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Stabilizability in optimal control
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Abstract. We extend the classical concepts of sampling and Euler solutions
for control systems associated to discontinuous feedbacks by considering
also the corresponding costs. In particular, we introduce the notions of
Sample and Euler stabilizability to a closed target set C with (p0,W )-
regulated cost, for some continuous, state-dependent function W and some
constant p0 > 0: it roughly means that we require the existence of a stabi-
lizing feedback K such that all the corresponding sampling and Euler so-
lutions starting from a point z have suitably defined finite costs, bounded
above by W (z)/p0. Then, we show how the existence of a special, semi-
concave Control Lyapunov Function W , called p0-Minimum Restraint
Function, allows us to construct explicitly such a feedback K. When dy-
namics and Lagrangian are Lipschitz continuous in the state variable, we
prove that K as above can be still obtained if there exists a p0-Minimum
Restraint Function which is merely Lipschitz continuous. An example on
the stabilizability with (p0,W )-regulated cost of the nonholonomic inte-
grator control system associated to any cost with bounded Lagrangian
illustrates the results.
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1. Introduction

In this paper we investigate in an optimal control perspective the stabilizability
to a set C ⊂ R

n of the nonlinear control system

ẋ = f(x, u), u ∈ U, (1.1)
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to which we associate a cost of the form∫ Tx

0

l(x(τ), u(τ)) dτ, (1.2)

where l ≥ 0, and Tx ≤ +∞—the exit-time of x—verifies

x(t) ∈ R
n \ C for all t ∈ [0, Tx), lim

t→T −
x

d(x(t)) = 0 (1.3)

(for any y ∈ R
n, d(y) denotes the distance of y from C). In particular, for any

r > 0, we set Br(C) := {y ∈ R
n : d(y) ≤ r} and assume that:

(H0) the target set C ⊂ R
n is closed, with compact boundary; the control set

U ⊆ R
m is closed, not necessarily bounded; the functions f : (Rn \ C) × U →

R
n, l : (Rn \ C) × U → [0,+∞) are uniformly continuous on K × U for any

compact set K ⊂ R
n \ C; for any R > 0 there is some M(R) > 0 such that

|f(x, u)| ≤ M(R), l(x, u) ≤ M(R) ∀(x, u) ∈ (BR(C) \ C) × U. (1.4)

Hence, for any admissible control, given by a function u ∈ L∞
loc([0, Tx), U),1

every Cauchy problem associated to (1.1) has in general multiple solutions and
the cost may be finite even if Tx = +∞.

In order to obtain sufficient conditions for the stabilizability of the system
with regulated cost, we consider the Hamiltonian

H(x, p0, p) := inf
u∈U

{〈p , f(x, u)〉 + p0 l(x, u)
}
, (1.5)

and the following notion, firstly introduced in [23] (in a slightly weaker form).

Definition 1.1. (p0-Minimum Restraint Function) Let W : Rn \ C → [0,+∞)
be a continuous function, which is locally semiconcave, positive definite, and
proper on R

n \ C. We say that W is a p0-Minimum Restraint Function—in
short, p0-MRF—for some p0 ≥ 0, if it verifies the decrease condition:

H(x, p0,D
∗W (x)) ≤ −γ(W (x)) ∀x ∈ R

n \ C, (1.6)
2 for some continuous, strictly increasing function γ : (0,+∞) → (0,+∞).

A p0-Minimum Restraint Function is at once a Control Lyapunov Func-
tion for (1.1) and, by [23, Prop. 5.1], also a strict viscosity supersolution to
the Hamilton-Jacobi-Bellman equation

sup
u∈U

{−〈DW (x) , f(x, u)〉 − p0 l(x, u)} − γ(W (x)) = 0, x ∈ R
n \ C.

Hence, when a p0—Minimum Restraint Function exists, on the one hand, the
(open-loop) global asymptotic controllability of the control system (1.1) to
C—namely, that for any initial condition z ∈ R

n \ C there is an admissible
trajectory-control pair (x, u) to (1.1) with x(0) = z, such that limt→T −

x
d(x(t)) =

1That is, u : [0, Tx) → U is a measurable function which is essentially bounded on any
subinterval [0, T ] ⊂ [0, Tx).
2This means that H(x, p0, p) ≤ −γ(W (x)) for every p ∈ D∗W (x), where D∗W (x) denotes
the set of reachable gradients of W at x (see Sect. 1.1).
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0 in a certain uniform and stable manner that we will not dwell upon here—is
expected (see e.g. [3,30,32]). On the other hand, if p0 > 0, the existence of
an admissible trajectory-control pair (x, u) with x(0) = z satisfying the cost
estimate

∫ Tx

0

l(x(t), u(t)) dt ≤ W (z)
p0

(1.7)

follows by known optimality principles (see e.g. [22,25,33]). The main contri-
bution of [19,23] was to prove that the existence of a p0-Minimum Restraint
Function W for some p0 > 0 allows to produce a pair (x, u) that meets both of
these properties.

A related and important goal is, given a p0-Minimum Restraint Function
W for some p0 > 0, to provide a state feedback K : R

n \ C → U such
that the system ẋ(t) = f(x(t),K(x(t)) is globally asymptotically stable to C
and has (p0,W )-regulated cost, that is, such that for any stable trajectory x

with x(0) = z, the cost
∫ Tx

0
l(x(t),K(x(t))) dt is not greater than W (z)/p0.

In this paper we address the question, left by [19,23] as an open problem,
of how to define such a feedback law through the use of W . In the ideal
case in which W is differentiable and there exists a continuous feedback K(x)
such that 〈DW (x) , f(x,K(x))〉 + p0 l(x,K(x)) ≤ −γ(W (x)) for all x ∈ R

n \
C, one easily derives global asymptotic stabilizability with (p0,W )-regulated
cost. However, it is a classical matter in nonlinear control systems that a
differentiable Control Lyapunov Function W may not exist and, even if a
smooth W exists, a continuous feedback K does not generally exist (see e.g. [1,
7,15,30–32]). From here, the need of considering the nonsmooth version (1.6) of
the decrease condition and of defining a discontinuous feedback K : R

n\C → U ,
which, because of the unboundedness of U , we can only assume locally bounded
(see Prop. 3.2 below). In particular, we might have lim supx→x̄∈∂C |K(x)| =
+∞.

Identified a feedback K as above, the main issue is how to interpret
the discontinuous differential equation and the associated exit-time cost, so
that the control system (1.1) can be stabilized to the target C with (p0,W )-
regulated cost by K. For the trajectories of ẋ(t) = f(x(t),K(x(t)), we simply
adapt to our setting the nowadays classical notions of sampling and Euler
solutions in [13,14], inspired by differential games theory [17]. However, our
primary objective is to introduce a suitable concept of cost associated to a
stable sampling or Euler solution starting from z, so that such cost is bounded
above by W (z)/p0. Postponing the precise definitions to Sect. 2, given some
constants r, R such that 0 < r < R, we call a sampling pair (x, u) (r,R)-stable
when, starting from some z with r < d(z) ≤ R, x reaches in a uniform manner
the r-neighborhood Br(C) of the target and, after a time T̄ r

x , remains definitely
in Br(C). In this case, for all t ≥ 0 we define the corresponding sampling cost
as

x0(t) :=
∫ min{t,T̄ r

x }

0

l(x(s), u(s)) ds
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and show that x0(t) ≤ W (z)/p0. The difficulty in proving the latter inequality
lies in the fact that T̄ r

x may not be the first instant in which x enters Br(C).
Consequently, we must estimate the cost in a time interval where we basically
have no information on x, except that it is in Br(C) (see Sect. 3.1 below).
Nevertheless, this is the correct notion of sampling cost. Indeed, let us now de-
fine an Euler cost-solution pair (X0,X) as the locally uniform limit on [0,+∞)
of a sequence of sampling cost-trajectory pairs as above, when the sampling
times tend to zero. We obtain that X approaches uniformly asymptotically C,
while limt→T −

X
X0(t) ≤ W (z)/p0, where TX ≤ +∞ is the exit-time of X, as in

(1.3) (see Sect. 3.2).
Furthermore, inspired by [28], we prove that, when f and l are locally

Lipschitz continuous in x uniformly w.r.t. u ∈ U up to the boundary of C,
the existence of a p0-Minimum Restraint Function W with p0 > 0, possibly
not locally semiconcave but merely locally Lipschitz continuous on Rn \ C,
still guarantees stabilizability of (1.1) to C with (p0,W )-regulated cost, in the
sample and Euler sense (see Theorem 4.3 and Corollary 4.4). This result can be
useful for the effective implementation of our feedback construction, as shown
by the example in Sect. 5.

We are motivated to consider U unbounded and the minimization in
the decrease condition on the whole set U (and not on bounded subsets, as
usual) mainly because these assumptions are met, for instance, in the stabi-
lization of mechanical systems with vibrating controls. These are nonlinear
control systems, affine or quadratic in the derivative of the control, which is
considered as an impulsive control (see [6]). In particular, the reparameter-
ized systems usually introduced in the study of control-polynomial systems
satisfy (H0). As a consequence, as shown in [18], the results of the present
paper are the starting point for the stabilizability (with and without regu-
lated cost) of impulsive control systems. In fact, our assumptions include also
the case where U is bounded and f and l are continuous on R

n × U . For
U unbounded, they are satisfied, for instance, by the class of control prob-
lems in which the input appears inside a saturation nonlinearity, such as
f(x, u) = f0(x) +

∑m
i=1 fi(x)σi(u), l(x, u) = l0(x) + l1(x)|σ0(u)|, where l0,

l1, f0, f1, . . . , fm ∈ C(Rn) and σ0, . . . , σm are bounded, uniformly continuous
maps on U . The stabilizability of such control systems plays a relevant role
both in the literature and in the applications (see e.g. [4,10,11,34]).

