
HOMOGENIZATION OF A MODIFIED BIDOMAIN MODEL

INVOLVING IMPERFECT TRANSMISSION

M. AMAR† – D. ANDREUCCI† – C. TIMOFTE§

†DIPARTIMENTO DI SCIENZE DI BASE E APPLICATE PER L’INGEGNERIA
SAPIENZA - UNIVERSITÀ DI ROMA
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1. Introduction

In the last years, the mathematical modeling of the electrical activity of the heart
was a topic of major interest in biomedical research. A better understanding of the
complex bioelectrical processes involved in the activity of the heart is a key issue in
order to find new drugs and diagnostic techniques, being well-known that a huge part
of the heart diseases is produced by some disorders of its electrical activity.
One of the most well-known mathematical models in cardiac electrophysiology is the
so-called bidomain model (see, e.g., [24, 37, 38] and the references therein; see, also,
the references quoted in [25, Introduction]). In this model, at a macroscopic scale,
the electric activity of the heart is governed by a system of two degenerate reaction-
diffusion partial differential equations for the averaged intra-cellular and, respectively,
extra-cellular electric potentials, along with the transmembrane potential, coupled in
a nonlinear manner to ordinary differential equations describing the dynamics of the
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ion channels. In such a model, the cardiac tissue is represented, at a macroscopic
scale, despite its discrete cellular structure, as the superposition of two continuous
media, called the intra-cellular and, respectively, the extra-cellular domain, coexisting
at each point of the heart tissue and connected through a distributed continuous
cellular membrane.
Several ionic models are considered in the literature for describing the cellular mem-
brane dynamics, starting with the famous Hodgkin-Huxley formalism and continu-
ing with more and more complex models (see, for instance, [25, 28, 30, 37]). The
well-posedness of the bidomain model has been studied, for different nonlinear ionic
models and by using different techniques, by several authors (see, for instance,
[13, 18, 41, 42, 45]).
The bidomain model can be obtained from a corresponding appropriate microscopic
one by homogenization techniques (see, among others, [7, 8, 11, 18, 25, 32, 38, 41, 44]).
Such a model is widely recognized as being the standard model used in cardiac
electrophysiology for describing the propagation of the action potential in a perfectly
healthy cardiac tissue, but it is no longer valid in pathological situations, in which the
heart contains electrically passive zones of fibrotic tissue, collagen or fat, as observed
for instance in scars, inflammations, ischemic or rheumatic heart diseases, etc. Thus,
it is important to find a suitable mathematical model that accounts for the presence
of pathological zones in the heart. Such a model was proposed in [14, 16, 26, 27, 46];
it takes into account the presence in the cardiac tissue of damaged zones, called
diffusive inclusions and assumed to be passive electrical conductors.
In the above mentioned papers, at the mesoscopic scale, the heart tissue is considered
to be a periodic structure obtained by inserting in a healthy tissue a set of periodically
distributed diffusive inclusions. From the mathematical point of view, we have a bido-
main system coupled with a diffusion equation. More precisely, the model consists of
a degenerate reaction-diffusion system of partial differential equations modeling the
intra-cellular and, respectively, the extra-cellular electric potentials of the healthy
cardiac tissue, coupled with an elliptic equation for the passive regions and with an
ordinary differential equation describing the cellular membrane dynamics. A similar
model arises also in coupling the torso to the heart (see, e.g., [14, 17, 45]). The above
model is, indeed, a mesoscopic one, the diffusive inclusions being considered at an
intermediate scale in between the cardiac cell scale and the heart tissue scale.
The mentioned modifications assume a perfect electrical coupling between the healthy
part of the heart and the damaged tissue. More general coupling conditions were pro-
posed in [17] and investigated only through numerical simulations in [15, 46], in order
to take into account the possible capacitive and resistive effects of the surface of the
diffusive inclusions. Up to our knowledge, the well-posedness of such a problem was
addressed for the first time in [10]. Here, we rigorously investigate, in more general
geometries than the ones considered in [27], the homogenization of the problem with
non-standard interface conditions, this being, in fact, the main novelty of our paper.
To achieve our goal, we use the periodic homogenization unfolding technique. The
limit problems highly depend on the scaling of the imperfect transmission across the
membrane and on the geometry of the domain. The influence of the diffusive zone is
captured in the limit in several different ways. In particular, for some special scalings
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and geometries, we obtain a bidomain system with memory effects (see Theorem 4.6
and Remark 4.7) or a kind of tridomain model (see Theorem 4.16 and Remark 4.18).
We point out again that our model generalizes the modified bidomain one with diffu-
sive inclusions and perfect transmission conditions considered in [27, 28], the original
model being recovered by suitably rearranging the parameters appearing in equation
(2.20).

The paper is organized as follows: Section 2 is devoted to the geometrical and func-
tional setting and to the introduction of the microscopic problem. In Section 3, we
introduce and recall the main properties of the time-depending unfolding operator.
In Section 4, we state and prove our main homogenization results.

2. The microscopic problem

2.1. Geometrical setting. The typical periodic geometrical setting is displayed in
Figure 1 and Figure 2. Here we give, for the sake of clarity, its detailed formal
definition. Let N ≥ 3. Let Ω ⊂ R

N be an open connected bounded subset of RN

and introduce a periodic open subset E of RN , such that E + z = E for all z ∈ Z
N .

We assume that Ω and E are of class C∞, though this assumption can be weakened.
We employ the notation Y = (0, 1)N and ED = E ∩ Y , EB = Y \ E, Γ = ∂E ∩ Y .
We assume that EB is connected, while ED may be connected or not. Moreover, we
stipulate that |Γ ∩ ∂Y |N−1 = 0.
Let ε ∈ (0, 1) be a small positive parameter, related to the characteristic dimension of
the microstructure and which takes values in a sequence of strictly positive numbers
tending to zero. We define ΩD,ε = Ω∩εE, ΩB,ε = Ω\εE, so thatΩ = ΩD,ε∪ΩB,ε∪Γ ε,
where ΩD,ε and ΩB,ε are two disjoint open subsets of Ω and Γ ε = ∂ΩD,ε ∩ Ω =
∂ΩB,ε ∩ Ω. From the biological point of view, Ω represents the region occupied
by the cardiac tissue, ΩB,ε [respectively, ΩD,ε] corresponds to the bidomain phase
[respectively, the damaged part], while Γ ε is the interface between these two regions;
in fact, these definitions are slightly modified below. We assume also that ΩB,ε is
connected at each step ε > 0, while ΩD,ε will be connected or disconnected. Indeed,
we will consider two different cases: in the first one (to which we will refer as the
connected/disconnected case, see Figure 1), we will assume that Γ ∩∂Y = ∅. We also
stipulate that all the cells which intersect ∂Ω do not contain any inclusion, so that,
for all ε > 0, ∂Ω ∩ ∂ΩD,ε 6= ∅ and, moreover, dist(Γ ε, ∂Ω) ≥ cε, where c is a suitable
strictly positive constant.
In the second case (to which we will refer as the connected/connected case, see Figure
2) we will assume that ED, EB, ΩD,ε and ΩB,ε are connected and, without loss of
generality, that they have Lipschitz continuous boundary. In this last case, we have
that, for all ε > 0, both ∂Ω ∩ ∂ΩB,ε 6= ∅ and ∂Ω ∩ ∂ΩD,ε 6= ∅. Moreover, we assume
that our geometry satisfies all the assumptions stated in [33, Section 3.2.1].
Finally, let ν denote the normal unit vector to Γ pointing into EB, extended by
periodicity to the whole of R

N , so that νε(x) = ν(x/ε) denotes the normal unit
vector to Γ ε pointing into ΩB,ε.
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Figure 1. Left: the periodic cell Y . ED is the shaded region and EB

is the white region. Right: the region Ω.

Figure 2. The periodic cell Y . ED is the shaded region and EB is
the white region.

In the following, by γ we shall denote a strictly positive constant, which may depend
on the geometry and on the other parameters of the problem; γ may vary from line
to line. Moreover, if G ⊂ R

N is an open set and T > 0, we set GT = G × (0, T ).

2.2. Functional spaces. Following [10], we consider the functional spaces

H1
null(Ω

B,ε) := {w ∈ H1(ΩB,ε) : w = 0 on ∂ΩB,ε ∩ ∂Ω, in the sense of traces};
H1

null(Ω
D,ε) := {w ∈ H1(ΩD,ε) : w = 0 on ∂ΩD,ε ∩ ∂Ω, in the sense of traces}.

(2.1)
Notice that in the connected/disconnected case H1

null(Ω
D,ε) = H1(ΩD,ε).

