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To Sandro Salsa, a fine mathematician with a taste for life.

1. Introduction

In this paper we consider some entire solutions of a degenerate elliptic equation with non linear
forcing term, where the behaviour of the solutions is quite different from the uniformly elliptic case.

We begin by recalling the linear uniformly elliptic model problem we have in mind in order to
underline the differences with the degenerate elliptic case that we shall treat here. Consider the entire
solutions of the Allen-Cahn equation

∆u + u − u3 = 0 in RN (1.1)

where N ≥ 2.
Writing the variable as x = (x′, xN), with xN ∈ R, we are interested in solutions that satisfy the

following conditions:

|u| < 1 and lim
xN→±∞

u(x′, xN) = ±1 uniformly in x′ ∈ RN−1. (1.2)
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Any solution of (1.1) satisfying (1.2) is necessarily a function of xN , i.e. it is independent of x′. This
was referred to as Gibbons conjecture and it has been proved by several authors [3,5,18,19] and then it
has been generalized to different contexts [15,20,23]. It is well known that this conjecture is somehow
related to a famous conjecture of De Giorgi on the 1 dimensionality of monotone solutions in low
dimension, see for its proof [4, 21] in the 2 dimensional case, [2] for the 3 dimensional case and for
higher cases with some mild further assumptions, the work of Savin [24]. For a counterexample in
dimensions N ≥ 9, providing a sharpness of the conjecture, was constructed by Del Pino, Kowalczyk
and Wei in [17]

The function f (u) = u−u3 can be replaced by a much more general class of functions and the result
is still valid. On the other hand, if instead of the Laplacian one considers some degenerate elliptic
operators, there are few results, let us mention e.g., the works in the Heisenberg group and in Carnot
groups [14, 16].

In this work we shall mainly focus on equations whose leading term is the operator P−k which is
sometimes referred to as the truncated Laplacian. The operator P−k is defined, for any N×N symmetric
matrix X, by the partial sum

P−k (X) = λ1(X) + . . . + λk(X)

of the ordered eigenvalues λ1 ≤ . . . ≤ λN of X. We shall consider solutions of the equation

P−k (D2u) + f (u) = 0 in RN , (1.3)

for a general class of functions f modelled on f (u) = u − u3. Clearly P−k (D2u) corresponds to the
Laplacian when k = N, hence in the whole paper we shall suppose that k = 1, . . . ,N − 1.

These operators are degenerate elliptic in the sense that

X ≤ Y ⇒ P−k (X) ≤ P−k (Y).

In order to emphasize the strong degeneracy of these operators, let us mention that for any matrix X
there exists M ≥ 0, not identically zero, such that

P−k (X) = P−k (X + M).

It is immediate to see that, for example, one can take M = vN ⊗ vN where vN is an eigenvector
corresponding to the largest eigenvalue of X.

In previous works we have, together with Hitoshi Ishii and/or Fabiana Leoni [9–11,13], encountered
a certain number of surprising results, related to these degenerate operators. It would be too long to
recall them all here but we shall briefly recall some of those closer to the results in this paper.

The classical Liouville result states that any harmonic function which is bounded from below is a
constant. This is not true for bounded from below entire solutions of P−k (D2u) = 0.

Similarly, concerning the semi-linear Liouville theorem, the existence of entire non negative
solutions of F(D2u) + up = 0 is quite different if F(D2u) = ∆u or if F(D2u) = P−k (D2u). Indeed, for
the Laplacian there is a threshold for p between existence and non existence. This threshold is
different for solutions and supersolutions and it depends on the dimension of the space. Instead, for
solutions of the equation

P−k (D2u) + up = 0 in RN (1.4)

the following hold:
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1). For any p > 0 there exist nonnegative viscosity solutions u . 0;
2). For any p ≥ 1 there exist positive classical solutions;
3). For p < 1 there are no positive viscosity supersolutions of (1.4).

Interestingly, if one considers instead non positive solutions, the non existence results are very similar
to those of the Laplacian in Rk. These Liouville theorems were proved in [13].

Hence this lead us to wonder what happens to bounded entire solutions of the equation

P−k (D2u) + u − u3 = 0 (1.5)

which satisfy |u| < 1 and which, a priori, may change sign. Can one expect solutions to be one
dimensional? Precisely, can we extend Gibbons conjecture to this degenerate case?

