x) = ω(g−1x) for all
x ∈ X. The identity element is (0C2 , 1G) and the inverse of (θ, g) ∈ C2 �G is
given by (θ, g)−1 = (g−1θ, g−1).

Now, for g ∈ G, c = (x → gx → · · · → g�(c)−1x → x) ∈ C(g) and ω ∈
CX2 , we have ac,x(ω, g) = ω(x)+ω(gx)+· · ·+ω(g�(c)−1x). In particular, ac,x
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does not depend on x and so it will be denoted simply by ac(ω, g). Moreover,
D coincides with C2, so that Y = {(ϕ, g) : g ∈ G and ϕ : C(g) → C2}. We
also recall that A(ω, g) denotes the orbit of G on Y containing (ϕ, g), where
ϕ(c) = ac(ω, g) for all c ∈ C(g).

Example 2.3.6 (The finite lamplighter group) Let G = Cn denote the
cyclic group of order n: we shall use additive notation and identify G with
Z/nZ. Thus we shall think of any element k ∈ Cn as an integer representing
the equivalence class k + nZ. Let X = Cn be equipped with the Cayley action
of G. Note that, in our notation, s(kω) = (s + k)ω.

Consider the wreath product C2 � Cn. We denote by Cn2 the set of all maps
θ : Cn → C2. If k ∈ Cn and θ ∈ Cn2 then kθ(j) = θ(j − k) and the
multiplication in C2 � Cn = {(θ, k) : θ ∈ Cn2 , k ∈ Cn} is given by

(θ, k)(ω, h) = (θ + kω, k + h)

for all (θ, k), (ω, h) ∈ C2 � Cn.
Now let k ∈ Cn and denote by m the order of k. Then the (cyclic) group 〈k〉

generated by k is isomorphic to Cm and the cycles of k are the cosets of 〈k〉 in
Cn. Setting t = n

m
we then have

C(k) = {(r → r + k→ · · · → r + k(m− 1)→ r) : r = 0, 1, . . . , t − 1}.

We may identify (r → r + k → · · · → r + k(m − 1) → r) with r seen
as an element of Ct ∼= Cn

Cm
(that is, r is computed modulo t). Then the action

of Cn on C(k) is the same thing as its action on Ct ∼= Cn
Cm

: for j ∈ Cn, the

j -image of the cycle (r → r + k → · · · → r + k(m − 1) → r) is the cycle
(r + j → r + j + k → · · · → r + j + k(m − 1) → r + j), which is
determined by r+ j (computed modulo t). Note also that the conjugacy action
of Cn on itself is trivial. Taking into account all these considerations, instead
of Y = {(ϕ, k) : k ∈ Cn and ϕ : C(k) → C2} we will consider only the set∐
t |n Ct2 (here Ct2 denotes, as usual, the set of all functions from Ct to C2, and

t varies among all divisors of n). For (ω, k) ∈ C2 � Cn, and for m and t as
above, we denote by Ã(ω, k) the orbit of Cn on Ct2 containing the function
ϕ : Ct → C2 defined by setting

ϕ(r) = ω(r)+ ω(r + k)+ · · · + ω(r + k(m− 1)) for r = 0, 1, . . . , t − 1.

Recalling Definition 2.3.2, Theorem 2.3.5 immediately gives:
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Theorem 2.3.7 Two elements (ω, k), (θ, h) ∈ C2 � Cn are conjugate if and
only if h = k and Ã(ω, k) = Ã(θ, h).
Example 2.3.8 (The hyperoctahedral group) Let G = Sn denote the sym-
metric group of degree n. We recall some elementary facts on the conjugacy
classes of Sn (see [11, 15]). If π ∈ Sn and

π = (a1 → a2 → · · · → aλ1 → a1)(b1 → b2 → · · · → bλ2 → b1)

· · · (c1 → c2 → · · · → cλk → c1)

is the decomposition of π into disjoint cycles, with λ1 ≥ λ2 ≥ · · · ≥ λk and
λ1 + λ2 + · · · λk = n (trivial cycles are taken into account also) then the cycle
structure of π is determined by the partition λ = (λ1, λ2, . . . , λk) of n. We
write λ ( n if λ is a partition of n. Let Cλ ⊂ Sn be the set of all permutations
whose cycle structure is equal to λ ( n. Then the sets Cλ, λ ( n, are precisely
the conjugacy classes of Sn: two elements σ, π ∈ Sn are conjugate if and only
if they have the same cycle structure.

We now take X = {1, 2, . . . , n} and form the wreath product C2 � Sn =
{(θ, π) : π ∈ Sn, θ ∈ CX2 }. Let (θ, π) ∈ C2 � Sn and recall that ac(θ, π) ≡
θ(a1)+ θ(a2)+ · · · + θ(a�(c)) for any cycle c = (a1 → a2 → · · · → a�(c)→
a1) in C(π). For i = 0, 1 we then set Ci,θ (π) = {c ∈ C(π) : ac(θ, π) = i}.

Definition 2.3.9

(i) A double partition of the positive integer n is a pair (λ, μ), where λ ( k,
μ ( n− k and 0 ≤ k ≤ n. We will write (λ, μ) � n to denote that (λ, μ)
is a double partition of n.

(ii) If (λ, μ) � n we will denote by Cλ,μ the set of all pairs (θ, π) ∈ C2 � Sn
such that the cycle structures of the permutations∏

c∈C(π):
ac(θ,π)=0

c and
∏

c∈C(π):
ac(θ,π)=1

c

are equal to λ and μ, respectively.

In other words, λ (resp. μ) is determined by the lengths of the cycles c =
(a1 → a2 → · · · → a�(c) → a1) of π on which ac(θ, π) is equal to 0
(resp. 1).

Theorem 2.3.10 The sets Cλ,μ, (λ, μ) � n, are precisely the conjugacy
classes of C2 � Sn.
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Proof In the present setting Y is the set of all (ϕ, π) where π ∈ Sn and
ϕ : C(π)→ C2. Given (ϕ, ρ) ∈ Y and i = 0, 1 we set

ρi =
∏

c∈C(ρ):
ϕ(c)=i

c.

Then (ϕ, π) and (ψ, σ ) in Y are in the same Sn-orbit if and only if there exists
η ∈ Sn such that ηπη−1 = σ and ϕ(η−1c) = ψ(c) for all c ∈ C(π), and this
is in turn equivalent to the fact that πi and σi have the same cyclic structure.
Applying this fact to (θ, π) and (ω, σ ) ∈ C2 � Sn with ϕ(c) = ac(θ, π) and
ψ(c) = ac(ω, σ ), for all c ∈ C(π), we conclude that (θ, π) and (ω, σ ) are
conjugate if and only if they belong to the same Cλ,μ. �

2.3.3 Conjugacy classes of groups of the form F � Sn
We now consider wreath products of the form F � Sn with respect to the nat-
ural action of Sn on X = {1, 2, . . . , n}. Therefore, F � Sn = {(f, π) : π ∈
Sn and f : X → F } with the usual product law. We introduce a specific nota-
tion to parameterize the conjugacy classes of F � Sn. For (f, π) ∈ F � Sn, we
consider the matrix

α(f, π) = (ατ,k(f, π))τ∈D
k∈X

,

where ατ,k(f, π) equals the number of cycles c ∈ C(π) such that �(c) = k and
ac,x(f, π) ∈ τ . Clearly,∑

τ∈D
ατ,k(f, π) = number of cycles of length k in π (2.32)

and
n∑
k=1

k
∑
τ∈D

ατ,k(f, π) = n. (2.33)

The matrix α(f, π) will be called the type of (f, π).
We denote by B = B(F, n) the set of matrices

β = (βτ,k)τ∈D
k∈X

of nonnegative integers satisfying the condition

n∑
k=1

k
∑
τ∈D

βτ,k = n. (2.34)
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Theorem 2.3.11 Two elements in F �Sn are conjugate if and only if they have
the same type. Moreover, the set of conjugacy classes of F � Sn is in bijective
correspondence with B.

Proof Let us show that two elements (f, π) and (f ′, π ′) in F � Sn are con-
jugate if and only if the have the same type. Observe that, by virtue of Theo-
rem 2.3.5, it suffices to prove thatA(f, π) = A(f ′, π ′) if and only if α(f, π) =
α(f ′, π ′). The “only if” part is obvious.

Conversely suppose that α(f, π) = α(f ′, π ′). From (2.32) we get π ∼Sn
π ′, because π and π ′ have the same cyclic structure. Moreover, we can choose
σ ∈ Sn such that σπσ−1 = π ′ and, in addition, ac,x(f, π) ∼F aσc,σx(f ′, π ′)
for all c ∈ C(π) and for x ∈ O(c), the orbit of c in X = {1, 2, . . . , n}. Indeed,
to construct a permutation σ ∈ Sn such that σπσ−1, the first step is to choose
a bijection between C(π) and C(π ′) that preserves the length of the cycles.
Since α(f, π) = α(f ′, π ′) we can choose that bijection in such a way that,
for every c ∈ C(π), the elements ac,x(f, π) and aσc,σx(f ′, π ′) belong to the
same conjugacy class. This ensures that A(f, π) = A(f ′, π ′) and proves the
first statement of the theorem.

To complete the proof, we note that α(f, π) ∈ B for all (f, π) ∈ F � Sn.
Let now show that given any β ∈ B there exists (f, π) ∈ F � Sn such that
α(f, π) = β. We first take π ∈ Sn, which has

∑
τ∈D βτ,k many cycles of

length k and then construct f as follows. We arbitrarily make the partition

C(π) =
∐
τ∈D
k∈X
βτ,k �=0

Cτ,k(π)

in such a way that |Cτ,k(π)| = βτ,k for all τ ∈ D and k ∈ X. Then, for each
τ ∈ D, k ∈ X and c ∈ Cτ,k(π), we arbitrarily select an element x = x(c) ∈
O(c) and one element f0 ∈ τ and then set

f (y) =
{
f0 if y = x
1F otherwise

for all y ∈ O(c). Since the orbits Oc, c ∈ C(π), form a partition of X
this defines an element f ∈ FX. It immediately follows by construction that
α(f, π) = β.

This shows that the map (f, π) 
→ α(f, π) induces a bijection between the
set of conjugacy classes of F � Sn and B. �

As a consequence of the above theorem, we have that the number of con-
jugacy classes of F � Sn is equal to |B|. We now give a formula explicitly
expressing such a number. To this purpose we denote by c(n, h) the set of all
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finite sequences (a1, a2, . . . , ah), where a1, a2, . . . , ah are nonnegative inte-
gers and a1 + a2 + · · · + ah = n (such a sequence is called a composition of n
of length h). Moreover, we denote by p(n) the number of partitions of n.

Corollary 2.3.12 The number of conjugacy classes of F � Sn is equal to∑
(a1,a2,...,ah)∈c(n,h)

p(a1)p(a2) · · ·p(ah), (2.35)

where h = |D|.
Proof Let us set

�(F, n) =
{
a = (aτ )τ∈D : aτ ≥ 0,

∑
τ∈D

aτ = n
}

(2.36)

and, for a ∈ �(F, n),
�(a) = {λ(a) = (λτ )τ∈D : λτ ( aτ for all τ ∈ D}. (2.37)

It is obvious that the map

β 
→
(
a(β), λ(a(β))

)
(2.38)

defined by

a(β)τ =
n∑
k=1

kβτ,k

and

λ(a(β))τ = (nβτ,n , (n− 1)βτ,n−1 , · · · , 1βτ,1)
for all β = (βτ,k)τ∈D, k∈X ∈ B and τ ∈ D establishes a bijection between B

and the set

N = N(F, n) = {(a, λ(a)) : a ∈ �(F, n), λ(a) ∈ �(a)}. (2.39)

It is now obvious that |N| equals the quantity expressed in (2.35). �

Example 2.3.13 (Conjugacy classes of Sm � Sn) We now consider the con-
jugacy classes of Sm � Sn, that is, we specify the above analysis for F � Sn
with F = Sm. Recall that for each μ ( m we denote by Cμ the set of all
permutations in Sm whose cycle structure is equal to μ. We set

�(m, n) =
⎧⎨⎩ν = (nμ)μ(m : nμ ≥ 0,

∑
μ(m

nμ = n
⎫⎬⎭ (2.40)
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and, for ν ∈ �(m, n),
�(ν) = {λ(ν) = (λμ)μ(m : λμ ( nμ}. (2.41)

Note that �(m, n) is nothing other than �(Sm, n), as in (2.36), and �(ν) cor-
responds to �(a) as in (2.37). It follows from Corollary 2.3.12 and its proof
that the conjugacy classes of Sm � Sn are parameterized by the set

N = N(m, n) =
{(
ν, λ(ν)

)
: ν ∈ �(m, n), λ(ν) ∈ �(ν)

}
. (2.42)

2.4 Representation theory of wreath products

This section takes its inspiration from the monographs by James and Kerber
[38] and Huppert [35].

2.4.1 The irreducible representations of wreath products

Let G,X and F be as in the previous sections. Now we want to develop the
representation theory of the wreath product F � G. It is well known (see, for
instance, Theorem 9.1.6 and Corollary 9.1.7 in [11]) that every irreducible
representation σ of the base group FX is of the form

σ =
⊗
x∈X

σx,

where σx ∈ F̂ for all x ∈ X. Recalling that FX ∼= FX × {1G} ⊂ F � G, for
f0 ∈ FX we set

σ(f0, 1G) =
⊗
x∈X

σx(f0(x)).

In other words, Vσ =⊗
x∈X Vσx , where Vσx denotes the representation space

of σx , and we have

[σ(f0, 1G)]

(⊗
x∈X

vx

)
=
⊗
x∈X

σx(f0(x))vx.

Recalling that FX ∼= FX × {1G} is normal in F � G we have the following:

Lemma 2.4.1 Let (f, g) ∈ F � G and σx ∈ F̂ , for each x ∈ X. Then the
(f, g)-conjugate of σ =⊗

x∈X σx is given by the formula

(f,g)
σ =

⊗
x∈X

f (x)σg−1x ∼
⊗
x∈X

σg−1x.
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Proof Fix f0 ∈ FX. Since

(f, g)−1(f0, 1G)(f, g) = (g−1f−1, g−1)(f0, 1G)(f, g)

= (g−1f−1 · g−1(f0f ), 1G),

we have on the one hand

(f,g)
σ(f0, 1G) = σ [(f, g)−1(f0, 1G)(f, g)]

= σ(g−1f−1 · g−1(f0f ), 1G)

=
⊗
x∈X

σx(f (gx)
−1f0(gx)f (gx))

=
⊗
x∈X

σg−1x(f (x)
−1f0(x)f (x))

=
⊗
x∈X

f (x)σg−1x(f0(x))

=
[⊗
x∈X

f (x)σg−1x

]
(f0, 1G),

that is,

(f,g)
σ =

⊗
x∈X

f (x)σg−1x.

On the other hand, since f (x) ∈ F and σg−1x ∈ F̂ we have

f (x)σg−1x ∼ σg−1x,

so that

(f,g)
σ ∼

⊗
x∈X

σg−1x.

�

Lemma 2.4.2 For every σ =
(⊗

x∈X σx
)
∈ F̂ X, the inertia group of σ with

respect to F �G is given by

IF �G(σ) = F � TG(σ),
where

TG(σ) = {g ∈ G : σgx ∼ σx for all x ∈ X}
≡ {g ∈ G : σgx = σx for all x ∈ X} (2.43)
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(recall that F̂ X denotes a set of representatives of the irreducible representa-
tions of FX).

Proof From Lemma 2.4.1 we immediately deduce that

IF �G(σ) = {(f, g) : σgx ∼ σx for all x ∈ X} = FX � TG(σ) = F � TG(σ).
�

Lemma 2.4.3 Every σ = (⊗
x∈X σx

) ∈ F̂ X has an extension σ̃ , to the whole
of IF �G(σ), defined by setting

σ̃ (f, g)

(⊗
x∈X

vx

)
=
⊗
x∈X

σg−1x(f (x))vg−1x

for all (f, g) ∈ F � TG(σ) and
⊗
x∈X vx ∈

⊗
x∈X Vσx .

Proof From the definitions of σ̃ and TG(σ) we immediately have

σ̃ (f, g)

(⊗
x∈X

vx

)
=
⊗
x∈X

σg−1x(f (x))vg−1x =
⊗
x∈X

σx(f (x))vg−1x.

We now prove that σ̃ is a homomorphism. Let (f1, g1), (f2, g2) ∈ F � TG(σ).
We have

σ̃ ((f1, g1) · (f2, g2))

(⊗
x∈X

vx

)
= σ̃ ((f1 · (g1f2), g1g2)

(⊗
x∈X

vx

)
=
⊗
x∈X

σx(f1(x)f2(g
−1
1 x))v

g−1
2 g−1

1 x

and

σ̃ ((f1, g1)

(
σ̃ (f2, g2)

(⊗
x∈X

vx

))
= σ̃ (f1, g1)

(⊗
x∈X

σx(f2(x))vg−1
2 x

)
=
⊗
x∈X

σx(f1(x))σg−1
1 x
(f2(g

−1
1 x))v

g−1
2 g−1

1 x

=
⊗
x∈X

σx(f1(x))σx(f2(g
−1
1 x))v

g−1
2 g−1

1 x

=
⊗
x∈X

σx(f1(x)f2(g
−1
1 x))v

g−1
2 g−1

1 x
.

That is, σ̃ ((f1, g1) · (f2, g2)) = σ̃ (f1, g1)̃σ (f2, g2) and this proves that σ̃ is
a representation. �
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Table 2.1

General situation Present setting

G F � G
N FX

IG(σ) F � TG(σ) = FX � TG(σ)
IG(σ)/N (FX � TG(σ))/FX = TG(σ)

We now apply the little group method (see Section 1.3.2) in order to describe
all the irreducible representations of the wreath product F � G. Table 2.1 gives
the correspondence between the notation in the general situation and that in
the present setting.

Let � be a system of representatives for the (F � G)-conjugacy classes of
F̂ X. For each σ ∈ �, denote by σ̃ its extension to IF �G(σ) (see Lemma 2.4.3).
Moreover, for each ψ ∈ T̂G(σ ) denote by ψ its inflation (1.71) to IF �G(σ)
(using the homomorphism IF �G(σ) → TG(σ) ∼= IF �G(σ)/FX). This means
that

ψ(f, g) = ψ(g)
for all (f, g) ∈ IF �G(σ) ≡ F � TG(σ). Then, an application of Theorem 1.3.11
yields the following:

Theorem 2.4.4 With the above notation, we have

F̂ �G = {IndF �GIF �G(σ)(̃σ ⊗ ψ) : σ ∈ �,ψ ∈ T̂G(σ )},
that is, the right-hand side constitutes a complete list of pairwise inequivalent
irreducible representations of F �G.

2.4.2 The character and matrix coefficients of the
representation σ̃

When expressing the character and matrix coefficients of one of the irreducible
representations referred to in Theorem 2.4.4, the main problem is to compute
the character and the matrix coefficients of σ̃ . Indeed, the matrix coefficients
of ψ can be obtained by composing those of ψ with the homomorphism
IF �G(σ) → TG(σ) ∼= IF �G(σ)/FX. For σ̃ ⊗ ψ we can use the well-known
formulas for the character and matrix coefficients of a tensor product (if (ρ1,

V1) and (ρ2, V2) are two irreducible representations of a group G then
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χρ1⊗ρ2(g) = χρ1(g)χρ2(g) and uρ1⊗ρ2
i,j ;k,�(g) = u

ρ1
i,k(g)u

ρ2
j,�(g) for all g ∈ G).

Finally, we may apply to IndGIF �G(σ)(̃σ⊗ψ) the formulas (1.14) and (1.7) for an
induced representation. Therefore, in this section we focus our attention on σ̃ .