We also define the space

X 1
0ε(Ω) := {w : Ω → R : w|

ΩB,ε
∈ H1

null(Ω
B,ε), w|

ΩD,ε
∈ H1

null(Ω
D,ε)} , (2.2)
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endowed with the norm

‖w‖2X 1
0ε(Ω) := ‖∇w‖2L2(ΩB,ε) + ‖w‖2H1(ΩD,ε). (2.3)

By our assumptions, we have that ∂ΩB,ε ∩ ∂Ω is always non-empty, while ∂ΩD,ε

can intersect or not the boundary of Ω, depending on the geometry. We recall that,
for w ∈ X 1

0ε(Ω), the following Poincaré inequality holds (see [5, Proposition 7.1 and
Remark 7.1]):

‖w‖2L2(Ω) ≤ γ
(
‖∇w‖2L2(ΩB,ε) + ‖∇w‖2L2(ΩD,ε) + ε‖[w]‖2L2(Γ ε)

)
, (2.4)

where [w] = w|
ΩB,ε
− w|

ΩD,ε
and the constant γ is independent of ε. We point out

that the last term is not necessary in the connected/connected case. Therefore, an
equivalent norm on X 1

0ε(Ω) is given by

‖w‖2X 1
0ε(Ω) ∼ ‖∇w‖2L2(Ω) + ‖[w]‖2L2(Γ ε); (2.5)

again, the last term can be dropped in the connected/connected case.

2.3. Position of the problem. Let α, β be strictly positive constants and σB
1 , σ

B
2 , σ

D

be Y -periodic bounded and symmetric matrices such that there exist γ0, γ̃0 > 0 with

γ0|ζ |2 ≤ σB
1 (y)ζ · ζ ≤ γ̃0|ζ |2, for every ζ ∈ R

N and a.e. y ∈ Y ;
γ0|ζ |2 ≤ σB

2 (y)ζ · ζ ≤ γ̃0|ζ |2, for every ζ ∈ R
N and a.e. y ∈ Y ;

γ0|ζ |2 ≤ σD(y)ζ · ζ ≤ γ̃0|ζ |2, for every ζ ∈ R
N and a.e. y ∈ Y .

(2.6)

Moreover, set σB,ε
1 (x) = σB

1 (ε
−1x), σB,ε

2 (x) = σB
2 (ε

−1x), σD,ε(x) = σD(ε−1x) for a.e.
x ∈ Ω.
As in [10], let us consider a locally Lipschitz continuous function g : R2 → R, such
that g(p, 1) ≥ 0 and g(p, 0) ≤ 0. The example we have in mind here is a function of
the form

g(p, q) = a(p)(q − 1) + b(p)q, (2.7)

where a, b : R → R are positive, bounded and Lipschitz functions. Notice that the
form of g in (2.7) is classical in this framework (see, for instance, [45]) and that g is
Lipschitz continuous with respect to p and affine with respect to q. Let Iion : R2 → R

be given by

Iion(p, q) = h1(p) + h2(p)q, (2.8)

where h1, h2 are Lipschitz continuous functions and h2 is bounded. Let wo ∈ L∞(Ω),

with 0 ≤ wo(x) ≤ 1 a.e. in Ω and pε ∈ L2(ΩB,ε
T ). Consider the gating equation

∂tw̃
ε
pε + g(pε, w̃ε

pε) = 0, in ΩB,ε
T ; (2.9)

w̃ε
pε(x, 0) = wo(x), in ΩB,ε. (2.10)

Notice that, by classical results, the previous problem admits a unique solution w̃ε
p ∈

H1(0, T ;L∞(ΩB,ε)) and, from our assumptions, 0 ≤ w̃ε
pε(x, t) ≤ 1 a.e. in ΩB,ε

T , since
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0 ≤ wo(x) ≤ 1 a.e. in ΩB,ε (see [34]). Moreover, we can write

w̃ε
pε(x, t) = wo(x) +

t∫

0

g(pε, w̃ε
pε) dτ , for a.e. x ∈ Ω. (2.11)

From the previous assumptions, we can prove that Iion is a uniformly globally Lips-
chitz continuous function, i.e. there exists a strictly positive constant γ, independent
of ε, such that∥∥Iion(pε1, w̃ε

pε
1
)− Iion(pε2, w̃ε

pε
2
)
∥∥
L2(ΩB,ε

T
)
≤ γ‖pε1 − pε2‖L2(ΩB,ε

T
) , (2.12)

due to the uniform Lipschitz dependence of w̃ε
pε on p

ε and to the bound 0 ≤ w̃ε
pε(x, t) ≤

1 a.e. in ΩB,ε
T .

Remark 2.1. Different examples of functions Iion and g are considered in the literature.
We consider here a Hodgkin-Huxley type model (see (2.7)–(2.8)), as in [25, 45].
However, we point out that the results obtained in this paper are also valid for a
regularized version of the Mitchell-Schaeffer model proposed in [27] (see, also, [26,
28]). For this last model, the ionic current Iion satisfies (2.12) and

Iion(0, w̃0(x, t)) = 0 , a.e. in ΩB,ε
T , (2.13)

the function g is supposed to be an affine function with respect to q and smooth with
respect to p. More precisely, assuming p given, the ionic current Iion(p, q) is defined
as being

Iion(p, q) =
1

τin
qp2(p− 1)e−(p/pth)

2 − 1

τout
p(1 + rmaxe

−(pth/p)
2

)

and the function g is given by

g(p, q) =

(
1

τcl
+
τcl − τop
τclτop

q∞(p)

)
(q − q∞(p)),

with
q∞(p) = 1− e−(pgate/p)2 .

Here, all the model parameters are supposed to be positive constants (see, for the
interpretation of these constants, [27, 28, 36]). Further, it is assumed that

0 < τop < τcl pth ≫ pgate and rmax ≫ 1 .

Under the same assumptions we made for the initial data, one can prove that, also for
the Mitchell-Schaeffer model, the ionic function verifies condition (2.12); moreover,
w̃(t, ·), ∂tw̃(t, ·) ∈ L∞(ΩB) and 0 < w̃(t, x) ≤ 1 (see [28, Lemma 6 and Proposition
17] or [27, Proposition 1]). �

We give here a complete formulation of the problem we shall address in this paper
(the operators div and ∇ act only with respect to the space variable x).

Let ℓ ≥ −1. Assume that f1, f2 ∈ L2(0, T ;H1
0(Ω)), v0 ∈ L2(Ω) and, for every ε > 0,

let s0ε ∈ L2(Γ ε) be such that
1

εℓ

∫

Γ ε

s20ε dσ ≤ γ , (2.14)
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for a suitable γ > 0, independent of ε.
Let us consider the problem for uB,ε

1 , uB,ε
2 ∈ L2(0, T ;H1

null(Ω
B,ε)), uD,ε ∈ L2(0, T ;H1

null(Ω
D,ε))

and w̃ε ∈ H1(0, T ;L∞(ΩB,ε)) given by

∂

∂t
(uB,ε

1 − uB,ε
2 )− div(σB,ε

1 ∇uB,ε
1 ) + Iion(u

B,ε
1 − uB,ε

2 , w̃ε)=f1, in ΩB,ε
T ; (2.15)

∂

∂t
(uB,ε

1 − uB,ε
2 ) + div(σB,ε

2 ∇uB,ε
2 ) + Iion(u

B,ε
1 − uB,ε

2 , w̃ε)=f2, in ΩB,ε
T ; (2.16)

− div(σD,ε∇uD,ε) = 0, in ΩD,ε
T ; (2.17)

σB,ε
1 ∇uB,ε

1 · νε = 0, on Γ ε
T ; (2.18)

σB,ε
2 ∇uB,ε

2 · νε − σD,ε∇uD,ε · νε = 0, on Γ ε
T ; (2.19)

α

εℓ
∂

∂t
(uB,ε

2 − uD,ε) +
β

εℓ
(uB,ε

2 − uD,ε) = σB,ε
2 ∇uB,ε

2 · νε, on Γ ε
T ; (2.20)

uB,ε
1 (x, t), uB,ε

2 (x, t), uD,ε(x, t) = 0, on ∂Ω × (0, T ); (2.21)

uB,ε
1 (x, 0)− uB,ε

2 (x, 0) = v0(x), in ΩB,ε; (2.22)

uB,ε
2 (x, 0)− uD,ε(x, 0) = s0ε(x), on Γ ε, (2.23)

where w̃ε is the solution of the gating problem (2.9)-(2.10), with pε = uB,ε
1 − uB,ε

2 .