In order to answer these questions the first step is to study the one dimensional solutions, which is
what we do in Section 2. Interestingly the results are completely different from the uniformly elliptic
case and this leads to different conjectures. Precisely, we consider only one dimensional solutions
u(x′, xN) = v(xN) of (1.5) that satisfy |u| < 1. The results can be summarized in the following way:

1). The only classical solution is u ≡ 0;
2). Any viscosity subsolution is non negative and there exists a non trivial viscosity solution that

satisfies
lim

xN→−∞
v(xN) = 0 and lim

xN→∞
v(xN) = 1. (1.6)

3). There are no solutions that are strictly monotone or positive

Observe that, even though u3 − u is the derivative of the double well potential F(u) = 1
4 (1− u2)2, the

lack of ellipticity does not allow the solutions to go from −1 to 1. This is the first surprising result.
Hence Gibbons conjecture should be reformulated in the following way:

Question 1. Is it true that if u is a solution of (1.5), |u| < 1, satisfying

lim
xN→−∞

u(x′, xN) = −1 and lim
xN→∞

u(x′, xN) = 1 uniformly in x′ ∈ RN−1

then u is 1 dimensional?
If the answer was positive, this would imply that there are no solutions of (1.5) that satisfies (1.2),
since such one dimensional solutions don’t exist in view of point 2 above. Or, equivalently, if such a
solution of (1.5) exists then the answer to Question 1 is negative.
Question 2. Is it true that if u is a solution of (1.5), |u| < 1, satisfying

lim
xN→−∞

u(x′, xN) = 0 and lim
xN→∞

u(x′, xN) = 1 uniformly in x′ ∈ RN−1

then u is 1 dimensional?
This is more similar in nature to the uniformly elliptic case. Nonetheless, classical proofs of these
symmetry results rely heavily on the strong maximum principle, or strong comparison principle, and
on the sliding method and the moving plane method [7] , which in general don’t hold for the truncated
Laplacian (see [9, 12]). And in particular they are not true here since we construct ordered solutions
that touch but don’t coincide.
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Another remark we wish to make is that, even though the solutions we consider are one dimensional,
since they are viscosity solutions, the test functions are not necessarily one dimensional. Hence the
proofs are not of ODE type.

Other surprising results concern Liouville type theorems for (1.5) i.e., existence of bounded entire
solutions bounded without requiring conditions at infinity. Aronson and Weinberger in [1] and more
explicitly, Berestycki, Hamel and Nadirashvili in [6] have proved the following Liouville type result:

If v is a bounded non negative classical solution of

∆u + u − u3 = 0 in RN

then either u ≡ 0 or u ≡ 1.
Once again this result fails if one replaces the Laplacian with the truncated Laplacian.
Indeed we prove that there exists infinitely many bounded non negative smooth solutions of

P−k (D2u) + f (u) = 0, in RN

for a general class of nonlinearities that includes f (u) = u − u3. This is done by constructing infinitely
many radial solutions of P−k (D2u) + f (u) = 0 which are positive in RN but tend to zero at infinity.

Finally in Section 4 we show a different surprising phenomena related to the so called principal
eigenvalue of P−k . This is somehow different in nature but we believe that it sheds some light to these
extremal degenerate operators.

2. One dimensional solutions

We consider one dimensional viscosity solutions u, i.e., u(x) = v(xN) for x = (x1, . . . , xN), of the
problem {

P−k (D2u) + u − u3 = 0 in RN

|u| < 1.
(2.1)

The main result is the following.

Proposition 1. Concerning problem (2.1), the following hold:

i) If u ∈ US C(RN) is a viscosity one dimensional subsolution then u ≥ 0.
ii) The only classical one dimensional solution is u ≡ 0.

iii) There exist nontrivial viscosity one dimensional solutions, e.g., u(x) = v(xN), satisfying either

lim
xN→−∞

v(xN) = 0 and lim
xN→∞

v(xN) = 1. (2.2)

or
lim

xN→±∞
v(xN) = 1. (2.3)

iv) There are no positive viscosity one dimensional supersolutions.
v) If u ≥ 0 is a viscosity one dimensional supersolution e.g., u(x) = v(xN) and it is nondecreasing in

the xN-direction then there exists t0 ∈ R such that

u = 0 in X0 =
{
x ∈ RN : xN ≤ t0

}
.
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Remark 1. A consequence of i) and v) is that there are no viscosity one dimensional solutions
increasing in the xN-direction.