Recall that G acts on the finite set X. Let σ = ⊗x∈Xσx , where σx ∈ F̂ for
all x ∈ X. Recalling the definition of the subgroup TG(σ) ≤ G, we observe
that if �1,�2, . . . , �m ⊂ X denote the corresponding TG(σ)-orbits then for
x, y ∈ X we have σx = σy if and only if there exists 1 ≤ i ≤ m such that
x, y ∈ �i . Therefore there exist pairwise inequivalent irreducible representa-
tions σ1, σ2, . . . , σm ∈ F̂ such that σx = σi for all x ∈ �i , i = 1, 2, . . . , m. In
particular, we have

σ =
m⊗
i=1

⊗
x∈�i

σx.

Let vi1, v
i
2 . . . , v

i
di

be an orthonormal basis in Vσi , where di = dim Vσi , i =
1, 2, . . . , m. Then the character and the matrix coefficients of σi are given by

χi(t) =
di∑
j=1

〈σ(t)vij , vij 〉Vi

and

uij,k(t) = 〈σ(t)vik, vij 〉Vi
for all t ∈ F and j, k = 1, 2, . . . , di , respectively. Moreover, they satisfy the
following elementary properties:

di∑
k=1

uij,k(t)u
i
k,h(s) = uij,h(ts) and σ(t)vik =

di∑
j=1

uij,k(t)v
i
j .

For g ∈ TG(σ), denote by Ci (g) the set of cycles of the permutation induced
by g on �i . We also denote by A the set of all maps ϕ : X → N such that
ϕ(x) ∈ {1, 2, . . . , di} for all x ∈ �i and i = 1, 2, . . . , m. Then, for every
ϕ ∈ A we set

vϕ =
m⊗
i=1

⊗
x∈�i

viϕ(x).

It is clear that {vϕ : ϕ ∈ A} is an orthonormal basis for Vσ =⊗
x∈X Vσx . In the

following, we shall use the notation ac,x(f, g) from (2.26) for (f, g) ∈ F � G,
x ∈ X and c ∈ Ci (g).
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Theorem 2.4.5 The matrix coefficients and the character of the extension σ̃
of σ are given respectively by

uσ̃ψ,ϕ(f, g) =
m∏
i=1

∏
x∈�i

ui
ψ(x),ϕ(g−1x)

(f (x)), (2.44)

where ϕ,ψ ∈ A, and

χσ̃ (f, g) =
m∏
i=1

∏
c∈Ci (g)

χσi (ac(f, g)) (2.45)

for all (f, g) ∈ IF �G(σ).

Proof From Lemma 2.4.3 we get, for (f, g) ∈ IF �G(σ),

σ̃ (f, g)vϕ =
m⊗
i=1

⊗
x∈�i

σx(f (x))v
i
ϕ(g−1x)

=
m⊗
i=1

⊗
x∈�i

⎛⎝ di∑
j=1

ui
j,ϕ(g−1x)

(f (x))vij

⎞⎠
=
∑
ψ∈A

⎛⎝ m∏
i=1

∏
x∈�i

ui
ψ(x),ϕ(g−1x)

(f (x))

⎞⎠ vψ
and this proves (2.44). Similarly, starting from (2.45), we can find the character
of σ̃ :

χσ̃ (f, g) =
∑
ϕ∈A

〈̃σ(f, g)vϕ, vϕ〉

=
∑
ϕ∈A

⎛⎝ m∏
i=1

∏
x∈�i

ui
ϕ(x),ϕ(g−1x)

(f (x))

⎞⎠
=
∑
ϕ∈A

⎛⎝ m∏
i=1

∏
x∈�i

uiϕ(gx),ϕ(x)(f (gx))

⎞⎠
=
∑
ϕ∈A

( m∏
i=1

∏
c∈Ci (g)

uiϕ(gx),ϕ(x)(f (gx))u
i
ϕ(g2x),ϕ(gx)

(f (g2x))

× · · · × ui
ϕ(g�(c)−1x),ϕ(g�(c)−2x)

(f (g�(c)−1x))ui
ϕ(x),ϕ(g�(c)−1x)

(f (x))

)
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=
m∏
i=1

∏
c∈Ci (g)

di∑
ϕ(gx)=1

di∑
ϕ(g2x)=1

· · ·
di∑

ϕ(g�(c)−1x)=1

di∑
ϕ(x)=1

uiϕ(gx),ϕ(x)(f (gx))

× ui
ϕ(g2x),ϕ(gx)

(f (g2x)) · · · ui
ϕ(g�(c)−1x),ϕ(g�(c)−2x)

(f (g�(c)−1x))

× ui
ϕ(x),ϕ(g�(c)−1x)

(f (x))

=
m∏
i=1

∏
c∈Ci (g)

di∑
ϕ(x)=1

uiϕ(x),ϕ(x)(ac,x(f, g))

=
m∏
i=1

∏
c∈Ci (g)

χσi (ac(f, g)),

where c = (x → gx → · · · → g�(c)−1x → x) ∈ Ci (g). �

As a particular case of Theorem (2.4.5) we have

Corollary 2.4.6 Suppose that σx = σ for all x ∈ X (so that TG(σ) = G and
σ̃ ∈ F̂ �G). Then we have

χσ̃ (f, g) =
∏
c∈C(g)

χσ (ac(f, g))

for all (f, g) ∈ F �G. In particular, for all g ∈ G and f ∈ FX,

χσ̃ (1F , 1G) = dim(Vσ )
|X|,

χσ̃ (1F , g) = dim(Vσ )
|C(g)|,

χσ̃ (f, 1G) =
∏
x∈X

χσ (f (x)).

Finally, if f is constant, say f (x) = t ∈ F for all x ∈ X, and for 1 ≤ k ≤ |X|
we set ak(g) = |{c ∈ C(g) : �(c) = k}|, then we have

χσ̃ (f, g) =
|X|∏
k=1

χσ (t
k)ak(g).

�

2.5 Representation theory of groups of the form C2 �G
Let G be a finite group acting transitively on a finite set X. For ω, θ ∈ CX2 we
set ω · θ = ∑

x∈X ω(x)θ(x) ∈ C2. Define the character χθ of CX2 by setting

χθ (ω) = (−1)ω·θ . Then the dual group of CX2 is just ĈX2 = {χθ : θ ∈ CX2 }
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and G acts on it in a natural way: for all g ∈ G and ω, θ ∈ CX2 one defines

gχθ (ω) = χθ (g−1ω), that is, gχθ = χgθ . The action ofG on ĈX2 is equivalent
to the action on CX2 and both can be identified with the action on the subsets
of X. In particular, for θ ∈ CX2 the stabilizer Gθ = {g ∈ G : gχθ = χθ } (we
use this notation in place of TG(θ)) coincides with the stabilizer of the subset
Xθ = {x ∈ X : θ(x) = 0}. Then the extension χ̃θ ∈ Ĉ2 �Gθ of the character
χθ is given by χ̃θ (ω, g) = χθ (ω) for all ω ∈ CX2 and g ∈ Gθ . Moreover,
if η ∈ Ĝθ then its inflation η to C2 � Gθ is given by η(ω, g) = η(g) for all
ω ∈ CX2 and g ∈ Gθ . Both χ̃θ and η are irreducible (C2 �Gθ)-representations
and so is their tensor product χ̃θ ⊗ η: clearly

χ̃θ ⊗ η(ω, g) = χθ (ω)η(g), (2.46)

and χθ is one dimensional. Applying Theorem 2.4.4 we deduce the following:

Theorem 2.5.1 Let � be a system of representatives for the orbits of G on
CX2 (that is, any G-orbit has exactly one element in �). Then

Ĉ2 �G =
{

IndC2�G
C2�Gθ (χ̃θ ⊗ η) : θ ∈ � and η ∈ Ĝθ

}
,

that is, the right-hand side constitutes a complete list of pairwise inequivalent
irreducible representations of C2 �G. �

2.5.1 Representation theory of the finite lamplighter group C2 �Cn
The group C2 � Cn has already been introduced in Example 2.3.6. Every irre-
ducible representation of Cn is one dimensional; it can be identified with its
character and we have Ĉn = {ek : k ∈ Cn}, where ek(h) = exp

(
2πi hk

n

)
for all

h, k ∈ Cn.
We may think of an element θ ∈ Cn2 as a periodic function θ : Z → C2

satisfying θ(k + n) = θ(k) for any k ∈ Z. Recall that the period of θ is the
smallest positive integer t = t (θ) such that θ(k + t) = θ(k) for any k ∈ Z. It
is easy to show that t divides n; morover, if n = mt then the stabilizer of θ is
the subgroup Cm = 〈t〉 (recall also that, for any divisor m of n, the subgroup
of Cn isomorphic to Cm is unique [50]). The characters of the subgroup 〈t〉
are e0|〈t〉, e1|〈t〉, . . . , em−1|〈t〉, where e0, e1, . . . , em−1 are as above. Indeed, for
0 ≤ r, � ≤ m − 1 we have er (�t) = exp

(
2πi r�t

n

) = exp
(
2πi r�

m

)
. We set

er |〈t〉(k) = er(k) when k ∈ 〈t〉 and er |〈t〉(k) = 0 otherwise. We also set
m = m(θ) = n

t (θ)
, but we shall simply write t and m when the element θ is

clear from the context.
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For θ ∈ Cn2 and 0 ≤ r ≤ m − 1, the character χ̃θ ⊗ er |〈t〉 of Cn2 � 〈t〉 is
given by

χ̃θ ⊗ er |〈t〉(ω, �t) = χθ (ω)er(�t)
for all ω ∈ Cn2 and � = 0, 1, . . . , m−1. Let� be a set of representatives for the
orbits of Cn on Cn2 (such orbits may be enumerated by mean of the so-called
Polya–Redfield theory; see [54] for an elementary account and [44] for a more
comprehensive treatment). Then we may apply Theorem 2.5.1.

Theorem 2.5.2 We have

Ĉn2 � Cn =
{

IndC2�Cn
C2�〈t (θ)〉

[
χ̃θ ⊗ er |〈t (θ)〉

]
: θ ∈ �, r = 0, 1, . . . , m(θ)− 1

}
,

that is, the right-hand side constitutes a complete list of pairwise inequivalent
irreducible representations of Cn2 � Cn. �

2.5.2 Representation theory of the hyperoctahedral group C2 � Sn
As in Example 2.3.8, we have G = Sn and X = {1, 2, . . . , n}. For any 0 ≤
k ≤ n, choose θ(k) ∈ CX2 such that |{j ∈ X : θ(k)(j) = 0}| = k. Then the
set {θ(0), θ (1), . . . , θ (n)} constitutes a set of representatives for the orbits of Sn
on CX2 . Clearly, the Sn-stabilizer of θ(k) is isomorphic to Sk × Sn−k . We recall
that the irreducible representations of the symmetric group St are canonically
parameterized by the partitions of t ; see, for instance, [7, 11, 15, 37, 38, 61,
68, 73]. For λ ( t (recall that this means that λ is a partition of t), we will
denote by (ρλ, Sλ) the irreducible representation of St canonically associated
with λ (the representation space Sλ is called the Young permutation module
or Specht module corresponding to λ). The irreducible representations of the
group Sk × Sn−k are all of the form ρλ ⊗ ρμ, with λ ( k and μ ( n − k.
We set

ρ[λ;μ] = IndC2 � Sn
C2 � (Sk×Sn−k)[ χ̃θ(k) ⊗ ρλ ⊗ ρμ ],

so that, applying Theorem 2.5.1, we have the following:

Theorem 2.5.3 The set

{ρ[λ;μ] : λ ( k, μ ( n− k and 0 ≤ k ≤ n}
constitutes a complete list of pairwise inequivalent irreducible representations
of (C2 � Sn). �

Basic results on the representation theory of the hyperoctahedral group may
be found in [31].
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2.6 Representation theory of groups of the form F � Sn
The representation theory of groups of the form F � Sn, with respect to the
natural action of Sn onX = {1, 2, . . . , n}, may be obtained just by specializing
the theory that we have developed so far. We now show how to express the
group TG(σ) (see (2.43)) in this case. Recall that an irreducible representation
of the base group FX ∼= Fn may be written in the form

σ =
n⊗
i=1

σi, (2.47)

where σ1, σ2, . . . , σn ∈ F̂ . For τ ∈ F̂ and σ as in (2.47), we denote by nτ (σ )
the number of i ∈ {1, 2, . . . , n} such that σi ∼ τ . Then, identifying S0 with
the trivial group, we have

TG(σ) ∼=
∏
τ∈F̂

Snτ(σ) ,

where
∏

denotes the direct product of groups. Therefore (cf. Table 2.1 and
Exercise 2.1.14)

IF � Sn(σ ) ∼= F �
⎛⎝∏
τ∈F̂

Snτ(σ)

⎞⎠ ∼= ∏
τ∈F̂

(
F � Snτ(σ)

)
. (2.48)

We now recall some standard notation. If G is a finite group and m ∈ N,
we set Gm = G×G× · · · ×G︸ ︷︷ ︸

m times

(if m = 0 we identify G0 with the trivial

group). If τ is a representation of G, we denote by τ⊗m the representation
τ ⊗ τ ⊗ · · · ⊗ τ︸ ︷︷ ︸

m times

(if m = 0, we identify τ⊗0 with the trivial representation).

Then, another way to express (2.48) is to say that every σ = ⊗ni=1σi ∈ F̂ n
belongs to the same (F � Sn)-conjugacy class of the representation⊗

τ∈F̂
τ⊗nτ (σ ). (2.49)

Moreover, the representations of the form (2.49) constitute a complete sys-
tem of representatives for the (F � Sn)-conjugacy classes of F̂ n. That is, if
we set

�(F, n) =
⎧⎨⎩ν = (nτ )τ∈F̂ : nτ ≥ 0,

∑
τ∈F̂

nτ = n
⎫⎬⎭
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and, for ν = (nτ )τ∈F̂ ∈ �(F, n),
σν =

⊗
τ∈F̂

τ⊗nτ

then the set of such representatives is precisely given by

{σν : ν ∈ �(F, n)}
(cf. (2.48)). For ν = (nτ )τ∈F̂ we set

Sν =
∏
τ∈F̂

Snτ ≤ Sn.

Then, the isomorphism (cf. Exercise 2.1.14)

∏
τ∈F̂

(
F � Snτ

) ∼=
⎛⎝F �

∏
τ∈F̂

Snτ

⎞⎠ = F � Sν

yields the equivalence ⊗
τ∈F̂

τ̃⊗nτ ∼
⊗
τ∈F̂

τ̃⊗nτ (2.50)

where τ̃⊗nτ (resp. ˜⊗
τ∈F̂ τ

⊗nτ ) denotes the extension of τ⊗nτ (resp.
⊗
τ∈F̂

τ⊗nτ ) from Snτ to F � Snτ (resp. from Sν to F � Sν).
As a consequence, the representation theory of the groups of the form F �

Sn may be deduced from Theorem 2.4.4. Before stating the main result, we
recall that, for t ∈ N and λ ( t , we denote by (ρλ, Sλ) the irreducible St -
representation associated with the partition λ; moreover, for ν = (nτ )τ∈F̂ ∈
�(F, n) we set

�(ν) = {λ(ν) = (λτ )τ∈F̂ : λτ ( nτ }
and, for λ = (λτ )τ∈F̂ ∈ �(ν),

ρλ =
⊗
τ∈F̂

ρλτ .

Using this notation we have:

Theorem 2.6.1 The set{
IndF � SnF � Sν (σ̃ν ⊗ ρλ) : ν = (nτ )τ∈F̂ ∈ �(F, n), λ ∈ �(ν)

}
constitutes a complete list of pairwise inequivalent irreducible representations
of (F � Sn).



2.6 Representation theory of groups of the form F � Sn 103

2.6.1 Representation theory of Sm � Sn
In the particular case when F = Sm, Theorem 2.6.1 gives (for μ ( m we
simply write nμ instead of nρμ ):

Corollary 2.6.2 Setting

σν =
⊗
μ(m

(ρμ)⊗nμ, �(ν) = {(λnμ)μ(m : λnμ ( nμ} and ρλ =
⊗
μ(m

ρλμ

for every ν = (nμ)μ(m ∈ �(Sm, n) and λ ∈ �(ν), we have that the set{
IndSm � SnSm � Sν (σ̃ν ⊗ ρλ) : ν = (nμ)μ(m ∈ �(Sm, n), λ ∈ �(ν)

}
(2.51)

constitutes a complete list of pairwise inequivalent irreducible representations
of (Sm � Sn).
Remark 2.6.3 By virtue of the isomorphism (2.50) (and a similar isomor-
phism for the inflation) we can rewrite the above list of irreducible representa-
tions as⎧⎨⎩IndSm � Sn∏

μ(mSm � Snμ

⎛⎝⊗
μ(m

˜(ρμ)⊗nμ ⊗ ρλμ
⎞⎠ :ν = (nμ)μ(m ∈ �(Sm, n), λ ∈ �(ν)

⎫⎬⎭
(cf. the list in [45, Section 4]).

Remark 2.6.4 In Example 2.3.13 we showed that the set of conjugacy classes
of the group Sm � Sn is parameterized by the set (2.42). From (2.51) we see that
the same set, (2.42), parameterizes the set of all irreducible (pairwise inequiv-
alent) representations of Sm � Sn. This is in accordance with the well-known
fact that for any finite group F there is a bijective correspondence between the
sets of conjugacy classes of F and of F̂ , the dual of F .
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Harmonic analysis on some homogeneous
spaces of finite wreath products

The present chapter is an exposition of the results in the papers [9, 63, 64].
We have rearranged material in the original sources, adding more details and
making everything consistent with the background developed in the preceding
chapters. In the first section we examine the composition of two permutation
representations (possibly with multiplicities, that is, not necessarily yielding
Gelfand pairs) and present the corresponding decomposition into irreducible
subrepresentations. We also give an explicit expression for the associated spher-
ical matrix coefficients. In Section 3.2 we study the generalized Johnson
scheme and describe a general construction of finite Gelfand pairs, introduced
in [9], which is based on the action of the group Aut(T ) of automorphisms of a
finite rooted tree T on the space of all rooted subtrees of T . We then study the
harmonic analysis of the exponentiation, following [64], and analyze in detail
the lamplighter group by developing a harmonic analysis on the corresponding
finite lamplighter spaces.

3.1 Harmonic analysis on the composition of two
permutation representations

In this section we examine the composition of two permutation representa-
tions. We give the rule for decomposition into irreducible representations and
the formulas for the related spherical matrix coefficients. For a more general
treatment, namely for the harmonic analysis on the composition action of a
crested product (a generalization of both the direct product and the wreath
product), we refer to [64].

3.1.1 Decomposition into irreducible representations

Let G and F be finite groups and suppose that G (resp. F ) acts transitively
on a finite set X (resp. Y ). If G ∈ L(X) and g ∈ G, we denote by gG the

104
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g-image of G, that is, the element in L(X) defined by (gG)(x) = G(g−1x) for
all x ∈ X. Similarly, for F ∈ L(Y ) and f ∈ F , we denote by fF ∈ L(Y ) the
f -image of F . Suppose that

L(X) =
n⊕
i=0

aiVi (resp. L(Y ) =
m⊕
j=0

bjWj ) (3.1)

is the decomposition into irreducible G-representations (resp. F -represen-
tations) of the corresponding permutation representation. Recall that, in our
notation, V0, V1, . . . , Vn (resp. W0,W1, . . . ,Wm) are pairwise inequivalent
irreducible representations and a0, a1, . . . , an (resp. b0, b1, . . . , bm) are their
multiplicities in L(X) (resp. in L(Y )); we also suppose that V0 (resp. W0) is
the trivial representation and therefore, since the action is transitive, a0 = 1
(resp. b0 = 1). We fix x0 ∈ X and denote by K = {g ∈ G : gx0 = x0} the
stabilizer of x0 in G.

