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Exploration-exploitation tradeoffs dictate the optimal distributions of phenotypes for populations
subject to fitness fluctuations
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We study a minimal model for the growth of a phenotypically heterogeneous population of cells subject
to a fluctuating environment in which they can replicate (by exploiting available resources) and modify their
phenotype within a given landscape (thereby exploring novel configurations). The model displays an exploration-
exploitation trade-off whose specifics depend on the statistics of the environment. Most notably, the phenotypic
distribution corresponding to maximum population fitness (i.e., growth rate) requires a nonzero exploration rate
when the magnitude of environmental fluctuations changes randomly over time, while a purely exploitative
strategy turns out to be optimal in two-state environments, independently of the statistics of switching times. We
obtain analytical insight into the limiting cases of very fast and very slow exploration rates by directly linking
population growth to the features of the environment.
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I. INTRODUCTION

The exploration-exploitation trade-off scenario constitutes
a paradigm for the optimal balance between the risky search
for new resources and the safe exploitation of available ones
that occurs in a variety of systems [1]. As a generic example,
one may consider a population occupying a patch of space
in a land in which the availability of an essential resource
fluctuates in time and across patches. By remaining on a
certain patch for a sufficiently long time the population will
be able to exploit the resource available in that patch to the
fullest. That benefit, however, has to be weighed against the
cost of the opportunities that are missed by not searching for
a better patch. The central question concerns which balance
of exploitation (stay) and exploration (go) will provide the
population with the highest fitness (e.g., the fastest growth
rate) in the long run. The optimal strategy is obviously inter-
locked with details such as the statistics of resources and can
be challenging to analyze at a quantitative level [2–4]. Still,
fitness maximization is very often found to require a nonzero
exploration rate.

An especially significant effort to understand this trade-
off is ongoing for biological systems, as seen, e.g., in the
recent interest about the “ecology of cancer growth” [5,6]
(the strikingly diverse distributions of cell strains observed
throughout different types of cancers) and its relationship
to the timing of drug administration [6]. Microbial systems
have also been a natural testing ground for the exploration-
exploitation scenario for many years. It is empirically known
that, in fluctuating environments, microbes tend to display a
high degree of phenotypic heterogeneity driven by stochas-
ticity in the regulation of gene expression and metabolism
[7–12]. The ability to explore the space of allowed pheno-
types ultimately provides an effective route to hedge against

environmental noise [13,14], favoring, e.g., the persistence of
a subpopulation of resistant but slow-growing bacteria within
a population subject to high doses of antibiotics [15,16].
Starting with Ref. [17], several mathematical models have
shown that switching between different phenotypes at the
individual cell level can be advantageous in rapidly changing
conditions, depending essentially on (1) the statistics of envi-
ronmental fluctuations and (2) the specific coupling between
the environment and the allowed phenotypes [18–28]. Such
models capture the physical and mathematical complexity of
these systems starting from minimal assumptions about the
environment and/or the space of feasible phenotypes. In more
structured cases, the spectrum of viable behaviors appears to
be even richer [29].

Here, inspired by recent work on single-cell physiology
[30] and by the growth-entropy balance that appears to under-
lie part of the empirical observations [31], we characterize the
exploration-exploitation trade-off in a model for the growth
of a phenotypically heterogeneous population in a fluctuating
environment. In short, we assume that each phenotype is
represented by an intrinsic or constitutive growth rate and that
the landscape of phenotypes accessible to cells is described by
a given probability distribution. Over time, cells modify their
phenotype due, e.g., to stochastic fluctuations in intracellular
composition or regulatory processes that effectively cause
cells to perform random walks in the phenotypic landscape
(the exploration part). In turn, the cellular replication rate is
determined by the coupling to an externally varying envi-
ronment. While fast phenotypes are in principle favored (the
exploitation part), the environment is subject to fluctuations
that can punish them (as, e.g., in Ref. [15]). In such conditions,
the balance between exploration of the phenotypic space and
exploitation of fast phenotypes ultimately controls both the
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overall fitness of the population and its structure (i.e., how
individuals distribute over accessible phenotypes).

We show that the optimal evolutionary strategy (yielding
maximum fitness for the population) can indeed require a
nonzero exploration rate as suggested by the general explore-
exploit paradigm. The gain due to exploration is particularly
marked in the most unpredictable environments. On the other
hand, in presence of more regular scenarios (e.g., periodic
changes), an optimal population will adopt simpler strategies,
such as maintaining two phenotypically distinct populations.

Our analysis will focus on universal observables, relying
on numerics for the general case. The limiting cases of very
fast and very slow search rates will instead be characterized
by approximate analytical arguments.

