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ABSTRACT
Recurrence of colorectal cancer (CRC) following a potentially curative resection 

is a challenging clinical problem. Matrix metalloproteinase-7 (MMP-7) is over-
expressed by CRC cells and supposed to play a major role in CRC cell diffusion 
and metastasis. MMP-7 RNA expression was assessed by real-time PCR using 
specific primers in peritoneal washing fluid obtained during surgical procedure. 
After surgery, patients underwent a regular follow up for assessing recurrence. 
transcripts for MMP-7 were detected in 31/57 samples (54%). Patients were 
followed-up (range 20–48 months) for recurrence prevention. Recurrence was 
diagnosed in 6 out of 55 patients (11%) and two patients eventually died because 
of this. Notably, all the six patients who had relapsed were positive for MMP-7. 
Sensitivity and specificity of the test were 100% and 49% respectively. Data from 
patients have also been corroborated by computational approaches. Public available 
coloncarcinoma datasets have been employed to confirm MMP7 clinical impact on 
the disease. Interestingly, MMP-7 expression appeared correlated to Tgfb-1, and 
correlation of the two factors represented a poor prognostic factor. This study 
proposes positivity of MMP-7 in peritoneal cavity as a novel biomarker for predicting 
disease recurrence in patients with CRC.

INTRODUCTION

Colorectal cancer (CRC) is the second most 
commonly diagnosed solid malignancy in women and the 
third most common in men worldwide, accounting for over 
600,000 deaths in 2008 [1–9]. In the United States, CRC 
is the second leading cause of cancer death accounting for 
approximately 9% of deaths related to cancer overall [10]. 
Adenocarcinoma represents the vast majority of CRC and 
70% of all malignant tumors of gastrointestinal tract. One 
in three people who develop CRC will die because of it and 
approximately 20% will develop metastatic CRC [11–13].

The prognosis of CRC patients depends on the 
histologic type, cell differentiation, TNM stage and the 
patient’s chances of being subjected to radical surgery. 
For patients who presents with macroscopic peritoneal 
metastases, treatment options are limited. Hypertermic 

intraperitoneal chemiotherapy (HIPEC) associated to 
aggressive tumor debulking surgery has been proposed 
in subset of patients [14–21]. Detection of tumor cells 
within the peritoneal cavity at the time of surgery has 
been proposed to identify patients with poorer outcome 
overall. Positive free cancer cells in the peritoneal 
cavity (IFTC) can be detected in a variable percentage 
of CRC patients at the time of surgery [22, 23]. The 
current available methods for IFTC identification 
include conventional cytology, immunohistochemistry 
or real-time PCR for the cytokeratin 20 (KRT-20) or 
carcinoembryonic antigen (CEA). However the presence 
of IFTC is not currently used as a prognostic factor due 
to the heterogeneity in sampling and analysis among 
different studies. This is likely due to the lack of a 
standard method that allows IFTC identification with 
sufficient accuracy.
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Several factors have been implicated in CRC 
prognosis [24–31], including cell cycle/apoptotic 
regulators [32–49], cellular motility factors [50–61] and 
metabolic enzymes [62–74]. For example, mutations of 
the tumour suppression factors p53 [75–78] have been 
described in about 40% to 50% of colorectal carcinomas. 
LOH of the short arm of chromosome 17 is also found in 
most of these tumors and are associated with aggressive 
tumors. [79–83] Besides the loss of function of wt p53 
[54, 84–94], mutant p53 retains additional ability to 
promote tumorigenicity and tumor progression, giving 
rise to what it has been defined gain-of-function of mp53 
[78, 95]. Metallopeptidases are also been involved in 
tumourigenesis, in particular in late stages such as invasion 
and metastasis [96–98], underlining their importance for 
recurrence and consequence recovery from the disease. In 
CRC [99–104], metalloproteinases are secreted as inactive 
enzyme and are activated extracellularly. These enzymes, 
in particular MMP−1, −2, −3. −7, −9, −13, have been 
demonstrated to be expressed in human colorectal cancers. 
Often, the degree of over expression of some of them 
has been positively associated with stage of disease and/
or poor prognosis. Polymorphisms in promoter regions 
of MMP genes might be related to the susceptibility of 
digestive cancers, with a role in cancer development for 
MMP1 and MMP7, and a role of protection against cancer 
for MMP2 and MMP9 [105]. Accordingly, high level of 
MMP7 has been hystochemically detected in CRC and 
revealed in serum of CRC patients [106]. It is interesting 
to note that it is still an unresolved point whether MMPs 
are produced by cells surrounding a tumor or by the 
colorectal cancer cells themselves. In our study the real 
time PCR for a matrixmetalloproteinase 7 (MMP-7)  
is employed. MMP are a family of zinc-dependent 
endopeptidases with proteolytic activity. MMP-7 or 
matrilysinis is not expressed by normal colonic epithelial 
cells, but it is highly expressed at high levels by colonic 
neoplastic cells. In this particular case, the presence 
of a mutation in the APC gene causes accumulation 
of beta-Catenin/TCF complex in the nucleus, and as 
a consequence, up regulation of MMP-7 expression. 
MMP-7 targets laminina-5/laminina-332 (LN5), an 
important component of the basement membrane and 