Remark 2.2 (Biological interpretation). The previous system of equations represents
the coupling of a standard bidomain model in ΩB,ε, for the intra and the extra-cellular
potentials uB,ε

1 and uB,ε
2 of the healthy zone, with a Poisson equation in the diffusive

part ΩD,ε, for the electrical potential uD,ε of the damaged zone. The function uB,ε
2 −

uB,ε
1 is the so-called transmembrane potential. The sources f1 and f2 are the internal

and the external current stimulus, respectively. The coefficients σB
1 , σ

B
2 and σD are the

conductivities of the two healthy phases and of the damaged one, respectively, while
α and β are given parameters related to the capacitive and the resistive behaviour
of the interface Γ ε. We point out that for the intra-cellular potential uB,ε

1 we assume

no flux condition on Γ ε (see (2.18)), while the extra-cellular potential uB,ε
2 is coupled

with the electrical potential uD,ε of the damaged zone through non-standard imperfect
transmission conditions (see (2.19) and (2.20)). Our system is completed with suitable
initial and boundary conditions. The variable w̃ε, called the gating variable, describes
the ionic transport through the cell membrane. The terms g and Iion are nonlinear
functions, modeling the membrane ionic currents.
For simplicity, we consider only one gating variable, but our results hold true also for
the case in which the gating variable is vector valued. �

Notice that, by setting vε = pε = uB,ε
1 −uB,ε

2 , uε = uB,ε
2 a.e. in ΩB,ε

T , uε = uD,ε a.e. in

ΩD,ε
T , and denoting by [·] the jump across Γ ε of the quantity in the square brackets,

i.e., [uε] = uB,ε
2 − uD,ε and [σε∇uε · νε] = (σB,ε

2 ∇uB,ε
2 − σD,ε∇uD,ε) · νε, the previous
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system can be written in the more convenient form

∂vε

∂t
− div(σB,ε

1 ∇vε) + Iion(v
ε, w̃ε)=f1 + div(σB,ε

1 ∇uε), in ΩB,ε
T ; (2.24)

− div((σB,ε
1 + σB,ε

2 )∇uε)=f1 − f2 + div(σB,ε
1 ∇vε), in ΩB,ε

T ; (2.25)

− div(σD,ε∇uε) = 0, in ΩD,ε
T ; (2.26)

σB,ε
1 ∇(vε + uε) · νε = 0, on Γ ε

T ; (2.27)

[σε∇uε · νε] = 0, on Γ ε
T ; (2.28)

α

εℓ
∂

∂t
[uε] +

β

εℓ
[uε] = σB

2 ∇uε · νε, on Γ ε
T ; (2.29)

vε, uε = 0, on ∂Ω × (0, T ); (2.30)

vε(x, 0) = v0(x), on ΩB,ε; (2.31)

[uε](x, 0) = s0ε(x), on Γ ε, (2.32)

complemented with the gating problem (2.9)–(2.10), where again uB,ε
1 − uB,ε

2 is re-
placed by vε. Clearly, vε ∈ L2(0, T ;H1

null(Ω
B,ε)) and uε ∈ L2(0, T ;X 1

0ε(Ω)). We stress
again that, by (2.12), the composed function Iion(v

ε, w̃ε) is a Lipschitz function with
respect to vε.
The weak formulation of the previous problem is given by

−
∫

ΩB,ε
T

vε∂tϕB dx dt+

∫

ΩB,ε
T

σB,ε
1 ∇vε · ∇ϕB dx dt+

∫

ΩB,ε
T

σB,ε
1 ∇uε · ∇ϕB dx dt

+

∫

ΩB,ε
T

Iion(v
ε, w̃ε)ϕB dx dt+

∫

ΩB,ε
T

(σB,ε
1 + σB,ε

2 )∇uε · ∇ϕ1
D dx dt

+

∫

ΩB,ε
T

σB,ε
1 ∇vε · ∇ϕ1

D dx dt +

∫

ΩD,ε
T

σD,ε∇uε · ∇ϕ2
D dx dt

− α

εℓ

∫

Γ ε
T

[uε]∂t[ϕD] dσ dt+
β

εℓ

∫

Γ ε
T

[uε][ϕD] dσ dt

=

∫

ΩB,ε
T

f1ϕB dx dt +

∫

ΩB,ε
T

(f1 − f2)ϕ1
D dx dt

+

∫

ΩB,ε

v0ϕB(0) dx+
α

εℓ

∫

Γ ε

s0ε[ϕD](0) dσ , (2.33)

for every ϕB ∈ L2(0, T ;H1
null(Ω

B,ε))∩H1(0, T ;L2(ΩB,ε)), ϕ1
D ∈ L2(0, T ;H1

null(Ω
B,ε)),

ϕ2
D ∈ L2(0, T ;H1

null(Ω
D,ε)), and [ϕD] ∈ H1(0, T ;L2(Γ ε)), with ϕB(T ) = 0 and

[ϕD](T ) = 0. Here, [ϕD] = ϕ1
D − ϕ2

D on Γ ε and (2.33) shall be complemented
with the gating problem.
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For any ε > 0 fixed, by [10, Theorem 3.6], it follows that the system (2.24)–(2.30),
complemented with the gating problem (2.9)–(2.10), admits a unique solution vε ∈
L2(0, T ;H1

null(Ω
B,ε)), uε ∈ L2(0, T ;X 1

0ε(Ω)) and w̃ε ∈ H1(0, T ;L∞(ΩB,ε)), such that

vε ∈ C0([0, T ];L2(ΩB,ε)), [uε] ∈ C0([0, T ];L2(Γ ε)), at least when σB,ε
1 , σB,ε

2 , σD,ε are
scalar coefficients or special matrices as in [18, Lemma 1] and [35, Formula (1)] (see,
also, [14] and [28]).
Moreover, by a standard regularization procedure, multiplying (2.24) by vε, (2.25)
and (2.26) by uε, adding the three equations, integrating by parts, using (2.27)–
(2.32), moving the integral containing Iion to the right-hand side, using (2.7)–(2.12)
and Hölder and Gronwall inequalities, as in [10, inequality (2.38)], we get the following
energy estimate:

sup
t∈(0,T )

∫

ΩB,ε

(vε)2(x, t) dx+

∫

ΩB,ε
T

|∇vε +∇uε|2 dx dt+
∫

ΩB,ε
T

|∇uε|2 dx dt

+

∫

ΩD,ε
T

|∇uε|2 dx dt + sup
t∈(0,T )

1

εℓ

∫

Γ ε

[uε]2(x, t) dσ +
1

εℓ

∫

Γ ε
T

[uε]2 dσ dt

≤ γ

(
‖f1‖2L2(ΩT ) + ‖f2‖2L2(ΩT ) + ‖v0‖2L2(Ω) +

1

εℓ
‖s0ε‖2L2(Γ ε) + 1

)
, (2.34)

where γ is independent of ε. Notice that, by (2.34), it follows also that
∫

ΩB,ε
T

|∇vε|2 dx dt ≤ γ

(
‖f1‖2L2(ΩT ) + ‖f2‖2L2(ΩT ) + ‖v0‖2L2(Ω) +

1

εℓ
‖s0ε‖2L2(Γ ε) + 1

)
.

(2.35)
Finally, taking into account condition (2.14), it follows that the right-hand side in
(2.34) and (2.35) is uniformly bounded with respect to ε. Therefore, recalling that,
both in the connected/connected case and in the connected/disconnected one, the
trace of vε and uε on (∂Ω ∩ ∂ΩB,ε)× (0, T ) is null and using the Poincaré inequality
(2.4), we get

‖vε‖L2(ΩB,ε
T

) + ‖∇vε‖L2(ΩB,ε
T

) ≤ γ;

‖uε‖L2(ΩB,ε
T

) + ‖∇uε‖L2(ΩB,ε
T

) ≤ γ;

‖uε‖L2(ΩD,ε
T

) + ‖∇uε‖L2(ΩD,ε
T

) ≤ γ;

sup
t∈(0,T )

1

εℓ

∫

Γ ε
T

[uε]2 dσ ≤ γ.

(2.36)

3. Time-depending unfolding operator

A space-time version of the unfolding operator in a more general framework, in which
also a time-microscale is actually present, has been introduced in [3] and [4], to which
we also refer for a survey on this topic. However, in the present case, the time variable
does not play any special role and can be treated essentially as a parameter; hence,
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most of the properties of this operator can be proven as in [19, 21, 22] and are
therefore omitted.
For ξ ∈ Ξε, we define

Ξε =
{
ξ ∈ Z

N : ε(ξ + Y ) ⊂ Ω
}

and set

Ω̂ε = interior

{
⋃

ξ∈Ξε

ε(ξ + Y )

}
, Λε

T = Ω̂ε × (0, T ) .

Denoting by [r] the integer part and by {r} the fractional part of r ∈ R, we define
for x ∈ R

N

[x
ε

]
Y
=

( [x1
ε

]
, . . . ,

[xN
ε

] )
and

{x
ε

}
Y
=

({x1
ε

}
, . . . ,

{xN
ε

})
,

so that
x = ε

([x
ε

]
Y
+
{x
ε

}
Y

)
.

Then, we introduce the space cell containing x as Yε(x) = ε
([x

ε

]
Y
+ Y

)
.

Definition 3.1. For w Lebesgue-measurable on ΩT , the (time-depending) periodic
unfolding operator Tε is defined as

Tε(w)(x, t, y) =




w
(
ε
[x
ε

]
Y
+ εy, t

)
, (x, t, y) ∈ Λε

T × Y ,
0 , otherwise.

For w Lebesgue-measurable on Γ ε
T , the (time-depending) boundary unfolding opera-

tor T b
ε is defined as

T b
ε (w)(x, t, y) =




w
(
ε
[x
ε

]
Y
+ εy, t

)
, (x, t, y) ∈ Λε

T × Γ ,
0 , otherwise.

�

Clearly, for w1, w2, as in Definition 3.1,

Tε(w1w2) = Tε(w1)Tε(w2) (3.1)

and the same property holds for the boundary unfolding operator. Note that T b
ε (w)

is the trace of the unfolding operator on Λε
T×Γ , when both the operators are defined.

We need also an average operator in space.