For G ∈ L(X) and F ∈ L(Y ) we identify the elementary tensor G⊗F with
the element in L(X × Y ) defined by

(x, y) 
→ G(x)F(y) (3.2)

for all x ∈ X and y ∈ Y . In this way, the set
{
δx ⊗ δy : x ∈ X, y ∈ Y

}
consti-

tutes a basis for L(X × Y ), and we have a natural isomorphism:

L(X × Y ) ∼= L(X)⊗ L(Y ). (3.3)

With the above notation, and considering X × Y as an (F �G)-permutation
module with respect to the composition action (cf. (2.5)), we have the
following.

Theorem 3.1.1 The decomposition of L(X × Y ) into irreducible (F � G)-
subrepresentations is given by

L(X × Y ) ∼=
[

n⊕
i=0

ai(Vi ⊗W0)

]⊕⎡⎣ m⊕
j=1

bj
(
L(X)⊗Wj

)⎤⎦ . (3.4)

Proof First, from (3.3) and (3.1) we get (3.4) as a vector space decomposition:

L(X × Y ) ∼= L(X)⊗ L(Y ) =
[

n⊕
i=0

aiVi

]⊗⎡⎣ m⊕
j=0

bjWj

⎤⎦
=
[

n⊕
i=0

ai(Vi ⊗W0)

]⊕⎡⎣ m⊕
j=1

bj
(
L(X)⊗Wj

)⎤⎦.
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We have to show that every subspace on the right-hand side of (3.4) is invariant
and irreducible.

Denote by λ the permutation representation of F � G on X × Y associated
with the composition action. Then the action of λ on tensor products can be
expressed as follows. Let G ∈ L(X), F ∈ L(Y ), (x, y) ∈ X × Y and (f, g) ∈
F �G. Recalling the formula for the inverse of (f, g) in Lemma 2.1.1, we have

[λ(f, g)(G ⊗ F)](x, y) = (G ⊗ F)[(f, g)−1(x, y)]
= (G ⊗ F)[(g−1f−1, g−1)(x, y)]
= (G ⊗ F)(g−1x, f (x)−1y)

= (gG)(x) [f (x)F] (y). (3.5)

In general, the element in (3.5) is not an elementary tensor because [f (x)F] (y)
depends on x. But there are two special instances where this is indeed the case.
In fact, for v ⊗ 1Y ∈ Vi ⊗W0, (3.5) gives

λ(f, g)(v ⊗ 1Y ) = gv ⊗ 1Y , (3.6)

yielding the (F �G)-invariance of each space Vi ⊗W0 (we denote by 1Y ∈ W0

the function on Y with constant value 1). Also, for δx ⊗ w ∈ L(X)⊗Wj and
(x′, y′) ∈ X × Y we have, again by (3.5) and recalling that gδx = δgx ,

[λ(f, g)(δx ⊗ w)](x′, y′) = δgx(x′) · [f (x′)w](y′).
This implies that

λ(f, g)(δx ⊗ w) = δgx ⊗ [f (gx)w], (3.7)

showing that each space L(X)⊗Wj is invariant as well.
Let us now prove irreducibility. A representation of the form Vi ⊗ W0 is

clearly irreducible, since Vi is G-irreducible andW0 is trivial.
We could have obtained the same result as an application of Theorem 2.4.4.

Indeed, taking σ as the trivial FX-representation, that is, the tensor product⊗
x∈X(W0)x (recall that W0 is the trivial representation of F ), we have that

the inertia group of σ is the whole of F �G, so that, by tensoring its extension
to F � G (which is the trivial representation of F � G) with Vi , we get exactly
Vi ⊗W0.

In order to show the irreducibility of the spaces L(X) ⊗Wj , we again use
Theorem 2.4.4. Now, for 1 ≤ j ≤ m denote by σj the representation of FX on
the tensor product

⊗
x∈X Wε(x), where ε(x0) = j and ε(x) = 0 for x �= x0. Let

us check that the inertia group of σj is F �K . This follows from Lemma 2.4.2
upon observing that TG(σj ) = {g ∈ G : gx0 = x0} = K . Now, denoting
by ι the trivial representation of (F �K)/FX ∼= K and by σ̃j (resp. ι) the
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extension of σj (resp. the inflation of ι) to F �K , let us show that the induced
representation

IndF �GF �K(ι⊗ σ̃j ) (3.8)

is equivalent to the representation of F �G on L(X)⊗Wj (clearly ι⊗ σ̃j ∼ σ̃j
and (3.8) is irreducible by Theorem 2.4.4). For each x ∈X, choose tx ∈G such
that txx0 = x. Then {tx : x ∈ X} is a system of representatives for the
left cosets of K in G, and T = {(1F , tx) : x ∈ X} is a system of repre-
sentatives for the left cosets of F � K in F � G. From (3.7) we deduce that
λ(1F , tx)

[
L({x0})⊗Wj

] = [
L({x})⊗Wj

]
, and therefore we have the direct

sum decomposition

L(X)⊗Wj =
⊕
x∈X

λ(1F , tx)
[
L({x0})⊗Wj

]
. (3.9)

Another application of (3.7) yields, for k ∈ K , f ∈ FX and w ∈ Wj ,

λ(f, k)(δx0 ⊗ w) = δx0 ⊗ [f (x0)w] (3.10)

and this shows that the representation of F �K on L({x0})⊗Wj is equivalent to
ι⊗ σ̃j (see Lemma 2.4.3). By virtue of Proposition 1.1.9, from (3.9) and (3.10)
we deduce that (3.8) is equivalent to L(X)⊗Wj . It follows that L(X)⊗Wj is
(F �G)-irreducible. �

3.1.2 Spherical matrix coefficients

Keeping the same notation and assumptions as in the previous subsection, fix
y0 ∈ Y and denote by H ≤ F its stabilizer. Let X = ∐r

u=0 u (resp. Y =∐t
v=0�v) be the decomposition of X into K-orbits (resp. of Y into H -orbits),

with  0 = {x0} (resp. �0 = {y0}).
Proposition 3.1.2

(i) The stabilizer of (x0, y0) in F �G is

J = {(f, k) ∈ F �G : k ∈ K, f (x0) ∈ H }.
(ii) The decomposition of X × Y into J -orbits is

X × Y =
[

t∐
v=0

( 0 ×�v)
]∐[

s∐
u=1

( u × Y )
]
.

Proof (i) From (2.5) we have

(g, f )(x0, y0) = (gx0, f (gx0)y0)
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and therefore (g, f )(x0, y0) = (x0, y0) if and only if g ∈ K and f (gx0) ≡
f (x0) ∈ H .

(ii) If (f, k) ∈ J and (x0, y) ∈  0 ×�v then

(f, k)(x0, y) = (x0, f (x0)y) ∈  0 ×�v.
This show that 0×�v is J -invariant. Moreover, since f (x0), with (f, g) ∈ J ,
ranges among all elements ofH , we deduce that J acts transitively on 0×�v .
This shows that the latter is a J -orbit. Analogously, if (x, y) ∈  u × Y , with
u ≥ 1, then

(f, k)(x, y) = (kx, f (kx)y) ∈  u × Y,
where the inclusion comes from the K-invariance of  u. Moreover, the action
of J on  u×Y is transitive because on the one handK acts transitively on  u
and on the other hand f (kx), with (f, k) ∈ J , ranges among all elements of F
(which acts transitively on Y ). �

Remark 3.1.3 From Theorem 3.1.1 and Proposition 3.1.2(i) we deduce that
if (G,K) and (F,H) are Gelfand pairs then (F �G, J ) is also a Gelfand pair.

Keeping in mind the decompositions in (3.1), suppose that

vi1, v
i
2, . . . , v

i
ai

(resp. wj1 , w
j

2 , . . . , w
j
bj
)

is an orthonormal basis for the subspace of K-invariant vectors in Vi , i =
0, 1, . . . , n (resp. for the subspace of H -invariant vectors in Wj , j =
0, 1, . . . , m). Denoting by ρi (resp. σ j ) the representation of G on Vi (resp.
of F on Wj ), the corresponding spherical matrix coefficients (see Definition
1.2.14) are then given by

φi�,r (g) = 〈vi�, ρi(g)vir 〉Vi (resp. ψjp,q(f ) = 〈wjp, σ j (f )wjq〉Wj )
for g ∈ G, i = 0, 1, . . . , n, and �, r = 1, 2, . . . , ai (resp. for f ∈ F , j =
0, 1, . . . , m, and p, q = 1, 2, . . . , bj ).

Theorem 3.1.4

(i) The elementary tensors

vi� ⊗ w0
1, � = 1, 2, . . . , ai, (3.11)

constitute an orthonormal basis for the J -invariant vectors in the irre-
ducible representation Vi ⊗W0, i = 0, 1, . . . , n. Moreover, the associated
spherical matrix coefficients are given by

φ̃i�,r (f, g) = φi�,r (g)
for (f, g) ∈ F �G, i = 0, 1, . . . , n and �, r = 1, 2, . . . , ai .
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(ii) The elementary tensors

δx0 ⊗ wjp, p = 1, 2, . . . , bj , (3.12)

constitute an orthonormal basis for the J -invariant vectors in the irre-
ducible representation L(X)⊗Wj , j = 1, 2, . . . , m. Moreover, the asso-
ciated spherical matrix coefficients are given by

ψ̃
j
p,q(f, g) = 1K(g)ψ

j
p,q(f (x0))

for (f, g) ∈ F �G, j = 1, 2, . . . , m and p, q = 1, 2, . . . , bj .

Proof (i) It is clear that the elementary tensors in (3.11) constitute a set of ai
orthonormal vectors in Vi⊗W0. Therefore it suffices to show that these vectors
are J -invariant. Now, applying (3.6) and noticing that w0

1 ≡ 1
|Y |1Y we get, for

all (f, k) ∈ J ,

λ(f, k)(vi� ⊗ w0
1) = ρi(k)vi� ⊗ w0

1 = vi� ⊗ w0
1.

Moreover, for (f, g) ∈ F �G we have

φ̃i�,r (f, g) =
〈
vi� ⊗ w0

1, λ(f, g)(v
i
r ⊗ w0

1)
〉
Vi⊗W0

=
〈
vi� ⊗ w0

1, ρ
i(g)vir ⊗ w0

1

〉
Vi⊗W0

=
〈
vi�, ρ

i(g)vir

〉
Vi

〈
w0

1, w
0
1

〉
W0

= φi�,r (g).
(ii) Again, the elementary tensors in (3.12) constitute a set of bj orthonormal
vectors in L(X)⊗Wj and it suffices to show that these vectors are J -invariant.
For all (f, k) ∈ J , applying (3.7) we get

λ(f, k)(δx0 ⊗ wjp) = δx0 ⊗
[
σ j (f (x0))w

j
p

]
= δx0 ⊗ wjp,

because f (x0) ∈ H and wjp is H -invariant. Moreover,

ψ̃
j
p,q(f, g) =

〈
δx0 ⊗ wjp, λ(f, g)

(
δx0 ⊗ wjq

)〉
L(X)⊗Wj

=
〈
δx0 ⊗ wjp, δgx0 ⊗

[
σ j (f (gx0))w

j
q

]〉
L(X)⊗Wj

= 〈
δx0, δgx0

〉
L(X)

〈
w
j
p,
[
σ j (f (x0))w

j
q

]〉
Wj

= 1K(g)ψ
j
p,q(f (x0)).

�
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Taking into account Proposition 3.1.2, we can describe the values of the
spherical matrix coefficients on the orbits of J on X× Y (recall (1.38) and the
isomorphism L(X) ∼= L(G)K ), as follows.

Corollary 3.1.5

(i) For v = 0, 1, . . . , t the value of φ̃i�,r on  0 ×�v is equal to 1.

(ii) For u = 1, 2, . . . , s the value of φ̃i�,r on  u × L(Y ) is equal to the value

of φi�,r on  u.

(iii) For v = 0, 1, . . . , t the value of ψ̃jp,q on  0 ×�v is equal to the value of
ψip,q on �v .

(iv) For u = 1, 2, . . . , s the value of ψ̃jp,q on  u × L(Y ) is equal to 0.

�

3.2 The generalized Johnson scheme

3.2.1 The Johnson scheme

The Johnson scheme refers to the Gelfand pair (Sn, Sn−h × Sh) and is named
after the American mathematician Selmer M. Johnson. The main sources are
Delsarte’s thesis [19] and the papers by Dunkl [25–27] and Stanton [70–72];
see also Chapter 6 of our monograph [11].

In what follows, n is a fixed positive integer and 0 ≤ h ≤ n. We con-
sider the action of Sn (resp. Sn−h, resp. Sh) on the set {1, 2, . . . , n} (resp.
{1, 2, . . . , n− h}, resp. {n − h + 1, n − h + 2, . . . , n}) and denote by �h the
homogeneous space Sn/(Sn−h×Sh), which can be identified with the space of
all h-subsets of {1, 2, . . . , n}. The corresponding permutation module L(�h)
is denoted byMn−h,h.

We introduce a metric δ on �h by setting

δ(A,B) = h− |A ∩ B|
for all A,B ∈ �h. This is indeed a metric: its only nontrivial property is the
triangular inequality, which follows immediately from

h = |B| ≥ |A ∩ B| + |B ∩ C| − |A ∩ B ∩ C|
≥ |A ∩ B| + |B ∩ C| − |A ∩ C|

for all A,B,C ∈ �h.

Proposition 3.2.1

(i) (Sn, Sn−h × Sh) is a symmetric Gelfand pair.
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(ii) The space L(�h) decomposes into min{n−h, h}+ 1 irreducible pairwise
inequivalent Sn-representations.

Proof (i) By Example 1.2.32 it suffices to show that the action of the group
Sn on the metric space (�h, δ) is 2-point homogeneous. LetA,B,A′, B ′ ∈ �h
and suppose that δ(A,B) = δ(A′, B ′). Then |A ∩ B| = |A′ ∩ B ′|, |A \ B| =
|A′ \B ′| and |B \A| = |B ′ \A′|. Therefore we can find a permutation π ∈ Sn
such that π(A ∩ B) = A′ ∩ B ′, π(A \ B) = A′ \ B ′ and π(B \ A) = B ′ \ A′.
It follows that π(A) = A′ and π(B) = B ′, showing that the action is 2-point
homogeneous.

(ii) Suppose first that 0 ≤ h ≤ n/2. Then the range of δ is given by all
integers between 0 and h and there are h+ 1 (Sn−h × Sh)-orbits on �h; these
are the spheres σk = {B ∈ �h : δ(A,B) = k}, k = 0, 1, 2, . . . , h, where
A = {n−h+1, n−h+2, . . . , n} is the point in�h stabilized by Sn−h× Sh. By
Corollary 1.2.35, L(�h) decomposes into h + 1 irreducible pairwise inequiv-
alent Sn-representations.

If h > n/2 then the argument is analogous: we just note that, in this case,
the range of δ is given by all integers between 0 and n− h. �

Since the spherical functions associated with the Gelfand pair (Sn,
Sn−h× Sh) are bi-K-invariant (see Remark 1.2.16) and the characteristic func-
tions of the (Sn−h × Sh)-orbits constitute a basis of the space KL(G)K , we
deduce from the proof of Proposition 3.2.1(ii) that the spherical functions are
radial (they only depend on the distance from A).

We define the operator d : Mn−h,h→ Mn−h+1,h−1 by setting

(dγ )(B) =
∑

A∈�h:B⊆A
γ (A) (3.13)

for every B ∈ �h−1 and γ ∈ Mn−h,h. It is easy to see that the adjoint of d is
the operator d∗ defined by setting

(d∗β)(A) =
∑

B∈�h−1:B⊆A
β(B) (3.14)

for every A ∈ �h and γ ∈ Mn−h+1,h−1.
A proof of the following results may be found in [11, Theorems 6.1.6,

6.1.10 and 6.2.1] (we use the Pochhammer symbol notation (a)i = a(a+ 1)
(a + 2) · · · (a + i − 1) for a ∈ C and i ∈ N).

Theorem 3.2.2

(i) For 0 ≤ k ≤ n/2,Mn−k,k ∩Ker d ≡ Sn−k,k is an irreducible representa-
tion of Sn and its dimension is equal to

(
n
k

)− (
n
k−1

)
.
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(ii) If 0 ≤ k ≤ min{n− h, h} then (d∗)h−k maps Mn−k,k ∩ Ker d one to one
intoMn−h,h.

(iii) Mn−h,h =⊕min{n−h,h}
k=0 (d∗)h−k(Mn−k,k ∩Ker d) is the decomposition of

Mn−h,h into Sn-irreducible representations.
(iv) The spherical function ψ(n, h, k) of (Sn, Sn−h × Sh) belonging to the

subspace isomorphic to Sn−k,k is given by

ψ(n, h, k) =
min{n−h,h}∑

u=0

ψ(n, h, k; u)σu, (3.15)

where

ψ(n, h, k; u) = (−1)k(
n−h
k

) min{u,k}∑
i=max{0,u−h+k}

(
h− u
k − i

)(
u

i

)

× (n− h− k + 1)k−i
(−h)k−i .

�

Notation 3.2.3 For 0 ≤ u ≤ v ≤ n andA ∈ �v ,�u(A)will denote the space
of all u-subsets of A. Also, we will denote byMv−u,u(A) the space L(�u(A))
seen as a module over the symmetric group Sv of all permutations of A (in this
way, �h coincides with �h({1, 2, . . . , n})).

3.2.2 The homogeneous space �h

Let (F,H) be a finite Gelfand pair. We denote by Y = F/H the correspondig
homogeneous space and fix a point y0 ∈ Y stabilized by H . Let Y =∐m

i=0�i

be the decomposition of Y into itsH -orbits (with�0 = {y0}),L(Y ) = ⊕mi=0Wi

the decomposition of L(Y ) into irreducible representations of F (with W0 the
trivial representation) and φi the spherical function inWi , i = 0, 1, . . . , m.

Let n be a positive integer and fix 0 ≤ h ≤ n.
We will construct a natural homogeneous space for the wreath product F �Sn

using the actions of F on Y and of Sn on �h.
Let �h denote the set of all maps θ : A → Y , with A ranging in �h. In

other words,

�h =
∐
A∈�h

YA. (3.16)

Bearing in mind the geometric interpretation of exponentiation (see Exam-
ple 2.1.11 and Fig. 2.2), we interpret an element θ in �h as a subtree of type
(h, 1) in the tree of {1, 2, . . . , n} × Y (see Fig. 3.1).
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Fig. 3.1 An element θ ∈ �h coincides with a subtree of type (h, 1) in the
tree of {1, 2, . . . , n} × Y .

Let A ∈ �h and θ ∈ YA ⊂ �h. We then denote by dom(θ) = A the domain
of definition of θ . The group F � Sn acts transitively on �h in a natural way: if
(f, π) ∈ F � Sn and θ ∈ �h then (f, π)θ is the element of �h, with domain
dom((f, π)θ) = π dom(θ) ∈ �h, defined by setting

[(f, π)θ ](j) = f (j)θ(π−1j) ∈ Y (3.17)

for every j ∈ π dom(θ).

Exercise 3.2.4

(i) Show that (3.17) defines an action of F � Sn on �h.
(ii) Show that this action is transitive.

Hint. Use the transitivity of Sn on �h and the transitivity of F on Y .

Let A = {n− h+ 1, n− h+ 2, . . . , n} ∈ �h denote the point stabilized by
Sn−h × Sh and define θ0 ∈ YA ⊆ �h by setting θ0(j) = y0 for every j ∈ A.

Modulo the identification of F � (Sn−h × Sh) with (F � Sn−h)× (F � Sh) (cf.
Exercise 2.1.14), we have the following.