II. MODEL DEFINITIONS

We consider a population of cells evolving in time. The
phenotype of each cell is assumed to be fully characterized by
a single variable λ, which we call the “constitutive replication
rate” (CRR), taking on values in [0, λmax]. For sakes of
simplicity, different values of λ will effectively correspond
to different cellular phenotypes. To account for the fact that
some phenotypes might be easier to attain than others, the
space of allowed phenotypes is assumed to be described by
a probability density q(λ) such that q(λ) dλ represents the
fraction of phenotypes with CRR between λ and λ + dλ. The
density of cells having CRR in [λ, λ + dλ] at time t is instead
denoted by n(λ, t ). In turn, N (t ) = ∫

n(λ, t ) dλ represents the
total number of cells in the population at time t . Following,
e.g., Ref. [31], we assume that n changes due to (a) replication
events and (b) diffusion in the phenotypic space, whereby
cells change their CRR from λ to λ′. If the rate of the latter
process is given by W (λ → λ′), n(λ, t ) evolves according to

dn(λ, t )

dt
= f (λ, t ) n(λ, t ) +

∫
[W (λ′ → λ)n(λ′, t )

−W (λ → λ′)n(λ, t )] dλ′, (1)

where f denotes the instantaneous replication rate (IRR)
of cells with CRR λ. To couple the system to an external
environment, we assume that the IRR depends both on the
CRR λ and on the state of an exogenously varying medium,
which, for sake of simplicity, will be described by the single
time-dependent variable x. To focus on a relevant case, we
consider a fluctuating environment in which x describes,
in rough terms, the threshold fitness for replication under
randomly occurring shocks. This corresponds to the choice

f (λ, t ) =
{
λ if λ � x(t )
0 otherwise , (2)

according to which cells with CRR smaller than x(t ) can
replicate at time t , while replication is inhibited for the others.

To study the impact of randomness in the environment, we
look at various scenarios, ranging from the most predictable
(switching periodically between two fixed states) to the most
random (switching after a random time and to a random
value). More specifically, the threshold x will fluctuate in time
by switching between the value x = λmax, in which case all
cells in the population can replicate, and a value x = λ� <

λmax, in which case replication can take place only for cells
with λ � λ�. We consider two choices for λ�. In the first
case, λ� is a constant kept fixed throughout the dynamics,
so that x takes the values λ� and λmax alternately, leading
to a two-state environment (“const-x” case). In the second
case, λ� is sampled independently at every switch from a
uniform distribution on the interval [xmin, λmax], leading to
an environment with a continuum of states (“rand-x” case).
For simplicity, we set λ� = xmin in the const-x environment.
Switches from the nonselective environment where all cells
replicate to the selective one where only some do (ns → s)
and vice versa (s → ns) are assumed to occur either periodi-
cally, i.e., after fixed times ωns and ωs respectively (“const-t”
case) or at exponentially distributed random times with means
equal to ωns or ωs respectively (“rand-t” case). (We, however,
expect all our results to be qualitatively robust to changes in
the distributions from which times and thresholds are drawn.)

Ultimately, for the process x(t ) we shall consider all pos-
sible mixtures of the above recipes for the threshold x and
the switching times (i.e., const-t , const-x; rand-t , const-x,
etc.). In what follows, we begin by analyzing the simpler case
of symmetric environment with ωns = ωs = ω, representative
examples of which are sketched in Fig. 1. The asymmetric
case with ωns �= ωs will be dealt with in Sec. III E.

Introducing the population density

p(λ, t ) = n(λ, t )

N (t )
, (3)

we recast Eq. (1) as

dp(λ, t )

dt
= [

f (λ, t ) − Eλ�λmaxf (λ, t )
]
p(λ, t )

+
∫

[W (λ′→λ)p(λ′, t )−W (λ→λ′)p(λ, t )] dλ′

(4)

with

Eλ�λmaxf (λ, t ) =
∫ λmax

0
f (λ, t )p(λ, t ) dλ. (5)

Furthermore, we assume that transition rates satisfy a detailed-
balance condition of the form

W (λ → λ′)q(λ) = W (λ′ → λ)q(λ′), (6)

with q(λ) the density of phenotypes, and introduce the mean
waiting time τ characterizing transitions via∫

W (λ → λ′) dλ′ = 1

τ
. (7)

We further assume that only transitions from phenotype λ to
phenotypes λ ± δλ are allowed, with equal probability and
small δλ (“diffusive transition kernel”). This choice provides
the most natural route to model the effects induced at phe-
notypic level by small random fluctuations in intracellular
composition, as they are unlikely to cause major gains or
losses in terms of CRR. One easily shows (see Appendix and
Ref. [31]) that Eq. (4) in this case can be approximated with
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(a)

(b)

(c)

(d)

FIG. 1. Representative behavior of the threshold x as a function of time [see Eq. (2)] in the four environments we consider: (a) a periodic
two-state environment where x switches (in this case) between the values λmax and xmin = λmax/2; (b) a periodically switching environment
where x takes on random values drawn uniformly from [xmin, λmax]; (c) a two-state environment where switches occur at exponentially
distributed random times; and (d) an environment where x behaves as in panel (b) but in which switches occur at exponentially distributed
random times. In this example, the characteristic switching times ωns and ωs are taken to be equal and fixed to 40 (a.u.).

the nonlinear Fokker-Planck equation

dp(λ, t )

dt
= [

f (λ, t ) − Eλ�λmaxf (λ, t )
]
p(λ, t )

+D

(
∂2p(λ, t )

∂2λ
− ∂

∂λ

{
p(λ, t )

∂

∂λ
[ln q(λ)]