Definition 3.2. Let w be integrable in ΩT . The local (time-depending) space average
operator is defined by

Mε(w)(x, t) =





1

εN

∫

Yε(x)

w(ζ, t) dζ , if (x, t) ∈ Λε
T ,

0 , otherwise.

(3.2)

�
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Remark 3.3. From the above definitions, it follows that

Mε(w)(x, t) =

∫

Y

Tε(w)(x, t, y) dy =MY (Tε(w))(x, t) , (3.3)

whereMY (Tε(w)) denotes the mean average of Tε(w) over Y .
More in general, given an open set G ⊂ R

N , we denote byMG(w) the mean average
of w over G. �

We collect here some properties of the operators defined above.

Proposition 3.4. The operator Tε : L2(ΩT )→ L2(ΩT ×Y ), given by Definition 3.1,
is linear and continuous and satisfies the following estimates:

‖Tε(w)‖L2(ΩT×Y ) ≤ ‖w‖L2(ΩT ) (3.4)

and ∣∣∣∣∣∣

∫

ΩT

w dx dt−
∫

ΩT

∫

Y

Tε(w) dy dx dt

∣∣∣∣∣∣
≤

∫

ΩT \Λε
T

|w| dx dt , (3.5)

for every w ∈ L2(ΩT ).

Proposition 3.5. Let {wε} be a sequence of functions in L2(ΩT ).
If wε → w strongly in L2(ΩT ) as ε→ 0, then

Tε(wε)→ w , strongly inL2(ΩT × Y ) . (3.6)

If {wε} is a bounded sequence of functions in L2(ΩT ), then, up to a subsequence,

Tε(wε)⇀ ŵ , weakly inL2 (ΩT × Y ) (3.7)

and

wε ⇀MY (ŵ) , weakly inL2(ΩT ) . (3.8)

Remark 3.6. In particular, if w ∈ L2(ΩT ), we get that Tε(w)→ w, for ε→ 0, strongly
in L2(ΩT × Y ). Moreover,Mε(w)→ w strongly in L2(ΩT ). �

Remark 3.7. Actually, the only classes for which the strong convergence of the un-
folding Tε(wε) is known to hold, even without strong convergence of wε, are sums
of the following cases: wε(x, t) = f1(x, t)f2(ε

−1x), wε(x, t) = w(x, ε−1x, t) with
w ∈ L2(Y ; C(ΩT )) or w ∈ L2(ΩT ; C(Y )). In all such cases, Tε(wε) → w strongly
in L2(ΩT × Y ) (see [2, 20, 21] and [4, Remark 2.9]). �

Proposition 3.8. The operator T b
ε : L2(Γ ε

T )→ L2(ΩT ×Γ ) is linear and continuous.
In addition, we have

‖T b
ε (w)‖L2(ΩT×Γ ) ≤

√
ε‖w‖L2(Γ ε

T
) (3.9)

and ∣∣∣∣∣∣∣

∫

Γ ε
T

w dσ dt− 1

ε

∫

ΩT

∫

Γ

T b
ε (w) dσ dx dt

∣∣∣∣∣∣∣
≤

∫

Γ ε
T
\Λε

T

|w| dσ dτ . (3.10)
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Notice that, in the connected/disconnected case, the last integral in (3.10) is identi-
cally null, since by the assumptions made in Subsection 2.1 we have that Γ ε

T \Λε
T = ∅.

On the contrary, in the connected/connected case, it remains bounded, but not in-
finitesimal. Indeed,

|Γ ε
T \ Λε

T | ≈
|Ω \ Λε

T |
εN

εN−1 and |Ω \ Λε
T | ≈ |∂Ω|ε .

However, in the homogenization process, the function w in (3.10) will be replaced
with [uε]ϕ, where uε is the function appearing in problem (2.24)–(2.32) and ϕ ∈
C1([0, T ]; C10(Ω)), so that

∫

Γ ε
T

[uε]ϕ dσ dt =
1

ε

∫

ΩT

∫

Γ

T b
ε ([u

ε])T b
ε (ϕ) dσ dx dt+O(ε) for ε→ 0. (3.11)

By [12, Propositions 4.10 and 4.11 and Corollary 4.12], we get the following result.

Proposition 3.9. Assume that wε ⇀ w weakly in L2(0, T ;H1
0(Ω)). Then,

T b
ε (wε)⇀ w , weakly in L2(ΩT × Γ ).

Let w be a function belonging to C(ΩT ). Then, as ε→ 0,

T b
ε (w)→ w , strongly inL2 (ΩT × Γ ) . (3.12)

Let w be a function belonging to L2
(
0, T ;H1(Ω)

)
. Then, as ε→ 0,

T b
ε (w)→ w , strongly inL2 (ΩT × Γ ) . (3.13)

Proposition 3.10. Let φ : Y → R be a function extended by Y -periodicity to the
whole of RN and define the sequence

φε(x) = φ
(x
ε

)
, x ∈ R

N . (3.14)

If φ is measurable on Y , then

Tε(φε)(x, y) =

{
φ(y) , (x, y) ∈ Ω̂ε × Y ,
0 , otherwise.

(3.15)

Moreover, if φ ∈ L2(Y ), as ε→ 0,

Tε(φε)→ φ , strongly inL2(Ω × Y ) ; (3.16)

if φ ∈ H1(Y ), as ε→ 0,

∇y(Tε(φε))→∇yφ , strongly inL2(Ω × Y ) . (3.17)

We note that

∇y [Tε(w)−Mε(w)] = ∇yTε(w) = εTε(∇w) . (3.18)

Proposition 3.11. Let w ∈ L2(ΩT ). Then,

1

ε
[Tε(w)−Mε(w)]→ yc · ∇w , strongly inL2(ΩT × Y ) , (3.19)
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where

yc =

(
y1 −

1

2
, y2 −

1

2
, · · · , yN −

1

2

)
.

Let {wε} be a sequence converging weakly to w in L2
(
0, T ;H1

0(Ω)
)
. Then, up to a

subsequence, there exists ŵ = ŵ(x, t, y) ∈ L2
(
ΩT ;H

1
#(Y )), with MY (ŵ) = 0, such

that, as ε→ 0,

Tε(∇wε)⇀ ∇w +∇yŵ , weakly inL2(ΩT × Y ) , (3.20)

1

ε
[Tε(wε)−Mε(wε)]⇀ yc · ∇w + ŵ , weakly inL2(ΩT ;H

1
#(Y )) . (3.21)

For later use, we set

X 1
#(Y ) := {ŵ = (ŵB, ŵD) : ŵB = ŵ|EB ∈ H1(EB),

ŵD = ŵ|ED ∈ H1(ED), ŵ is Y -periodic}. (3.22)

Proposition 3.12. Let {wε} ⊂ L2(0, T ;X 1
0ε(Ω)) and assume that we are in the

connected/connected geometry. Assume that there exists γ > 0 (independent of ε)
such that ∫

ΩT

|wε|2 dx dt+
∫

ΩT

|∇wε|2 dx dt ≤ γ , ∀ε > 0. (3.23)

Then, there exists w ∈ L2(ΩT ;X 1
#(Y )), whose restrictions to ED and EB satisfy

w|
EB

(x, t, y) =: wB(x, t) ∈ L2(0, T ;H1(Ω)) , for a.e. y ∈ EB,

w|
ED

(x, t, y) =: wD(x, t) ∈ L2(0, T ;H1(Ω)) , for a.e. y ∈ ED,

and there exists ŵ ∈ L2(Ω;X 1
#(Y )/R) such that, up to subsequence, as ε → 0, we

have

Tε(χΩD,εwε)⇀ χEDwD, Tε(χΩB,εwε)⇀ χEBwB, weakly in L2(ΩT × Y ) ; (3.24)

Tε(χΩD,ε∇wε)⇀ χED

(
∇wD +∇yŵ

D
)
, weakly in L2(ΩT × Y ) ; (3.25)

Tε(χΩB,ε∇wε)⇀ χEB

(
∇wB +∇yŵ

B
)
, weakly in L2(ΩT × Y ) , (3.26)

where, for O ⊆ R
N , χO denotes the characteristic function of O. Moreover, we have

also

ε

∫

Γ ε
T

[wε]
2 dσ dt ≤ 2ε

∫

Γ ε
T

(
|wB

ε |2 + |wD
ε |2

)
dσ dt ≤ γ , ∀ε > 0 , (3.27)

with γ independent of ε, and

T b
ε ([wε])⇀ [w] , weakly in L2(ΩT × Γ ) , (3.28)

where [wε] = wB
ε − wD

ε and [w] = wB − wD and we have denoted by wD
ε , w

B
ε the

trace on Γ ε of wε from ΩD,ε and ΩB,ε, respectively. Moreover, on Γ , we have also
identified wD, wB with their traces.
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Proof. The convergences (3.24)–(3.26) follow by [19, Theorem 2.13] applied in ΩD,ε

and ΩB,ε, separately. Inequality (3.27) is a consequence of the standard trace in-
equality together with a rescaling argument. Finally, (3.28) follows from the fact
that

T b
ε (w

D
ε )⇀ wD , T b

ε (w
B
ε )⇀ wB , weakly in L2(ΩT × Γ ). (3.29)