Lemma 3.2.5 The stabilizer of θ0 in F � Sn is equal to (F � Sn−h)× (H � Sh).
Proof Let (f, π) ∈ F � Sn. Then (f, π)θ0 = θ0 if and only if π(A) = A (so
that necessarily π ∈ Sn−h × Sh) and

f (j)θ0(π
−1(j)) = θ0(j) (3.18)

for all j ∈ dom(θ0) = {n− h+ 1, n− h+ 2, . . . , n}. Since θ0(j) = y0 for all
n− h+ 1 ≤ j ≤ n, (3.18) is equivalent to

f (j)y0 = y0, (3.19)

that is, f (j) ∈ H for all n − h + 1 ≤ j ≤ n. In other words we have
the decomposition f = (fn−h, fh), where fn−h ∈ F {1,2,...,n−h} and fh ∈
H {n−h+1,n−h+2,...,n} denote the restrictions of f to {1, 2, . . . , n− h} and {n−
h+ 1, n− h+ 2, . . . , n}, respectively. �
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As a consequence of this, we have the identification

�h ∼= (F � Sn)/[(F � Sn−h)× (H � Sh)]
as (F � Sn)-spaces.

A weak (m + 1)-composition of h [69] is an ordered sequence a = (a0,

a1, . . . , am) of m+ 1 nonnegative integers such that a0 + a1 + · · · + am = h.
The set of all weak (m+1)-compositions of h will be denoted by C(h,m+1).
It is easy to check that |C(h,m+ 1)| = (

m+h
m

)
. Indeed, the map

(a0, a1, . . . , am) 
→ {a0 + 1, a0 + a1 + 2, . . . , a0 + a1 + · · · + am−1 +m}
establishes a bijection between C(h,m + 1) and the set of all m-subsets of
{1, 2, . . . , h + m}. For a = (a0, a1, . . . , am) ∈ C(h,m + 1) we set �(a) =
a1+a2+· · ·+am ≡ h−a0 and ã = (a1, a2, . . . , am). Clearly ã is an element
of C(�(a),m).

If a = (a0, a1, . . . , am) ∈ C(h,m + 1) and A ∈ �h then a composition
of A of type a is an ordered sequence A = (A0, A1, . . . , Am) of subsets of A
(necessarily disjoint but possibly empty) such that A = ∐m

i=0Ai and |Ai | =
ai , i = 0, 1, . . . , m. In other words A is an ordered partition of A. We denote
by �a(A) the set of all compositions of A of type a.

For the next definition, we recall thatA = {n−h+1, n−h+2, . . . , n} ∈ �h
is the point stabilized by Sn−h × Sh and that �0 = {y0},�1, . . . , �m ⊂ Y are
the H -orbits on Y .

Definition 3.2.6 For every θ ∈ �h, the type of θ is the sequence of m + 2
nonnegative integers

type(θ) = (t, b0, b1, . . . , bm),

where t = t (θ) = |dom(θ)∩A| and bi = bi(θ) = |{j ∈ dom(θ) ∩A : θ(j) ∈
�i}|, i = 0, 1, . . . , m.

Lemma 3.2.7 Two points θ1, θ2 ∈ �h belong to the same orbit of (F �Sn−h)×
(H � Sh) if and only if type(θ1) = type(θ2).

Proof Let θ1, θ2 ∈ �h and set Ak = dom(θk) ∈ �h for k = 1, 2.
Suppose first that there exists (f, π) ∈ (F � Sn−h) × (H � Sh) such that

(f, π)(θ1) = θ2. From π = (πn−h, πh) ∈ Sn−h × Sh, π(A1) = A2 and
π(A) = A and the decompositions

Ak = (Ak ∩ A)
∐
(Ak \ A),

k = 1, 2, we deduce

πh(A1 ∩ A) = A2 ∩ A and πn−h(A1 \ A) = A2 \ A
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so that, in particular,

|A1 ∩ A| = |A2 ∩ A|.
This shows that t (θ1) = t (θ2).

Let 0 ≤ i ≤ m, k = 1, 2, and set Ak,i = {j ∈ Ak ∩ A : θk(j) ∈ �i}.
Let us show that |A1,i | = |A2,i |. Let j ∈ A2,i . From (f, π)(θ1) = θ2 and
(3.17) we deduce that f (j)θ1(π

−1(j)) = θ2(j). Since j ∈ A2,i ⊂ A, we have
f (j) ∈ H and therefore θ1(π

−1(j)) ∈ �i (since θ2(j) ∈ �i). This shows that
π−1(A2,i ) ⊂ A1,i . From the decomposition

Ak ∩ A =
m∐
i=0

Ak,i

and using cardinalities, we deduce that indeed π−1(A2,i ) = A1,i . In particular
|A1,i | = |A2,i |, that is, bi(θ1) = bi(θ2). It follows that type(θ1) = type(θ2).

We leave the proof of the converse as an exercise. �

Corollary 3.2.8 The orbits of (H �Sh)× (F �Sn−h) on�h are parameterized
by the set

{(t,b) :max{0, 2h− n} ≤ t ≤ h,b ∈ C(t,m+ 1)}

≡
h∐

t=max{0,2h−n}
C(t,m+ 1).

Proof It suffices to note that if type(θ)= (t, b0, b1, . . . , bm) then
∑m
i=0 bi = t

and t = |dom(θ) ∩ A| is subject (only) to the condition max{0, 2h − n} ≤
t ≤ h. �

Remark 3.2.9 Suppose that 2h ≤ n. Then the map

(a0, a1, . . . , am, am+1) 
→ (a0, a1, . . . , am)

establishes a bijection between C(h,m + 2) and
∐h
t=0 C(t,m + 1). Analo-

gously, the map

(a0, a1, . . . , am, am+1)


→ (a0, a0 + a1, . . . , a0 + a1 + · · · + am−1, a0 + a1 + · · · + am−1 + am)
is a bijection between C(h,m + 2) and the set {(i1, i2, . . . , im+1) : 0 ≤ i1 ≤
i2 ≤ · · · ≤ im+1 ≤ h}.

We end this subsection by defining two intertwining operators between the
permutation representations on �h and �h−1. Suppose that k < h. Then for
θ ∈ �h and ξ ∈ �k we write ξ ⊆ θ when θ extends ξ , that is, when dom(ξ) ⊆
dom(θ) and θ |dom(ξ) = ξ (see Fig. 3.2).
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Fig. 3.2 An element ξ ∈ �h−1 such that ξ ⊆ θ (with θ as in Fig. 3.1).

Proposition 3.2.10 Let D : L(�h) → L(�h−1) be the linear operator
defined by setting

(DF)(ξ) =
∑
θ∈�h
ξ⊆θ

F(θ) for all F ∈ L(�h) and ξ ∈ �h−1.

Then D intertwines the permutation representations L(�h) and L(�h−1).
Moreover, its adjointD∗ : L(�h−1)→ L(�h) is the linear operator defined by

(D∗G)(θ) =
∑

ξ∈�h−1
ξ⊆θ

G(ξ) for all G ∈ L(�h−1) and θ ∈ �h.

Proof Let F ∈ L(�h), ξ ∈ �h−1 and (f, π) ∈ F � Sn. Then we have

[(f, π)DF] (ξ) = [DF]
(
(f, π)−1ξ

)
=

∑
θ∈�h:

(f,π)−1ξ⊆θ

F(θ)

=
∑
θ∈�h:
ξ⊆(f,π)θ

F(θ)

=
∑
θ ′∈�h:
ξ⊆θ ′

F((f, π)−1θ ′) (setting θ ′ = (f, π)θ)

=
∑
θ ′∈�h:
ξ⊆θ ′

[(f, π)F] (θ ′)

= [D ((f, π)F)] (ξ).

This shows the first statement.
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Moreover, if F ∈ �h and G ∈ �h−1 then we have

〈DF,G〉L(�h−1) =
∑

ξ∈�h−1

DF(ξ)G(ξ)

=
∑

ξ∈�h−1

⎛⎜⎜⎝ ∑
θ∈�h:
ξ⊆θ

F(θ)

⎞⎟⎟⎠G(ξ)

=
∑
θ∈�h

F(θ)
∑

ξ∈�h−1:
ξ⊆θ

G(ξ)

=
∑
θ∈�h

F(θ)D∗G(θ)

= 〈F,D∗G〉L(�h).
This proves the second statement. �

3.2.3 Two special kinds of tensor product

Let A ∈ �h. We recall (cf. (3.3)) that there is a natural isomorphism between
L(Y )⊗h and L(YA). Explicitly, given F j ∈ L(Y ) for j ∈ A, the elementary
tensor ⊗j∈AF j is interpreted as an element in L(YA) by setting(

⊗j∈AF j
)
(θ) =

∏
j∈A

F j (θ(j)) for every θ ∈ YA. (3.20)

Now we introduce another kind of tensor product. As above, we denote by
L(Y ) = ⊕m

i=0Wi the decomposition of the permutation representation L(Y )
into F -irreducibles, with W0 the trivial representation. Let a = (a0, a1, . . . ,

am) ∈ C(h,m + 1), B ∈ ��(a), (A1, A2, . . . , Am) ∈ �ã(B), F j ∈ Wi for
j ∈ Ai , i = 1, 2, . . . , m, and γ ∈ Mn−h,a0(�B) (see Notation 3.2.3); �B is the
complement of B. Then the elementary tensor γ ⊗ (⊗j∈BF j ) is viewed as an
element in

L

⎛⎜⎜⎝ ∐
A∈�h:
B⊆A

YA

⎞⎟⎟⎠ ∼= ⊕
A∈�h:
B⊆A

L(YA)

by setting[
γ ⊗

(
⊗j∈BF j

)]
(θ) = γ (dom(θ) \ B)

∏
j∈B

F j (θ(j)) (3.21)

for every θ ∈ �h satisfying the condition dom(θ) ⊇ B.
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Clearly, a tensor product as in (3.21) may be expressed by means of elemen-
tary tensors of the first kind:

γ ⊗
(
⊗j∈BF j

)
=

∑
A′0∈�a0 (�B)

γ (A′0)
[(
⊗j∈A′0φ0

)
⊗
(
⊗j∈BF j

)]
, (3.22)

where
(
⊗j∈A′0φ0

)
is the characteristic function of YA

′
0 (and each summand is

viewed as a simple tensor of the first kind acting on YA
′

with A′ = A′0
∐
B).

In the following we describe the action of the group F � Sn on such tensor
products.

Lemma 3.2.11 The action of F � Sn on the tensor products introduced above
is given by

(f, π)
(
⊗j∈AF j

)
= ⊗t∈πAf (t)Fπ−1t (3.23)

and

(f, π)
[
γ ⊗

(
⊗j∈BF j

)]
= (πγ )⊗

(
⊗t∈πBf (t)Fπ−1t

)
(3.24)

for all (f, π) ∈ F � Sn.

Proof To show (3.23) let θ ∈ YπA. Then[
(f, π)

(
⊗j∈AF j

)]
(θ) =

(
⊗j∈AF j

)
[(f, π)−1θ ]

=
∏
j∈A

F j {[(f, π)−1θ ](j)}

=
∏
j∈A

F j [f (πj)−1θ(πj)]

=
∏
t∈πA

[f (t)Fπ−1t ](θ(t))

=
[
⊗t∈πAf (t)Fπ−1t

]
(θ).

Finally, (3.24) follows immediately from the decomposition (3.22) and from
(3.23). �

We now present two formulas that express the action of the operators D and
D∗ (see Proposition 3.2.10) on a tensor product of the second kind in terms of
the action of the operators d (see (3.13)) and d∗ (see (3.14)). Here we consider
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an element in⊕
A⊇B:|A|=h L(Y

A) (resp.
⊕

A′⊇B:|A′|=h−1
L(YA

′
))

as an element in L(�h) (resp. L(�h−1)) which does not depend on the YA
′′

satisfying |A′′| = h (resp. |A′′| = h− 1) and A′′ �⊇ B.

Lemma 3.2.12 We have

D
[
γ ⊗

(
⊗j∈BF j

)]
= |Y |

[
(dγ )⊗

(
⊗j∈BF j

)]
and

D∗
[
γ ⊗

(
⊗j∈BF j

)]
= (d∗γ )⊗

(
⊗j∈BF j

)
.

Proof Since
[
γ ⊗ (⊗j∈BF j )](θ) is defined for those θ ’s satisfying the con-

dition dom(θ) ⊇ B then
(
D
[
γ ⊗ (⊗j∈BF j )]) (ξ) is defined for those ξ ∈

�h−1 satisfying the condition |B \ dom(ξ)| ≤ 1, that is, for those ξ ’s for
which there exists θ ∈ �h such that dom(θ) ⊇ B and ξ ⊆ θ . On the one hand,
if |B \ dom(ξ)| = 0, that is, dom(ξ) ⊇ B, then(

D
[
γ ⊗

(
⊗j∈BF j

)])
(ξ)

=
∑

θ∈�h:θ⊇ξ
domθ⊇B

[
γ ⊗

(
⊗j∈BF j

)]
(θ)

=
∑

θ∈�h:θ⊇ξ
γ (dom(θ) \ B)

∏
j∈B

F j (θ(j))

=
∑

v∈�domξ

∑
y∈Y

γ [(dom(ξ) ) {v}) \ B)]
∏
j∈B

F j (θ(j))

= |Y |(dγ )(dom(ξ) \ B)
∏
j∈B

F j (ξ(j))

= |Y |
[
(dγ )⊗

(
⊗j∈BF j

)]
(ξ)

(where the sum
∑
y∈Y , or equivalently the factor |Y |, comes from the fact that

we have |Y | different possible extensions of a function ξ�h−1 to a function
θ ∈ �h with dom(θ) ⊃ dom(ξ)). On the other hand, if |B \ dom(ξ)| = 1 and
u is the unique element in B \ dom(ξ) then

(
D
[
γ ⊗

(
⊗j∈BF j

)])
(ξ) = γ [(dom(ξ)

∐
{u}) \ B]

⎛⎝∑
y∈Y

Fu(y)

⎞⎠
×

∏
j∈B\{u}

F j (ξ(j)) = 0,
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since Fu /∈ W0. In particular, if a0 = 0 then D
[
γ ⊗ (⊗j∈BF j )] = 0.

The proof of (ii) is left to the reader. �

3.2.4 The decomposition of L(�h) into irreducible representations

We recall thatL(Y ) = ⊕mi=0Wi is the decomposition ofL(Y ) into F -irreducible
representations.

Definition 3.2.13 Let A ∈ �h, a = (a0, a1, . . . , am) ∈ C(h,m + 1) and
A = (A0, A1, . . . , Am) ∈ �a(A). Then

(i) the spaceWa(A) is the subspace of L(YA) spanned by all the tensor prod-
ucts ⊗j∈AF j such that F j ∈ Wi for every j ∈ Ai , i = 0, 1, . . . , m;

(ii) we then set

Wh,a =
⊕
A∈�h

⊕
A∈�a(A)

Wa(A).

It is clear that Wh,a coincides with the subspace of L(�h) spanned by all the
tensor products γ ⊗ (⊗j∈BF j ) where B ∈ ��(a), γ ∈ Mn−h,a0(�B), and such
that there exists (A1, A2, . . . , Am) ∈ �ã(B) satisfying F j ∈ Wi for all j ∈ Ai
and i = 1, 2, . . . , m.

Lemma 3.2.11 ensures that each Wh,a is an (F � Sn)-invariant subspace of
L(�h).

Lemma 3.2.14 For a ∈ C(h,m+ 1) we have

Wh,a = IndF �SnF �Sn−h×F �Sa0×F �Sa1×···×F �Sam
(
IF �Sn−h⊗ W⊗a0

0 ⊗W⊗a1
1

⊗ · · · ⊗W⊗am
m

)
,

where IF �Sn−h denotes the identity representation of F � Sn−h.

Proof From Proposition 2.1.3 we deduce that

(F � Sn)/((F � Sn−h)× (F � Sa0)× (F � Sa1)× · · · × (F � Sam))
≡ Sn/(Sn−h × Sa0 × Sa1 × · · · × Sam) ≡

∐
A∈�h

∐
A∈�a(A)

A.

Moreover, if A = (A0, A1, . . . , Am) ∈ �a(A) is the composition stabilized
by Sn−h×Sa0×Sa1×· · ·×Sam (so that Sai is the symmetric group onAi = {n−
h+a0+a1+· · ·+ai−1+1, . . . , n−h+a0+a1+· · ·+ai}, i = 0, 1, . . . , m) then
Wa(A ), as a representation of (F �Sn−h)×(F �Sa0)×(F �Sa1)×· · ·×(F �Sam), is
equivalent to IF �Sn−h⊗W⊗a0

0 ⊗W⊗a1
1 ⊗· · ·⊗W⊗am

m . With these considerations,
the lemma follows from the definition ofWh,a. �
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From the definition of an induced operator (see (1.21)) and from Lem-
mas 3.2.12 and 3.2.14, we immediately get the following description of the
operator D and its adjoint D∗.

Corollary 3.2.15

(i) D = |Y | IndF �SnF �Sn−�(a)×F �Sa1×···×F �Sam d ⊗ I ⊗ · · · ⊗ I ;

(ii) D∗ = IndF �SnF �Sn−�(a)×F �Sa1×···×F �Sam d
∗ ⊗ I ⊗ · · · ⊗ I .

�

Recalling the notation of Theorem 3.2.2(i), we introduce the following rep-
resentation.

Definition 3.2.16 For 0 ≤ k ≤ (n− �(a))/2 we set

Wh,a,k = IndF �SnF �Sn−�(a)×F �Sa1×···×F �Sam S
n−�(a)−k,k ⊗W⊗a1

1 ⊗ · · · ⊗W⊗am
m .

Recalling the definition of a multinomial coefficient, namely(
n

k0, k1, . . . , km

)
= n!
k0!k1! · · · km! ,

where n, k0, k1, . . . , km ∈ N satisfy n =∑m
i=0 ki , it is clear that

dimWh,a,k =
(

n

n− �(a), a1, . . . , am

)[(
n− �(a)− k

k

)
−
(
n− �(a)− k
k − 1

)]
× (dimW1)

a1(dimW2)
a2 · · · (dimWm)

am.

Lemma 3.2.17 We have the orthogonal direct sum decomposition

Wh,a =
min{n−h,h−�(a)}⊕

k=0

Wh,a,k.

Proof Using the transitivity of induction (see Proposition 1.1.10) we get

IndF �SnF �Sn−h×F �Sa0×F �Sa1×···×F �Sam
= IndF �SnF �Sn−h+a0×F �Sa1×···×F �Sam Ind

F �Sn−h+a0×F �Sa1×···×F �Sam
F �Sn−h×F �Sa0×F �Sa1×···×F �Sam

and, since

Ind
F �Sn−h+a0×F �Sa1×···×F �Sam
F �Sn−h×F �Sa0×F �Sa1×···×F �Sam

(
IF �Sn−h ⊗W⊗a0

0 ⊗W⊗a1
1 ⊗ · · · ⊗W⊗am

m

)
= Mn−h,a0 ⊗W⊗a1

1 ⊗ · · · ⊗W⊗am
m

(IF �Sn−h ⊗ W⊗a0
0 is the trivial representation of (F � Sn−h) × (F � Sa0 )), the

lemma follows from the decomposition Mn−h,a0 = ⊕min{n−h,a0}
k=0 Sn−h+a0−k,k

from Theorem 3.2.2(iii). �
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In the following, we show how to construct the representationsWh,a,k using
the operators D and D∗. We set a(−k) = (a0 − k, a1, . . . , am).

Corollary 3.2.18

(i) Wk+�(a),a,k = KerD ∩Wk+�(a),a;

(ii) If 0 ≤ k ≤ min{n− h, h− �(a)} then (D∗)h−k−�(a) is an isomorphism of
Wk+�(a),a(−k),k ontoWh,a,k .