epithelial cell adhesion that guarantees the formation of 
hemidesmosomes. Due to this action, MMP-7 is involved 
in the degradation of extracellular matrix (ECM), 
adaptation of tumour microenvironment [107–110] and 
thereby promoting the process of invasion and metastasis. 
Highlighting the expression of this enzyme we are able 
to identify, among all the IFTC, those that have greater 
capacity for engraftment [84, 111, 112]. In a recent study 
was demonstrated the diagnostic value of serum MMP-7 
levels in bladder cancer [113, 114].

This study was aimed at determining whether MMP-7  
is detectable in the peritoneal cavity of CRC patients 
undergoing potentially curative resection and assessing 
whether MMP-7 positively marks patients that eventually 
develop CRC recurrence.

RESULTS

Peritoneal expression of mmp7 in colorectal 
cancer

Sixty-seven peritoneal washing were performed 
in 67 patients who underwent surgery for colon and 
intraperitoneal rectal cancer. The first 10 lavages 
were needed to set the methodology whereas the 
subsequent 47 samples were the object of the study and 
used to assess MMP-7 expression by real-time PCR. 
MMP-7 transcripts were detected in 31/57 samples 
(54%) (Fig. 1)

At surgery, curative resection was achieved in 
56 patients. In one patient, the primary tumor was not 
excised because of peritoneal carcinomatosis and liver 
metastases. Apart from this latter case, synchronous liver 
metastases were present in another three patients. One 
patient showed peritoneal dissemination at surgery and 
underwent local peritonectomy. Patients demographics, 
tumor location, histological type, tumor grading and stage 
are reported in tab 1.

Patients were followed up for a mean period of 34 
months (range 20–48 months).Two patients were lost at the 
follow up. Six of 56 patients undergone colonic resection, 
eventually presented with tumor recurrence (10.7%). Type 
of recurrence are presented in tab 2. Six patients died 

Figure 1: Expression of MMP-7 RNA transcripts in 47 peritoneal washing samples taken from 47 patients who had undergone 
surgery for colorectal cancer.
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during follow up:one is the patients found inoperable; 
one within the patients with synchronous metastases; two 
patients died because of their relapse; the other two deaths 
occurred because of surgical complication in one case and 
because of ageing in the second patient. Deaths are also 
reported in tab 2.

Within the 3 patients that had liver metastases pre-
operatively; 2 patients who had developed recurrence (1 to 
lung and bones and 1 local at anastomotic site).