Indeed, by (3.27), we obtain that there exists W ∈ L2(ΩT × Γ ) such that, up to
a subsequence, T b

ε (w
D
ε ) ⇀ W weakly in L2(ΩT × Γ ). Moreover, by Gauss-Green

Theorem and (3.24)–(3.26), recalling that ∇yTε(wε) = εTε(∇wε), we get

∫

ΩT

∫

Γ

Wϕ · νi dσ dx dt←
∫

ΩT

∫

Γ ε

T b
ε (w

D
ε )ϕνi dσ dx dt =

∫

ΩT

∫

ED

∂

∂yi

(
Tε(wε)ϕ

)
dy dx dt

= ε

∫

ΩT

∫

ED

Tε(∂iwε)ϕ dy dx dt+

∫

ΩT

∫

ED

Tε(wε)
∂ϕ

∂yi
dy dx dt

→
∫

ΩT

∫

ED

wD ∂ϕ

∂yi
dy dx dt =

∫

ΩT

∫

ED

∂

∂yi
(wDϕ) dy dx dt =

∫

ΩT

∫

Γ

wDϕ · νi dσ dx dt ,

for any ϕ ∈ C1(ΩT × Y ) with supp(ϕ) ⊂⊂ ΩT × Y and for i = 1, . . . , N , where
ν = (ν1, . . . , νN) is the unit normal vector pointing into EB. This implies that
W = wD on Γ . Clearly, the same procedure can be applied to wB

ε and wB. �

Remark 3.13. Notice that in the connected/disconnected geometry, the result stated
in Proposition 3.12 is still true, up to the fact that, now, wD belongs only to the
space L2(ΩT ) and, consequently, (3.25) is replaced by

Tε(χΩD,ε∇wε)⇀ χED

(
∇wB +∇yŵ

D
)
, weakly in L2(ΩT × Y ). (3.30)

Indeed, by [29, Theorem 4.3], we obtain

Tε(χΩD,ε∇wε)⇀ χED∇yv̂
D, weakly in L2(ΩT × Y ),

for a suitable v̂D ∈ L2(ΩT ;H
1(ED)), and, by [29, Remark 4.4], we can identify

∇yv̂
D = ∇wB+∇yŵ

D. Moreover, it is worthwhile to remark that, in the connected/dis-
conneted geometry, the space H1(ED) coincides with H1

#(E
D). �

4. Homogenization

In what follows, we extend vε to the whole of Ω (still denoting the extension by vε),
maintaining its L2(0, T ;H1(Ω))-norm uniformly bounded, as it can be done following
[23, 43], in the connected/disconnected case, and [1, Theorem 2.1] and [40, Lemma 1],
in the connected/connected case. We also extend w̃ε to the whole of Ω (still keeping
the notation w̃ε), simply by taking w̃ε = 0 in ΩD,ε.

Our goal in this section is to describe the asymptotic behavior, as ε→ 0, of the triplet
(vε, uε, w̃ε) given by the system (2.24)–(2.32). To this aim, we state the following
compactness result.
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Lemma 4.1. Suppose that α, β, σB,ε
1 , σB,ε

2 , σD,ε, f1, f2, v0, w̃0 s0ε satisfy the assump-
tions stated in Subsection 2.3. For every ε > 0, let (vε, uε, w̃ε) be the unique solu-
tion of the system (2.24)–(2.32), complemented with the gating problem (2.9)–(2.10).
Then, up to a subsequence, still denoted by ε, there exist v ∈ L2(0, T ;H1

0(Ω)),
v̂ ∈ L2(ΩT ;H

1
#(E

B)) withMEB(v̂) = 0, u ∈ L2(ΩT ), and w ∈ L2(ΩT ) such that

vε ⇀ v weakly in L2(0, T ;H1(Ω)); (4.1)

Tε(vε)⇀ v weakly in L2(ΩT × Y ); (4.2)

Tε(χΩB,ε∇vε)⇀ ∇v +∇y v̂ weakly in L2(ΩT ×EB). (4.3)

Moreover,

vε → v strongly in L2(ΩT ); (4.4)

uε ⇀ u weakly in L2(ΩT ); (4.5)

w̃ε ⇀ w weakly in L2(ΩT ). (4.6)

Proof. Assertions (4.1) and (4.5) are direct consequence of the estimate (2.36), while
assertion (4.2) follows by [9, Theorem 2.11]. On the other hand, assertion (4.3)
follows from Proposition 3.11, while (4.6) is a consequence of the fact that 0 ≤
w̃ε(x, t) ≤ 1 a.e. in ΩT , uniformly with respect to ε. Finally, (4.4) follows from the
next Proposition 4.2.
To achieve the thesis, it remains to prove that the trace of v on ∂Ω is null. In the
connected/disconnected case, this is a direct consequence of the extension technique,
while in the connected/connected one, it is due to [33, Theorems 3.5 and 3.6], thanks
to our geometrical assumptions. �

Proposition 4.2. Under the assumptions of Lemma 4.1, we have that vε → v
strongly in L2(ΩT ).

Proof. Following the ideas in [32, Lemma 3.10], let us consider the temporal trans-
lation vε∆t(t) = vε(t + ∆t) and uε∆t(t) = uε(t + ∆t) of vε and uε, respectively.
Clearly, vε∆t and uε∆t satisfy the system (2.24)–(2.30) in (0, T − ∆t), with initial
conditions vε∆t(0) = vε(∆t) and uε∆t(0) = uε(∆t). We subtract the original equations
from the corresponding ones satisfied by the temporal translated functions and set
v̂ε(t) = vε(t +∆t)− vε(t) and ûε(t) = uε(t +∆t) − vε(t) (the same notation will be
adopted for all the other quantities). Thus, taking into account only equations (2.24)

and (2.27) and using as test function ϕB(t) = −
∫ t+∆t

t
vε(s) ds, we obtain

T−∆t∫

0

∫

ΩB,ε

(v̂ε)2 dx dt =

T−∆t∫

0

∫

ΩB,ε

σB,ε
1 ∇v̂ε ·




t+∆t∫

t

∇vε(s) ds


 dx dt+

T−∆t∫

0

∫

ΩB,ε

σB,ε
1 ∇ûε ·




t+∆t∫

t

∇vε(s) ds




(4.7)
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+

∫

ΩB,ε

(
vε(T )− vε(T −∆t)

)



T∫

T−∆t

vε(s) ds


 dx

−
∫

ΩB,ε

(
vε(∆t)− v0

)



∆t∫

0

vε(s) ds


 dx

+

T−∆t∫

0

∫

ΩB,ε

(
Iion(v

ε
∆t, w̃

ε
∆t)− Iion(vε, w̃ε)

)



t+∆t∫

t

vε(s) ds


 dx dt

−
T−∆t∫

0

∫

ΩB,ε

f̂1




t+∆t∫

t

vε(s) ds


 dx dt =

6∑

k=1

Ik .

Clearly, (4.7) shall be complemented with the gating problems for w̃ε(t) and w̃ε(t +
∆t).
Taking into account (2.36) and using Hölder inequality, we get

I1 =

T−∆t∫

0

∫

ΩB,ε

σB,ε
1 ∇v̂ε ·




t+∆t∫

t

∇vε(s) ds


 dx dt

≤ γ




T−∆t∫

0

∫

ΩB,ε

|∇vε|2 dx dt




1/2 ∥∥∥∥∥∥

t+∆t∫

t

∇vε(s) ds

∥∥∥∥∥∥
L2(ΩB,ε×(0,T−∆t))

≤ γ‖∇vε‖2
L2(ΩB,ε

T
)

√
∆t ≤ γ

√
∆t .

(4.8)

Similar computations lead to

I2 ≤ γ‖∇uε‖L2(ΩB,ε
T

)‖∇vε‖L2(ΩB,ε
T

)

√
∆t ≤ γ

√
∆t ,

I3 ≤ γ
√
∆t sup

t∈(0,T )

∫

ΩB,ε

(vε)2(x, t) dx ≤ γ
√
∆t ,

I4 ≤ γ
√
∆t sup

t∈(0,T )




∫

ΩB,ε

(vε)2(x, t) dx+ ‖v0‖L2(Ω)




∫

ΩB,ε

(vε)2(x, t) dx




1/2

 ≤ γ

√
∆t ,

I6 ≤ γ‖∇f̂1‖L2(ΩB,ε
T

)‖∇vε‖L2(ΩB,ε
T

)

√
∆t ≤ γ

√
∆t .