Finally, the value function

V (z) := inf
(x,u), x(0)=z

∫ Tx

0

l(x(τ), u(τ)) dτ,

is clearly bounded above by any p0-Minimum Restraint Function divided by
p0. Hence our approach could be useful to design approximated optimal closed-
loop strategies, when there exists a sequence of p0-Minimum Restraint Func-
tions approaching V , as in [25], or at least to obtain “safe” performances,
keeping the cost under the value W . Moreover, when V ≤ W/p0, then V



NoDEA Stabilizability in optimal control Page 5 of 32 41

is continuous on the target’s boundary and this is crucial to establish com-
parison, uniqueness, and robustness properties for the associated Hamilton–
Jacobi–Bellman equation [22,24,25] and to study associated asymptotic and
ergodic problems [26]. From this PDE point of view, problem (1.1)–(1.2) has
been widely investigated; a likely incomplete bibliography, also containing ap-
plications (for instance, the Füller and shape-from-shading problems), includes
[8,16,20,33] and the references therein.

The paper is organized as follows. In the remaining part of the Intro-
duction we provide some preliminary definitions and notation. In Sect. 2
we define precisely the sample and Euler stabilizability of (1.1) to C with
(p0,W )-regulated cost, which is shown to be guaranteed by the existence of a
p0-Minimum Restraint Function in Theorem 3.1, our main result. In Sect. 4
we consider the case of Lipschitz continuous data, postponing the proofs in
the “Appendix”. An example on the stabilizability with regulated cost of the
non-holonomic integrator control system concludes the paper (see Sect. 5).

1.1. Notation and preliminaries

For every r ≥ 0 and Ω ⊂ R
N , we set Br(Ω) := {x ∈ R

N | d(x,Ω) ≤ r},
where d is the usual Euclidean distance. When Ω = {z} for some z ∈ R

N ,
we also use of the notation B(z, r) := Br({z}). For any map F : Ω → R

M

we call modulus (of continuity) of F any increasing, continuous function
ω : [0,+∞) → [0,+∞) such that ω(0) = 0, ω(r) > 0 for every r > 0 and

|F (x1) − F (x2)| ≤ ω(|x1 − x2|) for all x1, x2 ∈ Ω. We use Ω,
◦
Ω to denote the

closure and the interior of the set Ω, respectively.
Let us summarize some basic notions in nonsmooth analysis (see e.g.

[9,12,35] for a thorough treatment).

Definition 1.2. (Positive definite and proper functions). Let Ω ⊂ R
N be an

open set with compact boundary. A continuous function F : Ω → R is said
positive definite on Ω if F (x) > 0 ∀x ∈ Ω and F (x) = 0 ∀x ∈ ∂Ω. The
function F is called proper on Ω if the pre-image F−1(K) of any compact set
K ⊂ [0,+∞) is compact.

Definition 1.3. (Semiconcavity). Let Ω ⊆ R
N . A continuous function F : Ω →

R is said to be semiconcave on Ω if there exists ρ > 0 such that

F (x) + F (x̂) − 2F

(
x + x̂

2

)
≤ ρ|x − x̂|2,

for all x, x̂ ∈ Ω such that [x, x̂] ⊂ Ω. The constant ρ above is called a semi-
concavity constant for F in Ω. F is said to be locally semiconcave on Ω if it
semiconcave on every compact subset of Ω.

We remind that locally semiconcave functions are locally Lipschitz continuous.
Actually, they are twice differentiable almost everywhere.

Definition 1.4. (Limiting gradient). Let Ω ⊆ R
N be an open set, and let

F : Ω → R be a locally Lipschitz continuous function. For every x ∈ Ω we call
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set of limiting gradients of F at x, the set:

D∗F (x) :=
{

w ∈ R
N : w = lim

k
∇F (xk), xk ∈ DIFF (F ) \ {x}, lim

k
xk = x

}
,

where ∇ denotes the classical gradient operator and DIFF (F ) is the set of
differentiability points of F .

The set-valued map x � D∗F (x) is upper semicontinuous on Ω, with nonempty,
compact, and not necessarily convex values. When F is a locally semiconcave
function, D∗F coincides with the limiting subdifferential ∂LF , namely,

D∗F (x) = ∂LF (x) :=
{

lim pi : pi ∈ ∂P F (xi), lim xi = x
}

∀x ∈ Ω.

As usual, for every x ∈ Ω, the proximal subdifferential of F at x is given by

∂P F (x) :=
{

p ∈ R
N : ∃σ, η > 0 s.t., ∀y ∈ B(x, η),

F (y) − F (x) + σ|y − x|2 ≥ 〈p, y − x〉
}

.

For locally Lipschitz continuous functions, the Clarke subdifferential ∂CF (x)
of F at x, can be defined as ∂CF (x) :=co∂LF (x). Finally, locally semiconcave
functions enjoy the following properties (see [9, Propositions 3.3.1, 3.6.2]).

Lemma 1.5. Let Ω ⊆ R
N be an open set and let F : Ω → R be a locally semi-

concave function. Then for any compact set K ⊂ Ω there exist some positive
constants L and ρ such that, for any x ∈ K,3

F (x̂) − F (x) ≤ 〈p, x̂ − x〉 + ρ|x̂ − x|2,
|p| ≤ L ∀p ∈ D∗F (x), (1.8)

for any point x̂ ∈ K such that [x, x̂] ⊂ K.

2. Sample and Euler stabilizability with regulated cost

Let us introduce the notions of sampling and Euler solutions with regulated
cost. Hypothesis (H0) is assumed throughout the whole section.

Definition 2.1. (Admissible trajectory-control pairs and costs) For every point
z ∈ R

n \C, we will say that (x, u) is an admissible trajectory-control pair from
z for the control system

ẋ = f(x, u), (2.1)

if there exists Tx ≤ +∞ such that u ∈ L∞
loc([0, Tx), U) and x is a Carathéodory

solution of (2.1) in [0, Tx) corresponding to u, verifying x(0) = z and

x([0, Tx)) ⊂ R
n\C and, if Tx < +∞, lim

t→T −
x

d(x(t)) = 0.

3The inequality (1.8) is usually formulated with the proximal superdifferential ∂P F . How-
ever, this does not make a difference here since ∂P F = ∂CF = coD∗F as soon as F is locally
semiconcave. Hence (1.8) is true in particular for any p ∈ D∗F (x).
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We shall use Af (z) to denote the family of admissible trajectory-control pairs
(x, u) from z for the control system (2.1). Moreover, we will call cost associated
to (x, u) ∈ Af (z) the function

x0(t) :=
∫ t

0

l(x(τ), u(τ)) dτ ∀t ∈ [0, Tx).

If Tx < +∞, we extend continuously (x0, x) to [0,+∞), by setting

(x0, x)(t) = lim
τ→T −

x

(x0, x)(τ) ∀t ≥ Tx.

From now on, we will always consider admissible trajectories and associated
costs defined on [0,+∞).

Observe that for any admissible trajectory-control pair defined on [0, Tx),
when Tx < +∞ the above limit exists by (H0). In particular, this follows
by the compactness of ∂C and the boundedness of f and l in any bounded
neighborhood of the target.

A partition of [0,+∞) is a sequence π = (tj) such that t0 = 0, tj−1 < tj

∀j ≥ 1, and limj→+∞ tj = +∞. The value diam(π) := supj≥1(tj − tj−1) is
called the diameter or the sampling time of the sequence π. A feedback for
(2.1) is defined to be any locally bounded function K : R

n \ C → U .

Definition 2.2. (Sampling trajectory and sampling cost) Given a feedback
K : R

n \ C → U , a partition π = (tj) of [0,+∞), and a point z ∈ R
n \ C, a

π-sampling trajectory for (2.1) from z associated to K is a continuous function
x defined by recursively solving

ẋ(t) = f(x(t),K(x(tj−1)) t ∈ [tj−1, tj ], (x(t) ∈ R
n \ C)

from the initial time tj−1 up to time

τ j := tj−1 ∨ sup{τ ∈ [tj−1, tj ] : x is defined on [tj−1, τ)},

where x(t0) = x(0) = z. In this case, the trajectory x is defined on the right-
open interval from time zero up to time t− := inf{τ j : τ j < tj}. Accordingly,
for every j ≥ 1, we set

u(t) := K(x(tj−1)) ∀t ∈ [tj−1, tj) ∩ [0, t−). (2.2)

The pair (x, u) will be called a π-sampling trajectory-control pair of (2.1) from
z (corresponding to the feedback K). The sampling cost associated to (x, u) is
given by

x0(t) :=
∫ t

0

l(x(τ), u(τ)) dτ t ∈ [0, t−). (2.3)

Definition 2.3. (Sample stabilizability with (p0,W )-regulated cost) A feed-
back K : R

n \ C → U is said to sample-stabilize (2.1) to C if there is a
function β ∈ KL satisfying the following: for each pair 0 < r < R there exists
δ = δ(r,R) > 0, such that, for every partition π of [0,+∞) with diam(π) ≤ δ
and for any initial state z ∈ R

n \ C such that d(z) ≤ R, any π-sampling
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trajectory-control pair (x, u) of (2.1) from z associated to K belongs to Af (z)
and verifies:

d(x(t)) ≤ max{β(R, t), r} ∀t ∈ [0,+∞). (2.4)

Such (x, u) are called (r,R)-stable (to C) sampling trajectory-control pairs. If
the system (2.1) admits a sample-stabilizing feedback to C, then it is called
sample stabilizable (to C).

When there exist p0 > 0 and a continuous map W : Rn \ C → [0,+∞)
which is positive definite and proper on R

n \ C, such that the sampling cost
x0 associated to any (r,R)-stable sampling pair (x, u) verifies

x0(T̄ r
x ) =

∫ T̄ r
x

0

l(x(τ), u(τ)) dτ ≤ W (z)
p0

(2.5)

where

T̄ r
x := inf{t > 0 : d(x(τ)) ≤ r ∀τ ≥ t}, (2.6)

we say that (2.1) is sample stabilizable (to C) with (p0,W )-regulated cost.

Observe that, when d(z) ≤ r, the time T̄ r
x may be zero. In this case (2.5)

imposes no conditions on the cost.
Let us now introduce Euler solutions and the associated costs and a

notion of Euler stabilizability to C with (p0,W )-regulated cost.

Definition 2.4. (Euler trajectory and Euler cost) Let (πi) be a sequence of
partitions of [0,+∞) such that δi := diam(πi) → 0 as i → ∞. Given a feedback
K : R

n \ C → U and z ∈ R
n \ C, for every i, let (xi, ui) ∈ Af (z) be a πi-

sampling trajectory-control pair of (2.1) from z associated to K and let x0
i be

the corresponding cost. If there exists a map X : [0,+∞) → R
n, verifying

xi → X locally uniformly in [0,+∞) (2.7)

we call X an Euler trajectory of (2.1) from z (corresponding to the feedback
K).