Proof. i) Fix x̂ = (x̂1, . . . , x̂N) ∈ RN and, for α > 0, let

max
B1(x̂)

[
u(x) − α(xN − x̂N)2

]
= u(xα) − α(xαN − x̂N)2, xα ∈ B1(x̂).

Then
α(xαN − x̂N)2 ≤ u(xα) − u(x̂) ≤ 2,

and
lim
α→∞

xαN = x̂N . (2.4)

Moreover, using the one dimensional symmetry, for any x ∈ B1(x̂) we have

u(x) − α(xN − x̂N)2 ≤ u(xα) − α(xαN − x̂N)2

= u(x̂1, . . . , x̂N−1, xαN) − α(xαN − x̂N)2.

Hence u(x) − α(xN − x̂N)2 has a maximum in (x̂1, . . . , x̂N−1, xαN) ∈ B1(x̂) for α large in view of (2.4).
Then

u3(x̂1, . . . , x̂N−1, xαN) − u(x̂1, . . . , x̂N−1, xαN) ≤ P−k
(
diag(0, . . . , 0, 2α)

)
= 0.

We deduce that u(x̂1, . . . , x̂N−1, xαN) ≥ 0 for every α big enough. Using semicontinuity and (2.4) we
conclude

u(x̂) ≥ lim sup
α→∞

u(x̂1, . . . , x̂N−1, xαN) ≥ 0.

ii) By contradiction, let us assume that u(x) = v(xN) is a classical solution of (2.1) and that v(t0) , 0
for some t0 ∈ R. By i), v(t0) > 0. Let

δ− = inf {t < t0 : v > 0 in [t, t0]} and δ+ = sup {t > t0 : v > 0 in [t0, t]} .

If δ− = −∞ and δ+ = +∞, then v > 0 in R and, since v3 − v < 0, we deduce by the Eq (2.1) that
v′′(t) < 0 for any t ∈ R. In particular v is concave in R, a contradiction to v > 0.
If δ− > −∞, then v(t) > 0 for any t ∈ (δ−, t0] and v(δ−) = 0. Moreover there exists ξ ∈ (δ−, t0) such that
v′(ξ) > 0. Using the Eq (2.1) we deduce that v′′ ≤ 0 in [δ−, t0], hence v′(δ) ≥ v′(ξ) > 0. This implies
that for ε small enough v(δ− − ε) < 0, a contradiction to i).
The case δ+ < +∞ is analogous.
iii) Let u(x) = tanh

(
xN√

2

)
. Then

D2u = diag(0, . . . , 0, u3 − u).

If xN ≥ 0 then u3 − u ≤ 0 and P−k (D2u) = u3 − u, while if xN < 0 the function u fails to be a solution
since P−k (D2u) = 0 < u3 − u.
Instead we claim that

ũ(x) =

tanh
(

xN√
2

)
if xN ≥ 0

0 otherwise

is a viscosity solution of (2.1). This is obvious for xN , 0. Now take x̂ = (x̂1, . . . , x̂N−1, 0). Since there
are no test functions ϕ touching ũ by above at x̂, automatically ũ is a subsolution. Let us prove the ũ is

Mathematics in Engineering Volume 2, Issue 4, 722–733.



727

also a supersolution. Let ϕ ∈ C2(RN) such that ϕ(x̂) = ũ(x̂) = 0 and ϕ ≤ u in Bδ(x̂). Our aim is to show
that λN−1

(
D2ϕ(x̂)

)
≤ 0, from which the conclusion follows.

Let W0 =
{
w ∈ RN : wN = 0

}
and for any w ∈ W0 such that |w| = 1 let

gw(t) = ϕ(x̂ + tw) t ∈ (−δ, δ).

Since ϕ touches ũ from below at x̂ and ũ = 0 when xN = 0, we deduce that gw(t) has a maximum point
at t = 0. Then

g′′w(0) =
〈
D2ϕ(x̂)w,w

〉
≤ 0.