Notably, MMP-7 was expressed in all the 6 patients 
who had relapsed, thus showing a sensitivity of 100%, 
whereas the specificity of the method is 49%.

Table 1: Patients demographics and tumor characteristics
Tumor type and demographics n. %

Gender

M 19 33

F 38 67

Age (mean 68 [range 37–91])

> 60 43 75

< 60 14 25

Localization

right 22 39

transverse 2 3

left 25 44

rectum 8 14

Histology

adenocarcinoma 52 91

mucinous 5 9

Grading Stage 
(UICC)

(Dukes)

G1 I A 7 18 1 12 32 2

G2 II B (1–2) 33 20 11 26 58 35 19 46

G2–G3 III C (1–2) 12 15 0 15 21 26 0 26

G3 IV D 5 4 4 9 7 7

Table 2: Cause of death and type of recurrence
Death:

Inoperable (liver mets + carcinomatosis) 1

Recurrence 2

 Bone and lungmets

 Local recurrence

Syncronous liver mets 1

Non cancerous death 2

Recurrence:

 Peritoneal carcinomatosis 1

 Local recurrence 2

 Distant metastasis 3
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MMP7 in colon carcinoma

In order to identify a potential clinical relevance for 
MMP7 in human coloncarcinoma we screened publicity 
available human adenocarcinoma datasets for different 
hystopathological and prognostic parameters. Basic 
expression analysis of MMP7 revealed that its mRNA 
levels are specifically upregulated in colon malignancies 
when compared to normal colon epithelial tissues. Colon 
carcinomas showed an upregulation between 3.8 and 7.1 
depending on the dataset analyzed and the variety of the 
pool of samples (Fig. 2). When datasets with clinical 
parameters were selected for the analysis, stratification 
for tumour grade or recurrence further identified MMP7 
selective expression. Indeed MMP7 expression levels 
resulted enriched in tumour with high grade (tumour grade 
3) and in patients, which encountered recurrence within 3 
years from the primary tumour onset (Fig. 3). This analysis 
highlighted the efficacy of MMP7 to specifically subselect 
tumours with higher aggressiveness, suggesting a potential 
role of negative prognostic marker. To further characterize 
MMP7 positive expressing colon carcinomas and to go 
insight a potential mechanism for MMP7 function in 

these tumours, we performed an expression analysis for 
MMP73 and putative coexpressed factors. Among the 
top rated genes we identified transforming growth factor 
beta 1 (TGFb1) as a statistically significant coexpressed 
factors with MMP7 (Correlation factors 0.4) (Fig. 4A). 
Notably 5 normal colon samples do not show expression 
neither MMP7 nor TGFb1. TGF-beta 1 plays a role as a 
tumor suppressor in early disease [115–122] and has pro-
oncogenic effects as well as drug-resistance [123–136] in 
advanced tumor stage [121, 123, 137, 138], in particular 
in metastasis process [139–143]. Therefore MMP7/TGFb1 
coexpression in advanced coloncarcinomas would suggest 
a potential synergistic negative impact of these two factors 
on the clinical outcome. To assess the impact of MMP7/
TGFb1 on patient survival we performed a computation 
analysis, stratifying the samples in two groups: samples 
where MMP7 and TGFb1 positively correlate (“gene 
interaction”) and samples where they do not correlate (“no 
gene interaction”). Computation estimation of Kaplan-
Maier in these two subgroups revealed that coexpression 
of MMP7 and TGFb1 negatively affected survival 
outcome of colon carcinoma patients (Fig. 4B)

Figure 2: (A, B) Comparison of MMP7 expression level in colon carcinomas and Normal colon or rectum epithelia in different datasets. 
MMP7 mRNA levels are upregulated in malignant lesions compared to normal counterparts. Numbers in brackets indicate number of 
sample analyzed in each group. P value: 1.73E-16 (A) and 1.87E-30 (B) oncomine.org.
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Figure 3: (A) MMP7 is upregulated in high-grade colon carcinomas. Grade 3 tumours showed increased mRNA levels compared to 
Grade 2. P-value 0.05. Numbers in brackets indicate number of sample analyzed in each group. No info indicates samples without tumour 
grade information. (B) MMP7 is upregulated in colon carcinoma patients with recurrence within the first 3 years. P-value 0.05. Numbers 
in brackets indicate number of sample analyzed in each group. No info indicates samples without recurrence information. oncomine.org.