})
,

(8)

where D = (δλ)2

2τ
is the diffusion coefficient in the phenotypic

space.
We finally have to specify a form for the phenotypic

landscape q(λ). To focus on a realistic case, we set

q(λ) = a + 1

λmax

(
1 − λ

λmax

)a

, (9)

where the exponent a � 0 modulates the steepness of q(λ).
In short, the larger a, the more heterogeneous the landscape,
with slow phenotypes being increasingly more frequent than
fast ones as a increases. The above choice is based on recent
studies showing that functions like (9) describe the CRR land-
scape underlying genome-scale models of bacterial metabolic
networks, with values of a extracted from genome-scale mod-
els of E. coli lying between 200 and 300 depending on the
specifics of the environment [31,32]. To focus on tractable
extremes, we shall consider explicitly the cases a = 0
[uniform q(λ)] and a = 20 [strongly heterogeneous q(λ)].

The setup just described generalizes that considered in
Refs. [31,33] to the case in which the instantaneous replication
rate f depends on the coupling of cells to a fluctuating
environment. The structure of a population governed by (8)
emerges from the balance between the term that rewards fast-
growing states (which are, however, sensitive to environmen-
tal shocks) and the diffusion term favoring states with larger
entropy in the phenotypic space (but slower replication rates).

In the following, we characterize the above setting from the
viewpoints of

(1) How the interplay between replication and diffusion
(i.e., the trade-off between exploration and exploitation) af-
fects the growth rate of the population as a whole and

(2) The emergent asymptotic structure of the population,
i.e., how cells distribute over the one-dimensional phenotypic
space [0, λmax] at long times.

It is important to note that, in symmetric environments,
two different timescales rule the time evolution of p(λ, t ):
the mean switching time between different environments (ω)
and the mean time to transition between different phenotypes
(τ ). The latter is inversely proportional to the diffusion con-
stant D. The system’s behavior is ultimately modulated by
the ratio ω/τ . To explore the full range of this ratio, it is
convenient to fix one timescale, e.g., ω, and use the other
(i.e., D) as a control parameter. The limiting cases ω � τ (in
which exploration occurs on much longer timescales than ex-
ploitation) and ω � τ (in which exploration occurs on much
shorter timescales than exploitation) correspond to D → 0
and D � 1, and we shall refer to these as the “exploitation”
and “exploration” limits, respectively.

III. RESULTS

A. Dynamical patterns of population structure
under symmetric switching

The nonlinear Fokker-Planck equation (8) can be solved
numerically for any choice of the environment, of the dif-
fusion coefficient and of the prior phenotypic density q(λ).
After a short transient, p(λ, t ) appears to settle in qualitative
robust, environment-dependent patterns, a sample of which is
shown in Fig. 2. Different types of distributions emerge across
the various environments, including bimodal distributions in
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(a) (b)

(c) (d)

FIG. 2. Color maps showing representative probability densities p(λ, t ) obtained by solving Eq. (8) numerically in the different kinds
of environment described in Fig. 1. Panels to the right of each map depict the density profile at different time points within the zoomed-in
region, at time increasing from top to bottom. Results are shown for (a) const-t and const-x environment, (b) const-t and rand-x environment,
(c) rand-t and const-x environment, and (d) rand-t and rand-x environment. Parameter values: a = 20, x = 0.3λmax, D = 10−3.

which most of the population occupies the two peaks alter-
nately [Fig. 2(a)] or in which one peak always dominates over
the other [Fig. 2(c)], unimodal distributions with fluctuating
positions [Fig. 2(b)], and unimodal distributions in which
peaks drift in a specific direction [Fig. 2(d)]. While all of these
can occur in every type of environment, both their frequency
of occurrence and the relative intensities of the peaks appear
to be strongly environment-dependent.

Such patterns provide hints about the way in which the
population copes with environmental fluctuations. An im-
portant feature observed from data is that, independently of
whether switches occur periodically or randomly, adaptation
to two-state environments (const-x) is achieved more effi-
ciently by structuring the population in a bimodal form, while
complex environments (rand-x) favor unimodal distributions.
We shall see in the following that such a scenario is indeed
correct even asymptotically, although it can be modulated by
the strength of diffusion.

B. Population growth rate and statistics at long times
under symmetric switching

As we are mostly interested in understanding how the
system behaves in the long-time limit, we focus on the long-
term population structure as well as on the growth rate

� ≡ lim
t→∞

1

t
ln

N (t )

N (0)
(10)

= lim
t→∞

1

t

∫ t

0

[
Eλ�λmaxf (λ, t ′)

]
dt ′. (11)

[The second equality follows directly from Eq. (1) and from
the fact that N (t ) = ∫

n(λ, t ) dλ.] � will be used as a proxy
for the long-term evolutionary success of the population. Fig-
ure 3 shows, for all environments, the stationary probability
distributions p(λ) obtained by averaging over time after �

has reached its stationary value, for representative values of
the parameters (in particular for xmin = 0.3 λmax, describing a
strong negative perturbation which can be evaded only by cells
whose CRR is at most 30% of the maximum), different values
of D, and for a = 0 (corresponding to a uniform phenotypic
landscape, top panels) and a = 20 (a strongly heterogeneous
landscape with a predominance of slow growing states, bot-
tom panels).

