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Abstract

Damage, be it a material or a geometric degradation, modifies some features of
the response foreseen by the original structural design. These variations, once the
dependence onthe damage causing them is established, can be used for identifica-
tion purposes. In the literature, vibration-based approaches usually compare some
responses of linear elasticstructures with dissipative properties that are assumed
proportional to the mass and stiffness measures. However, such an assumption is rea-
sonable for new, undamaged structures,but can be unreliable in existing, potentially
damaged structures, particularly for damages localised in narrow areas.
The eigenmodes of a proportionally damped system can be reduced to the real ones
of the relevant ideal undamped system. On the other hand, non-proportional damp-
ing exhibits complex eigenmodes that cannot be reduced to those of the ideal, or of
the proportionally damped, structure. Thus, we may assume the complexity of the
eigenmodes as a measure of non-proportional damping, hence of damage. On this
basis, some contributions in the literature verified the relationship among presence
of damage and amount of complexity. Here we propose a perturbation approach and
an objective function able to identify presence, location and amplitude of localised
damages. A prototype naturally discrete structure with four degrees-of-freedom is
chosen to test and show capability and accuracy of the proposed method.
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1 INTRODUCTION

In the last decades the investigations towards more refined and precise structural theories for design were accompanied by a
rising interest for studies in structural identification and monitoring. Indeed, maintenance of existing structures in all fields of
engineering asks for increasing attention, hence monitoring the present structures, identifying their health state, and foreseeing
possible curing intervention attracts the interest of the scientific and technic community. However, structural identification is an
inverse problem: the structural model (or an updating of the existing one) is the unknown to be searched, once some experimental
measures of the structural response are at ease; the relevant analyses are often ill-conditioned problems. On the contrary, design
is a direct problem: the loadings and the structural model are supposed to be known in advance (by technical instructions, state
rulings, structural theories) and the unknown is some structural response (a characteristic displacement, the eigenproperties,
and the like).
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Due to its crucial importance for the structural health monitoring of existing structures, and the intrinsic scientific value of its
inverse aspect, the scientific community is very interested in this topic, as shown by the number of international publications. We
may refer to the literature review by Doebling et al.1 for a first attempt of collecting and presenting an extensive state-of-the-art
of that time. Another well-known contribution on this field is the paper by Farrar et al.2, where vibration based damage detection
is linked to the statistical distribution of response measurements and is described as a problem in statistical pattern recognition.
An application to civil engineering is in Peeters et al.3: here various excitation sources, plus the effect of temperature on the
change of eigenfrequencies, damping ratios and mode shapes are seen as indicators of potential damage. Another review of the
state-of-the-art is the theme issue by Farrar & Worden4, where international authors present an overview of the topic and some
instances of research on sensors and detecting techniques and instruments, on static and vibration based identification techniques,
on the new frontiers of health monitoring in civil, industrial and aerospace engineering. Another overview is in the monograph
edited by Balageas et al.5, where each chapter is devoted to the different aspects of structural health monitoring: an introductory
overview to the problems and the methods, a thorough description of vibration based techniques, and extensive presentation of
possible sensors, both contactless (optic) and attached to the structure (piezo-electric). The advantages of dynamic approaches
were recently put into evidence in the monograph by Farrar &Worden6, which provides a wide range introduction to the matter,
together with essentials on deviations from linear structural response, probability and statistics, statistical pattern recognition,
data normalisation. Further theoretical and practical discussions on the inverse methods for dynamic damage detection can be
found in the work edited by Morassi & Vestroni7.
Such analyses start from some assumptions on the nature of damage, either located in a narrow zone or diffused in a large

area of the considered structural element. Limiting to localised damage, this is often thought as a local reduction of the resisting
portion of the element (e.g., a reduction of the cross-section of a beam due to the apparition of a crack), or as a local fall of
the properties of the material constituting the element (e.g., a decrement of the elastic moduli of the material due to thermal
fatigue, corrosion, or similar causes). This leads to a local and sudden decrease of the stiffness properties that affect the structural
response of the element, and, among others, the natural properties of free vibration. Such an approach is well established in the
literature, and led to several contributions, among which we may quote Cawley & Adams8 as a kind of starting point, to which
we may add Christides & Barr9 for a thorough formulation of a theory of Euler-Bernoulli beams affected by small, localised
cracks. A first look at the identification problem as an inverse one for vibrating beams is found in Gladwell10, and some instances
of crack identification techniques for benchmark structural elements are found in Liang et al.11,12. More recent works are by
Vestroni & Capecchi13 and Sinha et al.14. One of the authors also contributed to the subject in the case of circular arches15,16,
with the crack thought as a lumped rotation spring separating two regular chunks. This is a standard approach in many of the
quoted references, yet there are non-model based techniques, e.g. Lofrano et al.17, which can be used for preliminary and/or
complementary analyses.
Structural health monitoring is suitable in many engineering fields: we may quote Loh et al.18 for vibration-based damage

detection in such industrial apparatus as wind turbines; Rainieri et al.19 for monitoring of civil structures and infrastructures
in earthquake prone areas; Oregui et al.20 for monitoring welded bolts by acceleration measurements; Diaferio & Sepe21 and
Antonacci et al.22 on vibration measurements for damage detection in framed structures;and a very recent insight onto possible
medical applications is in Ong et al.23.
Undamaged civil, industrial, or aerospace framed structures can be described as proportionally damped systems, see the

well-known monographs24,25: the physical quantity describing dissipation (damping) is supposed to be linearly related to the
inertial and elastic properties. Then, the structure has real natural mode shapes in linear dynamics and, if it is naturally discrete,
or made discrete by suitable assumptions, the mode shapes are lists of real quantities. In damaged structures the equations of
motion in modal coordinates are coupled, and the mode shapes turn out to be described by complex quantities, especially when
damages are concentrated in small areas. Thus, the complexity of the natural modes of a structure may be a measure of its state
of damage, according to the results of the direct problem. Nevertheless, dissipative properties are rarely adopted to identify the
presence of damage, or for structural health monitoring purposes. On this topic, Kawiecki26 can be considered a pioneering
work; another recently published proposal exploring this basic principle is by Iezzi et al.27. Anyway, these works are mainly
focused on detecting the presence of damages. Some attempts dedicated to non-proportional damping identification, although
not specifically related to damages, are reported in Link et al.28, where a method based on model updating is applied to a finite
element scheme.
This contribution considers the possibility of a perturbation approach for structural health monitoring and damage detection in