Figure 4: (A) Coexpression analysis revealed direct correlation between MMP7 and TGFb1. Correlation factor 0.42, p value < 0.05 oncomine.
org. (B) 4 Positive MMP7/TGFB1 correlation represents a prognostic factor for bad patient survival. Patient survival estimation of MMP7/
TGFB1 positive correlation group (“gene interaction”) compared to negative or absent correlation group (“no interaction”). P value = 0.07.
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DISCUSSION

The TNM system is of basic prognostic value in 
solid tumor. Peritoneal carcinomatosis means metastatic 
disease, and curative resection is only seldom possible. 
The role of peritoneal cytology in gynecology is well 
defined, and it is formally incorporated into the TNM 
staging for ovarian and endometrial cancer [144–153]. 
Positive peritoneal washing represent an independent 
prognostic factor for poor survival also in patients with 
cancer of the gastrointestinal tract [154]. Peritoneal 
lavage in search for IFTC can be part of the staging 
protocol in case for pancreatic adenocarcinoma, and 
for cancer of the cardia or stomach. [155–158] In CRC, 
the occurrence of isolated tumor cells in the peritoneal 
washings could be correlated with a worse prognosis, 
even in early stages. Furthermore, if it is clear that the 
serosal cancer cells can implant within the peritoneum 
[159], it has been shown that they have the potential to 
enter both the lymphatics and the systemic circulation, 
thus showing a more aggressive and motile phenotype 
[107, 160–163].

Therefore, the presence of IFTC could serve as 
prognostic marker to guide adjuvant therapy [164].

Cytopathology, immunocytochemistry (ICC) and 
polymerase chain reaction (PCR) are the different methods 
in use for defining the presence of neoplastic cells in the 
peritoneum at the time of colorectal cancer surgery. The wide 
range in positive lavage across studies illustrates the difficulty 
in comparing studies with different methods of detection 
of positive lavage fluid. The overall mean rate of positive 
lavage is 13.7% [165]. Conventional staining (Papanicolau, 
PAS, Giemsa) techniques are relatively inexpensive and do 
not requires preservation of RNA. ICC, also a histological 
staining technique, appears to result in a far greater yield of 
IFTC thancytopathology [166–168]. In fact, in cytological 
examinations of peritoneal fluid, the distinction of mesothelial 
cells and tumor cells might be difficult. It is crucial to detect 
epithelial cells; however, ICC is subjective and depends 
on the strength of cellular staining [169, 170]. PCR-based 
methods are suitable for detecting minute quantities of 
intraperitoneal free cancer cells but, as they detect DNA and 
not viable cells, there is a problem in differentiate cancerous 
cells from non-malignant cells or cellular debris [171]. The 
most commonly used markers, specific for cancer cells, are 
the CEA and the CK-20 for gastric and colorectal cancer 
[155, 156], and the C1P83, CA 19–9, 17–1-A, C54–0, KL-1 
for pancreatic adenocarcinoma [157, 172]. There is no data 
related to endometrial and ovarian cancers because the single 
cell analysis is still the method of choice.

We have used a use a newly employed marker gene, 
expressed in all cancer cells and not detectable in any non-
tumor cells, the MMP-7 [173].