Proof This is an immediate consequence of Proposition 1.1.18, Theorem
3.2.2, Corollary 3.2.15 and Lemma 3.2.17. �

We are now in a position to present the main result of this section and to
introduce the generalized Johnson scheme.

Theorem 3.2.19

(i) The set {Wh,a,k : a ∈ C(h,m + 1), 0 ≤ k ≤ min{n − h, h − �(a)}}
consists of the pairwise inequivalent irreducible representations of F �Sn.

(ii) (F �Sn, (H �Sh)× (F �Sn−h)) is a Gelfand pair (the generalized Johnson
scheme).

(iii) The decomposition of L(�h) into irreducible (F � Sn)-representations is
given by

L(�h) =
⊕

a∈C(h,m+1)

min{n−h,h−�(a)}⊕
k=0

Wh,a,k. (3.25)

Proof First note that from (3.16) we can immediately deduce the following
decomposition:

L(�h) =
⊕
A∈�h

L(YA). (3.26)

Moreover, from the decomposition L(Y ) = ⊕mi=0Wi (into irreducible F -
representations) and from the definition ofWa(A) it follows that

L(YA) ∼= L(Y )⊗h =
m⊕
l1=0

m⊕
l2=0

· · ·
m⊕
lh=0

Wl1 ⊗Wl2 · · · ⊗Wlh

=
⊕

a∈C(h,m+1)

⊕
A∈�a(A)

Wa(A). (3.27)
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From (3.26), (3.27) and the definition of Wh,a we deduce that L(�h) =⊕
a∈C(h,m+1) Wh,a. Therefore from Lemma 3.2.17 it follows that (3.25) is an

orthogonal decomposition of L(�h) into (F � Sn)-invariant subspaces. Now,
the map

T (t, b0, b1, . . . , bm)

=
{
(t + n− 2h, b0 + h− t, b1, . . . , bm) if n− h < h− �(b)
(b0, b0 + h− t, b1, . . . , bm) if n− h ≥ h− �(b)

is a bijection between the set in Corollary 3.2.8, which parameterizes the ((H �
Sn)× (F � Sn−h))-orbits on �h, and the set

{(k, a0, a1, . . . , am) : 0 ≤ k ≤ min{n− h, h− �(a)}, a ∈ C(h,m+ 1)},
which parameterizes the (F � Sn)-subrepresentations of L(�h) in (3.25). The
corresponding inverse map is given by

T −1(k, a0, a1, · · · , am)

=
{
(k − n+ 2h, a0 + k − n+ h, a1, . . . , am) if n− h < h− �(a)
(k + h− a0, k, a1, . . . , am) if n− h ≥ h− �(a).

Therefore the three statements follow from the criterion for Gelfand pairs given
in Theorem 1.2.36. �

Remark 3.2.20 The result in Theorem 3.2.19(i) may be also obtained from
the general representation theory of the wreath product F �Sn (see Section 2.6).
Indeed, V = W⊗a1

1 ⊗ · · · ⊗ W⊗am
m is an irreducible representation of the

base group F×n , the inertia group of V is F � (Sn−h+a0 × Sa1 ⊗ · · · ⊗ Sam),
Sn−h+a0−k,k is an irreducible representation of Sn−h+a0 × Sa1 × · · · × Sam
(trivial on Sa1 × · · · × Sam ) and Wh,a,k is obtained by the induction of
Sn−h+a0−k,k ⊗ V from the inertia group to F � Sn.

3.2.5 The spherical functions

Let a = (a0, a1, . . . , am) ∈ C(h,m + 1). For 0 ≤ u ≤ min{n − h, h − �(a)}
we define the function

�(h, a, u)

=
∑

(A1,A2,...,Am)

∈�ã(A)

∑
A0∈�a0 (�(A1∪···∪Am)):

|A0\A|=u

[(⊗j∈A0φ0
)⊗ (⊗j∈A1φ1

)⊗ · · · ⊗ (⊗j∈Amφm)] ,

(3.28)
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where
(⊗j∈Aiφi) indicates the tensor product of ai copies of the spherical

function φi . From Lemma 3.2.11 we deduce that each�(h, a, u) is ((H �Sh)×
(F � Sn−h))-invariant. Moreover, the set

{�(h, a, u) : 0 ≤ u ≤ min{n− h, h− �(a)}} (3.29)

constitutes an orthogonal basis for the space of all ((H � Sh) × (F � Sn−h))-
invariant functions in the moduleWh,a. Indeed, we have

�(h, a, u) ∈
⊕

B1∈�h−u(A )
B2∈�u(�A )

L(YB1)B2)

and the summands on the right-hand side are orthogonal for different values
of u. The spherical functions can be expressed as linear combinations of the
�(h, a, u)’s. We will use the notation of (3.15).

Theorem 3.2.21 The spherical function �(n, h, a, k) inWh,a,k is given by

�(n, h, a, k)

= 1(
h

a0,a1,...,am

) min{n−h,h−�(a)}∑
u=0

ψ(n− �(a), h− �(a), k; u)�(h, a, u).

Proof The function�(n, h, a, k) is ((H �Sh)× (F �Sn−h))-invariant because
it is a linear combination of invariant functions. Moreover, its value on θ0,
the point stabilized by (H � Sh) × (F � Sn−h), is equal to 1. From (3.28) it
follows that

min{n−h,a0}∑
u=0

ψ(n− h+ a0, a0, k; u)�(h, a, u)

=
∑

(A1,A2,...,Am)

∈�ã(A)

min{n−h,a0}∑
u=0

ψ(n− h+ a0, a0, k; u)

×
∑

A0∈�a0 (�(A1∪···∪Am)):
|A0\A|=u

[(⊗j∈A0φ0
)⊗ (⊗j∈A1φ1

)⊗ · · · ⊗ (⊗j∈Amφm)]

=
∑

(A1,A2,...,Am)

∈�ã(A)

[
ψ(n− h+ a0, a0, k)⊗

(⊗j∈A1φ1
)⊗ · · · ⊗ (⊗j∈Amφm)] ,
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since
min{n−h,a0}∑

u=0

ψ(n− h+ a0, a0, k; u)
∑

A0∈�a0 (�(A1∪···∪Am)):
|A0\A|=u

(⊗j∈A0φ0
)

coincides with the spherical function of the Gelfand pair (Sn−h+a0 , Sn−h×Sa0)

belonging to the irreducible representation Sn−h+a0−k,k (here Sn−h+a0 is the
symmetric group on �(A1 ∪ · · · ∪ Am) and Sn−h × Sa0 is the stabilizer of
A \ (A1 ∪A2 ∪ · · · ∪Am)). Hence ψ(n− h+ a0, a0, k)⊗

(⊗j∈A1φ1
)⊗ · · · ⊗(⊗j∈Amφm) belongs to Sn−h+a0−k,k ⊗ W⊗a1

1 ⊗ · · · ⊗ W⊗am
m and, bearing in

mind Definition 3.2.16, the theorem follows. �

In the remaining part of this section, we first give the value of the spheri-
cal functions on a fixed ((H � Sh) × (F � Sn−h))-orbit. Then we specify the
above analysis to the particular case when (F,H) is the Gelfand pair of the
ultrametric space (see Section 2.1.5).

We denote by φi(j) the value of the spherical function φi on the orbit �j .
The value of�(h, a, u) on a map θ ∈ �h with type(θ) = (t, b) is equal to 0 if
t = ∣∣dom(θ) ∩ A∣∣ �= h− u, while if t = h− u then the value is equal to

�(h, a, u;b) =
∑
(αij )

m∏
j=0

(
bj

α0j , α1j , . . . , αmj

) m∏
i=0

[φi(j)]αij , (3.30)

where the sum is over all nonnegative integer-valued matrices

(αij )i=0,1,...,m
j=0,1,...,m

such that
∑m
i=0 αij = bj , j = 0, 1, . . . , m,

∑m
j=0 αij = ai , i = 1, 2, . . . , m

and
∑m
j=0 α0j = a0− t . We just observe that if A0∪A1∪ · · · ∪Am = dom(θ)

and Bj = {r ∈ dom(θ) ∩ A : θ(r) ∈ �j } then

[(⊗w∈A0φ0)⊗ (⊗w∈A1φ1)⊗ · · · ⊗ (⊗w∈Amφm)](θ) =
m∏
i=0

m∏
j=0

[φi(j)]αij ,

where

αij = |Ai ∩ Bj | (3.31)

and for a fixed intersection matrix (αij ) we have
m∏
j=0

(
bj

α0j ,α1j ,...,αmj

)
ways to

choose the subsets Ai ∩ Bj of the Bj , and

A0 = [dom(θ) \ A] ∩ [∪mj=0(A0 ∩ Bj )].
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It follows that the value of �(n, h, a, k) on a map θ with type(θ) = (t, b) is
given by

�(n, h, a, k; t,b)
= 1(

h
a0,a1,...,am

)ψ(n− �(a), h− �(a), k;h− t)�(h, a, h− t;b).

Example 3.2.22 We specify Theorem 3.2.19 in the case where (F,H) is
the Gelfand pair of the ultrametric space, that is, Y = {0, 1, . . . , q − 1}m,
F = Aut(Tq,m) and H = K(q,m) ≤ Aut(Tq,m) is the stabilizer of the leaf
y0 = (0, 0, . . . , 0). To simplify the notation, we assume that 2h ≤ n. Then
�h coincides with the space of all h-subsets {z1, z2, . . . , zh} of the ultrametric
space (Y, d) such that d(zi, zj ) = m (the maximum distance) for i �= j .

From (2.15) it follows that, in this case, in (3.30) we have

m∏
i=0

[φi(j)]αij

=
⎧⎨⎩
(
− 1
q−1

)αm,1+αm−1,2+···+α1,m
if αi,j = 0 for i+ j >m+ 1

0 otherwise;
that is, in (3.31) we must have Ai ⊆ B0 ∪B1 ∪ · · · ∪Bm−i+1, i = 1, 2, . . . , m,
and the value of

∏m
i=0[φi(j)]αij is determined by the cardinalities γj =

|Am−j+1 ∩ Bj |, j = 1, 2, . . . , m. Therefore

�(h, a, u;b)

=
∑
γ

m∏
j=1

(
bj

γj

)(∑j−1
w=0 bw −

∑j−1
v=1 am−v+1

am−j+1 − γj
)(

− 1

q − 1

)γ1+···+γm
,

where the sum runs over all the m-tuples γ = (γ1, γ2, . . . , γm) satisfying

max

⎧⎨⎩0,
j∑
v=1

am−v+1 −
j−1∑
w=0

bw} ≤ γj ≤ min{bj , am−j+1

⎫⎬⎭
(in particular, we have�(h, a, t;b) = 0 when the conditions

∑j

v=1 am−v+1 ≤∑j

w=0 bw, j = 1, 2, . . . , m−1, are not satisfied). So, to compute�(h, a, u; k)
we need to choose, in all possible ways,

• the subset Am−j+1 ∩ Bj in Bj , for j = 1, 2, . . . , m,

• the subset Am−j+1 \ Bj in

(
j−1⋃
w=0

Bw \
j−1⋃
v=1

Am−v+1

)
, for j = 1, 2, . . . , m,
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and then, necessarily, A0 =
[
m⋃
w=0

Bw \
m⋃
v=1

Am−v+1

]⋃[
dom(θ) \ A].

Exercise 3.2.23 Deduce the results in [11, Section 7.4] as particular cases of
those obtained in the present subsection.

3.2.6 The homogeneous space V(r, s) and the associated
Gelfand pair

Letm be a positive integer and r = (r1, r2, . . . , rm) anm-tuple of integers such
that ri ≥ 2 for all i = 1, 2, . . . , m. In Section 2.1.4 we defined the spherically
homogeneous rooted tree (r-tree) Tr.

Let s = (s1, s2, . . . , sm) be another m-tuple that satisfies the conditions 1 ≤
si ≤ ri , for all i. Denote by Ts the corresponding s-tree. Note that there are
exactly (

r1

s1

) m∏
i=2

(
ri

si

)s1s2···si−1

distinct embeddings of Ts as a subtree of Tr. Indeed, any such subtree is uniquely
determined by the m-tuple (f0, f1, . . . , fm−1), where fi is the map that asso-
ciates with each vertex v at the ith level in Ts the set of all successors of v; for
each i there are exactly

(
ri+1
si+1

)s1s2···si such maps fi .
We denote by V(r, s) the set of all s-subtrees of Tr (see Fig. 3.3).

Fig. 3.3 A tree of type (3, 3, 3) with a subtree of type (2, 2, 1).
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As usual, we denote by Sk the symmetric group on k elements and by
Aut(Tr) the group of all automorphisms of Tr; in Theorem 2.1.15 we showed
that Aut(Tr) = Srm � Srm−1 � · · · � Sr2 � Sr1 . Recall from Section 2.1.4 that every
automorphism g ∈ Aut(Tr) stabilizes the levels Vi of Tr and is uniquely deter-
mined by its labeling (cf. (2.11)), which we denote by ḡ. Thus, the map ḡ

V →⋃m−1
i=0 Sri+1

v 
→ ḡ(v)

(with ḡ(v) ∈ Sri+1 if v ∈ Vi) satisfies

g(x1, x2, . . . , xk) = (ḡ(∅)x1, ḡ(x1)x2, . . . , ḡ(x1, x2, . . . , xk−1)xk)

for all xi ∈ Xi , 1 ≤ i ≤ k ≤ m. It is obvious that the image of an s-subtree
under an automorphism of Tr is again a s-subtree. Thus, the group Aut(Tr) acts
on V(r, s).

Let now fix an s-subtree Ts
∗ and denote by

K(r, s) = {g ∈ Aut(Tr) : gTs
∗ = Ts

∗}
its stabilizer. We then have the identification

V(r, s) = Aut(Tr)/K(r, s)

as Aut(Tr)-spaces.
We now present an explicit expression for the group K(r, s). Suppose first

that the tree Tr has depth 1, so that r = r1 and s = s1; clearly Aut(Tr) = Sr1
and K(r, s) = Ss1 × Sr1−s1 . In general, for r′ = (r2, r3, . . . , rm) and s′ =
(s2, s3, . . . , sm), we easily find the recursive expression

StabAut(Tr)(Ts) = (Aut(Tr′) � Sr1−s1)× (K(r′, s′) � Ss1). (3.32)

In particular, when the tree Tr has depth 2, that is, when r = (r1, r2), s =
(s1, s2) and Aut(Tr) = Sr2 � Sr1 , we have

K(r, s) = (Sr2 � Sr1−s1)× ((Ss2 × Sr2−s2) � Ss1).
Given two rooted trees, we say that they are rooted-isomorphic if there exists

a graph isomorphism exchanging the respective roots; clearly, the level of the
single vertices remains unchanged under such an isomorphism.

Proposition 3.2.24 Let T1, T2, T
′

1 and T ′2 be s-subtrees within Tr. Then (T1,

T2) and (T ′1, T ′2) belong to the same Aut(Tr)-orbit on V(r, s) × V(r, s) if and
only if T1 ∩ T2 is rooted-isomorphic to T ′1 ∩ T ′2.
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Proof If gTj = T ′j , j = 1, 2, for some g ∈ Aut(Tr) then g(T1∩T2) = T ′1∩T ′2
and the “only if” part follows trivially.

The other implication may be proved by induction on the depth m of the
tree Tr. For m = 1 we have r = r and s = s, V(r, s) is simply the set of
all r-subsets of an s-set and Aut(Tr) = Sr ; therefore we refer to the proof of
Proposition 3.2.1.

Suppose now that T1 ∩ T2 is rooted-isomorphic to T ′1 ∩ T ′2 and denote by
α : V1(T1 ∩ T2)→ V1(T

′
1 ∩ T ′2) a bijection such that if x ∈ V1(T1 ∩ T2) then

the (T1 ∩ T2)-subtree Tx rooted at x is (rooted-)isomorphic to the (T ′1 ∩ T ′2)-
subtree T ′α(x) rooted at α(x). We may extend α to a permutation σ ∈ Sr1 such
that σ(V1(T1)) = V1(T

′
1) and σ(V1(T2)) = V1(T

′
2). Modulo the permutation

σ , we may suppose that T1 ∩ T2 and T ′1 ∩ T ′2 coincide at the first level.
By induction, for all x ∈ V1(T1∩T2) ≡ V1(T

′
1∩T ′2)we have an x-rooted iso-

morphism gx between the (T1 ∩ T2)-subtree rooted at x and the corresponding
(T ′1 ∩ T ′2)-subtree with the same root x. It is then clear that the automorphism
g with label ḡ(∅) = σ , ḡ(x, x2, . . . , xn) = ḡx(x2, . . . , xn) if x ∈ T1 ∩ T2 and
the identity otherwise is the desired rooted automorphism. �

Corollary 3.2.25 The action of Aut(Tr) on V(r, s) is transitive.

Proof It suffices to apply Proposition 3.2.24 to T1 = T2 and T ′1 = T ′2. �

Corollary 3.2.26 (Aut(Tr),K(r, s)) is a symmetric Gelfand pair.

Proof This follows from Proposition 3.2.24 by taking T1, T2, T
′

1, T
′

2 with
T ′1 = T2 and T ′2 = T1 in combination with Proposition 1.2.31. �

Our next task is to relate the Gelfand pair (Aut(Tr),K(r, s)) to the gener-
alized Johnson scheme. The classical Johnson scheme (Sn, Sh × Sn−h) corre-
sponds to the Gelfand pair (Aut(Tr, Ts),K(r, s)), where m = 1, r = n and
s = h. More generally, given the Gelfand pair (F,H) with F = Aut(Tr′)
and H = K(r′, s′), r′ = (r2, r3, . . . , rm) and s′ = (s2, s3, . . . , sm), the homo-
geneous space �h in Section 3.2.2 coincides with V(r, s), where now r =
(n, r2, r3, . . . , rm) and s = (h, s2, s3, . . . , sm). Indeed, the subgroup (H �Sh)×
(F � Sn−h) coincides with K(r, s) by virtue of the expression given in (3.32).
The point stabilized by (H � Sh)× (F � Sn−h), namely θ0 ∈ �h (which corre-
sponds to an h-subset A ⊂ {1, 2, . . . , n}), is given by θ0(j) = y0 for all j ∈ A,
where y0 is the s′-subtree stabilized by H ≡ K(r′, s′).
Remark 3.2.27 In Example 3.2.22 we considered the Gelfand pair (F,H)
(the ultrametric space), where F = Aut(Tq,m) andH = K(q,m) ≤ Aut(Tq,m)
is the stabilizer of the leaf y0 = (0, 0, . . . , 0) ∈ Y = {0, 1, . . . , q − 1}m. In
the setting of the present section, the corresponding homogeneous space �h
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coincides with the homogeneous space V(r,s), with r = (n, q, . . . , q) and
s = (h, 1, . . . , 1).

3.3 Harmonic analysis on exponentiations and on wreath
products of permutation representations

In this section we introduce the notion of a wreath product of permutation rep-
resentations that generalizes the exponentiation action (cf. (2.7)), the Cayley
action of a wreath product on itself and the lamplighter space (which will be
examined in more detail in Section 3.4). We give explicit rules for the decom-
position of the corresponding permutation representations into irreducibles and
analyze several special cases.

3.3.1 Exponentiation and wreath products

Definition 3.3.1 Let G (resp. F ) be a finite group acting on two finite sets X
and Z (resp. on a finite set Y ). Then we define an action of the wreath product
F �G = FX �G on YX × Z by setting

(f, g)(ϕ, z) = ((f, g)ϕ, gz) (3.33)

for all (f, g) ∈ F �G and (ϕ, z) ∈ YX × Z. We will call it the wreath product
of the action of F on Y and the actions of G on X and Z.