If moreover there is a map X0 : [0,+∞) → [0,+∞) verifying

x0
i → X0 locally uniformly in [0,+∞), (2.8)

we call X0 the Euler cost associated to X.

Remark 2.5. As Euler trajectories are not, in general, classical solutions to the
control system (2.1), an Euler cost may not coincide with the integral of the
Lagrangian along the corresponding Euler trajectory, for some control. Never-
theless, this is true in special situations, as, for instance, when the function l is
continuous, bounded and does not depend on the control, that is l(x, u) = l̃(x)
for all (x, u). Indeed, in this case if there exists a sequence of sampling trajecto-
ries xi → X locally uniformly in [0,+∞), the dominated convergence theorem
implies that the associated costs x0

i converge locally uniformly to the function
X0 verifying

X0(t) =
∫ t

0

l̃(X(τ))dτ for any t ≥ 0.
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Indeed, fixed t > 0, for all s ∈ [0, t] one has

|x0
i (s) − X0(s)| ≤

∫ s

0

|l̃(xi(τ)) − l̃(X(τ))| dτ ≤ tω( sup
τ∈[0,t]

|xi(τ) − X(τ)|),

when ω denotes a modulus of l̃ on a suitable compact neighborhood of X([0, t]).
Therefore, sups∈[0,t] |x0

i (s) − X0(s)| → 0 as i → +∞, for every t > 0.

Definition 2.6. (Euler stabilizability with (p0,W )-regulated cost) The system
(2.1) is Euler stabilizable to C with Euler stabilizing feedback K, if there exists
a function β ∈ KL such that for each z ∈ R

n \ C, every Euler solution X of
(2.1) from z associated to K verifies

d(X(t)) ≤ β(d(z), t) ∀t ∈ [0,+∞). (2.9)

When there exist some p0 > 0 and a continuous map W : Rn \ C → [0,+∞)
which is positive definite and proper on R

n \C, such that every Euler cost X0

associated to X verifies

lim
t→T −

X

X0(t) ≤ W (z)
p0

∀z ∈ R
n \ C, (2.10)

where

TX := inf{τ ∈ (0,+∞] : X([0, τ)) ⊂ R
n \ C, lim

t→τ−
d(X(t)) = 0},

then (2.1) is said to have a (p0,W )-regulated cost (w.r.t. the feedback K).

3. Main result

Theorem 3.1. Assume hypothesis (H0) and let W be a p0-MRF with p0 > 0.
Then there exists a locally bounded feedback K : R

n \ C → U that sample and
Euler stabilizes system (2.1) to C with (p0,W )-regulated cost.

We split the proof of Theorem 3.1 in two subsections, concerning with
the sample stabilizability and the Euler stabilizability, respectively.

Preliminarily, let us observe that for any (x, p) ∈ (Rn \ C) × R
n the

infimum in the definition of the Hamiltonian H can be taken over a compact
subset of U , in view of the following result.

Proposition 3.2. Assume (H0) and let W be a p0-MRF with p0 ≥ 0. Then
there exists a continuous function N : (0,+∞) → (0,+∞) such that, setting
for any (x, p) ∈ (Rn \ C) × R

n,

HN(r)(x, p0, p) := min
u∈U∩B(0,N(r))

{
〈p, f(x, u)〉 + p0 l(x, u)

}
∀r > 0,

one has

HN(W (x))(x, p0,D
∗W (x)) < −γ(W (x)) ∀x ∈ R

n \ C. (3.1)
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Proof. Fix σ > 0. By [19, Prop. 3.3] we derive that there exists a decreasing,
continuous function N : (0, σ] → (0,+∞) such that, setting

HN(r)(x, p0, p) := min
u∈U∩B(0,N(r))

{
〈p, f(x, u)〉 + p0 l(x, u)

}
(3.2)

for all r ∈ (0, σ], it follows that

HN(W (x))(x, p0,D
∗W (x)) < −γ(W (x)) (3.3)

for every x ∈ W−1((0, σ]). It only remains to show that there exists a continu-
ous map N : [σ, +∞) → (0,+∞) such that extending (3.2) to r ∈ [σ,+∞) one
gets (3.3) for every x ∈ W−1([σ,+∞)). Arguing as in the proof of [19, Prop.
3.3], one can obtain that for any r > σ there is some N(r) ≥ N(σ) such that

HN(r)(x, p0, p) < −γ(W (x)) ∀x ∈ W−1([σ, r]) and p ∈ D∗W (x).

Moreover, for any r2 > r1 ≥ σ, one clearly has N(r2) ≥ N(r1) and, enlarging
N if necessary, one can assume that r �→ N(r) is increasing and continuous
on [σ, +∞). Therefore for any x ∈ W−1([σ,+∞)) the thesis (3.3) follows from
(3.2) as soon as r = W (x). �

As an immediate consequence of Proposition 3.2, the existence of a p0-
MRF W guarantees the existence of a feedback K with the following proper-
ties.

Proposition 3.3. Let W be a p0-MRF with p0 ≥ 0 and fix a selection p(x) ∈
D∗W (x) for any x ∈ R

n \ C. Given a function N as in Proposition 3.2, then
any map K : R

n \ C → U such that

K(x) ∈ arg min
u∈U∩B(0,N(W (x))

{
〈p(x), f(x, u)〉 + p0 l(x, u)

}
,

verifies

〈p(x), f(x,K(x))〉 + p0 l(x,K(x)) < −γ(W (x)) ∀x ∈ R
n \ C. (3.4)

We call any map K as above, a W -feedback for the control system (2.1).
When the dependence of K on W is clear, we simply call K a feedback.

3.1. Proof of the sample stabilizability with (p0,W )-regulated cost

The proof relies on Propositions 3.4, 3.5 and on Lemma 3.6 below.

Proposition 3.4. [19, Prop. 3.5] Assume (H0). Let W be a p0-MRF with p0 ≥ 0,
define N accordingly to Proposition 3.2, and let K be a W -feedback. Moreover,
let ε, μ̂, σ verify ε > 0 and 0 < μ̂ < σ. Then there exists some δ̂ = δ̂(μ̂, σ) > 0
such that, for every partition π = (tj) of [0,+∞) with diam(π) ≤ δ̂ and for
each z ∈ R

n \ C satisfying W (z) ∈ (μ̂, σ], any π-sampling trajectory-control
pair (x, u) of

ẋ = f(x, u), x(0) = z, (3.5)

associated to the feedback K is defined on [0, t̂) and enjoys the following prop-
erties:
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(i) t̂ := T μ̂
x < +∞, where

T μ̂
x := inf{t ≥ 0 : W (x(t)) ≤ μ̂}; (3.6)

(ii) for every t ∈ [0, t̂) and j ≥ 1 such that t ∈ [tj−1, tj),

W (x(t)) − W (x(tj−1)) + p0

∫ t

tj−1
l(x(τ), u(τ)) dτ ≤ −γ(W (x(tj−1)))

ε + 1
(t − tj−1).

(3.7)

Proposition 3.4 describes the behavior of any sampling trajectory-control
pair (x, u) with sampling time not greater than δ̂ just until its first exit-time t̂

from the set {x ∈ Rn \ C : W (x) > μ̂}. In [19] this was enough to derive global
asymptotic controllability. Global asymptotic stabilizability, instead, requires
also that, loosely speaking, any x is defined in [0,+∞) and stays in the sublevel
set {x ∈ Rn \ C : W (x) ≤ μ̂} for every t ≥ t̄, for some t̄ = t̄(μ̂, σ). This is
the content of the next proposition, which can be seen as an extension of [13,
Lemma IV.2] to the setting considered here.

Proposition 3.5. Assume (H0) and let W be a p0-MRF with p0 ≥ 0. Using the
same notation of Proposition 3.4, set

δ̄ = δ̄(μ̂, σ) := min
{

δ̂

(
μ̂

4
, 2σ

)
,

μ̂

4Lm

}
, (3.8)

where L is the Lipschitz constant of W in W−1([μ̂/4, 2σ]) and

m := sup
W −1((0,2σ])×U

|(f, l)|. (3.9)

Then for every partition π = (tj) of [0,+∞) with diam(π) ≤ δ̄ and for each
z ∈ R

n \ C satisfying W (z) ∈ (μ̂, σ], any π-sampling trajectory x of (3.5) is
defined in [0,+∞)4 and verifies

x(t) ∈ W−1([0, μ̂]) ∀t ≥ t̄, (3.10)

where t̄ := T
μ̂/4
x < +∞.

Proof. Fix a partition π = (tj) of [0,+∞) of diameter not greater than δ̄ and
an initial datum z ∈ W−1((μ̂, σ]). By Proposition 3.4 with μ̂/4 in place of
μ̂, any π-sampling solution x is defined at least up to t̄ := T

μ̂/4
x < +∞ and

W (x([0, t̄]) ⊂ [μ̂/4,W (z)], W (x(t̄)) = μ̂/4. Moreover, if n̄ := max{j ∈ N :
tj ≤ t̄}, then we have

x(t) ∈ W−1([μ̂/4,W (tn̄−1)]) ⊆ W−1([μ̂/4, 3μ̂/4]) ∀t ∈ [tn̄−1, tn̄]. (3.11)

where, to deal with the case n̄ = 0, we set t−1 := t0 = 0. The last inclusion
follows by the definition of δ̄, which implies

W (x(tn̄)) − W (x(t̄)) ≤ L|x(tn̄) − x(t̄)| ≤ Lmδ̄ ≤ μ̂

4
,

4When Tx < +∞, we always mean that x : [0, Tx) → R
n \ C is extended to [0, +∞) as

described in Definition 2.1.
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so that W (x(tn̄)) ≤ μ̂/2 and, arguing similarly, W (x(tn̄−1)) ≤ 3μ̂/4.
We use (3.11) as base to inductively prove that any π-sampling solution x of
(3.5) either is defined on [0,+∞) and verifies (3.10) in the stronger form

x(t) ∈ W−1((0, μ̂]) ∀t ≥ t̄,

or x has finite blow-up time coinciding with the first time Tx such that
limt→T −

x
d(x(t)) = 0: in this case, since |ẋ| is bounded by m, x can be contin-

uously extended to [0,+∞) and this extension verifies (3.10).
Fix j ≥ n̄ and assume by induction that an arbitrary π-sampling trajec-

tory x, eventually extended accordingly to Definition 2.1, is defined up to time
tj−1 and verifies x([0, tj−1]) ⊆ W−1([0, μ̂]). We have to show that x is defined
on [tj−1, tj ] and verifies

x(t) ∈ W−1([0, μ̂]) ∀t ∈ [tj−1, tj ]. (3.12)

If W (x(tj−1)) = 0, x is constant on [tj−1, tj ] and (3.12) is obviously satisfied.
When 0 < W (x(tj−1)) ≤ μ̂, we distinguish the following situations:

Case 1. W (x(tj−1)) ≥ μ̂/2. Then by Proposition 3.4 (choosing in partic-
ular z = x(tj−1) and the partition πj := (tk+j−1 − tj−1)k) we deduce that any
π-sampling trajectory with value W (x(tj−1)) ≥ μ̂/2 is defined on the whole
interval [tj−1, tj ] and verifies 0 ≤ W (x(t)) − W (x(tj)) ≤ Lmδ̄ ≤ μ̂/4 for all
t ∈ [tj−1, tj ], so that x([tj−1, tj ]) ⊂ W−1([μ̂/4, μ̂]) and this implies (3.12).