framed structures with local damages. That is, a damaged configuration for a framed structure reducible to lumped characteristics
(hence, to a system with a finite number of degrees of freedom) is seen as a small perturbation of the undamaged one. A direct
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problem investigating the response of such modelled structures is investigated at first. We then propose a technique able to
detect, quantify and localise structural damages. Through a perturbation scheme of the state-space formulation of the equations
governing the dynamics of the structure, the amount of damages is evaluated through the minima of an objective function
comparing the modal complexity of a) the measured and b) the analytical mode shapes. Some preliminary results of this method
were recently presented by the authors at the EuroDyn 2017 conference29; here the technique is widely developed, tested, and
thoroughly commented.
The paper has four parts: Section 2 presents the governing equations of a discrete mechanical system, which represents a

framed structure with lumped characteristics; Section 3 illustrates the proposed method, basing on the perturbation scheme of
Section 2; Section 4 presents the results of a numerical validation of themethod on a benchmark structure, simulating a four-story
civil frame exhibiting a localised damage; last, Section 5 points out the main conclusions and puts forth some final remarks.

2 GOVERNING EQUATIONS

2.1 Standard dynamic analysis
If dissipative properties are neglected, the free vibration of discrete or discretised linear mechanical system with n configuration
descriptors (or degrees of freedom) is ruled by

Mü(t) +Ku(t) = 0 (1)
where the linearity of the system can be seen as a general application of the ‘small-motions assumption’. Eq. (1) is differential,
of second order with respect to the time t; M and K are the n × n mass and stiffness matrices of the structure, respectively, and
u(t) is the list of the n generalised displacement components. Mass and stiffness are features of the system independent of time;
the only time-dependent physical quantity is the list u, describing the evolution of the configuration descriptors of the system.
Natural vibration about an equilibrium state is represented by harmonic time variation of the configuration descriptors

u(t) = Ue−{!t, { ∶=
√

−1 (2)

This separation of spatial and time-dependent quantities turns Eq. (1) into the non-standard eigenvalue problem
(

K − !2M
)

U = 0 (3)

In ‘stable’ structural systems (i.e., with real, symmetric and positive definite mass and stiffness matrices), Eq. (3) is satisfied
by a set of pairs of real eigenvalues and eigenvectors (!2

i ,Ui), i = 1, 2,… , n; where !i,Ui represent the i−th natural angular
frequency and mode shape, respectively, of the considered discrete mechanical system.
The simplest constitutive law for the dissipative actions ruling the energy loss assumes them proportional to the time rate of

the configuration descriptors (viscous damping). Then, Eq. (1) must be updated and turns into

Mü(t) + Cu̇(t) +Ku(t) = 0 (4)

where C is the n × n matrix listing the damping coefficients of the system. In the literature on structural mechanics24,25 it is
commonly accepted that new (or, better, undamaged) structural systems have damping coefficients that might be assumed as
directly related to the inertial and elastic coefficients of the structure through the Caughey series30

C = M
n−1
∑

p=0
ap

(

M−1K
)p (5)

where ap are suitable coefficients, determined by experimental measures or fixing the so-called damping ratios

�i =
U⊤
i CUi

2!iU⊤
i MUi

, �i =
1
2!i

n−1
∑

p=0
ap!

2p
i (6)

where Eq. (6)2 derives from Eq. (5). If Eq. (5) holds, damping is said to be proportional, and it is easy to show that vibration
can be decomposed along the same eigenvectors (mode shapes) Ui of the undamped case in Eq. (1).
On the other hand, when the damping matrix C does not satisfy Eq. (5), i.e., when the system is non-proportionally damped,

Eq. (2) does not represent the natural modes of the considered system any more24,25. Thus, this standard analysis cannot describe
damped structural dynamics, and a state-space formulation is needed, as follows.
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2.2 State-space formulation
The space state of a mechanical system is given by its configuration descriptors and their ratios with respect to time; that is,
position and velocity can uniquely describe the response of the system. If we pose

z(t) =
[

u(t)
u̇(t)

]

, A =
[

C M
M 0

]

, B =
[

K 0
0 −M

]

, (7)

the second order differential system in Eq. (4) is turned into a system of two sets of first order differential equations, and the free
vibration of a non-proportionally damped mechanical system is governed by

Aż(t) + Bz(t) = 0 (8)

A more general separation of space and state variables than that in Eq. (2) yields a more general eigenvalue problem

z(t) = Ze−�t ⇒ (B − �A)Z = 0 (9)

where the pairs (�i,Zi), i = 1, 2,… , 2n are the eigensolutions of the structure in terms of state-space variables. Under the same
assumptions of Sub-section 2.1, A,B are 2n × 2n real, symmetric, non-positive definite matrices that admit complex conjugate
couples of eigenpairs (i = 1, 2,… , n)

⎧

⎪

⎨

⎪

⎩

�i = �i!i + {!i
√

1 − �i

�n+i = �i!i − {!i
√

1 − �i

⎧

⎪

⎨

⎪

⎩

Zi =
[

Ui

�iUi

]

, Ui ∈ ℂn×1

Zn+i = Re(Zi) − {Im(Zi)
(10)

Here, according to the notation of Sub-section 2.1, !i is the i−th natural angular frequency, �i the i−th damping ratio, and
the Ui list n quantities describing the mode shapes of vibration. At a first glance, things do not change much with respect to
proportionally damped structures; basically, the samemode shapesUi, which were lists of real quantities in the standard dynamic
analysis, become lists of complex numbers, representing out-of-phase vibration.
The dynamics of a proportionally damped mechanical systemmay also be described by state-space variables. The i−th natural

angular frequency !i and i−th damping ratio �i then coincide with those given by Eqs. (3), Eq. (6), respectively, and the natural
modes are lists of complex numbers. This complexity is actually fictitious, sometimes labelled as ‘dummy’. Indeed, the compo-
nents of the natural modes of proportionally damped structures lie on straight segment of the real line in standard analysis, which
is simply rotated in Gauss’ complex plane in state-space analysis; this derives from the natural modes being independent of the
analysis for their description. Thus, it is apparent that such complexity may be removed losing no information on the dynamics of
the structure. On the contrary, in non-proportionally damped structures Eqs. (3), (6) do not hold, and the complexity of the nat-
ural modes cannot be eliminated, since it is intrinsic in the physics of the system. This dispersion of the complex components of
the natural modes in the state-space description may be used to identify and evaluate the amount of non-proportional damping.