Generically, at sufficiently small values of D, phenotypes
tend to concentrate close to λmax [see Figs. 3(a) and 3(b)
and Figs. 3(d) and 3(e)]. This situation reproduces the “ex-
ploitation” limit D → 0, where (8) reduces to the replicator
dynamics

dp(λ, t )

dt
= [

f (λ, t ) − Eλ�λmaxf (λ, t )
]
p(λ, t ). (12)

A population whose phenotypic diffusion occurs on exceed-
ingly long timescales (compared to those characterizing en-
vironmental fluctuations) can only grow exploiting resources
available from the environment and is therefore maximally
sensitive to environment-derived shocks. In such a case, the
population growth rate is significantly smaller than λmax

[see Figs. 3(c) and 3(f), due to the growth-curbing effect of
environmental fluctuations. (We shall analyze this limit at
quantitative level in the following.)
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FIG. 3. (a), (b) Asymptotic, time-averaged phenotypic distributions obtained for a population evolving according to Eq. (8) with a diffusive
kernel in a uniform background phenotypic landscape q(λ) in const-x (a) and rand-x (b) environments for different time scenarios and values
of D, marked by increasing color shades and line widths. (c) Asymptotic population growth rate � (in units of λmax) as a function of D for
the four types of environment. Vertical dotted lines mark the values of D studied in panels (a) and (b). Horizontal lines at small and large D

stand for the analytical estimates for � obtained in the const-x regime [dotted blue line, Eqs. (24) for small D and (33) for large D] and the
rand-x regime [dot-dashed red line, Eqs. (29) for small D and (33) for large D], respectively. (d)–(f) Same as panels (a)–(c) but with q(λ) as in
Eq. (9) (with a = 20) rather than uniform. Displayed curves are averaged over 100 independent realizations of the dynamics performed with
xmin = 0.3λmax.

Upon increasing D (and therefore the relevance of
diffusion in the phenotypic space), distributions start to
acquire nontrivial traits, including bimodality [see Figs. 3(a)
and 3(d)] and extended tails [see Figs. 3(b) and 3(e). The
population growth rate � then increases with D with respect
to the small-diffusion limit in complex (rand-x) environments,
where the population structure develops tails. In such cases,
� has a well-defined maximum at a specific value of D

(which depends, as in Ref. [2], on the characteristic time
of environmental switches), marking the existence of an
optimal trade-off between diffusion (exploration) and growth
(exploitation) in the given environment. On the other hand,
the population growth rate decreases continuously with D,
albeit slowly, in the simpler two-state (const-x) environments,
implying that any amount of exploration is detrimental to
fitness in such contexts.

When diffusion dominates the dynamics (larger values of
D), � appears to drop rapidly in all environments. In such a
case, which is close to the purely “exploration” limit D → ∞
that is analyzed in detail below, cells explore the phenotypic

space very efficiently, continuously redistributing their CRR
among allowed states. The asymptotic behavior is hence
dominated by the background provided by q(λ). Indeed, the
phenotypic distribution evolves towards its stationary limit
q(λ) due to the detailed balance constraint (6).

These results suggest that phenotypic diffusion can indeed
be tuned to cope optimally with environmental fluctuations so
as to ensure a significant gain in terms of fitness, provided
the selective threshold of the environment changes randomly
over time. In such a case, the fitness advantage appears
to be slightly more marked when a is smaller. Still, the
qualitative scenario just described is robust to changes in a.
Correspondingly, the population structures into an extended
unimodal distribution of phenotypes. On the other hand, in
an environment fluctuating between two well-defined states,
bimodal phenotypic distributions occur but exploration does
not appear to provide a significant fitness advantage.

Note that a similar qualitative scenario for � is obtained
for weaker environmental perturbations (i.e., larger xmin), the
main effect induced by increasing xmin being (expectedly) that
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of reducing the gap in � as a function of D between const-
x and rand-x environments without modifying the overall
behavior of individual cases.

C. Exploitation limit (case of symmetric switching)

To characterize our model in greater detail, it is convenient
to focus on its limiting behaviors starting from the case
D → 0 (i.e., exploitation much faster than exploration), in
which (8) reduces to (12). Here the population is dominated
by the cells carrying the largest CRR. Intuitively, though,
the coupling to the environment limits the reproductive effi-
ciency of fast-growing phenotypes and ultimately introduces
cutoffs to the CRR that are represented in the population.
The parameter controlling this effect is xmin. Numerical re-
sults indeed show (see Fig. 4) that, while the statistics of
switching times does not appear to qualitatively influence the
long-time limit, const-x and rand-x regimes produce quali-
tatively different asymptotics for the phenotypic distribution
depending on whether xmin < λmax/2 [Fig. 4(a)] or xmin >

λmax/2 [Fig. 4(b)]. Specifically, for xmin > λmax/2 (weaker
perturbation) the population concentrates around λ = xmin in
every environment with an overall fitness � > λmax/2. For
xmin < λmax/2, instead, p(λ) displays a peak at λ = λmax in
const-x environments, while an extended set of phenotypes is
represented in the population when x is random and uniform.
In both cases, the population growth rate � settles close to
λmax/2. In other words, more efficient phenotypes appear to
dominate the population when the perturbation is stronger and
the overall growth rate is slower, while a weaker perturbation
leading to a larger population growth rate seems to select for
less efficient phenotypes.