Case 2. W (x(tj−1)) < μ̂/2. Any π-sampling solution x of (3.5) with
this property can be defined on a maximal interval [tj−1, t̃). Assume first that
t̃ > tj , so that x is defined for all t ∈ [tj−1, tj ] and suppose by contradiction

x([tj−1, tj ]) � W−1([0, μ̂]).

Then there exist ti−1 < tj < t̄j ≤ tj such that

W (x(tj)) = μ̂/2, W (x(t̄j)) = μ̂, x([tj , t̄j ]) ⊆ W−1([μ̂/2, μ̂]).

This yields the required contradiction, since we have

μ̂/2 = W (x(t̄j)) − W (x(tj)) ≤ Lmδ̄ ≤ μ̂/4.

Therefore x verifies (3.12).
Let us now assume t̃ ≤ tj . By standard properties of the ODEs, the blow-up
time t̃ verifies either limt→t̃− |x(t)| = +∞ or t̃ = Tx. Notice that if we had

x([tj−1, t̃)) � W−1([0, μ̂]), (3.13)

we could find ti−1 < tj < t̄j < t̃ and obtain a contradiction arguing as
above. Hence x([tj−1, t̃)) ⊆ W−1([0, μ̂]) and t̃ = Tx necessarily, since the set
W−1([0, μ̂]) is compact. By the boundedness of f on W−1((0, μ̂]) × U this im-
plies that ∃ limt→t̃ x(t) = z̄ ∈ ∂C and the extension of x to [tj−1, tj ] given by
x(t) = z̄ for all t ∈ [t̃, tj ] verifies (3.12). The proof is thus concluded. �

Finally, let us relate the level sets of a p0-MRF W with the ones of the
distance function d using the following general result.
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Lemma 3.6. Let W , W1 : Rn \ C → [0,+∞) be continuous functions, and let
us assume that W and W1 are positive definite and proper on R

n \ C. Then
the functions ḡ, g : (0,+∞) → (0,+∞) given by

g(r) = g
W,W1

(r) := sup {α > 0 : {z̃ : W (z̃) ≤ α} ⊆ {z̃ : W1(z̃) < r}} ,

ḡ(r) = ḡW,W1(r) := inf {α > 0 : {z̃ : W (z̃) ≤ α} ⊇ {z̃ : W1(z̃) ≤ r}} ,

are well-defined, increasing and there exist the limits

lim
r→0+

ḡ(r) = lim
r→0+

g(r) = 0, lim
r→+∞ ḡ(r) = lim

r→+∞ g(r) = +∞. (3.14)

Moreover, one has

g(W1(x)) ≤ W (x) ≤ ḡ(W1(x)) ∀x ∈ R
n \ C. (3.15)

Proof. For every α > 0, let us introduce the sets Sα := {z̃ : W (z̃) ≤ α},
S1

α := {z̃ : W1(z̃) ≤ α}, and S1<
α := {z̃ : W1(z̃) < α}. By the hypotheses

on W and W1 it follows that (Sα)α>0, (S1
α)α>0, and (S1<

α )α>0 are strictly
increasing families of nonempty, bounded sets verifying

lim
α→0+

Sα = lim
α→0+

S1
α = lim

α→0+
S1<

α = C,

lim
α→+∞ Sα = lim

α→+∞ S1
α = lim

α→+∞ S1<
α = R

n.

Then for any r > 0 there exist ᾱ, ᾱ1 > 0 such that Sα ⊂ S1<
r for all α ≤ ᾱ

and Sα ⊃ S1
r for all α ≥ ᾱ1, so that ḡ(r) and g(r) turn out to be well-defined.

Moreover, r �→ ḡ(r), g(r) are clearly increasing and verify the limits (3.14).
In order to prove the inequalities in (3.15), given x ∈ R

n \ C, let us set
r := W1(x), α := W (x), α := g(W1(x)), and ᾱ := ḡ(W1(x)). Arguing by
contradiction, let us first assume that g(W1(x)) > W (x), namely

α > α. (3.16)

By the definition of α, (3.16) would imply that Sα ⊆ S1<
r . This is impossible,

since x ∈ Sα but x /∈ S1<
r , because α = W (x) ≤ α while r = W1(x) ≮ r.

Similarly, if we suppose that W (x) > ḡ(W1(x)), namely

ᾱ < α, (3.17)

by the definition of ᾱ we get that, for every α′ ∈ (ᾱ, α), one should have
S1

r ⊆ Sα′ . But this contradicts the fact that x ∈ S1
r , since r = W1(x) ≤ r,

while x /∈ Sα′ , being α = W (x) � α′. �

We are now ready to show that, given a p0-MRF W with p0 > 0, the
control system (2.1) is sample stabilizable to C with (p0,W )-regulated cost.
For any pair r, R > 0 with r < R, let us set

μ̂(r) := g
W,d

(r) = sup
{

μ > 0 : {z̃ : W (z̃) ≤ μ} ⊆
◦
Br(C)

}
,

σ(R) := ḡW,d(R) = inf {σ > 0 : {z̃ : W (z̃) ≤ σ} ⊇ BR(C)} .

(3.18)
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By Lemma 3.6, if r < d(z̃) ≤ R, then z̃ ∈ W−1((μ̂(r), σ(R)]) and the values
μ̂(r), σ(R) are finite and verify 0 < μ̂(r) < σ(R). Let us choose

δ = δ(r,R) := δ̄(μ̂(r), σ(R)), (3.19)

where δ̄(μ̂, σ) is defined by (3.8). Fixed ε > 0, for instance, ε = 1, by Propo-
sitions 3.4, 3.5 it follows that for every partition π = (tj) of [0,+∞) with
diam(π) ≤ δ and for every initial state z ∈ R

n \ C such that d(z) ≤ R, any
π-sampling trajectory-control pair (x, u) of (2.1) with x(0) = z has x defined
in [0,+∞) and verifies:

(i) t̄ := T
μ̂(r)/4
x < +∞;

(ii) for every t ∈ [0, t̄) and j ≥ 1 such that t ∈ [tj−1, tj),

W (x(t)) − W (x(tj−1)) + p0

∫ t

tj−1
l(x(τ), u(τ)) dτ ≤ −γ(W (x(tj−1)))

2
(t − tj−1);

(3.20)

(iii) for every t ≥ t̄, W (x(t)) ≤ μ̂(r), which implies that d(x(t)) ≤ r.

The time t̄ might be zero when d(z) ≤ r. Of course, condition (ii) is significant
only if t̄ > 0.

Observing that (3.20) implies

W (x(t)) − W (z) ≤ −γ(W (x(tj−1)))
2

t ∀t ∈ [0, t̄), (3.21)

the construction of a KL function β such that

d(y(t)) ≤ β(d(z), t) ∀t ∈ [0, t̄) (3.22)

can be obtained arguing as in [19, p.600], hence we omit it. Together with (iii),
this yields that

d(x(t)) ≤ max{β(d(z), t), r} ∀t ≥ 0.

Moreover, when t̄ > 0 by summing up j from 0 to the last index ñ such that
tñ < t̄, from (ii) it follows that

W (x(t̄)) − W (z) + p0

∫ t̄

0

l(x(τ), u(τ)) dτ ≤ −γ(W (x(tñ)))
2

t̄. (3.23)

Hence
∫ t̄

0

l(x(τ), u(τ)) dτ ≤ W (z)
p0

and this concludes the proof since

t̄ ≥ T̄ r
x = inf{t > 0 : d(x(τ)) ≤ r ∀τ ≥ t}.

�
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Remark 3.7. When d(z) > r, the time T̄ r
x , after which any (r,R) stable π-

sampling trajectory x starting from z remains definitively in Br(C), is uni-
formly bounded by a positive constant. Precisely, using the above notations,
by the previous proof one can easily deduce the following upper bound

T̄ r
x ≤ t̄ ≤ 2(W (z) − W (x(t̄)))

γ(W (x(t̄)))
=

2
(
W (z) − μ̂(r)

4

)

γ(μ̂(r)/4)
. (3.24)

3.2. Proof of the Euler stabilizability with (p0,W )-regulated cost

Let us start with some preliminary results. In the sequel we make use of all
the notations introduced in the previous subsection.

The following lemma establishes a uniform lower bound for the time
needed to admissible trajectories starting from the same point z and approach-
ing the target, to reach an ε-neighborhood of the target.

Lemma 3.8. Assume (H0). Given R > 0, let us set

M̃(R) := sup{|f(x, u)| : x ∈ BR(C) \ C, u ∈ U}.

Then for any z ∈ R
n \ C such that d(z) ≤ R and ε ∈ (0,d(z)), setting

Tε :=
d(z) − ε

M̃(R)
> 0, (3.25)

every admissible trajectory-control pair (x, u) ∈ Af (z) with Tx ≤ +∞ and such
that limt→T −

x
d(x(t)) = 0, verifies

d(x(t)) ≥ ε ∀t ∈ [0, Tε]. (3.26)

As a consequence, Tx ≥ d(z)

M̃(R)
.