2.3 Removing dummy complexity
The difference among the mode shapes of proportionally and non-proportionally damped structures is strictly related to the
possibility of removing the dummy, or fictitious, complexity. To do that, we recall Liu’s rotation31, which rotates the straight
line representing the best linear fit of the mode shape in the complex plane, and makes the real part of the mode a maximum
and the imaginary part a minimum.
Liu’s rotation of the i-th complex mode shape Ui given by the eigenvalue problem in Eq. (9) is highlighted by adding the

subscript L, and described by the transformation

Ui,L = Ũie
(−i�i), Ũi =

Ui

Ui,max
e(

i�
4
) (11)

with Ui,max the maximum component of Ui, and

�i = arctan
(

Re(Ũi)T Im(Ũi)

Re(Ũi)TRe(Ũi)

)

(12)

The procedure is: by Eq. (11), the mode shape Ui is placed in the complex plane about a straight line through the origin at a
counterclockwise angle of �∕4 with respect to the real axis, yielding Ũi. The ratio Ui∕Ui,max assures that each k-th component
(Ũi)k of Ũi is such that ∣ (Ũi)k ∣≤ 1, having normalised with respect to the component with maximum amplitude. Then, Ui,L is
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obtained by rotating Ũi in the complex plane by the clockwise angle �i in Eq. (12), which is the slope of the straight line through
the origin of the complex plane that best fits (according to minimum squares) the dispersion of the components of Ũi.
To sum up, we have that (see also the scheme in Figure 1):

a. for undamped systems, Liu’s rotation turns the straight segments, onto which the components of natural modes lie, by a right
angle; since the modes obtained by state space dynamic analysis are purely imaginary, Liu’s rotation brings them onto the real
axis, and makes them coincide with those obtained by standard dynamic analysis;
b. for proportionally damped systems, the natural modes obtained by state space dynamic analysis are complex, but after Liu’s
rotation they become real and coincide with the real ones that would be obtained for zero damping;
c. for non-proportionally damped systems, the natural modes obtained by state space dynamic analysis are complex, but only
part of this complexity is dummy; Liu’s rotation superposes the best linear fit of the natural modes onto the real axis in the
complex plane, making the real part of the modes a maximum and the imaginary part a minimum.

FIGURE 1 Components of mode shapes by state space analysis (left) and after Liu’s rotation (right) for systems: undamped (a),
proportionally damped (b), non-proportionally damped (c).

2.4 Modal complexity for damage detection
Modal testing attracted the scientific community from the 1980s, concurrently with the rapid developments of computers and
measuring instruments, see, e.g., Ewins32. In the vast literature that followed, undamped or classically damped mechanical
systems were mainly analyzed, consequently neglecting the appearance of complex mode shapes. These approaches can be
motivated by a simple assumption: the real part of the eigenmodes is related to themass and stiffness distributions in the structure,
whereas the complex part can be caused by several effects such as non-proportional damping, non-linear behavior, aerodynamic
damping, gyroscopic effects, and poor test conditions (synchronization problems, low signal-to-noise ratios, weakly excited
modes, etc.)33, the magnitudes of which are generally limited in usual applications.
This objective difficulty in detecting the sources of complexification makes applications on large structures usually require

specific modal complexity checks before the final clustering of structural modes34. At the same time, modal complexity cannot
be always neglected (for instance, when external dissipators are inserted into structures); in these cases, a complex formulation
must be suitably adopted to get the relevant outcomes35,36.
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In this work we base on a peculiar meaning of damage. Undamaged structures meet the assumption of proportional damping:
as a result, their mode shapes are real. The onset of small, localised structural damages implies a loss of stiffness and an increase
of dissipation with respect to the undamaged situation; on the other hand, except for very special cases, the variation of mass
due to damage is usually negligible. Therefore, in general, damaged structures behave as non-proportionally damped systems,
and exhibit complex mode shapes; the magnitude of their complex nature, once removed its fictitious part, can be assumed as a
measure of damage.
To this aim, the amount of complexity of mode shapes is evaluated via a non-negative scalar function (a sort of norm) allowing

to follow the damage evolution path. Resorting to the results in Iezzi et al.27, for discrete n-degrees-of-freedom systems the
following complexity indexes Iℎ, ℎ = 1, 2,… , 5 are eligible and effective for localized damage (∣ ∙ ∣ and ‖ ∙‖ stand for absolute
value and Euclidean norm, respectively):
1. modal polygons37

I1 =
n
∑

i=1

Ai
nAmax

, Amax = n cos
(�
n

)

sin
(�
n

)

(13)

where Ai is the area enclosed by the polygon representing the modal components of Ui,L in the complex plane, whereas Amax is
the maximum potential area of modal polygons;
2. phase differences37

I2 =
n
∑

i=1

�i,max − �i,min
n�

(14)

with �i the phase angles of the displacement normalised i-th mode, and subscripts denoting maximum and minimum value; the
�i span the first quadrant of Gauss’ plane and are the phase angles of the vectors ∣ Re(Ui,L) ∣ +{ ∣ Im(Ui,L) ∣;
3. modal collinearity31

I3 =
n
∑

i=1

1
n

∣ Re(Ui,L)T Im(Ui,L) ∣
√

[Re(Ui,L)TRe(Ui,L)][Im(Ui,L)T Im(Ui,L)]
(15)

with Ui,L the i-th complex natural mode after Liu’s rotation;
4. average of the imaginary parts of the natural modes31

I4 =
n
∑

i=1

n
∑

k=1

∣ Im((Ui,L)k) ∣
n2

(16)

where (Ui,L)k is the k-th component of Ui,L;
5. weight of the imaginary part of the natural modes38

I5 =
n
∑

i=1

‖

‖

Im(Ui,L)‖‖
n ‖
‖

Ui
‖

‖

(17)

The Iℎ are always positive and go to zero when damping is proportional or null. To ensure damage identifiability, the Iℎ
shall be damage sensitive, rather pseudo-linear, and monotonically increasing with the damage evolution; we discuss these
requirements in the application we deal with.