A key observation to understand these results is that,
independently of whether environmental switches occur at
fixed times or at random times, in a symmetric environment
with ωns = ωs cells will spend on average half the time in
the “favorable,” not selective environment with x = λmax and
the other half in the selective environment with x < λmax.
The statistics of switching times should therefore not be
expected to influence outcomes at least as long as averages are
concerned. On the other hand, because x is a random variable,
the IRR f [Eq. (2)] will also be randomly fluctuating in time,
with a mean value given by

Et f (λ, t ) = lim
t→∞

1

t

∫ t

0
f (λ, t ′) dt ′. (13)

It is now convenient to discuss the const-x and rand-x cases
separately.

1. Const-x (two-state) environments

For the “const-x” case (two-state environment with x oscil-
lating between λmax and a constant value xmin), f will equal
λ at all times if λ < xmin, while for λ > xmin it will be equal
to λ for approximately half the time and to zero for the other
half. This implies that

Et f (λ, t ) 	
{
λ if λ < xmin

λ/2 if λ � xmin
. (14)

The mean IRR therefore displays a discontinuity at the thresh-
old xmin, and the value of λ for which it attains a maximum

(a)

(b)

(c)

FIG. 4. (a), (b) Long-time phenotypic distributions (left) and
time evolution of the population growth rate � (right) in the absence
of diffusion in the different environments (represented by different
colors and line widths) and for x = 0.3λmax (a) and x = 0.7λmax (b).
In the former case (x < λmax/2), the distribution can achieve the
highest possible CRR. In turn, the long-term fitness � sets around
λmax/2. In the latter case (x > λmax/2), the distribution peaks around
the threshold CRR, while the population achieves a growth rate �

larger than λmax/2. Curves are averaged over 100 realizations of the
dynamics. (c) Time-averaged mean Et f (λ, t ) of f as a function
of the CRR for const-x (left) and rand-x (right) environments and
for three different values of xmin. One sees that the position of the
maximum depends both on the chosen threshold and on the specific
environment.

depends on the value of xmin [see Fig. 4(c), left panel]. In
specific, for xmin > λmax/2 (resp. xmin < λmax/2), the mean
IRR has a maximum for λ = xmin (resp. λ = λmax), where
Et f (λ, t ) = xmin [resp. Et f (λ, t ) = λmax/2]. Hence, at long
times, we expect the population to grow at the fastest IRR
achievable, with a phenotypic distribution p(λ) peaked at
λ = xmin (resp. λ = λmax) for xmin > λmax/2 (resp. xmin <

λmax/2). This is in agreement with the numerical evidence
shown in Figs. 4(a) and 4(b) (as well as in Fig. 3) for const-x
environments.
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Based on the above reasoning we can approximate p(λ, t )
with the bimodal function

p(λ, t ) 	 α(t )δ(λ − λ�) + (1 − α(t ))δ(λ − λmax), (15)

with 0 � α(t ) � 1 a time-dependent coefficient quantifying
the fraction of cells with CRR equal to λ� < λmax. (For sakes
of simplicity, we shall henceforth omit to indicate explicitly
the dependence of α on time.) We can then use (12), which in
discrete time takes the form

p(λ, t + δt ) 	 {
1 + [

f (λ, t ) − Eλ�λmaxf (λ, t )
]
δt

}
p(λ, t )

(16)

to evolve the above ansatz for small time intervals δt during
which the environment does not change.

In nonselective conditions (x = λmax), one can use the fact
that

Eλ�λmaxf (λ, t ) = αλ� + (1 − α)λmax (17)

to arrive at

p(λ, t + δt ) 	 (α − δαns) δ(λ − λ�)

+ (1 − α + δαns) δ(λ − λmax), (18)

where δαns = (λmax − λ�)(1 − α)δt .
In a selective environment (x = λ�), instead,

Eλ�λmaxf (λ, t ) = αλ�, (19)

and one finds

p(λ, t + δt ) 	 (α + δαs)δ(λ − λ�)

+ (1 − α − δαs)δ(λ − λmax), (20)

with δαs = λ�(1 − α)δt .
This shows that, at every switch, the population distribution

will tend to shift from one threshold to the other, but the
speed with which the two peaks grow or shrink is different.
In particular, one has

δαns

δαs
= (λmax − λ�)

λ�
. (21)

This implies that δαns < δαs for λ� > λmax/2. Hence the peak
growing at speed δαs is favored, and the probability density
will peak around λ� in the long run. On the other hand, δαns >

δαs when λ� < λmax/2, causing the population to concentrate
around λmax. In other terms,

p(λ) 	
{
δ(λ − λ�) if λ� > λmax/2
δ(λ − λmax) if λ� < λmax/2 , (22)

in agreement with the numerical picture for the two-state
(const-x) environment shown in Fig. 4.