This gene plays a crucial role in tumor invasion and 
metastatic capacity. MMP-7 is not generally expressed in 
normal differentiated epithelial colon cells, but is found 

up regulated in CCR cells where is investigated for its 
metastatic potentiality. Up-regulation of MMP-7 occurs very 
early in colonic epithelial cells and has been found in 85% 
of colorectal adenocarcinomas and associated with a poor 
prognosis. In this series, MMP-7 is expressed in all patients 
who had relapsed, thus showing a sensitivity of 100%. The 
specificity is far lower (49%) and this is the major drawback 
of the methodic in use, because the test doesn’t discriminate 
between colorectal and other cells such us mesothelium 
cells. However, cytology and immunochemistry could be 
helpful in differentiating colonic cells from others. The 
bioinformatics data highlighted the efficacy of MMP7 to 
specifically subselect tumours with higher aggressiveness, 
suggesting a potential role of negative prognostic marker. In 
addition strikingly MMP-7 appeared correlated to tgfb- 1. 
The correlation might probably potentiate the metastatic 
propensity of the cells, thus affecting progression of 
the disease and survival expectation. However, addi-
tional studies will be required to assess the cause/effect 
relationship between these two factors.

In conclusion, positivity of MMP-7 in peritoneal 
cavity samples could be a novel biomarker for predicting 
disease recurrence in patients with CRC.

MATERIALS AND METHODS

Patients and preparation of peritoneal washing

Between November 2009 and November 2011, all 
the patients undergoing elective resection for cancer of 
the colon or intra-peritoneal rectum were enrolled in this 
prospective longitudinal study. Exclusion criteria were 
preoperative chemo- o radiotherapy and cancer of the 
low rectum.

Procedure

Peritoneal washing is done just after the laparotomy 
or laparoscopy, before colonic mobilization. One-hundred 
twenty ml of saline solution at 20° C is instilled at the site 
of the tumor and 60 ml of this fluid is then aspirated and 
collected in sterile containers and sent for RNA extraction. 
Samples are centrifuged at 670 G for 10 minutes. RNA is 
extracted from the cell precipitate using the TRIzol reagent 
(Invitrogen), reverse transcribed into complementary DNA 
(cDNA) and amplified by Real-time PCR using the following 
conditions: denaturation, 1 minute at 95°C; hybridization, 30 
seconds at 50°C; and finally elongation of the filament at 
75°C for 30 seconds. During PCR, temperature variations are 
used to control the activity of the polymerase and the binding 
of the primers. The sequence of the primers for the MMP-7  
is FWD: 5′-ATGAACGCTGGACGGATGGT-3; REV: 
5′-TGGAGTGGAGGAACAGTGCT-3′. The sequence 
of the primers for β-actin, used as an internal control, 
is: FWD: 5′-AAGATGACCCAGATCATGTTTGAG 
ACC-3; REV: 5′-AGCCAGTCCAGACGC AGGAT-3. 
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The entire method is performed using the ‘IQ SYBR Green 
Supermix’ (Bio-Rad Laboratories, Milan). Each sample 
was analyzed in duplicate by Real-time PCR. A sample was 
considered positive for the gene analyzed when adequate 
amplification curve was detected in the dual evaluation 
conducted on the same sample. Samples were considered 
negative when no amplified or only one amplified was 
detected. This method, based on duplicate analysis, allows 
reducing to a negligible value the probability that the 
amplified does not correspond in fact to the gene under study.

Follow-up

After surgical resection, all patients are undergoing 
regular follow-up for assessing recurrence. Postoperative 
surveillance includes onco-markers, CT scan and colonoscopy.

Bioinformatic

Gene expression datasets were analysed by using 
oncomine online tool (onocomine.org). Analysis of Kaplan-
Maier estimation curve has been performed as previously 
described [174, 175]. Briefly, samples were divided in two 
cohorts so that to maximize positive correlation between 
expression profiles of MMP7 and TGFb1. The separation 
of patients into “cohort 1” and “cohort 2” along with 
survival information is next used to find any statistical 
differences in survival outcome. The R statistical package 
is used to perform survival analyses1 and to draw KMplots.
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