Proof. Given (x, u) ∈ Af (z) as above, let us set τ̄ := sup{t ≥ 0 : d(x(t)) ≥
d(z)}. The time τ̄ is clearly finite and defining T̃ ε

x := inf{t > τ̄ : d(x(t)) ≤ ε},
one trivially has 0 ≤ τ̄ < T̃ ε

x and x([τ̄ , T̃ ε
x ]) ⊆ BR(C) \ C. If z̄ε ∈ ∂C verifies

ε = d(x(T̃ ε
x)) = |x(T̃ ε

x) − z̄ε|,
then the uniform bound (3.26) is a consequence of the following inequalities

d(z) = d(x(τ̄)) ≤ |x(τ̄) − z̄ε| ≤ |x(τ̄) − x(T̃ ε
x)| + |x(T̃ ε

x) − z̄ε| ≤ M̃(R) T̃ ε
x + ε,

implying that T̃ ε
x ≥ d(z)−ε

M̃(R)
= Tε. Indeed, d(x(t)) ≥ d(z) > ε for all t ∈ [0, τ̄ ]

and the definition of T̃ ε
x implies that d(x(t)) > ε for all t ∈]τ̄ , T̃ ε

x ], so that
d(x(t)) ≥ ε for all t ∈ [0, Tε]. By the arbitrariness of ε > 0, this implies that
Tx ≥ d(z)/M̃(R). �

Next result allows us to determine, given a p0-MRF W , a positive con-
stant R and a sampling time δ > 0 small enough, a radius r < R such that
any π-sampling trajectory-control pair for (3.5) with initial point z verifying
d(z) ≤ R and with diam(π) = δ is (r,R)-stable.
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Lemma 3.9. Assume (H0). Let W be a p0-MRF with p0 ≥ 0 and for any pair
r, R > 0 with r < R, let δ = δ(r,R) be defined accordingly to (3.19). Then,
for every fixed R > 0, δ(·, R) is positive and increasing and

lim
r→0+

δ(r,R) = 0, δ(R) := lim
r→R−

δ(r,R) < +∞.

Proof. By Sect. 3.1, we have that

δ(r,R) = δ̄(μ(r), σ(R)),

where δ̄ is defined as in (3.8), in Proposition 3.5. Since the map r �→ μ̂(r) is
increasing, μ̂(r) vanishes as r → 0+ and μ̂(r) is bounded by σ(R) as r → R−,
to conclude it suffices to show that for every σ > 0 the map μ̂ �→ δ̄(μ̂, σ) (a) is
increasing in (0, σ), (b) vanishes in 0 and (c) is bounded as μ̂ tends to μ̂(R).
Let L(μ̂, σ) be the Lipschitz constant of W on W−1([μ̂, 2σ]), let m = m(σ) be
as in (3.9) and recall from (3.8) the following definition

δ̄(μ̂, σ) = min
{

δ̂

(
μ̂

4
, 2σ

)
,

μ̂

4L(μ̂, σ)m

}
.

We note that ˆμ �→L(μ̂, σ) is decreasing in (0, σ): this implies at once conditions
(b) and (c) and the fact that, for every σ > 0, the map μ̂ �→ μ̂/4L(μ̂, σ)m is
increasing. To conclude it is left to show that, for every σ > 0, the map
μ̂ �→ δ̂(μ̂, σ) is increasing in (0, σ). This monotonicity that can be easily de-
rived arguing as above, by the definitions of the constants in the proof of [19,
Proposition 3.5], hence we omit to prove it. �

Owing to Lemma 3.9, given a p0-MRF W and a positive constant R, we
can assume without loss of generality that δ(·, R) defined as above is strictly
increasing and continuous. Therefore, for any R > 0 we can define the inverse
of the map r �→ δ(r) := δ(r,R), given by

δ �→ r(δ) ∀δ ∈ [0, δ(R)], (3.27)

which is continuous, strictly increasing and such that r(0) = 0 and r(δ(R)) =
R. As an immediate consequence, by the sample stabilizability of (2.1) with
(p0,W )-regulated cost we get the following result.

Lemma 3.10. Assume (H0) and let W be a p0-MRF with p0 ≥ 0. Then there
exists a function β ∈ KL such that, for each pair R > 0 and δ ∈ (0, δ(R)),
for every partition π of [0,+∞) with diam(π) = δ and for any initial state
z ∈ R

n \ C such that d(z) ≤ R, any π-sampling trajectory-control pair (x, u)
of (2.1) from z is defined in [0,+∞) and verifies:

d(x(t)) ≤ max{β(R, t), r(δ)} ∀t ≥ 0. (3.28)

Moreover, if p0 > 0,

x0(T̄ r(δ)
x ) =

∫ T̄ r(δ)
x

0

l(x(τ), u(τ)) dτ ≤ W (z)
p0

, (3.29)

where T̄
r(δ)
x = inf{t > 0 : d(x(τ)) ≤ r(δ) ∀τ ≥ t}, as in (2.6).
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Remark 3.11. When f and l verify hypothesis (H0) and system (2.1) is sample
stabilizable to C with (p0,W )-regulated cost, there always exist continuous
Euler solutions to (2.1). Indeed, for any z with 0 < d(z) ≤ R and any se-
quence (xi, ui) of πi-sampling trajectory-control pairs of (2.1) with x(0) = z,
δi :=diam(πi) → 0 as i → +∞, and associated costs x0

i , it turns out that
(x0

i , xi) is equi-Lipschitz continuous on [0,+∞) with Lipschitz constant m > 0.
Hence the existence of continuous, actually m-Lipschitz continuous Euler solu-
tions to (2.1) from z with m-Lipschitz continuous Euler costs follows straight-
forwardly by Ascoli-Arzelá’s Theorem.

We are now in position to prove that, if we assume (H0) and W is a
p0-MRF with p0 > 0, the feedback K Euler-stabilizes the system (2.1) to C
with (p0,W )-regulated cost. Given z ∈ R

n \C, let (X0,X) be an Euler solution
of (2.1) with initial condition X(0) = z. By definition there exist a sequence of
partitions (πi) of [0,+∞) such that δi := diam(πi) → 0 as i → ∞, a sequence
of πi-sampling trajectory-control pairs (xi, ui) for (2.1) with xi(0) = z for each
i, and associated costs x0

i , satisfying

(x0
i , xi) → (X0,X) locally uniformly on [0,+∞). (3.30)

Set R := d(z) and let β, δ(R) and r : [0, δ(R)] → [0, R] be as in Lemma 3.10.
Since δi → 0, we can assume without loss of generality that δi < δ(R) for all
i. Hence Lemma 3.10 implies that, for every i,

d(xi(t)) ≤ max{β(d(z), t), r(δi)} ∀t ≥ 0 (3.31)

and

x0
i (t) ≤ W (z)

p0
∀t ∈ [0, T̄ r(δi)

xi
]. (3.32)

As i → ∞, we have that δi → 0 and consequently r(δi) → 0. Then by (3.30)
and (3.31) we obtain that

d(X(t)) ≤ β(d(z), t) ∀t ≥ 0. (3.33)

Hence lim
t→+∞d(X(t)) = 0 and there exists

TX := inf{τ ≥ 0 : lim
t→τ−

d(X(t)) = 0} ≤ +∞.

To conclude the proof it remains only to show that

lim
t→T −

X

X0(t) ≤ W (z)
p0

, (3.34)

where the limit is well defined, since X0, pointwise limit of monotone nonde-
creasing functions, is monotone nondecreasing. Passing eventually to a subse-
quence, we set T̄ := limi T̄

r(δi)
xi . In view of Lemma 3.8, T̄ satisfies

T̄ ≥ d(z)
m

> 0. (3.35)
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Then for any t ∈ [0, T̄ ) one has T̄
r(δi)
xi > t for all i sufficiently large and, taking

the limit as i → ∞ in (3.32), by (3.30) it follows that

X0(t) ≤ W (z)
p0

∀t ∈ [0, T̄ ). (3.36)

If T̄ = +∞, this implies directly the thesis (3.34). If instead T̄ < +∞, the
definition of T̄

r(δi)
xi yields that

d(xi(T̄ r(δi)
xi

)) = r(δi).

Moreover, by the locally uniform convergence of xi to X and the m-Lipschitz
continuity of X, we get the following estimate

d(X(T̄ )) ≤ |X(T̄ ) − X(T̄ r(δi)
xi )| + |X(T̄ r(δi)

xi ) − xi(T̄
r(δi)
xi )| + d(xi(T̄

r(δi)
xi )),

where the r.h.s. tends to zero as i → +∞. Thus we have in any case

0 <
d(z)
m

≤ TX ≤ T̄ , (3.37)

where the first inequality is again a consequence of the m-Lipschitz continuity
of X. This concludes the proof, since (3.36) implies now the thesis (3.34). �

4. On the notion of p0-minimum restraint function

In Sect. 4.1 we obtain an equivalent formulation of the definition of p0-MRF.
Using this condition, in Sect. 4.2 we prove that, when the data f and l are
locally Lipschitz continuous, the existence of a locally Lipschitz, not necessar-
ily semiconcave, p0-MRF W , still guarantees sample and Euler stabilizability
of the control system (2.1) to C with (p0,W )-regulated cost. Section 4.3 is
devoted to extend these results to the original notion of p0-MRF introduced
in [23].

4.1. An equivalent notion of p0-MRF

Proposition 4.1. Assume (H0). Let W : Rn \ C → [0,+∞), be a continuous
function, which is positive definite, proper, and semiconcave on R

n \C. Then
W is a p0-MRF for some p0 ≥ 0 if and only if for any continuous function
W1 : Rn \ C → [0,+∞), positive definite, and proper on R

n \C, there is some
continuous, strictly increasing function γ̃ : (0,+∞) → (0,+∞) such that

H(x, p0,D
∗W (x)) ≤ −γ̃(W1(x)) ∀x ∈ R

n \ C.

For instance, one can choose W1 = d, distance function from C.
Proposition 4.1 is a consequence of the following more general result,

involving a locally Lipschitz, not necessarily semiconcave, function W .