This result can be used to obtain an analytical
approximation for �. In fact, considering that the system
spends roughly half the time in the nonselective environment
(x = λmax) and the other half in the selective one (x = xmin),
we have [see (10)]

� 	 1

2
Eλ�λmaxf (λ, t ) + 1

2
Eλ�xminf (λ, t ) (23)

	
{
λ� if λ� > λmax

2
λmax

2 if λ� � λmax
2

, (24)

where

Eλ�zf (λ, t ) =
∫ z

0
f (λ, t )p(λ, t ) dλ, (25)

and we used the fact that Eλ�λmaxf (λ, t ) = λ� [resp.
Eλ�λmaxf (λ, t ) = λmax] for λ� > λmax/2 (resp. λ� < λmax/2),
while Eλ�xminf (λ, t ) = λ� [resp. Eλ�xminf (λ, t ) = 0] for
λ� > λmax/2 (resp. λ� < λmax/2).

In Fig. 3(c) we show that the value of � estimated nu-
merically agrees with the one just derived in the limit D → 0
(horizontal blue line) for λ� = xmin. Note that �, Eq. (24), cor-
responds to the maximum of the time-averaged IRR Et f (λ, t )
[see Fig. 4(c)], confirming how, for small D (when diffusion
is much slower than environmental fluctuations), fitness is
ultimately limited by the environment alone.

2. Rand-x environments

In the “rand-x” case (x oscillating between λmax and a
random value λ� uniformly chosen from [xmin, λmax]), f will
again equal λ roughly half the time, while for the other half it
will be randomly zero or λ depending on xmin. In particular,
Prob{f = λ} ≡ Prob{x > λ} = 1 − φ, with

φ = λ − xmin

λmax − xmin
. (26)

One therefore finds

Et f (λ, t ) 	
{
λ if λ < xmin

λ
(
1 − φ

2

)
if λ � xmin

, (27)

from which one sees that Et f (λ, t ) attains a maximum value
f max given by

f max = 1

2

(
λmax − 1

2 xmin
)2

λmax − xmin
, (28)

at λ = λmax − 1
2 xmin if xmin < 2

3λmax, while f max = xmin at
λ = xmin if xmin > 2

3λmax. In complete analogy with the pre-
vious case, the population concentrates around phenotypes λ

for which Et f (λ, t ) is maximum, while for the asymptotic
growth rate of the population � one finds

� 	 f max (29)

(see Fig. 4). The results displayed in Fig. 3(c) (red horizontal
line for D → 0) indeed support this conclusion.

D. Exploration limit (case of symmetric switching)

In the limit D → ∞ (and more generally whenever dif-
fusion occurs on timescales much faster than those of envi-
ronmental fluctuations), the growth term in Eq. (4) is neg-
ligible with respect to the diffusion one and population is
rapidly redistributed according to the underlying phenotypic
landscape described by q(λ). As a consequence p(λ) → q(λ)
asymptotically. It is again possible to derive an approximate
expression for � from Eq. (10) following the lines traced in
the previous section. One finds, in analogy with (23),

� 	 1
2 Eλ�λmaxf (λ, t ) + 1

2 〈〈f 〉〉, (30)
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where

〈〈f 〉〉 =
∫ λmax

xmin

[Eλ�xf (λ, t )]π (x) dx (31)

and π (x) stands for the probability distribution of the threshold x. Specifically, π (x) = δ(x − xmin) in the const-x case and
π (x) = (λmax − xmin)−1 for x ∈ [xmin, λmax] in the rand-x case. Note that, because p(λ) 	 q(λ) and f = λ (resp. f = 0) for
λ < x (resp. λ > x), we have

Eλ�xf (λ, t ) 	
∫ x

0
λq(λ) dλ = λmax

(a + 2)

{
1−

[
1 − (a + 1)

x

λmax

](
1 − x

λmax

)a+1
}

. (32)

Substituting this into (31) and then in Eq. (30) one obtains

� 	
⎧⎨
⎩

λmax
(a+2)

[
1 − (a+2)

2
xmin
λmax

(
1 − xmin

λmax

)a+1 − 1
2

(
1 − xmin

λmax

)a+2]
(const-x environment)

λmax
(a+2)

[
1 − 1

2
xmin
λmax

(
1 − xmin

λmax

)a+1 − 1
(a+3)

(
1 − xmin

λmax

)a+2]
(rand-x environment)

. (33)

These formulas confirm the intuitive picture according to
which the more the underlying distribution of phenotypes q

concentrates on small values of CRR (i.e., the larger the value
of a), the slower the population grows at fast phenotypic dif-
fusion. Figures 3(c) and 3(f) (horizontal lines at D � 1) show
that the agreement between the long-term population growth
rate computed numerically and the theoretical estimate given
above is excellent in both const-x and rand-x environments.

E. Case of asymmetric switching times

We have so far assumed that the characteristic times for
switching between selective and nonselective environments
are identical. This leaves a single environmental timescale in
the problem and simplifies the analysis because of the fact that
the population spends on average half the time in the selective
regime and the other half in the nonselective one. We now
want to address the extension of our results to asymmetric
switching times.