Using the Courant-Fischer formula

λN−1

(
D2ϕ(x̂)

)
= min

dim W=N−1
max

w∈W, |w|=1

〈
D2ϕ(x̂)w,w

〉
≤ max

w∈W0, |w|=1

〈
D2ϕ(x̂)w,w

〉
≤ 0

as we wanted to show.
As above one can check that, for any c ≥ 0, the one dimensional function

ũ(x) =


tanh

(
xN−c
√

2

)
if xN ≥ c

0 if |xN | < c

− tanh
(

xN+c
√

2

)
if xN ≤ −c,

see figure 1, is non monotone in the xN-direction and it is a solution of (2.1).

Figure 1. The function ũ.

iv) By contradiction suppose that u(x) = v(xN) is a positive viscosity supersolution of (2.1). We claim
that v is strictly concave, leading to a contradiction with v > 0 in R.
We first prove that v satisfies the inequality

v′′(t) < 0 for any t ∈ R (2.5)

Mathematics in Engineering Volume 2, Issue 4, 722–733.



728

in the viscosity sense. For this let ϕ ∈ C2(R) be test function touching v from below at t0. If we consider
ϕ as a function of N variables just by setting ϕ̃(x) = ϕ(xN), then ϕ̃ is a test function touching u from
below at (x1, . . . , xN−1, t0), for any (x1, . . . , xN−1) ∈ RN−1. Hence

P−k
(
diag(0, . . . , 0, ϕ′′(t0))

)
≤ ϕ3(t0) − ϕ(t0) < 0

and then necessarily ϕ′′(t0) < 0.
If v was not strictly concave, then there would exist t1 < t̄ < t2 ∈ R such that

min
t∈[t1,t2]

(
v(t) − v(t1) −

v(t2) − v(t1)
t2 − t1

(t − t1)
)

= v(t̄) − v(t1) −
v(t2) − v(t1)

t2 − t1
(t̄ − t1)

Then using ϕ(t) = v(t1) +
v(t2)−v(t1)

t2−t1
(t − t1) as a test function in (2.5) we obtain a contradiction.

v) By iv) there exists t0 ∈ R such that v(t0) = 0. By the monotonicity assumption we get v(t) = 0 for
any t ≤ t0. �

3. Radial solutions

This section is concerned with the existence of entire radial solutions of the equation

P−k (D2u) + f (u) = 0 in RN , (3.1)

where f : R 7→ R satisfies the following assumptions: there exists δ > 0 such that
f ∈ C1((−δ, δ)) and it is nondecreasing in (−δ, δ)
f (u) > 0 ∀u ∈ (0, δ)
f (0) = 0.

(3.2)

Prototypes of such nonlinearities are

f (u) = αu + β|u|γ−1u

with α > 0, γ > 1 and any β ∈ R.

Proposition 2. Under the assumptions (3.2) there exist infinitely many positive and bounded radial
(classical) solutions of the Eq (3.1).

Proof. For any α ∈ [0, δ) let vα be the solution of the initial value problemv′α(r) + r
k f (vα(r)) = 0, r ≥ 0

vα(0) = α
(3.3)

defined in its maximal interval Iα = [0, ρα). Since v0 ≡ 0, then vα(r) > 0 for any r ∈ Iα if α > 0. We
claim that Iα = [0,∞). For this first note that v′α(r) is nonpositive in a neighborhood of the origin since,
using (3.2)–(3.3), one has

v′α(0) = 0 and v′′α (0) = −
1
k

f (α) < 0.
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If there was ξα ∈ (0, ρα) such that v′α(r) < 0 in (0, ξα) and v′α(ξα) = 0, then by monotonicity 0 <

vα(ξα) < α and by (3.3) we should obtain that f (vα(ξ)) = 0. But this is in contradiction with (3.2).
Hence vα is monotone decreasing and positive, so Iα = [0,∞). Using again (3.3) we deduce moreover
that lim

t→∞
vα(r) = 0 and for any r > 0

v′′α (r) =
v′α(r)

r
−

r
k

f ′(vα(r))v′α(r)

≥
v′α(r)

r
.

(3.4)

In the last inequality we have used the facts that vα is monotone decreasing, 0 < vα(r) < α for any
r > 0 and that f is nondecreasing in [0, δ) by assumption.
By (3.3)

−
v′α(r)

f (vα(r))
=

r
k

and a straightforward computation gives that the function vα can be written as

vα(r) = F−1
(

r2

2k

)
, (3.5)

F−1 being the inverse function of F(τ) =

∫ α

τ

1
f (s)

ds in (0, α].