Proposition 4.2. Assume (H0) and let W : Rn \ C → [0,+∞) be a continuous
map, which is locally Lipschitz, positive definite, and proper on R

n \C. Given
p0 ≥ 0 and a set Ω ⊆ R

n \ C, the following statements are equivalent:



NoDEA Stabilizability in optimal control Page 19 of 32 41

(i) W verifies the decrease condition

H(x, p0, ∂P W (x)) ≤ −γ(W (x)) ∀x ∈ Ω, (4.1)

for some continuous, strictly increasing function γ : (0,+∞) → (0,+∞);
(ii) for any continuous function W1 : Rn \ C → [0,+∞) which is positive

definite and proper on R
n \ C, there exists some continuous, strictly in-

creasing function γ̃ : (0,+∞) → (0,+∞) such that W verifies

H(x, p0, ∂P W (x)) ≤ −γ̃(W1(x)) ∀x ∈ Ω. (4.2)

Proof. Let us first prove that (i) ⇒ (ii). Assume that W verifies the decrease
condition (4.1). Given an arbitrary continuous map W1, positive definite and
proper in R

n\C, let γ̃ : (0,+∞) → (0,+∞) be a continuous, strictly increasing
approximation from below of the increasing map r �→ γ ◦ g

W,W1
(r), where

g
W,W1

is defined accordingly to Lemma 3.6. Then by (3.15), for any x ∈ R
n\C,

one has

W (x) ≥ g
W,W1

(W1(x)) =⇒ γ(W (x)) ≥ γ ◦ g
W,W1

(W1(x)) ≥ γ̃(W1(x)),

so that (4.1) implies (4.2) for such γ̃.
To prove that (ii) ⇒ (i), it is enough to invert the roles of W and W1.

Precisely, if (4.2) is verified for some W , W1 and γ̃ as in the statement of
the proposition, arguing as above one obtains that W verifies (4.1) choosing
as γ : (0,+∞) → (0,+∞) any continuous, strictly increasing approximation
from below of the increasing map r �→ γ̃ ◦ g

W1,W
(r). �

Proof of Proposition 4.1. The only non trivial fact in order to derive Proposi-
tion 4.1 from Proposition 4.2, is that (4.1) involves the proximal subdifferential
∂P W (x) at x instead of the set of limiting gradients D∗W (x) at x, considered
in the decrease condition for a p0-MRF. However, when W is locally Lips-
chitz continuous, condition (4.1) with Ω = R

n \C implies readily the following
inequality:

H(x, p0, ∂LW (x)) ≤ −γ(W (x)) ∀x ∈ R
n \ C,

where ∂LW (x) denotes the limiting subdifferential at x. This concludes the
proof, since a p0-MRF W is locally semiconcave and therefore ∂LW (x) =
D∗W (x) at any x. �

4.2. Lipschitz continuous p0-MRF

Under the following hypothesis:
(H1) The sets U ⊂ R

m, C ⊂ R
n are closed and the boundary ∂C is compact.

f : (Rn \ C) × U → R
n, l : (Rn \ C) × U → [0,+∞) are continuous functions

such that for every compact subset K ⊂ Rn \ C there exist Mf , Ml, Lf , Ll > 0
such that⎧⎨

⎩
|f(x, u)| ≤ Mf , l(x, u) ≤ Ml ∀(x, u) ∈ K × U,
|f(x1, u) − f(x2, u)| ≤ Lf |x1 − x2|,
|l(x1, u) − l(x2, u)| ≤ Ll|x1 − x2| ∀(x1, u), (x2, u) ∈ K × U,

we obtain the main result of this section:
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Theorem 4.3. Assume (H1) and let p0 ≥ 0. Let W : Rn \ C → [0,+∞) be a
locally Lipschitz continuous map on Rn \ C, such that W is positive definite,
and proper on R

n \ C, and verifies the decrease condition

H(x, p0, ∂P W (x)) ≤ −γ̃(W1(x)) ∀x ∈ R
n \ C, (4.3)

for some continuous, strictly increasing function γ̃ : (0,+∞) → (0,+∞) and
some continuous function W1 : Rn \ C → [0,+∞), positive definite, and proper
on R

n \C. Then there exists a
p0
2

-MRF W̄ , which also satisfies W̄ (x) ≤ W (x)

for all x ∈ R
n \ C.

Theorem 4.3, whose proof is postponed to “Appendix A.1”, generalizes
the result on the existence of a semiconcave Control Lyapunov Function ob-
tained in [28, sect. 5] to the present case, where the decrease condition involves
also the Lagrangian l and the target is not the origin, but an arbitrary closed
set C with compact boundary.

Let us call a map W as in Theorem 4.3 a Lipschitz continuous p0-MRF.
As an immediate consequence of Theorems 4.3 and 3.1, we have the following:

Corollary 4.4. Assume (H1) and let p0 > 0. Let W : Rn \ C → [0,+∞) be
a Lipschitz continuous p0-MRF. Then there exists a locally bounded feedback
K : R

n \ C → U that sample and Euler stabilizes system (1.1) to C with
(p0/2,W )-regulated cost.

Note that, using the notation of Theorem 4.3, the feedback K in Corollary
4.4 is actually a W̄ -feedback and the claim above relies on the inequality
W̄ ≤ W .

4.3. Comparison with the original notion of p0-MRF

Let us call p0-OMRF the notion of p0-MRF originally introduced in [23].

Definition 4.5. (p0-OMRF) Let W : Rn \ C → [0,+∞) be a continuous func-
tion, and let us assume that W is locally semiconcave, positive definite, and
proper on R

n \C. We say that W is a p0-OMRF for some p0 ≥ 0 if it verifies

H(x, p0,D
∗W (x)) < 0 ∀x ∈ R

n \ C. (4.4)

A p0-MRF is obviously a p0-OMRF, but the converse might be false. By
[23] we have the following result.

Proposition 4.6. [23, Prop. 3.1] Assume that W is a p0-OMRF with p0 ≥ 0.
Then for every σ > 0 there exists a continuous, increasing map γσ : (0, σ] →
(0,+∞) such that

H(x, p0,D
∗W (x)) < −γσ(W (x)) ∀x ∈ W−1((0, σ]). (4.5)

Proposition 4.6 clarifies the difference between the two notions: the ex-
istence of a p0-OMRF implies that there exists a rate function γσ, which is
in general, not global. In particular, γσ can become smaller and smaller as σ
tends to +∞. Consequently, also the feedback K can be defined only given a
σ > 0, on W−1((0, σ]).
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Remark 4.7. When a p0-OMRF W verifies condition (4.4) in the following
stronger form

∀M > 0 : sup
p∈D∗W (x)

H(x, p0, p) < 0 ∀x ∈ R
n \ C s.t. d(x) ≥ M , (4.6)

it is not difficult to prove that, under the assumptions of Proposition 4.6,
there exists a continuous, strictly increasing function γ : (0,+∞) → (0,+∞)
independent of σ, such that (4.5) holds for all x ∈ R

n \ C (see [23, Remark
3.1]). In other words,

a p0 − OMRF W verifying (4.6) is actually a p0-MRF.

The proof of Theorem 3.1 can be easily adapted to derive the following
result.

Theorem 4.8. Assume that f , l verify hypothesis (H0) and let W be a p0-
OMRF with p0 > 0. Then for any σ > 0 there exists a locally bounded feedback
K : W−1((0, σ]) → U that sample and Euler stabilizes system (2.1) to C with
(p0,W )-regulated cost for any initial point z ∈ W−1((0, σ]).

As in the case of p0-MRF, when f , l are locally Lipschitz continuous in x,
we can replace the semiconcavity assumption in the definition of a p0-OMRF
with local Lipschitz continuity. Precisely, we establish what follows.

Theorem 4.9. Assume (H1) and let p0 ≥ 0. Let W : Rn \ C → [0,+∞) be a
locally Lipschitz continuous map on (Rn \ C), such that W is positive definite,
and proper on R

n \ C, and verifies the decrease condition

H(x, p0, ∂LW (x)) < 0 ∀x ∈ R
n \ C (4.7)

Then there exists a
p0
2

-OMRF W̄ which also satisfies W̄ (x) ≤ W (x) for all

x ∈ R
n \ C.

The proof of this theorem is sketched in “Appendix A.2”.
Let us call a map W as in Theorem 4.9 a Lipschitz continuous p0-OMRF.

Theorems 4.9 and 4.8 imply what follows:

Corollary 4.10. Assume (H1) and let p0 > 0. Let W : Rn \ C → [0,+∞) be
a Lipschitz continuous p0-OMRF. Then for any σ > 0 there exists a locally
bounded feedback K : W−1((0, σ]) → U that sample and Euler stabilizes system
(2.1) to C with (p0/2,W )-regulated cost for any initial point z ∈ W−1((0, σ]).

5. An example: stabilization of the non-holonomic integrator
control system with regulated cost

Let us illustrate the preceding theory through a classical example. Precisely,
in the first part of this section we provide a p0-MRF W1 for the non-holonomic
integrator control system associated to a Lagrangian l, that verifies a suitable
growth condition (see (5.3) below). In view of Theorem 3.1, this implies the
existence of a possibly discontinuous feedback K that sample and Euler stabi-
lizes the non-holonomic integrator to the origin with the cost bounded above
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by W1/p0. Furthermore, we show how weakening the requirements on the p0-
MRF (by replacing semiconcavity with Lipschitz continuity) may be crucial
for the effective construction of a p0-MRF. In particular, for any bounded La-
grangian l which cannot satisfy assumption (5.3) below for any C > 0 (as,
for instance, in the case of the minimum time problem, where l ≡ 1), we pro-
vide a less regular, Lipschitz continuous but not semiconcave p0-MRF W2.
In this case, the sample and Euler stabilizability of the control system with
(p0/2,W2)-regulated cost is guaranteed by Corollary 4.4.

Set U := {u = (u1, u2) ∈ R
2 : u2

1+u2
2 ≤ 1}, C := {0} ⊂ R

3 and consider
the non-holonomic integrator control system:⎧⎪⎨

⎪⎩
ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1, u(t) = (u1, u2)(t) ∈ U.

(5.1)

Given a continuous Lagrangian l(x, u) ≥ 0, let us associate to (5.1) the cost∫ Tx

0

l(x(t), u(t)) dt (5.2)

(as in the rest of the paper, Tx denotes the exit-time of x from R
3 \ {0}). Set

f(x, u) := (u1, u2, x1u2 − x2u1) ∀(x, u) ∈ R
3 × U.