3 DAMAGE AS A PERTURBATION

Damages are often ‘small’ variations of the physical properties of the intact system; thence, a perturbation of its response rep-
resents the effect of damage, see Lofrano emphet al.39,40 for discrete undamped and classically damped dynamical systems,
respectively. Analytically, the amount of damage ismeasured by a ‘small’ scalar parameter ", as inmany perturbation approaches:
a load in buckling and post-buckling analysis, as in Pignataro et al.41,42; a length scale parameter in Ruta et al.43,44; instances in
dynamics are inNayfeh’s monograph45; recent developments in a non-linear framework are in Lacarbonara et al.46. In dynam-
ics discrete or discretised systems are more often adopted, since vibrating continua, see Lofrano et al.47, require additional
hypotheses on the number of mode shapes to be considered in the evaluation of perturbation terms.
We present the direct problem, and determine the response variation due to damage by a perturbation approach. Then, in the

inverse problem we use (some of) the damage indicators Iℎ in order to detect damage.
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3.1 Direct problem
We pose that a discrete system has dynamic behaviour depending with sufficient regularity on a small parameter " ≪ 1
expressing the amount of damage. Then, it is natural that all state space descriptors also regularly depend on "

(

M,C,K, �i,Zi
)

=
(

M("),C("),K("), �i(")Zi(")
)

(18)

The sensitivity analysis of the eigensolutions with respect to the damage indicator is developed following a perturbation
approach: due to the supposed regularity of the functions in Eq. (18), one can perform a formal "-power series expansion of the
physical quantities of the system around " = 0

⎧

⎪

⎨

⎪

⎩

M(") = M0 + "M1 + "2M2 +…
C(") = C0 + "C1 + "2C2 +…
K(") = K0 + "K1 + "2K2 +…

(19)

In Eq. (19) the following positions hold

(Mj ,Cj ,Kj) =
1
j!

dj(M("),C("),K("))
d"j

|

|

|

|"=0
(20)

The literature considers two types of dynamic systems, non-nilpotent (non-defective) and nilpotent (defective) to guarantee
solvability of eigenvalue problems by perturbation schemes. Systems of the first type see algebraic and geometric multiplicity
coincide (each eigenvalue with multiplicity r generates an eigenspace of dimension r); the remaining systems belong to the
second type. In48 it is rigorously shown that non-nilpotent systems admit solution as a perturbation series of integer powers of
the ‘small’ parameter (Taylor series); on the contrary, fractional powers (Puiseux series) are needed for nilpotent systems49.
The dynamic systems considered here are ruled by symmetric operators (see Eq. (9)2) that cannot be defective; then,

eigensolutions can be expanded in a formal powers series of " with integer exponents, i.e.,
{

�i = �0i + "�1i + "2�2i +…
Zi = Z0i + "Z1i + "2Z2i +…

(21)

The perturbation approach in Eqs. (19–21) leads to
[B0 + "B1 + "2B2 +⋯ − (�0i + "�1i + "2�2i +…)(A0 + "A1 + "2A2 +…)](Z0i + "Z1i + "2Z2i +…) = 0

Ak =
[

Ck Mk
Mk 0

]

, Bk =
[

Kk 0
0 −Mk

]

, k = 0, 1, 2…
(22)

The problem in Eq. (22) can be re-arranged into a collection of eigenvalue problems, the solutions of which have the form in Eq.
(21), which we arrest at the second order, i.e., within an error o("2). As common in perturbation approaches, the eigenproperties
of order 1 and 2 can be written in closed form, starting from the 0-th order solution (�0, Z0).
Balancing the power of ", after some manipulations and simplifications we obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�1i =
Z⊤0i(B1 − �0iA1)Z0i

Z⊤0iA0Z0i

Z1i = �iiZ0i +
2n
∑

j=1
j≠i

Z⊤0j(B1 − �0iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j
Z0j

(23)

at order 1, while at order 2 we have
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�2i =
Z⊤0i(B1 − �0iA1 − �1iA0)Z1i

Z⊤0iA0Z0i
+

Z⊤0i(B2 − �0iA2 − �1iA1)Z0i

Z⊤0iA0Z0i

Z2i = �iiZ0i +
2n
∑

j=1
j≠i

(Z⊤0j(B1 − �0iA1 − �1iA0)Z1i

(�0i − �0j)Z⊤0jA0Z0j
+

Z⊤0j(B2 − �0iA2 − �1iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j

)

Z0j

(24)

(details are in Appendix); �ii, �ii are undetermined amplification parameters. According to this technique, the 0-th order solution
describes the undamaged state of the system, while the terms of order 1 and 2 in Eqs. (23), (24) are small detachments from
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the undamaged state and express closed-form solutions of the dynamics of damaged structures. Remark that this solution suits
non-resonant systems (like the framed structures we investigate), for which |�0i − �0j| ↛ 0 ∀i ≠ j; resonant or nearly-resonant
(non-nilpotent) systems require other well-suited techniques50.

3.2 Inverse problem
We propose an identification technique requiring three steps:
1. experimental modal complexity indexes are chosen and evaluated basing on actual measures, Figure 2;

FIGURE 2 First step of identification.

2. assume to know the matricesM0,C0,K0 of the undamaged system; then, the perturbation approach in Eqs. (19–21) provides a
numerical estimate of the chosen modal complexity indexes in function of the position and magnitude of the damage. Supposing
that the damage is located at different positions within the structure provides a series of candidate damaged structural models
ℎ, each characterised by the perturbation quantities (�ℎ1i,Z

ℎ
1i) and (�ℎ2i,Z

ℎ
2i). The magnitude of the damage is the value of "

scaling the eigensolutions according to the formal expansion in Eq. (21). Then, for eachℎ one may find a function providing
the chosen modal complexity indexes Ipert versus the amount of damage ", Figure 3a. The actual value of the chosen modal
complexity indexes Iexp lets some candidate model be eliminated, while the other ℎ yield the same value Iexp for different
levels of damage "̃ℎ, see Figure 3b;

FIGURE 3 Second step of identification: a) complexity indexes vs. damage parameter for various candidates; b) possible
amounts of damage for various candidates.