Finally,

I5 ≤ γ‖Iion(vε∆t, w̃
ε
∆t)− Iion(vε, w̃ε)‖L2(Ω×(T−∆t))‖vε‖L2(ΩT )

√
∆t

≤ γ‖v̂ε‖L2(Ω×(T−∆t))‖vε‖L2(ΩT )

√
∆t ≤ γ‖vε‖2L2(ΩT )

√
∆t ,
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where, in the second inequality, we used (2.12). Collecting all the previous estimates,
from (4.7) we obtain

T−∆t∫

0

∫

ΩB,ε

|vε(x, t +∆t)− vε(x, t)|2 dx dt ≤ γ
√
∆t . (4.9)

Therefore, taking into account the energy estimate (2.36), by (4.9) we can infer that
vε → v strongly in L2(ΩT ). �

Lemma 4.3. Under the assumptions of Lemma 4.1, we have that, up to a sub-
sequence, still denoted by ε, there exist uB ∈ L2(0, T ;H1

0(Ω)), uD ∈ L2(ΩT ) and
û = (ûB, ûD) ∈ L2(ΩT ;X 1

#(Y )) withMY (û) = 0, such that

Tε(χΩB,ε∇uε)⇀ ∇uB +∇yû
B, weakly in L2(ΩT × EB). (4.10)

Moreover,

• in the connected/connected case, uD ∈ L2(0, T ;H1
0(Ω)) and

Tε(χΩD,ε∇uε)⇀ ∇uD +∇yû
D, weakly in L2(ΩT × ED); (4.11)

• in the connected/disconnected case,

Tε(χΩD,ε∇uε)⇀ ∇uB +∇yû
D, weakly in L2(ΩT × ED); (4.12)

• for ℓ > −1 and in both geometries, we have

T b
ε ([u

ε])→ 0 weakly in L2(ΩT × Γ ), (4.13)

so that uB = uD =: u ∈ L2(0, T ;H1
0(Ω)).

Proof. By (2.36), it follows that Proposition 3.12 and Remark 3.13 hold. Therefore,
assertions (4.10), (4.11) and (4.12) are direct consequence of (3.25), (3.26) and (3.30).
Moreover, in the connected/connected case, the traces of uB and uD are zero on

∂Ω × (0, T ). Indeed, we can identify uε |ΩB,ε= uB,ε
2 and uε |ΩD,ε= uD,ε (as already

done for vε and w̃ε) with their extensions and then apply [33, Theorems 3.5 and 3.6].

In the connected/disconnected case, we have only to identify uε |ΩB,ε= uB,ε
2 with its

extension from outside, so that uB,ε
2 ∈ L2(0, T ;H1

0(Ω)). Moreover, by the energy

estimate (2.36) and the properties of the extension, we obtain also that uB,ε
2 ⇀ uB

weakly in L2(0, T ;H1
0(Ω)).

Finally, in order to prove (4.13), recalling that ℓ > −1 and taking into account (2.36),
we obtain that

1

εℓ

∫

Γ ε
T

[uε]2(t) dσ dt ≤ γ ,

with γ independent of ε. Therefore, (3.9) implies that
∫

ΩT×Γ

T b
ε ([u

ε]2) dσ dt ≤ γε1+ℓ → 0 .

Hence, T b
ε ([u

ε]) → 0 strongly in L2(ΩT × Γ ). Taking into account that, by (3.28),
T b
ε ([u

ε])⇀ [u] weakly in L2(ΩT × Γ ), we get [u] = 0, i.e. u ∈ L2(0, T ;H1
0(Ω)). �
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We now have to distinguish the different scalings.

4.1. The scaling ℓ = 1. In addition to what stated in Lemmas 4.1 and 4.3, we can
also state the following result.

Lemma 4.4. Under the assumptions of Lemma 4.1, we have that, up to a subse-
quence, still denoted by ε,

T b
ε (ε

−1[uε])⇀ [û] weakly in L2(ΩT × Γ ). (4.14)

Proof. Assertion (4.14) is a consequence of the result in [39, Theorem 3] and [29,
Theorem 4.3 and Remark 4.4], once we redefine, according to the notation in that
paper,

ûB = û1 + ξΓ −m, ûD = û2 −m,

where û1 ∈ L2(ΩT ;H
1
#(E

B)), û2 ∈ L2(ΩT ;H
1
#(E

D)), ξΓ, m ∈ L2(ΩT ), with û
1, û2, ξΓ

given in [39, Theorem 3] and m =MEB(û1) + |EB|ξΓ +MED(û2). �

Theorem 4.5. Let α, β, σB,ε
1 , σB,ε

2 , σD,ε, f1, f2, v0,wo and s0ε be as in Subsection
2.3. Assume also that T b

ε (ε
−1s0ε) ⇀ s1 weakly in L2(Ω × Γ ). For every ε > 0,

let (vε, uε, w̃ε) be the unique solution of the system (2.24)–(2.32), complemented
with the gating problem (2.9)-(2.10). Then, there exist v, u ∈ L2(0, T ;H1

0(Ω)),
v̂ ∈ L2(ΩT ;H

1
#(E

B)) with MEB(v̂) = 0, û ∈ L2(ΩT ;X 1
#(Y )) with MY (û) = 0,

and w ∈ L2(ΩT ), such that vε ⇀ v, uε ⇀ u, w̃ε ⇀ w in the sense of Lemmas 4.1, 4.3
and 4.4. Moreover, v, v̂, u, û, w are the unique solutions of the two-scale homogenized
system given by

|EB|vt − div



∫

EB

σB
1 (∇(v + u) +∇y(v̂ + ûB)) dy




+ |EB|Iion(v, w) = |EB|f1, in ΩT ; (4.15)

− div



∫

EB

{
(σB

1 + σB
2 )(∇u+∇yû

B) + σB
1 (∇v+∇yv̂)

}
dy




−div



∫

ED

σD(∇u+∇ûD) dy


 = |EB|(f1 − f2), in ΩT ; (4.16)

− divy(σ
B
1 ∇(v + u) + σB

1 ∇y(v̂ + ûB)) = 0, in ΩT × EB; (4.17)

− divy(σ
B
2 (∇u+∇yû

B)) = 0, in ΩT × EB; (4.18)

− divy(σ
D(∇u+∇yû

D)) = 0, in ΩT × ED; (4.19)

σB
1 ∇(v + u) + σB

1 ∇y(v̂ + ûB) · ν = 0, on ΩT × Γ ; (4.20)
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[σ(∇u+∇yû) · ν] = 0, on ΩT × Γ ; (4.21)

α[û]t + β[û] = σB
2 (∇u+∇yû

B) · ν, on ΩT × Γ ; (4.22)

v(x, 0) = v0, in Ω; (4.23)

[û](x, y, 0) = s1, in Ω × Γ ; (4.24)

v, u = 0, on ∂Ω, (4.25)

and

∂tw + g(v, w) = 0 , in ΩT ; (4.26)

w(x, 0) = wo(x) , in Ω. (4.27)

Here, σ is the matrix which coincides with σB
2 in EB and with σD in ED.

Proof. In the weak formulation (2.33), let us take, as test functions,

ϕB = φB(x, t) + εψB(x, t, x/ε) and ϕD = φD(x, t) + εψD(x, t, x/ε) ,

where φB, φD ∈ C1(ΩT ), with compact support in Ω, for every t ∈ [0, T ], and such

that φB(x, T ) = φD(x, T ) = 0, for every x ∈ Ω, ψB ∈ C1(ΩT ; C1#(EB)), with compact

support in Ω, for every (t, y) ∈ [0, T ]× Y , and such that ψB(x, T, y) = 0, for every
(x, y) ∈ Ω × Y , ψD ∈ C1(ΩT ;X 1

#(Y )), with compact support in Ω, for every (t, y) ∈
[0, T ]×Y , and such that [ψD(x, T, y)] = 0, for every (x, y) ∈ Ω×Y . Then, we obtain

−
∫

ΩB,ε
T

vε(∂tφB + ε∂tψB) dx dt +

∫

ΩB,ε
T

σB,ε
1 ∇vε · (∇φB + ε∇xψB +∇yψB) dx dt

+

∫

ΩB,ε
T

σB,ε
1 ∇uε · (∇φB + ε∇xψB +∇yψB) dx dt +

∫

ΩB,ε
T

Iion(v
ε, w̃ε)(φB + εψB) dx dt

+

∫

ΩB,ε
T

(σB,ε
1 + σB,ε

2 )∇uε · (∇φD + ε∇xψ
1
D +∇yψ

1
D) dx dt

+

∫

ΩB,ε
T

σB,ε
1 ∇vε·(∇φD+ε∇xψ

1
D+∇yψ

1
D) dx dt+

∫

ΩD,ε
T

σD,ε∇uε·(∇φD+ε∇xψ
2
D+∇yψ

2
D) dx dt

− αε
∫

Γ ε
T

[uε]

ε
∂t[ψD] dσ dt + βε

∫

Γ ε
T

[uε]

ε
[ψD] dσ dt

=

∫

ΩB,ε
T

f1(φB + εψB) dx dt+

∫

ΩB,ε
T

(f1 − f2)(φD + εψ1
D) dx dt

+

∫

ΩB,ε

v0(φB(0) + εψB(0)) dx+ αε

∫

Γ ε

s0ε
ε
[ψD](0) dσ . (4.28)
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Unfolding and passing to the limit, we arrive at