The following map W1, introduced in [21], given by

W1(x) :=
(√

x2
1 + x2

2 − |x3|
)2

+ x2
3 ∀x ∈ R

3,

is proper, positive definite, locally semiconcave in R
3 \ {0}, and verifies

min
u∈U

〈p, f(x, u)〉 = −
√

V (x) ∀x ∈ R
3 \ {0}, ∀p ∈ D∗W1(x),

where

V (x) :=
(√

x2
1 + x2

2 − |x3|
)2

+
(√

x2
1 + x2

2 − 2|x3|
)2

(x2
1 + x2

2) ∀x ∈ R
3.

Therefore, W1 is a Control Lyapunov Function for the control system (5.1)
and, consequently, any W1-feedback sample and Euler stabilizes (5.1) to the
origin [29]. When the Lagrangian l satisfies, for some positive constant C,

0 ≤ l(x, u) ≤ C
√

V (x) ∀(x, u) ∈ (R3 \ {0}) × U, (5.3)

then W1 is also a p0-MRF for every p0 ∈ (0, 1/C). Indeed, for all x ∈ R
3 \ {0}

and for all p ∈ D∗W1(x), one has

H(x, p0, p) = minu∈U{〈p, f(x, u)〉 + p0 l(x, u)}
≤ min

u∈U
{〈p, f(x, u)〉} + p0C

√
V (x) = −(1 − p0C)

√
V (x).

However, the Control Lyapunov Function W1 cannot be a p0-MRF when

lim
x→0

infu∈U l(x, u)√
V (x)

= +∞. (5.4)
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Since V (x) tends to 0+ as x → 0, condition (5.4) does not hold, for instance,
for the minimum time problem, where l ≡ 1.

For any bounded Lagrangian l, let Ml > 0 verify l(x, u) ≤ Ml for all
(x, u) ∈ (Rn \ C) × U . Then a discontinuous feedback that sample and Euler
stabilizes (5.1) and at the meantime provides strategies for which the target
is reached with regulated cost, can be obtained if we consider the following
Control Lyapunov Function W2, introduced in [27]:

W2(x) := max
{√

x2
1 + x2

2, |x3| −
√

x2
1 + x2

2

}
∀x ∈ R

3.

The map W2 is locally semiconcave only outside the set S := {(x1, x2, x3) ∈
R

3 | x2
3 = 4(x2

1+x2
2)}, therefore, it is not a p0-MRF. However, W2 matches the

weaker definition of Lipschitz continuous p0-MRF for p0 < 1/Ml: it is indeed
a locally Lipschitz continuous map in R

3, which is positive definite and proper
in R

3 \ {0}, and a direct computation shows that

H(x, p0, p) ≤ min
u∈U

〈f(x, u), p〉 + p0Ml < 0 ∀x ∈ R
3 \ {0}, ∀p ∈ ∂P W (x)

(see also [29] and [21]). Since the data f and l verify assumption (H1), it
follows by Corollary 4.4 that (5.1)–(5.2) is sample and Euler stabilizable with
(l̄/2,W2)-regulated cost as soon as the Lagrangian l is bounded.

6. Conclusions

In this paper we addressed sample and Euler stabilizability of nonlinear control
system in an optimal control theoretic framework. We introduced the notion
of sample and Euler trajectories with regulated cost, which conjugate stabi-
lizability with an upper bound on the payoff, depending on the initial state.
Under mild regularity hypotheses on the vector field f and on the Lagrangian l
and for a closed, possibly unbounded control set, we proved that the existence
of a special Control Lyapunov Function W , called a p0-Minimum Restraint
Function, p0-MRF, implies that all sample and Euler stabilizing trajectories
have (p0,W )-regulated costs. The proof is constructive: it is based indeed on
the synthesis of appropriate feedbacks derived from W . As in the case of clas-
sical Control Lyapunov Functions, this construction requires that W is locally
semiconcave. However, by generalizing an earlier result by Rifford [28] we es-
tablished that it is possible to trade regularity assumptions on f and l with
milder regularity assumptions on W . In particular, we showed that if the vec-
tor field f and the Lagrangian l are locally Lipschitz up to the boundary of
the target, then the existence of a mere locally Lipschitz p0-MRF W provides
sample and Euler stabilizability with (p0/2,W )-regulated cost.

The present work is part of an ongoing, wider investigation of global
asymptotic controllability and stabilizability in an optimal control perspective.
A slightly weaker notion of p0-MRF—called here p0-OMRF—was introduced
in [23] and further extended in [19] to more general optimization problems, in
order to yield global asymptotic controllability with regulated cost. This paper
represents the stability-oriented counterpart of [23]. In a forthcoming paper we
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will address the question of stabilizability with regulated cost for possibly non-
coercive optimization problems with unbounded controls. Other interesting
research directions include the relation between p0-MRFs and input-to-state
stability (in the fashion of [21]) and the study of a possible inverse Lyapunov
theorem for p0-MRFs—i.e., whether the results in [30] can be extended to
p0-MRFs by showing that their existence is also a necessary condition for the
global asymptotic controllability of the control system with regulated cost.
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Appendix A.

A.1. Proof of Theorem 4.3

Let W : Rn \ C → [0,+∞) be a locally Lipschitz continuous map, positive
definite and proper on R

n \ C, and verifying the decrease condition (4.3),
namely, such that

H(x, p0, ∂P W (x)) ≤ −γ̃(W1(x)) ∀x ∈ R
n \ C (A.1)

for some strictly increasing, continuous map γ̃ : (0,+∞) → (0,+∞) and some
continuous function W1 : Rn \ C → [0,+∞), W1 positive definite and proper
on R

n \ C. Our goal is to show that there exists a p0
2 -MRF W̄ , such that

W̄ ≤ W .
The proof is a careful adaptation of the arguments in [28, sect. 5]. For

this reason we explicitly prove just the steps involving the decrease condition,
where some changes are needed because of the presence of the Lagrangian l.

Preliminarily, let us recall the notion of inf-convolution for a locally Lip-
schitz continuous nonnegative map g : R

N → R and collect some useful prop-
erties (see e.g. [9, Theorem 3.5.3, Lemma 3.5.7], [12, Section 1.5, Thm. 5.1],
[5, Section II.4, Lemmas 4.11, 4.12]).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. For any α > 0, define

gα(x) := inf
y∈RN

{
g(y) + α|y − x|2} ∀x ∈ R

N .

Then gα is locally semiconcave in R
N and

(i) for all x ∈ R
N , there exists ȳ ∈ R

N such that gα(x) = g(ȳ) + α|ȳ − x|2
(the above infimum is actually a minimum);

(ii) for all x ∈ R
N , 0 ≤ gα(x) ≤ g(x), moreover gα ↗ g locally uniformly as

α → 0;
(iii) for all x ∈ R

N such that ∂P gα(x) is nonempty, ȳ is unique and the proxi-
mal subgradient ∂P gα(x) is equal to the singleton {2α(x− ȳ)}, moreover,
2α(x − ȳ) ∈ ∂P g(ȳ);

(iv) if Ψ : R → R is an increasing, locally semiconcave function, then Ψ ◦ gα

is locally semiconcave;
(v) if g, h : R

N → R are semiconcave on Ω ⊂ R
N , then the function min{g, h}

is semiconcave on Ω.

Step 1. As it is not restrictive in view of Proposition 4.2, let us assume
that W1 ≡ d. We extend γ̃ continuously to R, by setting γ̃(t) = γ̃(0) :=
lims→0+ γ̃(s) for every t < 0. Without loss of generality, we can suppose γ̃
1-Lipschitz continuous in R. Otherwise, we can replace γ̃ in the decrease con-
dition (A.1) with γ̄(t) := infs∈R{γ̃(s) + |t − s|} for every t ∈ R. Indeed, it
is not difficult to see that γ̄ ≤ γ̃, and γ̄ is strictly increasing and 1-Lipschitz
continuous. Therefore, the map

W := γ̄ ◦ W1 = γ̄ ◦ d

is 1-Lipschitz continuous and positive definite on R
n \C. As a consequence of

these results, (A.1) implies that W verifies

H(x, p0, ∂P W (x)) ≤ −W(x) ∀x ∈ R
n \ C. (A.2)

Step 2. For any integer n ≥ 1, let us set

Mn := max{W (x) : x ∈ B1(W−1([0, 11n]))},
mn := min

{W(x) : x ∈ W−1
([

1
2n , 11n

])}
.

By the Lipschitz properties of f , l and W , let us denote Ln
f , Ln

l , Ln
W ≥ 1 the

Lipschitz constants of f(·, u), l(·, u) and W , respectively, on the sublevel set
W−1([0,Mn]). Finally, let us set

αn := max
{

8n(Ln
W )2 + 1 ,

2Ln
W (1 + Ln

W Ln
f + p0L

n
l )

mn
+ 1 , 11n

}
. (A.3)

Let us extend W to R
n by setting W (x) = 0 for all x in the interior of C.

For every αn, we define by inf-convolution the locally semiconcave function
Wαn

: R
n → [0,+∞) as follows:

Wαn
(x) := inf

y∈Rn

{
W (y) + αn|y − x|2} ∀x ∈ R

n. (A.4)
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Lemma A.2. ( [28, Lemma 5.5]) Let z ∈ W−1([0,Mn]). If the infimum in the
definition of Wαn

(z) is attained at ȳ, then one has that ȳ ∈ W−1([0,Mn]) and
|ȳ − z| ≤ min

{
1

8nLn
W

, mn

2(1+Ln
W Ln

f +p0Ln
l )

}
; moreover

W (z) − 1
8n

≤ Wαn
(z) ≤ W (z).

Lemma A.3. Let z ∈ W−1
([

1
2n , 11n

])
and p ∈ ∂P Wαn

(z). Then

H(z, p0, p) ≤ −W(z)
2

(A.5)

Proof. Arguing similarly to the proof of [28, Lemma 5.6], by Lemmas A.2
and A.1, the infimum in the definition of Wαn

(z) is attained at a point ȳ ∈
W−1 ([0, 11n]), verifying |ȳ−z| ≤ mn

2(1+Ln
W Ln

f +p0Ln
l ) and such that p ∈ ∂P W (ȳ).