Numerical results (see Fig. 5) reproduce the qualitative
picture derived in the symmetric case, with some (noteworthy)
modifications. In the first place, when the mean time spent in
the nonselective environment is larger, the advantage provided
by diffusion in complex environments is diminished while
the exploitation limit yields higher fitness with respect to the
symmetric case. Vice versa, exploration can be tuned to obtain
a higher fitness for the population when the mean time spent
in the selective environment is larger. The fitness achieved in
the exploration limit is, however, smaller than the symmetric
case. Perhaps most interestingly, in two-state environments
with random switching times (rand-t , const-x) the population
can still structure in a bimodal fashion, but the weight of the
slower part of the distribution (smaller λ) reflects the (mean)
time spent in the selective state (i.e., it increases with ωs).
This behavior fully corresponds to the classical “bet-hedging”
scenario described, e.g., in Ref. [14]. In other types of envi-
ronments, though, other population structures are favored.

The key that allows us to easily generalize the fast and slow
diffusion limits lies in the observation that, instead of spend-
ing on average half the time in each environmental state (se-
lective or nonselective), the population now spends a fraction
pns = ωns

ωns+ωs
of time in the nonselective state and a fraction

ps = 1 − pns of time in the selective one. Therefore, the time
average of f in the const-x environment (14) now reads

Et f (λ, t ) 	
{
λ if λ < xmin

pnsλ if λ � xmin
. (34)

The mean IRR displays again a discontinuity at the threshold
xmin, but now the value of λ for which it attains a maximum
depends on both xmin and pns. In specifics, for xmin > pnsλmax

(resp. xmin < pnsλmax), the mean IRR has a maximum for
λ = xmin (resp. λ = λmax), where Et f (λ, t ) = xmin (resp.
Et f (λ, t ) = pnsλmax).

Analytical approximation for the population fitness � that
account for asymmetry in the environment can be easily
obtained along the lines of Secs. III C and III D. In particular,
in the exploitation limit and with a two-state (const-x) envi-
ronment, expressions (23) and (24) generalize to

� 	 pns Eλ�λmaxf (λ, t ) + ps Eλ�xminf (λ, t ) (35)

	
{
xmin if xmin > pnsλmax

pnsλmax if xmin � pnsλmax
. (36)

Likewise, in the exploitation limit for the rand-x case one
finds that Eq. (27) takes the form

Et f (λ, t ) 	
{
λ if λ < xmin

λ(1 − psφ) if λ � xmin
. (37)

One sees that Et f (λ, t ) now attains a maximum value f max
given by

f max = 1

4ps

(λmax − pns xmin)2

λmax − xmin
, (38)

at λ = λmax−pns xmin

2ps
if xmin < λmax

1+ps
, while f max = xmin at λ =

xmin if xmin > λmax
1+ps

. As before, � 	 f max.
Finally, in the exploration limit asymmetric environments

turn Eq. (30) into

� 	 pns Eλ�λmaxf (λ, t ) + ps〈〈f 〉〉, (39)
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FIG. 5. (a) Asymptotic, time-averaged phenotypic distributions (top panels) and asymptotic population growth rate � (in units of λmax) as
a function of D (bottom panel) obtained as in Figs. 3(d)–3(f) but in the presence of an asymmetric environment with characteristic switching
times ωs = 30 and ωns = 50 time units. As in Fig. 3, xmin = 0.3λmax and results obtained for different values of D are marked by increasing
color shades and line widths. Dotted blue and dot-dashed green horizontal lines at small and large D show the analytical estimates of � in
the exploration and exploitation limits, obtained in the const-x and rand-x regimes, respectively. (b)–(d) Same as panel (a) but with different
choices of ωns and ωs. Displayed curves are averaged over 100 independent realizations of the dynamics.

which allows us to generalize Eq. (33) as

� 	
⎧⎨
⎩

λmax
(a+2)

[
1 − ps(a + 2) xmin

λmax

(
1 − xmin

λmax

)a+1 − ps
(
1 − xmin

λmax

)a+2]
(const-x environment)

λmax
(a+2)

[
1 − ps

xmin
λmax

(
1 − xmin

λmax

)a+1 − 2ps

(a+3)

(
1 − xmin

λmax

)a+2]
(rand-x environment)

. (40)

Figure 5 (see green and blue horizontal lines) shows that the above expressions for � provide an excellent agreement with
numerical results in both the exploration and exploitation limits.