− |EB|
∫

ΩT

v∂tφB dx dt +

∫

ΩT

∫

EB

σB
1 (∇v +∇y v̂) · (∇φB +∇yψB) dy dx dt

+

∫

ΩT

∫

EB

σB
1 (∇u+∇yû

B) · (∇φB +∇yψB) dy dx dt+ |EB|
∫

ΩT

Iion(v, w)φB dx dt

+

∫

ΩT

∫

EB

(σB
1 + σB

2 )(∇u+∇yû
B) · (∇φD +∇yψ

1
D) dy dx dt

+

∫

ΩT

∫

EB

σB
1 (∇v +∇yv̂) · (∇φD +∇yψ

1
D) dy dx dt

+

∫

ΩT

∫

ED

σD(∇u+∇yû
D) · (∇φD +∇yψ

2
D) dy dx dt

− α
∫

ΩT

∫

Γ

[û]∂t[ψD] dσ dx dt + β

∫

ΩT

∫

Γ

[û][ψD] dσ dx dt

= |EB|
∫

ΩT

f1φB dx dt + |EB|
∫

ΩT

(f1 − f2)φD dx dt

+ |EB|
∫

Ω

v0φB(0) dx+ α

∫

Ω

∫

Γ

s1[ψD](0) dσ dx , (4.29)

where we have used Lemmas 4.1, 4.3 and 4.4. In order to get the strong formulation
(4.15)–(4.25), we localize (4.29), taking first ψB = φD = ψ1

D = ψ2
D = 0 and then

φB = ψB = ψ1
D = ψ2

D = 0, so that we arrive at (4.15), (4.16) and (4.23). Moreover,
we take φB = φD = ψ1

D = ψ2
D = 0, which gives (4.17) and (4.20). In the next step,

we take first φB = φD = ψB = ψ2
D = 0 and ψ1

D with compact support in EB and then
φB = φD = ψB = ψ1

D = 0 and ψ2
D with compact support in ED, in order to obtain

− divy((σ
B
1 + σB

2 )(∇u+∇yû
B))− divy(σ

B
1 (∇v +∇v̂)) = 0, in ΩT × EB; (4.30)

and (4.19), respectively. Clearly, subtracting (4.17) from (4.30), we get also (4.18).
In the last step, we let φB = φD = ψB = 0 and we take advantage of the equations
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previously found, obtaining

α

∫

Ω

∫

Γ

s1[ψD](0) dσ dx = −
∫

ΩT

∫

Γ

(σB
1 + σB

2 )(∇u+∇yû
B) · νψ1

D dσ dx dt

−
∫

ΩT

∫

Γ

σB
1 (∇v +∇y v̂) · νψ1

D dσ dx dt+

∫

ΩT

∫

Γ

σD(∇u+∇yû
D) · νψ2

D dσ dx dt

− α
∫

ΩT

∫

Γ

[û]∂t[ψD] dσ dx dt+ β

∫

Ωt

∫

Γ

[û][ψD] dσ dx dt =

−
∫

ΩT

∫

Γ

σB
2 (∇u+∇yû

B) · νψ1
D dσ dx dt +

∫

ΩT

∫

Γ

σD(∇u+∇yû
D) · νψ2

D dσ dx dt

− α
∫

ΩT

∫

Γ

[û]∂t[ψD] dσ dx dt+ β

∫

Ωt

∫

Γ

[û][ψD] dσ dx dt =

−
∫

ΩT

∫

Γ

[σ(∇u+∇yû) · ν]ψ2
D dσ dx dt−

∫

ΩT

∫

Γ

σB
2 (∇u+∇yû

B) · ν[ψD] dσ dx dt

− α
∫

ΩT

∫

Γ

[û]∂t[ψD] dσ dx dt + β

∫

ΩT

∫

Γ

[û][ψD] dσ dx dt ,

where, in the second equality, we have taken into account (4.20). Therefore, if we take
[ψ] = 0, it follows (4.21), while, when [ψ] 6= 0, we get (4.22) and (4.24). The boundary
condition (4.25) is a direct consequence of the fact that v, u ∈ L2(0, T ;H1

0(Ω)).
Finally, the limit gating problem (4.26)–(4.27) follows from (4.4), (4.6) and (2.7),

once we pass to the limit in (2.11), written for pε = uB,ε
1 − uB,ε

2 , similarly as done in
[25, Proposition 4.7] and [27, Section 5.3] (see, also, [31, Lemma 2.5]).
In order to conclude the proof, it remains to guarantee that the two-scale homogenized
system (4.15)–(4.25) admits a unique solution, but this is a direct consequence of the
linearity of the system jointly with the Lipschitz continuity of Iion. Therefore, the
whole sequence, and not only a subsequence, converges. �

Theorem 4.6. The two-scale system (4.15)–(4.25) can be rewritten as the single-
scale degenerate parabolic system given by

∂tv − div (A∗∇(v + u)) + Iion(v, w) = f1 , in ΩT ;

− div (A∗∇(v + u))− div


Ahom∇u+

t∫

0

Ã(t− τ)∇u(τ) dτ




= F + (f1 − f2) , in ΩT ,

(4.31)

complemented with the initial and the boundary conditions (4.23), (4.25) and the

gating problem (4.26)–(4.27). Here, the matrices A∗, Ahom, Ã are defined in (4.39)
and F is defined in (4.40). Moreover, the matrices A∗ and Ahom are symmetric and

positive definite and Ã is symmetric.
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Proof. Taking into account (4.17) and (4.20), we can factorize

(v̂ + ûB)(x, y, t) = −ζ(y) · ∇(v + u)(x, t) , (4.32)

where the cell functions ζ = (ζ1, . . . , ζN), with ζj ∈ H1
#(E

B) andMEB(ζj) = 0, are
the solutions of the cell problem

− divy(σ
B
1 ∇y(y

j − ζj)) = 0 , in EB;

σB
1 ∇y(y

j − ζj) · ν = 0 , on Γ .
(4.33)

Moreover, following [5, Section 3] and taking into account (4.18)–(4.19), (4.21)–(4.22)
and (4.24), we can factorize

û(x, t, y) = −χ0(y) ·∇u(x, t)−
t∫

0

χ1(y, t− τ) ·∇u(x, τ) dτ +T (s1(x, ·))(t, y) , (4.34)

where we need two families of cell functions χ0 = (χ1
0, . . . , χ

N
0 ), with χ

j
0 ∈ H1

#(Y ) and

MY (χ
j
0) = 0, and (χ1

1, . . . , χ
N
1 ), with χ

j
1 ∈ X 1

#(Y ) andMY (χ
j
1) = 0. More precisely,

for j = 1, . . . , N , χj
0 satisfies the cell problem

− divy(σ
B
2 ∇y(y

j − χj
0)) = 0 , in EB;

− divy(σ
D∇y(y

j − χj
0)) = 0 , in ED;

[σ∇y(y
j − χj

0) · ν] = 0 , on Γ ,

(4.35)

which can be simply rewritten as

− divy(σ∇y(y
j − χj

0)) = 0 , in Y . (4.36)

In turn, for j = 1, . . . , N , χj
1 satisfies the cell problem

− divy(σ
B
2 ∇yχ

j
1) = 0 , in EB × (0, T );

− divy(σ
D∇yχ

j
1) = 0 , in ED × (0, T );

[σ∇yχ
j
1 · ν] = 0 , on Γ × (0, T );

α∂t[χ
j
1] + β[χj

1] = σB
2 ∇yχ

j
1 · ν , on Γ × (0, T );

α[χj
1](0) = σB

2 ∇y(χ
j
0 − yj) · ν , on Γ .

(4.37)

Finally, T (s1) ∈ L2(ΩT ;X 1
#(Y )), for a.e. x ∈ Ω, is defined as the solution of the

problem

− divy(σ
B
2 ∇yT (s1)) = 0 , in EB × (0, T );

− divy(σ
D∇yT (s1)) = 0 , in ED × (0, T );

[σ∇yT (s1) · ν] = 0 , on Γ × (0, T );

α∂t[T (s1)] + β[T (s1)] = σB
2 ∇yT (s1) · ν , on Γ × (0, T );

α[T (s1)](0) = s1 , on Γ ,

(4.38)

with the additional conditionMY (T (s1)) = 0, a.e. in ΩT .
Notice that well-posedness for (4.33) and (4.36) is a classical problem, while systems
(4.37) and (4.38) admit a unique solution by [6, Theorem 6 and Remark 7].
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Inserting (4.32) and (4.34) in (4.15) and (4.16), we get the single-scale homogenized

degenerate parabolic system (4.31), where the matrices A∗, Ahom and Ã are defined
as

A∗ =
1

|EB|

∫

EB

σB
1 ∇y(y − ζ) dy =

1

|EB|

∫

EB

(∇y(y − ζ))TσB
1 ∇y(y − ζ) dy ,

Ahom =
1

|EB|



∫

EB

σB
2 ∇y(y − χ0) dy +

∫

ED

σD∇y(y − χ0) dy




=
1

|EB|

∫

Y

σ∇y(y − χ0) dy =
1

|EB|

∫

Y

(∇y(y − χ0))
Tσ∇y(y − χ0) dy ,

Ã(t) = − 1

|EB|

∫

Y

σ∇yχ1(y, t) dy ,

(4.39)

and

F =
1

|EB| div



∫

Y

σ∇yT (s1) dy


 . (4.40)