Therefore, by the Lipschitz properties of f , l, W and the 1-Lipschitz continuity
of W established in Step 1, we get

H(z, p0, p) = inf
u∈U

{〈p, f(z, u)〉 + p0l(z, u)} ≤ inf
u∈U

{〈p, f(ȳ, u)〉 + p0l(ȳ, u)}
+ sup

u∈U
(|p||f(z, u) − f(ȳ, u)| + p0|l(z, u) − l(ȳ, u)|)

≤ −W(ȳ) + Ln
W Ln

f |z − ȳ| + p0L
n
l |z − ȳ| (using (A.2))

≤ −W(z) + (1 + Ln
W Ln

f + p0L
n
l )|z − ȳ|

≤ −W(z) +
mn

2
≤ −W(z)

2
.

�
Step 3. Starting from (Wαn

)n≥1, let us construct a locally semiconcave
p0
2

-MRF.

Lemma A.4. ( [28, Lemma 5.7]) For each n ≥ 1, there exists an increasing,
C∞, increasing map Ψn : [0,+∞) →: 0,+∞) verifying the following proper-
ties.

(i) Ψn(t) = t + 1
8n for any t ∈ [

0, 1
2n

]
,

(ii) Ψn(t) = t for any t ∈ [
1
n − 1

8n , 10n
]
,

(iii) Ψn(t) ≥ 11n + max{W (x) : Wαn
(x) ≤ t} for any t ∈

[
11n − 1

8n ,+∞
)
,

(iv) Ψ̇n(t) ≥ 1
2 for any t ≥ 0.

The function W̄n := Ψn ◦ Wαn
is locally semiconcave on R

n by Lemma
A.1, (iv). The required locally semiconcave

p0
2

-MRF W̄ , is given by

W̄ (x) := min
n≥1

W̄n(x) ∀x ∈ R
n \ C.

Precisely, one has what follows.

Lemma A.5. For all integer n ≥ 1 and for all z ∈ W−1
([

1
n , 10n

])
, one has

W̄ (z) = min1≤k≤n W̄k(z). Furthermore, if p ∈ ∂P W̄ (z), then

H
(
z,

p0
2

, p
)

≤ −W(z)
4

. (A.6)
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Proof. For all z ∈ W−1
([

1
n , 10n

])
, the proof of the following facts:

(i) W̄ (z) = W̄n0(z) := min1≤k≤n W̄k(z) and

p ∈ ∂P W̄ (z) =⇒ p ∈ ∂P W̄n0(z) = Ψ′
n0

(Wαn0
(z))∂P Wαn0

(z)); (A.7)

(ii) W (z) ≤ 11n0,
can be derived easily by [28, Lemma 5.8], hence we omit it. If W (z) < 1

2n0
,

then

Wn0(z) ≤ W (z) <
1

2n0
=⇒ W̄n0(z) = Wαn0

(z) +
1

8n0
≥ W (z).

Since W̄n(z) = Wαn
(z) ≤ W (z), this yields that the minimum is also reached

for n. Thus Lemma A.4 (i) and Lemma A.3 imply the decrease condition (A.6)
for any p ∈ ∂P W̄ (z). It remains to show that (A.6) holds for any p ∈ ∂P W̄ (z)
also when z ∈ W−1

([
1

2n0
, 11n0

])
. By Lemma A.3,

H (z, p0, p) = inf
u∈U

{〈p, f(z, u)〉 + p0 l(z, u)} ≤ −W(z)
2

∀p ∈ ∂P Wαn0
(z)

and, as a consequence (since p0 ≥ 0 and l ≥ 0),

inf
u∈U

{〈p, f(z, u)〉} < 0 ∀p ∈ ∂P Wαn0
(z).

Thus by Lemma A.4 (iv) and (A.7), for any p ∈ ∂P W̄ (z) there is some pn0 ∈
∂P Wαn0

(z) such that p = Ψ′
n0

(Wαn0
(z)) pn0 and

H
(
z, p0

2 , p
)

= infu∈U

{〈p, f(z, u)〉 + p0
2 l(z, u)

}
= infu∈U

{
Ψ′

n0
(Wαn0

(z))〈pn0 , f(z, u)〉 + p0
2 l(z, u)

}
≤ 1

2
H (z, p0, p) ≤ −W(z)

4
.

�
This last lemma shows that the minimum in the definition of W̄ (x) is

always attained for x ∈ R
n \ C. Therefore, the function W̄ is locally semi-

concave outside the target (by Lemma A.1, (v)). On the other hand, W̄ is
continuous on Rn \ C because 0 ≤ W̄ ≤ W and satisfies the decrease con-
dition by (A.6), where, by Step 1, W

4 coincides with the composition of the
positive, Lipschitz continuous, and strictly increasing function γ̄

4 with the dis-
tance d. Consequently, by Proposition 4.1 we can conclude that W̄ provides a
p0
2

-MRF, which proves Theorem 4.3. �

A.2. Proof of Theorem 4.9

Let us sketch how to adapt the arguments of the proof of Theorem 4.3 to the
case of a Lipschitz continuous p0-OMRF, for which only the existence of a local
rate function γσ is ensured.

Let W : Rn \ C → [0,+∞) be a locally Lipschitz continuous map, posi-
tive definite and proper on R

n \ C and verifying

H(x, p0, ∂LW (x)) < 0 ∀x ∈ R
n \ C.

Our aim is to prove the existence of a
p0
2

-OMRF W̄ ≤ W .
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Step 1. By the Lipschitz continuity of W , the set-valued map x �
∂LW (x) has closed graph with compact values, so that it is upper semicontin-
uous (see [35, Props. 4.3.3, 4.3.5] and [2, Thm.1 and Cor. 1, pg. 41]). At this
point, one can derive that for any σ > 0 there exists a positive, continuous,
strictly increasing map γσ defined in (0, σ], such that W verifies

H(x, p0,DLW (x)) < −γσ(W (x)) ∀x ∈ W−1((0, σ]), (A.8)

arguing exactly as in [23, Prop. 3.1]. If γσ denotes an arbitrary continuous and
strictly increasing extension of γσ to (0,+∞), by Proposition 4.2 it follows
that for any continuous function W1 : Rn \ C → [0,+∞), positive definite
and proper on R

n \ C, there exists a continuous, strictly increasing function
γ̃σ : (0,+∞) → (0,+∞) such that W also verifies

H(x, p0, ∂LW (x)) ≤ −γ̃σ(W1(x)) ∀x ∈ W−1((0, σ]) (A.9)

(and vice-versa, if W , W1 satisfy (A.9), then (A.8) holds true for some γσ as
above). Let us choose W1 = d. Similarly to Step 1 of the proof of Theorem 4.3,
we can suppose without loss of generality that γ̃σ is 1-Lipschitz continuous and
consider the map Wσ := γ̃σ ◦ d, which is 1-Lipschitz continuous and positive
definite in R

n \ C. Therefore, recalling that ∂P W (x) ⊆ ∂LW (x) for every x,
W verifies

H(x, p0, ∂P W (x)) ≤ −Wσ(x) ∀x ∈ W−1((0, σ]). (A.10)

Step 2. For any integer n ≥ 1, let us set σn := 11n. Hence W verifies

H(x, p0, ∂P W (x)) ≤ −Wσn
(x) ∀x ∈ W−1((0, σn]), (A.11)

where it is easy to see that (Wσn
)n is a decreasing sequence. From now on, the

proof proceeds similarly to “Appendix A.1”, with the crucial differences that
the decrease rate Wσn

in (A.11) depends on σn and that the condition (A.11)
is satisfied only in W−1((0, σn]). In particular, these facts imply that, for any
n ≥ 1, the inf-convolution Wαn

of W depends on Wσn
, since αn is given by

αn := max
{

8n(Ln
W )2 + 1 ,

2Ln
W (1 + Ln

W Ln
f + p0L

n
l )

mn
+ 1 , 11n

}
,

where all the constants are the same as in the proof of Theorem 4.3 and, in
particular,

mn = min
{

Wσn
(x) : x ∈ W−1

([
1
2n

, 11n

])}
.

Lemmas A.2, A.4, dealing with the properties of the approximations of W ,
hold unchanged, while Lemmas A.3, A.5 are now replaced by the following
results.

Lemma A.6. Let z ∈ W−1
([

1
2n , σn

])
and p ∈ ∂P Wαn

(z). Then

H(z, p0, p) ≤ −Wσn
(z)

2
. (A.12)
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Proof. The only delicate point in order to adapt the proof of Lemma A.3 to
the present setting, is that, given z ∈ W−1((0, σn]), one has to apply the
decrease condition in (A.11) not at z, but at the point ȳ where the minimum
in definition (A.4) of Wαn

(x) is obtained. This can be done since ȳ belongs to
the sublevel set W−1((0, σn]) too; indeed,

W (ȳ) = Wαn
(z) − αn|ȳ − z|2 ≤ Wαn

(z) ≤ W (z) ≤ σn.

�

Lemma A.7. For all integer n ≥ 1 and for all z ∈ W−1
([

1
n , σn − n

])
, one has

W̄ (z) = W̄n0(z) for some n0 ∈ {1, . . . , n}. Furthermore, if p ∈ ∂P W̄ (z), then

H
(
z,

p0
2

, p
)

≤ −Wσn
(z)

4
. (A.13)

Proof. Going through the proof of Lemma A.5, the crucial remark is that,
whenever the minimum

W̄ (z) = W̄n0(z) := min
1≤k≤n

W̄n(z)

is obtained for some n0 < n, then W (z) ≤ σn0 . The last inequality implies
that, when W (z) ≥ 1

2n0
, the point z belongs to the strip W−1

([
1

2n0
, σn0

])
.

Therefore, arguing as in the proof of Lemma A.5, one can apply Lemma A.6
to derive that

H
(
z,

p0
2

, p
)

≤ −Wσn0
(z)

4
.

Recalling that the sequence (Wσn
) is decreasing, this yields the decrease condi-

tion (A.13). The proof in the case W (z) < 1
2n0

, where one can assume n0 = n,
can be obtained again by Lemma A.6 and the arguments of the proof of Lemma
A.5. �

The decrease condition (4.4) follows now by the arbitrariness of n and,
consequently, we have that W̄ is a p0/2-OMRF.
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