From the above we easily deduce that for any α ∈ (0, δ) the radial function

uα(x) = vα(|x|) (3.6)

is a positive radial solution of (3.1). �

In the model case f (u) = u − u3 the assumptions (3.2) are satisfied with δ = 1
√

3
. Moreover, for

α ∈ (0, 1
√

3
], we have

F(τ) =

∫ α

τ

1
s − s3 ds = log

α
√

1 − α2
− log

τ
√

1 − τ2
, for τ ∈ (0, α]

and

F−1
(

r2

2k

)
=

1√
1 + e

r2
k +log 1−α2

α2

.

Hence, by (3.5)–(3.6), we infer that the functions

uα(x) =
1√

1 + e
|x|2

k +log 1−α2

α2

,

see figure 2, are smooth and positive radial solutions of

P−k (D2u) + u − u3 = 0 in RN .
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Let us explicitly remark that the condition α ∈ (0, 1
√

3
] ensures the validity of the inequality (3.4).

Figure 2. The function uα(x).

4. Another unusual phenomena

Let us recall that in [9], given a domain Ω, following Berestycki, Nirenberg and Varadhan [8] we
define

µ−k (Ω) = sup{µ ∈ R : ∃φ ∈ US C(Ω), φ < 0 s.t. P−k (D2φ) + µφ ≥ 0 in Ω}.

We proved many results among them that µ−1 could be called an eigenvalue since under the right
conditions on Ω we construct ψ < 0 solution of

P−1 (D2ψ) + µ−1ψ = 0 in Ω, ψ = 0 on ∂Ω.

But, differently from the uniformly elliptic case, µ−1 does not satisfy the Faber-Krahn inequality, see
[11].

Another feature of µ−k is that it is the upper bound for the validity of the maximum principle.
Precisely if µ < µ−k and

P−k (D2v) + µv ≤ 0 in Ω, v ≥ 0 on ∂Ω

then v ≥ 0 in Ω.
It is well known that for uniformly elliptic operators, the principal eigenvalue goes to infinity when

the domain decreases to a domain with zero Lebesgue measure.
In this section we shall construct a sequence of domains Qn ⊂ R

2 that collapse to a segment such
that µ−1 (Qn) the principal eigenvalue of P−1 stays bounded above by 1. Hence not only they collapse to
a zero measure set, but they are narrower and narrower.

Indeed we consider

Qn = {(x, y) ∈ R2, 0 <
nx + y

2
< π,

−π

2
<

nx − y
2

<
π

2
}.
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And we define
wn(x, y) = −(sin(nx) + sin y) = −2 sin

(nx + y
2

)
cos

(nx − y
2

)
.

Obviously wn < 0 in Qn and wn = 0 on ∂Ω. We shall prove that

P−1 (D2wn) + wn ≤ 0 in Ω. (4.1)

This will imply that µ−1 (Qn) ≤ 1. Indeed if 1 < µ−1 (Qn) the maximum principle would imply that wn ≥ 0
which is a contradiction.
Let us show (4.1). Clearly

D2wn =

(
n2 sin(nx) 0

0 sin y

)
.

We shall divide Qn in three areas. In Qn ∩ (0, πn ) × (0, π) both sin(nx) and sin y are positive, then

P−1 (D2wn) = min(n2 sin(nx), sin y) ≤ sin y ≤ sin(nx) + sin y = −wn.

In Qn ∩ ({− π
2n < x ≤ 0} ∪ {πn ≤ x < 3π

2n }) where sin(nx) ≤ 0 and sin y ≥ 0, then

P−1 (D2wn) = n2 sin(nx) ≤ sin(nx) ≤ sin(nx) + sin y = −wn.

Finally, in Qn ∩ ({π ≤ y < 3π
2 } ∪ {−

π
2 < y ≤ 0}) where sin(nx) ≥ 0 and sin y ≤ 0 we have

P−1 (D2wn) = sin(y) ≤ sin(nx) + sin y = −wn.

This ends the proof.

Remark 2. During the revision of the present paper a new preprint, [22], which improves the result of
this Section, has been uploaded on ArXiv. In particular, applying [22, Corollary 3.2] to Qn, one would
obtain that for any n ∈ N, µ−1 (Qn) = 1

4 .
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