3. the candidate model best representing the actual damage location is found by minimising the objective function (OF)

OF(ℎ) =
n
∑

i=1

(

1 −
√

MAC(Uℎ
i,L, Ũi,L)

)2

(25)

In Eq. (25) Ũi,L is the measured i-th mode shape after Liu’s rotation, Uℎ
i,L is the same mode given by the ℎ-th candidate model

ℎ (setting the damage parameter equal to "̃ℎ), and MAC (Modal Assurance Criterion) is

MAC(a,b) = ∣ a⊤b ∣2

(a⊤a)(b⊤b)
(26)
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for any two vectors a,b. MAC was introduced in51 to improve previous criteria, affected by error propagation in evaluating
the matrices of the system. MAC is real, with values in [0, 1]: the first extremum indicates no correspondence between the
considered vectors, the second a perfect correspondence; details are in52. Using MAC in the OF fits the scope of measuring the
consistency of the actual (measured) mode shapes with the eigenvectors provided by the candidate modes ℎ, independent of
the value of ". The proposed OF uses Least Squares Method (LSM) and its global minimum provides the best candidate model,
Figure 4a, which in turn provides an estimate of the actual damage measure "̃ℎ, Figure 3b. Even neglecting all error sources,
real (actual) and estimated (identified) damage differ: indeed, the truncation of the series expansion in the perturbation scheme
cannot provide an exact sum. Within the limits of acceptability of this expansion, the higher its order, the smaller the deviation,
i.e., the discrepancy is as small as ", Figure 4b.

FIGURE 4 Third step of identification: a) best candidate model and b) truncation error.

By our experience, a second-order approach makes the truncation discrepancy negligible if " < 0.20; if " > 0.20, the
technique should be applied carefully, since the solution is ‘too far’ from the generating one, and the results could be unreliable.
Conversely, when " < 0.20 the technique is suitable for detecting, quantifying and localising structural damages; these features
classify our method at level 3 identification techniques according to Table 1.

TABLE 1 Levels of damage identification53.

Level Presence Entity Position Remaining life
1

√

× × ×
2

√ √

× ×
3

√ √ √

×
4

√ √ √ √

This flowchart looks reliable, fast and easy to apply, but some remarks are needed. First, the critical judgment of the personnel
involved is crucial to limit the number of candidate models, i.e., the overall computational effort required by our proposal:
roughly speaking, the number of ℎ should be minimum. Furthermore, we posed to know M0,C0,K0 from a design analysis
or a preliminary experimental campaign. In the latter case, the same approach presented here can be applied, considering " a
measure of the ‘distance’ from the actual matrices to the assumed ones.We also highlight how our approach admits an initial non-
proportional dampingmatrix (that is,C0 does notmeet Caughey rule in Eq. (5)); this fulfills the comparison criterion “assessment
of damage requires a comparison between two system states” of the axiomatic theory on structural health monitoring, postulated
by Worden et al.54.
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4 NUMERICAL VALIDATION

We present a numerical validation of the reliability of our technique: its accuracy is actually strongly related to that of the
experimental campaign (see the comments in Sub-section 2.4), remembering the computational aspects required to collect
complex mode shapes55. To address this, we are planning a validation by lab experiments.
Consider a plane shear-type 4-story frame reduced to a discrete four degrees-of-freedom structure, see Figure 5. We assume

m = 1kg, k = 1.8kN/m for mass and stiffness, to facilitate laboratory tests and to provide a modal model consistent with real
steel framed structures.

FIGURE 5 Structural model.

Describing motion by the absolute displacement ui, i = 1 − 4 of each story24 yields mass and stiffness matrices

M0 =

⎡

⎢

⎢

⎢

⎢

⎣

m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

⎤

⎥

⎥

⎥

⎥

⎦

= diag
[

m
]

4×4 = diag
[

1
]

4×4 kg, K0 =

⎡

⎢

⎢

⎢

⎢

⎣

2k −k 0 0
−k 2k −k 0
0 −k 2k −k
0 0 −k k

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

3.6 −1.8 0 0
−1.8 3.6 −1.8 0
0 −1.8 3.6 −1.8
0 0 −1.8 1.8

⎤

⎥

⎥

⎥

⎥

⎦

kN
m

The damping matrix C of the undamaged system is posed Rayleigh-like, i.e., proportional to mass and stiffness as

C0 = a0M0 + a1K0, a0 = 0.31501/s, a1 = 0.0003s

It is evident that Rayleigh damping is given by Eq. (5) when only the first two terms are retained in Caughey’s series.
The natural properties of the undamaged structure may be found by standard libraries, since we deal with an usual and well-

known, numerically well-treated eigenvalue problem, no matter whether in a standard or non-standard form. However, in this
case the limited amount of degrees of freedommade it possible to develop a in-house code in a standard programming language;
in addition, this helps, in a second step, to check the proposed identification procedure.
The natural modes of the undamaged structure and their placement in the complex plane are sketched in Figure 6, which

consists of four distinct plots. One shows the shape of the natural modes in the plane of the structure, the other three show by
coloured bullets the location of the numerical entries of the lists expressing the natural modes in Gauss’ plane. On top right, we
see that the natural modes all lie on the real axis after a standard dynamic analysis, since the considered structure is proportionally
damped, see Sub-section 2.1. On top left, the same lists fill straight segments in the complex plane after a state-space analysis,
according to the theory in Sub-section 2.1 for proportionally damped structures; the angles of Liu’s rotation (see Sub-section
2.3) are pointed out. On bottom left, we see how Liu’s rotation actually superposes the straight segments of the sub-figure top
left onto the real axis, and makes them coincide with those in sub-figure top right. On bottom right, we see the shapes of the
natural modes, exhibiting the symmetries expected from the discrete structure considered, with the relevant values of frequencies
fi = !i∕(2�) and damping ratios �i.
We now introduce a local damage for the considered structure, imagining it as a perturbation of the undamaged state. As

already said, a local damage does not to alter the mass properties of a mechanical system, hence the mass matrixM (") remains
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FIGURE 6 Natural mode shapes of the initial (undamaged) system.

unaffected by the perturbation scheme in Eq. (19); thus, in the simulations to validate the proposed procedure we assume

M(") = M0

The damage is supposed ‘small’, located at the third floor; the parameter " is imagined to act in three different ways:
1. " affects the stiffness matrix K(");
2. " affects the damping matrix C(");
3. " affects both stiffness and damping K("),C(").
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In detail, in case 1 damage is simulated as a first-order variation of the undamaged matrix K0, consisting in a local reduction of
magnitude "k of the stiffness at the third story. Thus, the global stiffness matrix of the damaged structure is

K(") = K0 + "k

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

In case 2, damage is simulated as a first-order variation of the undamaged matrix C0, consisting in a local increase of magnitude
"c3 of the damping coefficient at the third story. Thus, the damping matrix C of the damaged structure is

C(") = C0 + "c3

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

With no loss in generality, in the numerical simulations we adopt c3 = 25Ns/m; following the notation in Sub-section 2.2, when
" = 0.20 (the reliability threshold indicated in Sub-section 3.2) this value of c3 is able to increase the damping ratios �i shown
in Figure 6 from 1.29, 1.01, 1.22 and 1.39 % to 1.66, 2.96, 1.67 and 6.19 %, respectively.
In case 3, damage is simulated as a first-order variation of both the stiffness and damping matrices of the undamaged structure:

it consists of both a reduction in stiffness of magnitude "k and an increase in damping of magnitude "c3 at the third story. Since
the mass matrix of the damaged system is assumed equal to that of the undamaged structure, these variations of stiffness and
damping, either individual or cumulative, certainly lead to non-proportionally damping conditions, i.e., dissipation properties
not matching Eq. (5). The three states of damage are sketched in Figure 7.