Note that (3.33) is just the direct product of the exponentiation action (of F �G
on YX, see (2.7)) with the inflation of the action ofG onZ (which is defined by
setting (f, g)z = gz for (f, g) ∈ F �G and z ∈ Z). In particular, if the action
of G on Z and the action of F on Y are transitive then the wreath product
(3.33) is also a transitive action: recall that, in this case, FX is transitive on YX

(see Lemma 2.1.8). When Z is trivial, (3.33) coincides with the exponentiation
action.

Exercise 3.3.2 Suppose that Y = F and Z = G. Show that the wreath
product of the left Cayley action of F on itself, the action of G on X and the
left Cayley action of G on itself coincides with the left Cayley action of F �G
on itself.

Notation 3.3.3 We will use the following notation for the permutation repre-
sentation of F on Y : if ξ ∈ L(Y ) and f ∈ F , we set (f ξ)(y) = ξ(f−1y) for
all y ∈ Y . We will use a similar notation for the permutation representation of
G on Z. However, we will denote by λ the permutation representation of FX
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on L
(
YX

)
and by λ̃ its extension to F � G (which coincides with the permu-

tation representation associated with exponentiation). That is, for ψ ∈ L (YX)
and f ∈ FX we have

[λ(f )ψ](ϕ) = ψ(f−1ϕ) for all ϕ ∈ YX,

where (f−1ϕ)(x) = f (x)−1ϕ(x) for all x ∈ X. Similarly, if in addition g ∈ G,
we have

[̃λ(f, g)ψ](ϕ) = ψ[(f, g)−1ϕ] ≡ ψ[(g−1f−1, g−1)ϕ],

where

[(g−1f−1, g−1)ϕ](x) = f (gx)−1ϕ(gx)

for all ϕ ∈ YX and x ∈ X. In particular
[
λ̃(1F , g)ψ

]
(ϕ) = ψ(g−1ϕ), where

(g−1ϕ)(x) = ϕ(gx). Finally, we will use the following notation for the per-
mutation representation of F � G on L

(
YX × Z): if � ∈ L (YX × Z) and

(f, g) ∈ F �G, we set

[(f, g)�)](ϕ, z) = �[(f, g)−1(ϕ, z)] for all (ϕ, z) ∈ YX × Z.

Now let ψx ∈ L(Y ) for all x ∈ X. We define the tensor product
⊗
x∈X ψx ∈

L
(
YX

)
by setting(⊗

x∈X
ψx

)
(ϕ) =

∏
x∈X

ψx(ϕ(x)) for all ϕ ∈ YX. (3.34)

Compare with (3.2); in particular, λ may be seen as the |X|-times tensor prod-
uct of the permutation representation of F on Y . Therefore, the following
lemma may be considered as a particular case of Lemma 2.4.3, just noting
that the inertia group of λ coincides with G. However, we give an easy proof
for the reader’s convenience.

Lemma 3.3.4 Let ψx ∈ L(Y ), x ∈ X, and (f, g) ∈ F �G. Then

λ̃(f, g)

(⊗
x∈X

ψx

)
=
⊗
x∈X

f (x)ψg−1x.

Proof For any ϕ ∈ YX and x ∈ X, by (2.7) we have [(f, g)−1ϕ](x) =
f (gx)−1ϕ(x) and therefore
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λ(f, g)

(⊗
x∈X

ψx

)]
(ϕ) =

(⊗
x∈X

ψx

)
[(f, g)−1ϕ]

=
∏
x∈X

ψx[f (gx)−1ϕ(gx)] (by (3.34))

=
∏
x∈X

ψg−1x[f (x)−1ϕ(x)]

=
∏
x∈X

[
f (x)ψg−1x

]
(ϕ(x))

=
[⊗
x∈X

f (x)ψg−1x

]
(ϕ). �

Let� be a system of representatives for the (F �G)-conjugacy classes of F̂ X

(as in Theorem 2.4.4), fix σ ∈ � and set I = TG(σ). In the notation of Sec-
tion 2.4, we also assume that for all x ∈ X the representation σx appears in the
decomposition of L(Y ) into irreducible F -representations. Then there exists
a partition X = ∐n

i=1�i of X and σ1, σ2, . . . , σn irreducible and pairwise
inequivalent F -representations such that σx = σi for all x ∈ �i , i = 1, . . . , n,
and I = {g ∈ G : g�i = �i, i = 1, 2, . . . , n}. Denote by mi the multiplicity
of σi in L(Y ). For each x ∈ �i we denote by Vσx ≡ Vi the representation
space of σx ≡ σi . We fix a basis Tx,1, Tx,2, . . . , Tx,mi in HomF (Vσx , L(Y ))
which is orthonormal with respect to the Hilbert–Schmidt scalar product. This
means that (cf. (1.35))

Tr
[
Tx,h

(
Tx,k

)∗] ≡ dσi 〈Tx,h, Tx,k〉HS = δh,k
for all 1 ≤ h, k ≤ mi . Moreover we suppose that, for all x ∈ �i , the operators
Tx,h : Vi → L(Y ), 1 ≤ h ≤ mi , are all the same. We set

J = {j ∈ NX : 1 ≤ j (x) ≤ mi for all x ∈ �i, i = 1, 2, . . . , n}. (3.35)

The group I acts on J in the obvious way: if g ∈ I and j ∈ J then gj
is defined by setting gj (x) = j (g−1x) for all x ∈ X (recall that I stabilizes
every �i). For any j ∈ J , set

Tj =
⊗
x∈X

Tx,j (x). (3.36)

It is easy to check that {Tj : j ∈ J } is an orthonormal basis for

HomFX

(⊗
x∈X

Vσx , L
(
YX

))
.
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We also have

Tgx,j (gx) = Tx,j (gx) if g ∈ I, (3.37)

because Tx,h does not depend on x ∈ �i . Recall that, in the notation of
Lemma 2.4.3, σ̃ is the extension of σ to F � I .

Lemma 3.3.5 For g ∈ I and T ∈ HomFX
(⊗

x∈X Vσx , L
(
YX

))
, define a

linear operator π(g)T : Vσx → L
(
YX

)
by setting

π(g)T = λ̃(1F , g)T σ̃ (1F , g−1).

Then π is a representation of I on HomFX
(⊗

x∈X Vσx , L
(
YX

))
.

Proof We first check that

λ̃(1F , g)T σ̃ (1F , g−1) ∈ HomFX

(⊗
x∈X

Vσx , L
(
YX

))

for every T ∈ HomFX
(⊗

x∈X Vσx , L
(
YX

))
and g ∈ I . Noting that σ(f, 1G) =

σ̃ (f, 1G) and

(1F , g−1) (f, 1G) = (g−1f, g−1) = (g−1f, 1G) (1F , g−1),

we have[̃
λ(1F , g)T σ̃ (1F , g−1)

]
σ(f, 1G) = λ̃(1F , g)T σ̃ (g−1f, 1G)̃σ (1F , g−1)

= λ̃(1F , g)̃λ(g−1f, 1G)T σ̃ (1F , g−1)

= λ̃(f, 1G)
[̃
λ(1F , g)T σ̃ (1F , g−1)

]
.

We leave to the reader the easy verification that π is a representation. �

Lemma 3.3.6 For all (f, g) ∈ F � I and j ∈ J we have

λ̃(f, g)Tj = Tgj σ̃ (f, g).
Proof We examine the actions of λ̃(f, g)Tj and Tgj σ̃ (f, g) on the tensor
product

⊗
x ∈X vx ∈

⊗
x∈X Vσx separately, showing that they lead to the

same expression. From (3.36), Lemma 3.3.4 and (3.37), we deduce that[̃
λ(f, g)Tj

](⊗
x∈X

vx

)
= λ̃(f, g)

(⊗
x∈X

Tx,j (x)vx

)
=
⊗
x∈X

f (x)Tx,j (g−1x)vg−1x.
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Similarly, from the definition of σ̃ in Lemma 2.4.3, taking into account that
σg−1x = σx for g ∈ I and the fact that Tx,j (x) ∈ HomF (Vσx , L(Y )), x ∈ X, it
follows that[

Tgj σ̃ (f, g)
] (⊗

x∈X
vx

)
=
(⊗
x∈X

Tx,gj (x)

)(⊗
x∈X

σx(f (x))vg−1x

)
=
⊗
x∈X

Tx,gj (x)σx(f (x))vg−1x

=
⊗
x∈X

f (x)Tx,j (g−1x)vg−1x.

�

Corollary 3.3.7 The representation π in Lemma 3.3.5 is equivalent to the
permutation representation of the group I on the finite set J .

Proof Let g ∈ I and j ∈ J . On the one hand, setting f = 1F in Lemma 3.3.6
we get the identity

π(g)Tj ≡ λ̃(1F , g)Tj σ̃ (1F , g−1) = Tgj .
On the other hand, we also have gδj = δgj . Since {Tj : j ∈ J } (resp. {δj : j ∈
J }) is an orthonormal basis for HomFX

(⊗
x∈X Vσx , L

(
YX

))
(resp. for L(J )),

we conclude that the map

L(J )−→HomFX

( ⊗
x∈X

Vσx , L
(
YX

))
δj 
−→ Tj

is an isomorphism of I -representations. �

Now let (η, U) be an irreducible representation of I . Recall that the inflation
η of η to F � I is defined by

η(f, g)u = η(g)u for all (f, g) ∈ F � I and u ∈ U. (3.38)

The key point is to determine the multiplicity of the representation(
σ̃ ⊗ η,

(⊗
x∈X

Vσx

)⊗
U

)

in the decomposition of L
(
YX × Z) into irreducible (F �I )-representations. In

the spirit of the harmonic analysis developed in Section 1.2, what we actually
get is an orthogonal decomposition which depends on an orthogonal decom-
position of the permutation representation of I on L(J × Z). For g ∈ I , we
denote by gγ the g-image of γ ∈ L(J × Z).
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Theorem 3.3.8 Let σ ∈ � and let (η, U) be an irreducible representation of
I = TG(σ). Let {Tj : j ∈ J } be an orthonormal basis for HomFX

(⊗
x∈X Vσx ,

L
(
YX

))
and T ∈ HomI (U,L(J × Z)). Given

v =
⊗
x∈X

vx ∈
⊗
x∈X

Vσx

and u ∈ U , define T̂ (v ⊗ u) ∈ L (YX × Z) by setting

[
T̂ (v ⊗ u)] (ϕ, z) =

⎡⎣∑
j∈J
(T u)(j, z)Tj v

⎤⎦ (ϕ) ≡∑
j∈J
(T u)(j, z) · (Tj v)(ϕ)

(3.39)

for all (ϕ, z) ∈ YX × Z. Then the following hold:

(i) The operator T̂ belongs to

HomF �I

[(⊗
x∈X

Vσx

)⊗
U,L

(
YX × Z

)]
.

(ii) The map

HomI (U,L(Z × J )) → HomF �I
[( ⊗

x∈X
Vσx

)⊗
U,L

(
YX × Z)]

T 
−→ T̂

is a linear isometric isomorphism.

Proof Recall that σ̃ (resp. η) is the extension (resp. inflation) of σ (resp. η)
to F � I . Let (f, g) ∈ F � I and (ϕ, z) ∈ YX × Z. Then(

T̂
{[̃σ(f, g)⊗ η(f, g)] (v ⊗ u)}) (ϕ, z)
= (

T̂ [̃σ(f, g)v ⊗ η(g)u]
)
(ϕ, z) (by (3.38))

=
⎛⎝∑
j∈J

{[T η(g)u](j, z)} · Tj σ̃ (f, g)v
⎞⎠ (ϕ) (by (3.39))

=
⎛⎝λ̃(f, g)

⎛⎝∑
j∈J

[
T (u)(g−1j, g−1z)

] · Tg−1j v

⎞⎠⎞⎠ (ϕ)
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(since T ∈ HomI (U,L(J × Z)) and λ̃(f, g)Tg−1j = Tj σ̃ (f, g) by Lemma
3.3.6)

=
⎛⎝∑
j∈J

[
T (u)(j, g−1z)

] · Tjv
⎞⎠(
(f, g)−1ϕ

)
(on replacing g−1j by j)

= [
T̂ (v ⊗ u)] ((f, g)−1ϕ, g−1z

)
(again by (3.39))

= (
(f, g)

[
T̂ (v ⊗ u)]) (ϕ, z).

This proves that T̂ is an intertwiner.
In order to show that the correspondence T 
−→ T̂ is a bijection, we con-

struct an explicit inverse map T̂ 
−→ T as follows. Let

S ∈ HomF �I

((⊗
x∈X

Vσx

)⊗
U,L

(
YX × Z

))
. (3.40)

With every choice of u ∈ U and z ∈ Z we associate a linear map

S�u,z :
⊗
x∈X

Vσx −→ L
(
YX

)
,

defined by setting (
S�u,zv

)
(ϕ) = [S (v ⊗ u)] (ϕ, z) (3.41)

for all v =⊗
x∈X vx ∈

⊗
x∈X Vσx and ϕ ∈ YX. Let us show that

S�u,z ∈ HomFX

(⊗
x∈X

Vσx , L
(
YX

))
. (3.42)

For all f ∈ FX and ϕ ∈ YX we have:[
S�u,zσ (f )v

]
(ϕ)

= [
S�u,zσ̃ (f, 1G)v

]
(ϕ)

={S [(̃σ (f, 1G)v)⊗ u]
}
(ϕ, z)

= (
S [̃σ(f, 1G)⊗ η(f, 1G)] (v ⊗ u)

)
(ϕ, z) (since η(f, 1G)u = u)

= [
S (v ⊗ u) ] ((f, 1G)−1ϕ, z

)
(by (3.40))

= (
S�u,zv

)
(f−1ϕ)

= [
λ(f )S�u,zv

]
(ϕ),

that is,

S�u,zσ (f ) = λ(f )S�u,z.
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Thus (3.42) is proved. Since the operators {Tj : j ∈ J } form a basis for
HomFX

(⊗
x∈X Vσx , L

(
YX

))
, we deduce that there exist αu,z ∈ L(J ) such

that

S�u,z =
∑
j∈J

αu,z(j)Tj . (3.43)

Therefore we define a linear map S̃ : U → L(J × Z) by setting, for u ∈ U
and (j, z) ∈ J × Z, (

S̃u
)
(j, z) = αu,z(j), (3.44)

where αu,z is given by (3.43). From (3.41), (3.43) and (3.44) it follows that

[S ( v ⊗ u)] (ϕ, z) =
⎡⎣∑
j∈J

αu,z(j) Tj v

⎤⎦ (ϕ) =
⎡⎣∑
j∈J

(
S̃u
)
(j, z) Tj v

⎤⎦ (ϕ).
(3.45)

Moreover, for all g ∈ I we have⎛⎝∑
j∈J

([
S̃η(g)u

]
(j, z)

)
Tjv

⎞⎠ (ϕ)
=
(
S
[
σ̃ (1F , g)̃σ (1F , g−1)v ⊗ η(g)u

])
(ϕ, z)

=
(
S
[
σ̃ (1F , g−1)v ⊗ u

]) (
(1F , g−1)ϕ, (1F , g)−1z

)
(by (3.40))

=
⎡⎣∑
j∈J

(
S̃u
)
(j, g−1z) Tj σ̃ (1F , g−1)v

⎤⎦[(1F , g−1)ϕ
]

=
⎡⎣∑
j∈J

(
S̃u
)
(j, g−1z) Tgj v

⎤⎦ (ϕ) (by Lemma 3.3.6)

=
⎡⎣∑
j∈J

(
S̃u
)
(g−1j, g−1z) Tj v

⎤⎦ (ϕ)
=
⎡⎣∑
j∈J

(
gS̃u

)
(j, z) Tj v

⎤⎦ (ϕ).
This shows that S̃η(g) = gS̃, that is, S̃ ∈ HomI (U,L(J × Z)). From (3.39)

and (3.45), it is also clear that ̂̃S = S and that ˜̂T = T , thus showing the
bijectivity of the map T 
−→ T̂ .
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Finally, we end the proof by showing that the above map is indeed an isom-
etry. Let B1 (resp. B2) be an orthonormal basis in

⊗
x∈X Vσx (resp. U ). If

T1, T2 ∈ HomI (U,L(J × Z)), then

〈T̂1, T̂2〉HS =
∑
v∈B1

∑
u∈B2

∑
(ϕ,z)∈YX×Z

[T̂1(v ⊗ u)](ϕ, z)[T̂2(v ⊗ u)](ϕ, z)

=
∑
v,u

∑
(ϕ,z)

⎡⎣∑
j∈J
(T1u)(j, z)(Tj v)(ϕ)

⎤⎦[∑
i∈J
(T2u)(i, z)(Tiv)(ϕ)

]

=
∑
u,j,i,z

(T1u)(j, z) (T2u)(i, z)〈Tj , Ti〉HS

=
∑
u,j,z

(T1u)(j, z) (T2u)(j, z)

= 〈T1, T2〉HS. �

Exercise 3.3.9 Show that the linear map T � : U ⊗L(Z)→ L(J ) defined by
T �(u⊗ δz) = T �u,z belongs to HomI (U ⊗ L(Z), L(J )) and that

HomF �I
(( ⊗

x∈X
Vσx

)⊗
U,L

(
YX × Z)) −→ HomI (U ⊗ L(Z), L(J ))

T 
−→ T �

is a linear isomorphism.
Hint. Recall Corollary 3.3.7.

The formulation of Frobenius reciprocity in Theorem 1.2.27 yields an
explicit isometric isomorphism from

HomF �I

((⊗
x∈X

Vσx

)⊗
U,L

(
YX × Z

))
onto

HomF �G

(
IndF �GF �I

[(⊗
x∈X

Vσx

)⊗
U

]
, L

(
YX × Z

))
,

given by

T 
−→ �
T . (3.46)

By combining Theorem 3.3.8 and the isomorphism (3.46), we can reduce
the decomposition of L

(
YX × Z) into irreducible (F � G)-representations to

the decomposition of L(J × Z) into irreducible I -representations.
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Theorem 3.3.10 The map T 
−→
�
T̂ from HomI (U,L(Z × J )) into

HomF �G

(
IndF �GF �I

[(⊗
x∈X

Vσx

)⊗
U

]
, L

(
YX × Z

))

is a linear isometric isomorphism. �

The following results are an immediate consequence of the above.

Corollary 3.3.11 The multiplicity of the irreducible representation IndF �GF �I
(̃σ ⊗ η) in the decomposition of L

(
YX ×Z) into irreducible (F �G)-

representations is equal to the multiplicity of η in the decomposition of
L(J × Z) into irreducible I -representations. �

In particular, if Z is trivial then we get a rule for the decomposition of the
exponentiation action into irreducible representations:

Corollary 3.3.12 The multiplicity of IndF �GF �I (̃σ ⊗ η) in L
(
YX

)
is equal to

the multiplicity of η in L(J ). �

Remark 3.3.13 If we take Y ≡F and Z≡G, both with their left Cayley
actions, then Theorem 3.3.10 yields a decomposition of the left regular rep-
resentation of F � G (see Exercise 3.3.2). Since the stabilizer in I of any
(j, g) ∈ J × G is the trivial subgroup, each orbit of I on J × G is equiva-
lent to the left action of I on itself and therefore I has |J | |G||I | orbits on J ×G.

Hence the multiplicity η in L(J × G) is equal to (dim η) |J | |G||I | ; by virtue of

Corollary 3.3.11, this yields a formula for dim IndF �GF �I (̃σ ⊗ η). Note that this

agrees with (1.5), since then dim IndF �GF �I (̃σ ⊗ η) = (dim η)(dim σ) |G||I | (in this
context we have dim σ = |J |).

The results in the following subsections are all particular cases and applica-
tions of Theorem 3.3.8 and Corollary 3.3.11. But it is worthwhile to examine
them separately, explore their peculiarities and develop more direct approaches
when possible.