IV. DISCUSSION

Empirical data on phenotypic distributions, quantified, e.g.,
from protein expression data, display a rich spectrum of
behaviors ranging from unimodal to bimodal depending on
the applied stress, organism, etc. (see, e.g., Ref. [34] for
evidence regarding E. coli). The question of when one type
of distribution is favored therefore appears to be subtle and

possibly requires a case-by-case answer. Our results are in line
with previous work in suggesting that the population structure
is tightly linked to the specific features of the environment.
In particular, when the strength of the coupling between the
environment and phenotypes takes on two distinct levels (e.g.,
high or low, corresponding to the const-x case), bimodal
distributions arise but exploration does not yield a fitness
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advantage to the population. On the other hand, under the
more complex scenario in which the coupling strength varies
randomly (rand-x case), the exploration-exploitation trade-off
leads to a nonzero optimal search rate, and unimodal pheno-
typic distributions are generically preferred. This picture is
in complete agreement with the results obtained in Ref. [29],
where the theoretical benefit of a bimodal distribution of stress
response proteins was found to be highest in two-state envi-
ronments, while more variable and structured environments
allow for the selection of unimodal distributions. In addition,
we have found that adding a small amount of diffusion to
a purely exploitative strategy always leads to an increase of
fitness in rand-x environments, while it is always detrimental
in const-x environments. (More generally, diffusion appears
to be broadly beneficial in rand-x environments.) Therefore,
both the way a population is distributed across its phenotypic
space and its fitness directly reflect its history in coping with
the random environment.

At the quantitative level, the fitness gain given by ex-
ploration also appears to be linked to the structure of the
underlying phenotypic landscape q(λ). In particular, in the
more realistic case in which q(λ) is strongly heterogeneous,
with rare fast phenotypes among a multitude of slow ones
[31], a diffusive search dynamics can provide a significant
fitness advantage. More generally, it appears to be possible
to set the exploration rate within an optimal range for any
environment when (1) losses caused by fast diffusion (high D)
are avoided, while (2) losses that are to be faced by exploring
the phenotypic landscape in two-state (const-x) environments
are not too large with respect to the D → 0 limit. A rather
broad range of values of D fit this criterion, suggesting that,
while possibly helpful in certain conditions, a tight regulation
of the phenotypic exploration rate may be unnecessary as long
as the key assumptions made here hold.

From a physical viewpoint, our model ultimately relies on
Markovianity and detailed balance. These ingredients provide
in our view the most elementary way to encode for the effects
of fully unbiased random changes in cellular physiology at the
level of a complex macroscopic parameter such as the growth
rate. However, they are likely to fail in many biologically real-
istic contexts, and moving beyond them would be important.
Another limiting modeling choice we made concerns the as-
sumption that faster-growing cells susceptible to environmen-
tal shocks do not replicate, as we are implicitly postulating
that they survive the shock. While this may be unrealistic in
some situations, we note that the introduction of an explicit
cellular death rate would effectively rescale the “replicator”
term in Eq. (4). The qualitative scenario we describe should
therefore persist. Finally, we focused on a diffusive transition
kernel in which only small changes in CRR are allowed.
While this is a reasonable choice in biological contexts,
when significant phenotypic re-arrangements can occur the
emergent scenario may be different. For instance, this is likely
to be the case when transition rates follow a Gibbs kernel,
in which the W (λ → λ′) affecting (1) is proportional to the
density of states with CRR λ′:

W (λ → λ′) = q(λ′)
τ

. (41)

In particular, in this situation diffusion may turn out to be
more efficient in improving population fitness than under a

diffusive kernel, most notably so in homogeneous landscapes.
On the other hand, justifying a kernel like (41) for biolog-
ical modeling would necessarily require assumptions more
extreme, and possibly less realistic, than those made here.

At a more speculative level, this work could shed some
light on the origin of phenotypically heterogeneous cell pop-
ulations such as tumors and may point to educated strategies
to control their diversity. For instance, more heterogeneous
populations are more likely to evolve in complex environ-
ments, suggesting, e.g., that higher intratumoral heterogeneity
may be the result of highly variable microenvironments. On
the other hand, if the “shocks” are taken to be caused by a
therapeutic protocol, our study suggests that subjecting the
population to a single repeated dose is effective in quenching
its fitness irrespective of the timing of administration.
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APPENDIX: DERIVATION OF EQ. (8)

We start by noting that

ṅ(λ, t ) = ṗ(λ, t )N (t ) + p(λ, t )Ṅ (t ), (A1)

where, from Eq. (1),

Ṅ (t )

N (t )
=

∫ λmax

0
f (λ, t )p(λ, t ) dλ = Eλ�λmaxf (λ, t ). (A2)

A comparison between Eqs (1) and (A1) immediately yields
the first term on the r.h.s of Eq. (8). To get the second term,
we assume a diffusive transition kernel. Making use of the
detailed balance condition (6) one finds

∫
[W (λ′ → λ)p(λ′, t ) − W (λ → λ′)p(λ, t )] dλ′

= W (λ → λ + δλ)q(λ)

[
p(λ + δλ, t )

q(λ + δλ)
− p(λ, t )

q(λ)

]

+W (λ − δλ → λ)q(λ − δλ)

[
p(λ − δλ, t )

q(λ − δλ)
−p(λ, t )

q(λ)

]

	 (δλ)2

2τ

∂

∂λ

[
q(λ)

∂

∂λ

p(λ, t )

q(λ)

]
, (A3)

where the last step follows after a second-order expansion in
δλ and we imposed that transitions from λ to λ ± δλ happen
with the same probability [implying that W (λ → λ ± δλ) =
(2τ )−1; see (7)]. Defining D = (δλ)2

2τ
, the second term in

Eq. (8) is immediately recovered.
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