FIGURE 7 Damaged states: 1) (left) stiffness reduction; 2) (right) damping increase; 3) (middle) combination of 1) and 2).

4.1 Sensitivity analysis of eigensolutions
We investigate the results of our in-house numerical code on the natural properties of the considered structure affected by the
first damage state described (a first-order stiffness reduction at the third story). We limit to this since from the point of view of
damage detection the key point is a thorough investigation of the response of the complexity indexes introduced in Section 2, to
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choose to most predictive one for applications. Thus, we limit to show how our technique is able to follow the evolution of the
natural properties with the growth of damage, and provide results both in accord with physics and suitable to be inserted into a
procedure of damage identification for structural health monitoring.

FIGURE 8 Real (left, " = 0) and complex (right, " = 0.5) mode shapes for the damage case 1.

By considering a reduction of stiffness amounting to " = 0.5, the bullets describing the natural modes of the damaged system
are in Figure 8 (right), and those for the undamaged structure are juxtaposed on the left, for the sake of a thorough comparison.
The analysis is performed with respect to state-space variables, and the plots follow Liu’s rotation, in order to normalise each
mode with respect to its maximum component and minimise their imaginary part. We may check that all the modes of the
undamaged structure are real, and those of the damaged structure exhibit an amount of complex properties (imaginary parts
for all the entries of the lists providing the modes). In our application, moreover, complexification is more significant for faster
oscillations (third and fourth mode), whereas it is less noticeable for slower ones (first and second mode). We believe that this
result can be generalized and applied within the framework of optimal sensors placement; however, this topic belongs to a still
ongoing investigation, beyond the scope of this paper.
Further insights for the direct problem are in Figures 9 and 10, which show exact solutions (ES) versus the 1st- and 2nd-order

solutions provided by the perturbation approach (PA), both for the eigenvalues (i.e., the imaginary and real parts of eigenvalues
of the dynamic problem) and the four components (with real and imaginary parts) of the fastest natural mode (i.e., the fourth
mode shape of the dynamic problem) before Liu’s rotation. The exact solutions are so defined since they are the eigensolutions
of the complete problem expressed by Eq. 9, while the 1st- and 2nd-order solutions are provided by Eq. 21. The curves providing
the so-called exact solutions are solid, the others are dashed.
In Figure 9 we see that the actual values of the real and imaginary parts of the eigenvalues and of their decrease ratio due

to damage are very well approximated by the first-order perturbation approach if the ‘small’ parameter remains below 0.5. The
first three values of the imaginary part (in increasing order) are approximated from above, the last and highest value from below;
the opposite happens for the real part of the eigenvalues. However, we remark that in the range 0 ≤ " ≤ 0.50 the approximation
is always very good, no matter which is the considered mode. On the other hand, the first-order approximated values of the real
and imaginary parts of the components of the fastest mode shape practically coincide with the exact ones as long as " < 0.20.
After such value, the approximated values of the imaginary and real parts dominate the actual ones from above.
As to the second-order approximation, Figure 10 shows that both the real and the imaginary part of the eigenvalues are very

well approximated by the perturbation approach up to " ≈ 0.70, approaching from below or above as the first-order solution. For
the real and imaginary parts of the components of the fastest mode shape, however, the improvement gathered using a second-
order approximation instead of a linear one is less notable, and a very good approximation requires again " < 0.20. Beyond this



14 LOFRANO ET AL.

FIGURE 9 Complex eigensolutions (eigenvalues and fastest mode shape): case 1, first-order solution.

threshold, approximated values dominate the exact ones all from above, which may result in overestimating displacements; this
has some importance in identification.

4.2 Sensitivity analysis of complexity indexes
We investigate how the results for the eigenproperties of the damaged structure according to the exact approach in Eq. (9) and
to the first- and second-order perturbation approximations provided by Eq. (21) affect the modal complexity indexes defined by
Eqs. (13–17).
The index I2 (Eq. (14)) can be misleading: the phase difference relates complexification only to the extrema of a mode,

neglecting the other n − 2 components. For instance, Figure 11a shows one of our simulations (damage case 1, closest view
in the range 0.20 ≤ " ≤ 0.40), where the ratio (�i,max − �i,min)∕� mistakenly decreases for the second mode while damage
increases. Figure 11b shows the path of the relevant phase angles �i defined in Sub-section 2.4, that should be identically zero
for undamped or proportionally damped systems. It is apparent that the bad performance of I2 is related to the adoption of just
the two extremal values. Then, from now on we do not explicitly evaluate I2, and we show graphs on I1, I3 − I5 in Figures 12,
13, and 14 for the damage cases 1,2, 3, respectively. As previously, solid lines represent the so-called exact solution, and dashed
lines represent first- and second-order approximations.
Figure 12 shows that in the first damage case (stiffness reduction) the complexity indexes I1, I3 − I5 are suitable to quantify

the damage increase. All the approximated values lie below those provided by the exact solution, independent of the chosen
index, and the approximation is quite good for low values of ", then the first- and second-order paths detach sensibly from the
actual ones, even though the second-order approach clearly improves the description of actual curves.
Figure 13 shows that also in the second damage case (damping increase) the complexity indexes I1, I3 − I5 appear eligible

for damage detection. However, approximated values of index I1 are not satisfying, since they are sometimes higher, then lower
than the exact ones, which is not desirable in identification procedures. On the contrary, the actual curves of the indexes I3 to
I5 are always enclosed between the approximated ones of the perturbation approach, and this monotonicity is important in the
applications. As in the previous case, for low values of " (i.e., a small amount of damage), the three curves almost coincide;
moreover, in this case even a first-order perturbation procedure suffices to have a very reliable complexity index.