3.3.2 The case G=C2 and Z trivial

In the present subsection we examine the case G = C2 ≡ X (with the Cayley
action) and Z trivial. We identify C2 with the multiplicative group {1,−1} and
denote by (ε, U) the corresponding alternating representation. As before, we
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also consider a finite group F acting on a finite set Y , and we denote by

L(Y ) =
⊗
σ∈R

mσVσ (3.47)

the isotypic decomposition of the corresponding permutation representation
into irreducible F -representations. Finally, let T σ1 , T

σ
2 , . . . , T

σ
mσ

constitute an
orthonormal basis for HomF (Vσ , L(Y )). We clearly have that

L(Y × Y ) ≡ L(Y )
⊗

L(Y ) =
⊕
σ,σ ′∈R

mσmσ ′(Vσ ⊗ Vσ ′)

≡
⊕
σ,σ ′∈R

mσ⊕
j=1

mσ ′⊕
j ′=1

(
T σj Vσ ⊗ T σ

′
j ′ Vσ ′

)
(3.48)

is an orthogonal decomposition of L(Y × Y ) into irreducible (F × F )-
representations.

Theorem 3.3.14 We will use the notation in (3.47).

(i) For σ, σ ′ ∈ R, σ �= σ ′, j = 1, 2, . . . , mσ and j ′ = 1, 2, . . . , mσ ′ , the
space

W
j,j ′
σ,σ ′ =

(
T σj Vσ ⊗ T σ

′
j ′ Vσ ′

)
⊕
(
T σ

′
j ′ Vσ ′ ⊗ T σj Vσ

)
is an irreducible (F � C2)-representation isomorphic to (Vσ ⊗ Vσ ′) ⊕
(Vσ ′ ⊗ Vσ ).

(ii) For σ ∈ R and i, j = 1, 2, . . . , mσ , the space

W
i,j
σ,+ =

〈(
T σi v1 ⊗ T σj v2

)
+
(
T σj v1 ⊗ T σi v2

)
: v1, v2 ∈ Vσ

〉
is an irreducible (F � C2)-representation isomorphic to Vσ ⊗ Vσ .

(iii) For σ ∈ R and i, j = 1, 2, . . . , mσ , i �= j , the space

W
i,j
σ,− =

〈(
T σi v1 ⊗ T σj v2

)
−
(
T σj v1 ⊗ T σi v2

)
: v1, v2 ∈ Vσ

〉
is an irreducible (F � C2)-representation isomorphic to (Vσ ⊗ Vσ )⊗ U .

(iv) The decomposition of L(Y × Y ) into irreducible (F �C2)-representations
is given by
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L(Y × Y ) ∼=

⎡⎢⎢⎣ ⊕
σ,σ ′∈R
σ �=σ ′

mσmσ ′ (Vσ ⊗Vσ ′)⊕ (Vσ ′ ⊗Vσ )

⎤⎥⎥⎦
⊕[⊕

σ∈R

mσ (mσ + 1)

2
(Vσ ⊗Vσ )

]
⊕[⊕

σ∈R

mσ (mσ − 1)

2
[(Vσ ⊗ Vσ )⊗ U ]

]

≡
⎛⎝ ⊕
σ,σ ′∈Rσ �=σ ′

mσ⊕
i=1

mσ ′⊕
j=1

W
j,j ′
σ,σ ′

⎞⎠
⊕⎛⎜⎜⎝⊕

σ∈R

⎡⎢⎢⎣
⎛⎝ mσ⊕
i,j=1

W
i,j
σ,+

⎞⎠⊕⎛⎜⎜⎝ mσ⊕
i,j=1
i �=j

W
i,j
σ,−

⎞⎟⎟⎠
⎤⎥⎥⎦
⎞⎟⎟⎠ .

Proof When σ �= σ ′, the inertia group of Vσ ⊗Vσ ′ is F ×F . Indeed, TG(σ ⊗
σ ′) is trivial (since σ �= σ ′) and therefore (see Lemma 2.4.2) IFX �G(σ ⊗
σ ′) = F � TG(σ ⊗ σ ′) = FX = F × F . Moreover, from Proposition 1.1.9 it
follows that

IndF �C2
F×F (Vσ ⊗ Vσ ′) ∼= (Vσ ⊗ Vσ ′)⊕ (Vσ ′ ⊗ Vσ ).

From Theorem 2.4.4 we deduce that this is an irreducible (F � C2)-
representation, and (3.48) ensures that its multiplicity in L(Y × Y ) is equal to
mσmσ ′ . This agrees with Corollary 3.3.12 because, with the notation therein,
we have that I = TG(σ ⊗ σ ′) is trivial (so that η is also trivial) and there-
fore the multiplicity of η in L(J ) is simply dimL(J ) = |J | = mσmσ ′ . In

particular, the subspaces Wj,j ′
σ,σ ′ are mutually orthogonal and isomorphic to

IndF �C2
F×F (Vσ ⊗ Vσ ′).

When σ = σ ′, the inertia group of Vσ ⊗ Vσ ′ coincides with F � C2 (indeed,
in this case, TG(σ ⊗ σ ′) ≡ TG(σ ⊗ σ) = G = C2). Therefore, the induc-
tion operation is trivial and we need only apply Corollary 3.3.12. We have
J = {(i, j) : 1 ≤ i, j ≤ mσ } and the orbits of C2 on J are {(i, j), (j, i)}, 1 ≤
i �= j ≤ mσ , and {(i, i)}, i = 1, . . . , mσ . This implies that L(J ) contains
1
2mσ (mσ + 1) times the trivial representation of C2 (this corresponds to the
case η = ι, the trivial representation) and 1

2mσ (mσ − 1) times the nontrivial
representation U (this corresponds to the case η = ε, the alternating represen-
tation). The subspace Wi,j

σ,+ corresponds to the choice η = ι; in other words,
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W
i,j
σ,+ is isomorphic to Vσ ⊗ Vσ as an (F � C2)-representation. Analogously,

for i �= j the subspace Wi,j
σ,− corresponds to the choice η = ε, that is, Wi,j

σ,− is
isomorphic to (Vσ ⊗ Vσ )⊗ U as an (F � C2)-representation.

The remaining part of the proof is now clear since the representations in (i)
and (ii) exhaust the whole of L(Y × Y ) (cf. the decomposition (3.47)). �

3.3.3 The case when L(Y) is multiplicity free

Suppose now that L(Y ) decomposes without multiplicity and that L(Y ) =⊕n
i=0 Vi is the corresponding decomposition into inequivalent irreducible F -

representations. We think of each Vi as a subspace of L(Y ); this means that if
v ∈ Vi then v is a function defined on Y and we denote by v(y) its value on
y ∈ Y . If σi is the representation of F on Vi then, for any f ∈ F , the unitary
operator σi(f ) : Vi → Vi is given by

[σi(f )v](y) = v(f−1y) for all v ∈ Vi and y ∈ Y. (3.49)

For u ∈ L(Z) and g ∈ G we denote by gu the g-translate of u, that is, gu(z) =
u(g−1z) for all z ∈ Z.

Denote by H the set of all maps h : X → {0, 1, . . . , n}. If h ∈ H and
vx ∈ Vh(x) for all x ∈ X, we say that

⊗
x∈X vx ∈ L

(
YX

)
is a vector of type h

in L
(
YX

)
. We denote by Vh the set of all vectors of type h in L

(
YX

)
, that is,

Vh =⊗
x∈X Vh(x). Clearly we have the decomposition

L
(
YX

)
=
⊕
h∈H

Vh

into irreducible FX-representations.
In the present context, Lemma 3.3.4 has the following slightly more general

form (note that L(YX × Z) ∼= L(YX)⊗ L(Z) and we use Notation 3.3.3).

Lemma 3.3.15 Let (f, g) ∈ F � G, h ∈ H ,
⊗
x∈X vx ∈ Vh and u ∈ L(Z).

Then

(f, g)

[(⊗
x∈X

vx

)
⊗ u

]
=
(⊗
x∈X

[
σh(g−1x)(f (x))vg−1x

])⊗ gu.
Proof For all (ϕ, z) ∈ YX × Z we have(
(f, g)

[(⊗
x∈X

vx

)
⊗ u

])
(ϕ, z)

=
[(⊗

x∈X
vx

)
⊗ u

](
(f, g)−1ϕ, g−1z

)
(by (3.34))
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=
(∏
x∈X

vx

[
f (gx)−1ϕ(gx)

])
(gu)(z) (by (3.49), replacing x by g−1x)

=
(∏
x∈X

[
σh(g−1x)(f (x))vg−1x

]
(ϕ(x))

)
(gu)(z)

=
((⊗

x∈X

[
σh(g−1x)(f (x))vg−1x

])
⊗ gu

)
(ϕ, z).

�

Fix h ∈ H (equivalently, fix σ ∈ � as in Section 3.3.1). Now I = TG(σ)

coincides with the G-stabilizer of h (G acts on H in the obvious way:
(gh)(x) = h(g−1x) for h ∈ H , g ∈ G and x ∈ X). Let η be an irreducible
I -representation contained in L(Z) and denote by U1 ⊕ U2 ⊕ · · · ⊕ Um an
orthogonal decomposition of the η-isotypic component in L(Z). We regard
each Uk as a subspace of L(Z). Finally, let S be a system of representatives for
the left cosets of I in G.

Theorem 3.3.16 Set

Wk =
⊕
s∈S

(Vsh ⊗ sUk) , k = 1, 2, . . . , m.

Then we have that eachWk is isomorphic to the (F �G)-irreducible represen-
tation IndF �GF �I (̃σ ⊗ η) and

W1 ⊕W2 ⊕ · · · ⊕Wm
is an orthogonal decomposition of the IndF �GF �I (̃σ ⊗ η)-isotypic component of

L
(
YX × Z).

Proof In the present setting the space J (see (3.35)) is trivial since mi = 1
for all i = 1, 2, . . . , n, so that J reduces to the constant function with value 1
onX. As a consequence, (3.39) (after identifyingL(J×Z)withL(Z)) becomes
T̂ (v ⊗ u) = v ⊗ T u. Then from Theorem 3.3.8 we deduce that

m⊕
k=1

(
Vh

⊗
Uk

)
is an orthogonal decomposition of the (̃σ ⊗ η)-isotypic component in
L
(
YX × Z). Now we apply (3.46). First note that {(1F , s) : s ∈ S} is a system

of representatives for the left cosets of F � I in F �G. If s ∈ S,
⊗
x∈X vx ∈ Vh

and u ∈ Uk , Lemma 3.3.15 yields
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(1F , s)

[(⊗
x∈X

vx

)
⊗ u

]
=
(⊗
x∈X

vs−1x

)
⊗ su.

In the setting of Theorem 1.2.27, this means that the irreducible (F � G)-
representation in L

(
YX × Z) corresponding to the irreducible (F � I )-

representation Vh
⊗
Uk is precisely

⊕
s∈S (Vsh ⊗ sUk). �

The following is a particular case of Corollary 3.3.11 but also a consequence
of Theorem 3.3.16.

Corollary 3.3.17 The multiplicity of IndF �GF �I (̃σ ⊗ η) in L
(
YX × Z) is equal

to the multiplicity of η in L(Z). �

The representation-theoretic results in [66] are all particular cases of this
example.

3.3.4 Exponentiation of finite Gelfand pairs

According to Corollary 3.3.17, when Z is trivial and L(Y ) is multiplicity free
then L

(
YX

)
is also multiplicity free. This may be translated into a result on

the exponentiation of (finite) Gelfand pairs. We will analyze this fact more
closely and with more elementary arguments; to this end, we will rearrange
the notation. Let (F,H) be a finite Gelfand pair, let G be a finite group acting
on a set X and consider the wreath product F � G = FX � G. Set Y =
F/H and denote by L(Y ) = ⊕nh=0Vh the corresponding decomposition into
spherical representations. Also, denote by [n]X the set consisting of all maps
i : X −→ {0, 1, 2, . . . , n} and set

Vi =
⊗
x∈X

Vi(x).

Then we have the decomposition

L
(
YX

)
=

⊕
i∈[n]X

Vi.

Denote by !0, !1, . . . , !r the orbits of G on [n]X (with respect to the obvious
action defined by setting gi(x) = i(g−1x), for all g ∈ G and x ∈ X). Set

Wj =
⊕
i∈!j

Vi.

Finally, denoting by φi the spherical function in Vi , i = 0, 1, 2, . . . , n, we set

�j = 1

|!j |
∑
i∈!j

⊗
x∈X

φi(x)

for j = 0, 1, 2, . . . , r .
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Theorem 3.3.18 With all the assumptions above, we have:

(i) (F �G)/(H �G) ∼= YX;
(ii) (F �G,H �G) is a Gelfand pair;

(iii) L
(
XY

) = ⊕r
j=0Wj is the decomposition of L

(
YX

)
into spherical rep-

resentations;
(iv) �j is the spherical function belonging toWj for all j = 0, 1, 2, . . . , r .

�

Particular cases of this construction have been studied recently (mostly from
the point of view of the theory of special functions) by Mizukawa [57] and
Akazawa and Mizukawa [1]. See also Mizukawa and Tanaka [58].

Exercise 3.3.19 Prove the claims in Theorem 3.3.18. Also prove that Wj is

isomorphic to IndF �GF �Ij Vi, where i ∈ !j and Ij is the G-stabilizer of i.

Exercise 3.3.20 Deduce the results of Section 5.4 (“The group theoretical
approach to the Hamming scheme”) in [12] as a particular case of Theorem
3.3.18.

3.4 Harmonic analysis on finite lamplighter spaces

Here we consider the case F ≡ Y = C2 in the setting of Section 3.3.3 (but
we use additive notation, thus identifying C2 with {0, 1}). However, rather than
applying the general theory previously developed, it is now worthwhile to use
the results in Section 2.5 on the representation theory of groups of the form
C2 �G to develop a more direct and elementary approach.

3.4.1 Finite lamplighter spaces

First we introduce the specific notation that we shall use in the present section.
Again, G is a finite group and X and Z are homogeneous G-spaces. We fix
z0 ∈ Z and denote by H = {g ∈ G : gz0 = z0} its stabilizer, so that as
G-spaces Z and G/H may be identified. We consider the wreath product or
(finite) lamplighter group C2 � G = CX2 � G; we will use the notation in
Sections 2.3.2 and 2.5. Now the action of the group C2 �G on CX2 ×Z may be
described by setting

(ω, g)(θ, z) = ((ω, g)θ, gz), where (ω, g)θ = ω + gθ
for all (ω, g) ∈ C2 � G, θ ∈ CX2 and z ∈ Z. The stabilizer of (0C2 , z0) is just
the subgroup H̃ = {(0C2 , h) : h ∈ H } ∼= H , so that CX2 ×Z = (C2 �G)/H̃ as
(C2 �G)-spaces.
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Definition 3.4.1 A (C2 � G)-homogeneous space of the form CX2 × Z, as
above, will be called a (finite) lamplighter space.

We shall use the isomorphism

L
(
CX2 × Z

) ∼= L (CX2 )⊗ L(Z)
(see (3.3)). Now Lemma 3.3.15 has a more specific form; we write it as a
formula for the action of an element of C2 �G on a tensor product of the kind

χθ ⊗ f (where χθ ∈ ĈX2 , see Section 2.5).

Proposition 3.4.2 Let (ω, g) ∈ C2 �G, θ ∈ CX2 and f ∈ L(Z). Then

(ω, g)(χθ ⊗ f ) = χgθ (ω) [χgθ ⊗ gf ].
Proof Given (σ, z) ∈ CX2 × Z, we have

[(ω, g)(χθ ⊗ f )](σ, z) = (χθ ⊗ f )[(ω, g)−1(σ, z)]
= (χθ ⊗ f )(g−1ω + g−1σ, g−1z)

= χθ (g−1ω + g−1σ) f (g−1z)

= χgθ (ω) [χgθ ⊗ gf ](σ, z).
�

In the notation of Theorem 2.5.1, for any θ ∈ � (a fixed system of repre-
sentatives of the G-orbits on CX2 ) we choose a system Sθ of representatives
for the left cosets of Gθ (the G-stabilizer of χθ ) in G (with 1G ∈ Sθ ), so that
G =∐

s∈Sθ sGθ .
Let θ ∈ � and let V be a Gθ -invariant and irreducible subspace of L(Z);

we then denote by η the corresponding representation in Ĝθ , but for f ∈ V
and g ∈ G we simply write gf for the g-translate of f . The following result is
an immediate consequence of Proposition 3.4.2.

Corollary 3.4.3 Let (ω, g) ∈ C2 � G, s ∈ Sθ and f ∈ sV . Suppose that
gs = th with h ∈ Gθ and t ∈ Sθ . Then

(ω, g)(χsθ ⊗ f ) = χtθ ⊗ f ′,
where f ′ = χtθ (ω) ths−1f ∈ tV .

Lemma 3.4.4 Let θ, θ ′ ∈ � and s ∈ Sθ (resp. s′ ∈ Sθ ′ ), and let V (resp. V ′)
be a Gθ -invariant (resp. Gθ ′ -invariant) subspace in L(Z). Then, for f ∈ V
and f ′ ∈ V ′, we have

〈χsθ ⊗ sf, χs′θ ′ ⊗ s′f ′〉L(CX2 ×Z) = δθ,θ ′δs,s′2|X|〈f, f ′〉L(Z).
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Proof We have sθ = s′θ ′ if and only if θ = θ ′ and s = s′. Therefore

〈χsθ ⊗ sf, χs′θ ′ ⊗ s′f ′〉L(CX2 ×Z) = 〈χsθ , χs′θ ′ 〉L(CX2 )〈sf, s′f ′〉L(Z)
= δθ,θ ′δs,s′2|X|〈f, f ′〉L(Z).

�

Lemma 3.4.5 We have the equivalence

IndC2�G
C2�Gθ (χ̃θ ⊗ η) ∼

⊕
s∈Sθ

{χsθ ⊗ sf : f ∈ V }. (3.50)

Proof From Corollary 3.4.3 (or Proposition 3.4.2) we deduce that, for
(ω, h) ∈ C2 �Gθ and f ∈ V ,

(ω, h)(χθ ⊗ f ) = χθ ⊗ [χθ (ω)hf ],
that is, the subspace {χθ ⊗ f : f ∈ V } of L

(
CX2 × Z

)
is (C2 � Gθ )-invariant

and the corresponding (C2 �Gθ )-representation is equivalent to χ̃θ ⊗ η: recall
(2.46). Analogously, for s ∈ Sθ we have

(0C2 , s)(χθ ⊗ f ) = χsθ ⊗ sf.
This implies that⊕

s∈Sθ
{χsθ ⊗ sf : f ∈ V } ≡

⊕
s∈Sθ

(0C2 , s){χθ ⊗ f : f ∈ V }. (3.51)

Moreover, the space (3.51) is (C2 � G)-invariant (apply Corollary 3.4.3) and
from Lemma 3.4.4 it follows that it is an orthogonal direct sum. In this way,
we can apply Proposition 1.1.9 (the set {(0C2 , s) : s ∈ Sθ } is a system of
representatives for the left cosets of C2 �Gθ in C2 �G) and (3.50) is proved. �

For each θ ∈ �, let

L(Z) =
n(θ)⊕
i=0

mθ,iVθ,i (3.52)

be the isotypic decomposition of L(Z) into irreducible Gθ -representations.
This means that, for different values of i, the corresponding representations
are inequivalent; mθ,i is the multiplicity of Vθ,i in L(Z). Moreover, let

mθ,iVθ,i = V 1
θ,i ⊕ V 2

θ,i ⊕ · · · ⊕ Vmθ,iθ,i (3.53)

be an explicit orthogonal decomposition of the isotypic component mθ,iVθ,i ,
(so that each V jθ,i is equivalent to Vθ,i). With each V jθ,i we associate the space

W
j
θ,i =

⊕
s∈Sθ

(
χsθ ⊗ sf : f ∈ V jθ,i

)
(3.54)
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(see Lemma 3.4.5) and we set

mθ,iWθ,i = W 1
θ,i ⊕W 2

θ,i ⊕ · · ·Wmθ,i
θ,i . (3.55)

Theorem 3.4.6 The decomposition of L
(
CX2 × Z

)
into irreducible (C2 �G)-

representations is given by

L
(
CX2 × Z

)
=
⊕
θ∈�

n(θ)⊕
i=0

mθ,iWθ,i , (3.56)

where each mθ,iWθ,i is an isotypic component with (3.55) an explicit orthog-
onal decomposition into irreducible (equivalent) representations.