LOFRANO ET AL. 15

FIGURE 10 Complex eigensolutions (eigenvalues and fastest mode shape): case 1, second-order solution.

FIGURE 11 Index I2: a) non increasing behaviour for the second mode and b) its explanation.

In the third damage case (a combination of decrease in stiffness and increase in damping), Figure 14 shows that the complexity
index I1 is not satisfying, since, apart from the usual first part (corresponding to very low values of the damage parameter), the
curves do not exhibit monotonicity; moreover, approximated and actual curves cross each other, thus losing in reliability. Also
the damage index I3 appears to be inadequate for identification purpose, because its growth trend is not regular with the evolution
of ". On the other hand, the complexity indexes I4 and I5 look suitable to follow the increase in damage and the second-order
approximated values meet the exact solution in a very satisfactory way: this is a key point in driving our identification procedure
in what seems the most promising direction.

4.3 Identification
Following the previous result on the reliability of modal complexity indexes for damage identification, the inverse problem
of dynamics aimed at structural health monitoring is coped with by resorting to the second-order perturbation approach. We
suppose we wish to monitor the health state of the benchmark structure of Figure 5, when it undergoes the three considered
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FIGURE 12 Complexity indexes for the damage case 1.

FIGURE 13 Complexity indexes for the damage case 2.

damage cases. With regard to identification, experimental quantities are here simulated numerically solving Eq. (9), where M,
C and K are the mass, damping and stiffness matrices obtained by replacing the current value of the damage parameter ".
Since we wish to numerically validate our approach for damage detection, we assume thatM0,C0,K0 are exactly known from

a previous experimental campaign (see the comments in Sub-section 3.2). Then, four different candidate models are adopted
for the 4-story frame, each assuming that damage acts at a different floor as a linear variation of the relevant physical matrices
(Figure 15). The results of damage identification are in Figures 16, 17, and 18 for the damage state 1, 2, 3, respectively. For all
the cases our procedure properly selects the third candidate model of Figure 15, and the results are in a series of plots showing
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FIGURE 14 Complexity indexes for the damage case 3.

the identified parameter " versus the actual one provided by the assumption on the damaged state; if identification were perfect,
the two values should coincide, yielding the dashed line.

FIGURE 15 Sketch of selected candidate models.

Figure 16 shows that the identified damage parameter for this state is precise until a value " ≈ 0.2 (i.e., for a small evolution
of damage from the initial condition), thus the identification is effective and accurate, regardless of the modal complexity index.
However, when " > 0.2 the discrepancies between the two lines cannot be neglected, and the identified parameter " overestimates
the actual amount of damage, which is in favour of safety, but not an optimum.
Figure 17 shows that the identified damage parameter for this state is again precise for very small values of ", and identifi-

cation is effective and accurate for all the Iℎ. After such values the discrepancies between the two lines are visible but not that
remarkable; except for the index I1, which does not exhibit a monotonic increase, the identified parameter " underestimates the
actual amount of damage.
Figure 18 shows that the identified damage evolution parameter for this damaged state is again accurate for small ": identifi-

cation is effective and accurate for all the modal complexity indexes. However, we see that the indexes I4, I5 have a very good
identification performance for all the considered range of "; since, in general, damage can actually be seen as both a reduction
of stiffness and an increase of damping, the application of these two indexes in our identification procedure looks promising and
effective.
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FIGURE 16 Damage identification results, case 1.

5 FINAL REMARKS AND CONCLUSIONS

A perturbation approach relates damage to non-proportional damping, hence to natural mode shapes gaining an imaginary part,
turning from real to complex. Damage dentification is based on the minima of an objective function comparing measured and
analytical mode shapes; the latter are obtained by perturbing the initial undamaged system, i.e., damages are ‘small’ variations
of healthy physical parameters.
A numerical validation considers three different damages: variation of stiffness, of damping, of both simultaneously. With the

exception of the phase differences indicator (I2), the other four non–negative scalar functions explored in this contribution prove
to be effective to properly quantify local damages. Among these indexes, the average (I4) and the weight (I5) of the imaginary
parts of the natural modes are the most reliable and stable in following damage evolution.
The inverse procedure ruled by the perturbation scheme is able to detect, locate and quantify damage in a wide range of

the parameter " with a low computational effort. In detail, a second-order approach shows negligible truncation errors when
" ≤ 0.20, confirming our previous findings on adopting perturbation approaches in identification frames.
Ongoing studies are on experimental validations with noised signals; further developments focus on more general structures.

Moreover, to improve the capability of the method in damage detection, the possibility to consider the overall eigensolution in
the objective function is under investigation.

How to cite this article: Lofrano E., Paolone A., Ruta G.(2018), Dynamic damage identification using complex mode shapes,
Struct. Control Health Monit., 2018;00:1–1.

APPENDIX

A PERTURBATION APPROACH

Vibration of non-proportionally damped discrete systems are ruled as described in Sub-section 2.2. By operating a perturbation
technique, we are led to the eigenvalue problem in Eq. (22), which must be satisfied ∀". Thus, balancing equal powers of " leads
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FIGURE 17 Damage identification results, case 2.

to a recursive list of p + 1 sub-equations, with p the maximum power of " in the expansion
"0 ∶ (B0 − �0iA0)Z0i = 0

"1 ∶ (B0 − �0iA0)Z1i = (�0iA1 + �1iA0 − B1)Z0i

"2 ∶ (B0 − �0iA0)Z2i = (�0iA1 + �1iA0 − B1)Z1i + (�0iA2 + �1iA1 + �2iA0 − B2)Z0i …

(A1)

We evaluate the first- and second-order terms of the eigenproperties �i,Zi in the series expansion in Eq. (21).
A first-order solution follows the first-order expansion

{

A = A0 + "A1

B = B0 + "B1

{

�i = �0i + "�1i
Zi = Z0i + "Z1i

(A2)

The generating equation (0-th order equation) provides the unperturbed terms (�0i,Z0i); then, the first-order correction is
obtained by projecting Z1i onto the Z0i basis

Z1i =
2n
∑

j=1
Z0j�ij (A3)

Replacing Eq. (A3) into Eq. (A1)2 yields

(B0 − �0iA0)
2n
∑

j=1
Z0j�ij = (�0iA1 + �1iA0 − B1)Z0i (A4)

and, pre-multiplying both sides by Z⊤0i
Z⊤0i(B0 − �0iA0)

∑2n
j=1 Z0j�ij = Z⊤0i(�0iA1 + �1iA0 − B1)Z0i (A5)

whence, by orthogonality of the Z0j with respect to A0,B0

Z⊤0i(B0 − �0iA0)Z0i�ii = Z⊤0i(�0iA1 + �1iA0 − B1)Z0i (A6)

From the generating equation (A1)1, the left-hand-side of Eq. (A6) vanishes, simplifying into

Z⊤0i(�0iA1 + �1iA0 − B1)Z0i = 0 (A7)
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FIGURE 18 Damage identification results, case 3.

thus providing �1i

�1i =
Z⊤0i(B1 − �0iA1)Z0i

Z⊤0iA0Z0i
(A8)

If both sides of Eq. (A4) are pre-multiplied by Z⊤0k, k ≠ i

Z⊤0k(B0 − �0iA0)
∑2n
j=1 Z0j�ij = Z⊤0k(�0iA1 + �1iA0 − B1)Z0i (A9)

The orthogonality of Z0j with respect to A0,B0 yields

Z⊤0k(B0 − �0iA0)Z0k�ik = Z⊤0k(�0iA1 − B1)Z0i (A10)

The generating equation (A1)1 allows to replace B0Z0k with �0kA0Z0k; then, Eq. (A10) becomes

Z⊤0k(�0k − �0i)A0Z0k�ik = Z⊤0k(�0iA1 − B1)Z0i (A11)

from which

�ik =
Z⊤0k(B1 − �0iA1)Z0i

(�0i − �0k)Z⊤0kA0Z0k
(A12)

Finally, by making - for convenience - a change of index

�ij =
Z⊤0j(B1 − �0iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j
(A13)

the eigenvectors Z1i are obtained ruling Eq. (A3)

Z1i = �iiZ0i +
2n
∑

j=1
j≠i

Z⊤0j(B1 − �0iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j
Z0j (A14)

where the coefficients �ii ∈ ℝ are indeterminate and play the role of multiplicative constants.
A second-order solution follows the expansions

{

A = A0 + "A1 + "2A2

B = B0 + "B1 + "2B2

{

�i = �0i + "�1i + "2�2i
Zi = Z0i + "Z1i + "2Z2i

(A15)
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where the 0-th and 1-st order solutions are assumed known. Then, the eigenvector Z2i is projected onto the Z0i

Z2i =
2n
∑

j=1
Z0j�ij (A16)

Replacing such projection into the second-order eigenvalue problem Eq. (A1)3 yields

(B0 − �0iA0)
∑2n
j=1 Z0j�ij = (�0iA1 + �1iA0 − B1)Z1i + (�0iA2 + �1iA1 + �2iA0 − B2)Z0i (A17)

Premultiplying both sides of Eq. (A17) by Z⊤0i yields

Z⊤0i(B0 − �0iA0)
∑2n
j=1 Z0j�ij = Z⊤0i(�0iA1 + �1iA0 − B1)Z1i + Z⊤0i(�0iA2 + �1iA1 + �2iA0 − B2)Z0i (A18)

whence, by orthogonality of the Z0j with respect to A0,B0

Z⊤0i(B0 − �0iA0)Z0i�ii = Z⊤0i(�0iA1 + �1iA0 − B1)Z1i + Z⊤0i(�0iA2 + �1iA1 + �2iA0 − B2)Z0i (A19)

From the generating equation (A1)1, the left-hand-side of Eq. (A19) vanishes, simplifying into

Z⊤0i(�0iA1 + �1iA0 − B1)Z1i + Z⊤0i(�0iA2 + �1iA1 + �2iA0 − B2)Z0i = 0 (A20)

thus providing �2i

�2i =
Z⊤0i(B1 − �0iA1 − �1iA0)Z1i

Z⊤0iA0Z0i
+

Z⊤0i(B2 − �0iA2 − �1iA1)Z0i

Z⊤0iA0Z0i
(A21)

If both sides of Eq. (A17) are pre-multiplied by Z⊤0k, k ≠ i

Z⊤0k(B0 − �0iA0)
∑2n
j=1 Z0j�ij = Z⊤0k(�0iA1 + �1iA0 − B1)Z1i + Z⊤0k(�0iA2 + �1iA1 + �2iA0 − B2)Z0i (A22)

The orthogonality of Z0j with respect to A0,B0 yields

Z⊤0k(B0 − �0iA0)Z0k�ik = Z⊤0k(�0iA1 + �1iA0 − B1)Z1i + Z⊤0k(�0iA2 + �1iA1 − B2)Z0i (A23)

The generating equation (A1)1 allows to replace B0Z0k with �0kA0Z0k; then, Eq. (A23) becomes

Z⊤0k(�0k − �0i)A0Z0k�ik = Z⊤0k(�0iA1 + �1iA0 − B1)Z1i + Z⊤0k(�0iA2 + �1iA1 − B2)Z0i (A24)

from which

�ik =
Z⊤0k(B1 − �0iA1 − �1iA0)Z1i

(�0i − �0k)Z⊤0kA0Z0k
+

Z⊤0k(B2 − �0iA2 − �1iA1)Z0i

(�0i − �0k)Z⊤0kA0Z0k
(A25)

Finally, by making - for convenience - a change of index

�ij =
Z⊤0j(B1 − �0iA1 − �1iA0)Z1i

(�0i − �0j)Z⊤0jA0Z0j
+

Z⊤0j(B2 − �0iA2 − �1iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j
(A26)

the eigenvectors Z2i are obtained ruling Eq. (A16)

Z2i = �iiZ0i +
2n
∑

j=1
j≠i

(Z⊤0j(B1 − �0iA1 − �1iA0)Z1i

(�0i − �0j)Z⊤0jA0Z0j
+

Z⊤0j(B2 − �0iA2 − �1iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j

)

Z0j (A27)

where the �ii ∈ ℝ coefficients remain indeterminate and play the role of the generic multiplicative constants.
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Thus, if
(

�ii, �ii
)

∈ ℝ, a second-order perturbation approach provides the eigenpairs �i,Zi
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�1i =
Z⊤0i(B1 − �0iA1)Z0i

Z⊤0iA0Z0i

Z1i = �iiZ0i +
2n
∑

j=1
j≠i

Z⊤0j(B1 − �0iA1)Z0i

(�0i − �0j)Z⊤0jA0Z0j
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