Proof From Theorem 2.5.1 and Lemma 3.4.5 it follows that the representa-
tionsW 1

θ,i ,W
2
θ,i , . . . ,W

mθ,i
θ,i are irreducible and equivalent. From Lemma 3.4.4

it follows that the right-hand side of (3.56) (resp. of (3.55)) is an orthogonal
direct sum. We end the proof by showing, by considering dimensions, that the
direct sum on the right-hand side of (3.56) fills the whole of L

(
CX2 × Z

)
. This

is easy:

∑
θ∈�

n(θ)∑
i=0

mθ,i dimWθ,i =
∑
θ∈�

n(θ)∑
i=0

|Sθ |mθ,i dim Vθ,i

=
∑
θ∈�

∣∣∣∣ GGθ
∣∣∣∣ dim L(Z)

= |CX2 | |Z|
= dim L(CX2 × Z).

�

We can now state a particular case of Corollary 3.3.17.

Corollary 3.4.7 We have that the multiplicity of the irreducible represen-
tation IndC2�G

C2�Gθ (χ̃θ ⊗ η) in L
(
CX2 × Z

)
equals the multiplicity of η in the

decomposition of L(Z) under the action of Gθ . �

3.4.2 Spectral analysis of an invariant operator

We now examine the spectral analysis of a linear self-adjoint invariant operator
M on a finite lamplighter space. By virtue of Proposition 1.2.23, there exist
decompositions of the form (3.55) such that eachWj

θ,i is an eigenspace of M.
The next theorem reduces the spectral analysis of M to the spectral analysis
of a collection {Mθ : θ ∈ �} of Gθ -invariant operators on L(Z).
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Theorem 3.4.8 Let M : L (CX2 × Z) → L
(
CX2 × Z

)
be a linear, self-

adjoint, (C2 �G)-invariant operator. Then the following hold:

(i) For each θ ∈ �, there exists a Gθ -invariant, linear, self-adjoint operator
Mθ : L(Z)→ L(Z) such that

M(χθ ⊗ f ) = χθ ⊗Mθf (3.57)

for all f ∈ L(Z).
(ii) If V jθ,i in (3.53) is an eigenspace of Mθ with eigenvalue λjθ,i then the cor-

responding space Wj
θ,i in (3.56) is an eigenspace of M, with the same

eigenvalue λjθ,i .

Proof (i) From Proposition 3.4.2 and the (C2 �G)-invariance of M, it follows
that

(ω, g)M(χθ ⊗ f ) = χgθ (ω)M(χgθ ⊗ gf ) (3.58)

for all (ω, g) ∈ C2 �G. In particular, when g = 1G, (3.58) gives

(ω, 1G)M(χθ ⊗ f ) = χθ (ω)M(χθ ⊗ f ).
This implies that M(χθ ⊗ f ) belongs to {χθ ⊗ f ′ : f ′ ∈ L(Z)}, the χθ -
isotypic component in the decomposition of L

(
CX2 × Z

)
under the action of

CX2 . Therefore, for any f ∈ L(Z) there exists f ′ ∈ L(Z) such that M(χθ ⊗
f ) = χθ ⊗ f ′. Setting Mθf = f ′, we define a linear self-adjoint operator
Mθ : L(Z)→ L(Z) satisfying (3.57).

Moreover, we have

χgθ ⊗ gMθf = (0C2 , g)(χθ ⊗Mθf ) (by Proposition 3.4.2)

= (0C2 , g)M(χθ ⊗ f ) (by (3.57))

=M(χgθ ⊗ gf ) (by (3.58))

= χgθ ⊗Mgθ(gf ) (again by (3.57)).

Therefore

gMθf = Mgθ(gf ) (3.59)

for all g ∈ G and f ∈ L(Z). In particular, when g ∈ Gθ equation (3.59)
becomes gMθf = Mθ(gf ), showing the Gθ -invariance ofMθ .

(ii) Now let V jθ,i (see (3.53)) be an eigenspace of Mθ , with corresponding

eigenvalue λjθ,i , that is, Mθf = λ
j
θ,if for all f ∈ V jθ,i . Then for all s ∈ Sθ

we have
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M(χsθ ⊗ sf ) = χsθ ⊗Msθ (sf ) (by (3.57))

= χsθ ⊗ sMθf (by (3.59))

= λjθ,i(χsθ ⊗ sf ).
This means that Wj

θ,i (cf. (3.56)) is an eigenspace of M, with the same eigen-

value λjθ,i . �

In other words, the action of the group C2 � G collects together all the M-
eigenspaces {χsθ ⊗ sf : f ∈ V jθ,i} into an irreducible representation.

3.4.3 Spectral analysis of lamplighter graphs

The theory developed in Section 3.4.2 has a graph-theoretic analogue that uses
only invariance under the action of CX2 . Let (X,E) be a finite, simple, undi-
rected graph without loops (X is the vertex set and E, a collection of 2-subsets
of X, is the edge set). We write x ∼ y to denote that two distinct vertices
x, y ∈ X are connected (or adjacent), that is, {x, y} ∈ E.

Definition 3.4.9 The lamplighter graph associated with (X,E) is the finite
graph (X′, E′), where

X′ = {0, 1}X ×X =
{
(ω, x) : ω ∈ {0, 1}X, x ∈ X

}
,

and two vertices (ω, x), (θ, y) ∈ X′ are connected if x ∼ y (in X) and ω(z) =
θ(z) for all z �= x, y.

The associated adjacency operator AX′ : L(X′) → L(X′) is the linear
operator defined by setting

(AXF)(ω, x) =
∑

(θ,y)∼(ω,x)
F(θ, y)

for all F ∈ L(X′) and (ω, x) ∈ X′. Since L(X′) ≡ L ({0, 1}X) ⊗ L(X), it is
useful to write down the action of AX′ on an elementary tensor:

[AX(F ⊗ f )](ω, x)
=
∑
y∼x
[F(ω)+ F(ω + δx)+ F(ω + δy)+ F(ω + δx + δy)]f (y) (3.60)

for all F ∈ L ({0, 1}X), f ∈ L(X) and (ω, x) ∈ {0, 1}X ×X.
For θ ∈ {0, 1}X, we set Xθ = {x ∈ X : θ(x) = 0} and Eθ = {{x, y} ∈

E : x, y ∈ Xθ }. In this way, (Xθ ,Eθ ) is a subgraph of X. We define a linear
operator Aθ : L(X)→ L(X) by setting
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(Aθf )(x) =

⎧⎪⎨⎪⎩
∑
y∈Xθ :
y∼x

f (y) if θ(x) = 0

0 if θ(x) = 1

for all f ∈ L(X) and x ∈ X. In other words, Aθ is the adjacency operator of
(Xθ ,Eθ ) trivially extended to the whole of L(X).

The following provides a graph-theoretic analogue of (3.57).

Lemma 3.4.10 For all f ∈ L(X) and θ ∈ {0, 1}X we have

AX′(χθ ⊗ f ) = χθ ⊗ 4Aθf.

Proof Applying (3.60) we get

[AX′(χθ ⊗ f )] (x, ω)
=
∑
y∼x
[χθ (ω)+ χθ (ω + δx)+ χθ (ω + δy)+ χθ (ω + δx + δy)]f (y).

(3.61)

Since

χθ (ω)+ χθ (ω + δx)+ χθ (ω + δy)+ χθ (ω + δx + δy)
= χθ (ω)[1+ χθ (δx)+ χθ (δy)+ χθ (δx + δy)]
= χθ (ω)[1+ (−1)θ(x) + (−1)θ(y) + (−1)θ(x)+θ(y)]

=
{

4χθ (ω) if θ(x) = θ(y) = 0

0 otherwise,

it follows that (3.61) gives

[AX′(χθ ⊗ f )] (x, ω) = 4χθ (ω)
∑
y∈Xθ :
y∼x

f (y) ≡ χθ (ω)⊗ 4Aθf

if θ(x) = 0 and

[AX(χθ ⊗ f )](x, ω) = 0 ≡ χθ (ω)⊗ 4Aθf

otherwise. �

In the following, we will show that Lemma 3.4.10 enables us to express
the spectrum of X′ in terms of the spectra of the subgraphs of (Xθ ,Eθ ),
θ ∈ {0, 1}X. Setting Vθ = {χθ ⊗ f : f ∈ L(X)}, we have the orthogonal
decomposition

L(X′) =
⊕

θ∈{0,1}X
Vθ . (3.62)

This is the CX2 -isotypic decomposition of L(X′).
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Proposition 3.4.11 Define the linear operator Q̃θ : L(X′) → L(X) by
setting

(Q̃θF )(x) = 1

2|X|
∑

ω∈{0,1}X
F (ω, x)χθ (ω)

for all F ∈ L(X′). Then we have the orthogonal decomposition

F =
∑

θ∈{0,1}X
χθ ⊗ Q̃θF. (3.63)

In particular, the orthogonal projection Qθ : L(X′)→ Vθ satisfies

QθF = χθ ⊗ Q̃θF.
Proof First we recall the orthogonality relations in {0, 1}X. Forω, ξ ∈ {0, 1}X
we have

1

2|X|
∑

θ∈{0,1}X
χθ (ω)χθ (ξ) ≡ 1

2|X|
∑

θ∈{0,1}X
χω(θ)χξ (θ) =

{
1 if ω = ξ
0 if ω �= ξ.

Indeed, if ω = ξ then χω(θ)χξ (θ) = 1 for all ω ∈ {0, 1}X. Moreover, if ω �= ξ
then there exists η ∈ {0, 1} such that χω(η)χξ (η) = −1, and thus

−
∑

θ∈{0,1}X
χω(θ)χξ (θ) = χω(η)χξ (η)

∑
θ∈{0,1}X

χω(θ)χξ (θ)

=
∑

θ∈{0,1}X
χω(θ + η)χξ (θ + η)

=
∑

θ∈{0,1}X
χω(θ)χξ (θ),

which forces
∑
θ∈{0,1}X χω(θ)χξ (θ) = 0. Therefore, for (ω, x) ∈ {0, 1}X ×X

we have⎛⎝ ∑
θ∈{0,1}X

χθ ⊗ Q̃θF
⎞⎠ (ω, x) = ∑

θ∈{0,1}X
χθ (ω)

(
Q̃θF

)
(x)

=
∑

ξ∈{0,1}X
F (ξ, x)

1

2|X|
∑

θ∈{0,1}X
χθ (ω)χθ (ξ)

= F(ω, x).
This proves (3.63), and it is easy to check that it is an orthogonal
decomposition. �
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Now let

Aθ = λθ,1Pθ,1 + λθ,2Pθ,2 + · · · + λθ,h(θ)Pθ,h(θ) (3.64)

denote the spectral decomposition of Aθ . That is, λθ,1, λθ,2, . . . , λθ,h(θ) are
the distinct nonzero eigenvalues and Pθ,j is the orthogonal projection of L(X)
onto the eigenspace of λθ,j . If Xθ � X then Aθ admits L(X \ Xθ) as an
eigenspace with eigenvalue equal to zero; this is omitted in (3.64).

Theorem 3.4.12 The operator AX′ has the following spectral decomposition:

AX′ =
∑

θ∈{0,1}X

h(θ)∑
j=1

4λθ,j
(
χθ ⊗ Pθ,j Q̃θ

)
,

where

(χθ ⊗ Pθ,j Q̃θ )F = χθ ⊗ Pθ,j Q̃θF
for all F ∈ L(X′). The zero eigenvalues (in particular those corresponding to
the space L(X \ Xθ)) are omitted, and the eigenvalues λθ,j , θ ∈ {0, 1}X, j =
1, 2, . . . , h(θ), are not necessarily distinct.

Proof The proof follows immediately from (3.63), Lemma 3.4.10 and (3.64).
Indeed, we have

AX′F = AX′

⎛⎝ ∑
θ∈{0,1}X

χθ ⊗ Q̃θF
⎞⎠

=
∑

θ∈{0,1}X
χθ ⊗ 4AθQ̃θF

=
∑

θ∈{0,1}X

h(θ)∑
j=1

4λθ,j
(
χθ ⊗ Pθ,j Q̃θF

)
for all F ∈ L(X′). �

Corollary 3.4.13 If Vθ,j is the eigenspace of Aθ corresponding to the eigen-
value λθ,j , j = 0, 1, . . . , h(θ) (with Vθ,0 the eigenspace of λθ,0 = 0), then
Wθ,j = {χθ ⊗ f : f ∈ Vθ,j } is the eigenspace of Aθ corresponding to 4λθ,j .

3.4.4 The lamplighter on the complete graph

In this subsection we examine the case G = Sn, X ≡ Z = {1, 2, . . . , n},
with the natural action. We use the results in Section 3.4.1 for the
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representation-theoretic aspects and those in Section 3.4.3 for the spectral anal-
ysis of the related graph. Using the standard notation in the representation the-
ory of the symmetric group (see Section 3.2.1), if A is a finite set of cardinality
|A| = n then we denote by Sn(A) the set of all constant complex-valued func-
tions defined on A and by Sn−1,1(A) the set of all complex-valued functions
f defined on A such that

∑
a∈A f (a) = 0. We recall the following elemen-

tary fact:

L(X) = Sn(X)⊕ Sn−1,1(X) (3.65)

is the decomposition of L(X) into irreducible Sn-representations (cf. Exer-
cise 1.2.34). For a subgroup of Sn of the form Sk × Sn−k , 0 ≤ k ≤ n, we
denote by Bk the k-subset of X fixed by Sk × Sn−k . In particular, the orbits of
Sk × Sn−k on X are Bk and X \ Bk .

Theorem 3.4.14 Set

W 1
k;0 = 〈χθ ⊗ f : |Xθ | = k, f |Xθ ∈ S(k)(Xθ ) and f |X\Xθ ≡ 0〉,

W 0
k;0 = 〈χθ ⊗ f : |Xθ | = k, f |Xθ ≡ 0 and f |X\Xθ ∈ S(n−k)(X \Xθ)〉,

Wk;1 = 〈χθ ⊗ f : |Xθ | = k, f |Xθ ∈ Sk−1,1(Xθ ) and f |X\Xθ ≡ 0〉,
Wk;2 = 〈χθ ⊗ f : |Xθ | = k, f |Xθ ≡ 0 and f |X\Xθ ∈ Sn−k−1,1(X \Xθ)〉.

Then, a decomposition of the permutation representation of C2 �Sn on CX2 ×X
is given by

L(CX2 ×X)

=
(
W 0

0;0⊕W0;2
)
⊕
[
n−1⊕
k=1

(
W 0
k;0 ⊕W 1

k;0 ⊕Wk;1 ⊕Wk;2
)]
⊕
(
W 1
n;0 ⊕Wn;1

)
.

Proof By using (3.65), we can decompose the space L(X) into irreducible
(Sk × Sn−k)-representations for 1 ≤ k ≤ n− 1:

L(X) = L(Bk)⊕ L(X \ Bk)
= Sk(Bk)⊕ Sk−1,1(Bk)⊕ Sn−k(X \ Bk)⊕ Sn−k−1,1(X \ Bk).

An application of Theorem 3.4.6 ends the proof. �

In the notation of Section 2.5.2 the representations of C2 � Sn on W 1
k;0 and

W 1
k;0 are both isomorphic to ρ[(k,0);(n−k,0)], the representation on Wk;1 is
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isomorphic to ρ[(k−1,1);(n−k,0)] and the representation on Wk;2 is isomorphic
to ρ[(k,0);(n−k−1,1)]. In particular, the representationsWk;1 andWk;2 have mul-
tiplicity 1, while the representationsWk;0 have multiplicity 2.

Now let (X,E) be the complete graph on n vertices and identify X with
{1, 2, . . . , n}; thus E = X×X \ {(x, x) : x ∈ X}. The eigenspaces of the adja-
cency operator on the complete graph on n vertices are Sn(X) and Sn−1,1(X),
with corresponding eigenvalues n − 1 and −1, respectively. Moreover, for
θ ∈ {0, 1}X the graph (Xθ ,Eθ ) is the complete graph on |Xθ | vertices.

For θ ∈ {0, 1}X, we consider the linear projection Pθ : L(X) → L(X)

defined by setting

Pθf (x) =
⎧⎨⎩

1
|Xθ |

∑
y∈Xθ

f (y) if x ∈ Xθ
0 if x �∈ Xθ

for all f ∈ L(X). Then, for |Xθ | > 1, the spectral decomposition of the
operator Aθ is given by

Aθ = (|Xθ | − 1)Pθ − (Rθ − Pθ),

where Rθ : L(X) → L(Xθ) is the orthogonal projection from L(X) onto
L(Xθ). In the notation of Theorem 3.4.12 we have h(θ) = 2, λθ,1 = (|Xθ |−1),
λθ,2 = −1, Pθ,1 = Pθ and Pθ,2 = Rθ−Pθ . Clearly, if |Xθ | = 1 thenXθ = {x}
for some x ∈ X and Aθ ≡ 0. Moreover, in the notation of Theorem 3.4.14 we
have the following:

W 1
k;0 =

⊕
θ∈CX2|Xθ |=k

Ran(Pθ )

is the eigenspace with eigenvalue 4(k − 1) for k = 1, 2, . . . , n;

Wk;1 =
⊕
θ∈CX2 :|Xθ |=k

Ran(Rθ − Pθ)

for k = 1, 2, . . . , n, and

n⊕
k=1

Wk;1 =
n⊕
k=1

⎡⎢⎢⎢⎣ ⊕
θ∈CX2 :|Xθ |=k

Ran(Rθ − Pθ)

⎤⎥⎥⎥⎦
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is the eigenspace with eigenvalue −4; finally,(
n−1⊕
k=0

W 0
k;0

)⊕(
n−1⊕
k=1

Wk;2

)
is the eigenspace with eigenvalue 0. Note that the operator AX′ is not in the
center of the commutant algebra (see Propositions 1.2.23 and 1.2.25). Indeed,
W 0
k;0 and W 1

k;0 are equivalent but correspond to different eigenvalues, namely
0 and 4(k − 1) respectively.
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character of, 10
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left-regular, 48
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trivial, 5
unitary, 2

restriction representation, 7
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isomorphic trees, 128
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Specht module, 100
spherical

Fourier transform, 27
character, 26
function, 26, 123
matrix coefficients, 26, 107
representation, 26

spherically homogeneous rooted tree, 69
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support of a permutation, 82
symmetric

Gelfand pair, 39
group, 5
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system
of blocks, 78
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tree
root of, 63
rooted, 63

automorphism group of, 64
depth of, 69
labeling of an automorphism of, 70
leaf of, 63, 69
level of, 69
portrait of an automorphism of, 70
spherically homogeneous, 69

rooted isomorphic, 128
vertex of

father of, 69
predecessor of, 69
son of, 69
successor of, 69

trivial representation, 5
type of an element in F � Sn, 89

ultrametric
inequality, 71
finite ultrametic space, 71, 126, 129

unitary representation, 2

weak composition, 114
weakly symmetric Gelfand pair, 39
wreath product, 60, 61

associativity of, 67
base group of, 61

diagonal subgroup of, 61
distributivity of, 68
iterated, 68
regular, 76
standard, 76

Young permutation module, 100
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