Clearly, A∗ and Ahom are symmetric and their positive definiteness is a standard
matter. Regarding Ã, we notice that, in the case of σ constant in ED and EB (with
possibly two different constants), using Gauss-Green formula, it can be written as

Ã(t) =
1

|EB|

∫

Γ

[σχ1(y, t)]⊗ ν dσ ,

whose symmetry has been proved in [5, Corollary 4.1]. However, still using the ideas

in [5, Section 4], we can prove that Ã is symmetric also for a non piecewise constant
matrix σ, satisfying (2.6). Indeed, by [5, Lemma 4.1] (applied to s1 = σB

2 ∇y(χ
j
0−yj)·ν

and s2 = σB
2 ∇y(χ

h
0 − yh) · ν), it follows

∫

Γ

[χj
1](t)[χ

h
1 ](0) dσ =

∫

Γ

[χj
1](0)[χ

h
1 ](t) dσ . (4.41)

Moreover, recalling the initial condition in (4.37), we also have

α

∫

Γ

[χj
1](t)[χ

h
1 ](0) dσ =

∫

Γ

[χj
1](t) σ

B
2 ∇y(χ

h
0 − yh) · ν dσ . (4.42)
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Now, let us take χj
1 as test function for the cell equation (4.36) (written for χh

0) and
χh
0 as test function for the cell problem (4.37). We get

∫

Y

σ∇y(χ
h
0 − yh)∇yχ

j
1 dy = −

∫

Γ

σB
2 ∇y(χ

h
0 − yh) · ν[χj

1] dσ ,

∫

Y

σ∇yχ
j
1∇yχ

h
0 dy = 0 ,

which implies

Ãhj(t) = −
1

|EB|

∫

Y

σeh∇yχ
j
1(y, t) dy = − 1

|EB|

∫

Γ

σB
2 ∇y(χ

h
0 − yh) · ν[χj

1](t) dσ

= − α

|EB|

∫

Γ

[χj
1](t)[χ

h
1 ](0) dσ ,

where, in the last equality, we have used (4.42). Reasoning as above, we arrive also
to

Ãjh(t) = −
1

|EB|

∫

Y

σej∇yχ
h
1(y, t) dy = − α

|EB|

∫

Γ

[χh
1 ](t)[χ

j
1](0) dσ .

Finally, the symmetry is proven taken into account (4.41). �

Remark 4.7. Notice that the limit problem (4.31) leads to a bidomain model with
memory effects. Indeed, let us denote by uB and uD, respectively, the limits of
the functions uB,ε

1 and uD,ε, appearing in the system (2.15)–(2.23). Recalling that

vε = uB,ε
1 − uB,ε

2 , uε |ΩB,ε
T

= uB,ε
2 and uε |ΩD,ε

T
= uD,ε, and taking into account (4.13),

we can replace v = uB − uD and u = uD in (4.31), thus obtaining

∂t(u
B − uD)− div

(
A∗∇uB

)
+ Iion(u

B − uD, w) = f1 , in ΩT ;

− div
(
A∗∇uB

)
− div


Ahom∇uD +

t∫

0

Ã(t− τ)∇uD(τ) dτ




= F + (f1 − f2) , in ΩT .

(4.43)

�

Remark 4.8. In the case ℓ > 1, by unfolding the last inequality in the energy estimate
(2.36), we obtain

T b
ε (ε

−1[uε])⇀ 0 strongly in L2(ΩT × Γ ).

In particular, this implies that there is no jump in the corrector û, and thus one can
check that the limit problem is standard. �
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4.2. The scaling ℓ ∈ (−1, 1). We recall that Lemmas 4.1 and 4.3 are still in force.

Theorem 4.9. Assume that α, β, σB,ε
1 , σB,ε

2 , σD,ε, f1, f2, v0,wo and s0ε are as in Sub-
section 2.3. For every ε > 0, let (vε, uε, w̃ε) be the unique solution of the system
(2.24)–(2.32), complemented with the gating problem (2.9)–(2.10). Then, there exist
v, u ∈ L2(0, T ;H1

0(Ω)), v̂ ∈ L2(ΩT ;H
1
#(E

B)) with MEB(v̂) = 0, û ∈ L2(ΩT ;X 1
#(Y ))

with MEB(ûB) = 0 = MED(ûD), and w ∈ L2(ΩT ), such that vε ⇀ v, uε ⇀ u,
w̃ε ⇀ w in the sense of Lemmas 4.1 and 4.3. Moreover, v, v̂, u, û, w are the unique
solutions of two-scale homogenized system given by (4.15)–(4.20), with (4.21) and
(4.22) replaced with

σB
2 (∇u+∇yû

B) · ν = 0, on ΩT × Γ ; (4.44)

σD(∇u+∇yû
D) · ν = 0, on ΩT × Γ , (4.45)

complemented with the intial-boundary conditions (4.23), (4.25) and the gating prob-
lem (4.26)–(4.27).

Proof. The proof can be carried out as in the case of Theorem 4.5. The main difference
is that, now, the last integral in (4.28) is replaced by

α

εℓ
ε

∫

Γ ε

s0ε[ψ
D](0) dσ

and the fifth line of (4.28) is replaced by

−α
εℓ
ε

∫

Γ ε

[uε]∂t[ψ
D] dσ +

β

εℓ
ε

∫

Γ ε

[uε][ψD] dσ . (4.46)

However, taking into account that (2.14) can be rewritten in the form

α

∫

Ω×Γ

(
Tε

(
s0ε

ε
ℓ+1

2

))2

dσ = αε

∫

Γ ε

(
s0ε

ε
ℓ+1

2

)2

dσ =
α

εℓ

∫

Γ ε

s20ε ≤ γ ,

it follows

α

εℓ
ε

∫

Γ ε

s0ε[ψ
D](0) dσ = αε

1−ℓ
2

∫

Ω×Γ

Tε
(
s0ε

ε
ℓ+1

2

)
Tε([ψD])(0) dσ ≤ γε

1−ℓ
2 → 0 , (4.47)

and, thanks to (2.36), similar computations lead to the result that also the integrals
in (4.46) tend to zero, for ε → 0. Hence, passing to the limit in (4.28), taking into
account the previous facts and, finally, localizing, we get the thesis. �

Theorem 4.10. The two-scale system (4.15)–(4.20), (4.44) and (4.45) can be rewrit-
ten as the single-scale degenerate parabolic system given by

∂tv − div (A∗∇(v + u)) + Iion(v, w) = f1 , in ΩT ;

− div (A∗∇(v + u))− div
(
Âhom∇u

)
= f1 − f2 , in ΩT ,

(4.48)

complemented with the initial and the boundary conditions (4.23), (4.25) and the

gating problem (4.26)–(4.27), where the matrix A∗ is given in (4.39) and Âhom =
Ahom

B + Ahom
D is defined in (4.51) and (4.52).
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Proof. As in the case ℓ = 1, taking into account (4.17) and (4.20), we can factorize
v̂ + ûB as in (4.32), where the cell functions ζ = (ζ1, . . . , ζN), with ζj ∈ H1

#(E
B)

andMEB(ζj) = 0, are the solutions of the cell problem (4.33). Moreover, taking into
account (4.18), (4.19), (4.44) and (4.45), we can factorize

û(x, t, y) = −χ̂0(y) · ∇u(x, t) , (4.49)

where the cell functions χ̂0 = (χ̂1
0, . . . , χ̂

N
0 ), with χ̂j

0 = (χ̂B,j
0 , χ̂D,j

0 ) ∈ X 1
#(Y ) and

MEB(χ̂B,j
0 ) = 0 =MED(χ̂D,j

0 ), for j = 1, . . . , N , satisfy the cell problem

− divy(σ
B
2 ∇y(y

j − χ̂B,j
0 )) = 0 , in EB;

σB
2 ∇y(y

j − χ̂B,j
0 ) · ν = 0 , on Γ ;

− divy(σ
D∇y(y

j − χ̂D,j
0 )) = 0 , in ED;

σD∇y(y
j − χ̂D,j

0 ) · ν = 0 , on Γ ,

(4.50)

which are two independent Neuman problems. Inserting these factorizations in (4.15)
and (4.16), we get the single-scale homogenized degenerate parabolic system (4.48),

where the matrix A∗ coincides with the one defined in (4.39), while Âhom = Ahom
B +

Ahom
D is given by

Ahom
B =

1

|EB|

∫

EB

σB
2 ∇y(y − χ̂B

0 ) dy =
1

|EB|

∫

EB

(∇y(y − χ̂B
0 ))

TσB
2 ∇y(y − χ̂B

0 ) dy, (4.51)

Ahom
D =

1

|EB|

∫

ED

σD∇y(y − χ̂D
0 ) dy =

1

|EB|

∫

ED

(∇y(y − χ̂D
0 ))

TσD∇y(y − χ̂D
0 ) dy. (4.52)

Clearly, Ahom
B and Ahom

D are symmetric and their positive definiteness is a standard
matter. �

Remark 4.11. As in Remark 4.7, let us denote by uB and uD, respectively, the limits of
the functions uB,ε

1 and uD,ε, appearing in the system (2.15)–(2.23), so that, replacing
v = uB − uD and u = uD in (4.48), we obtain

∂t(u
B − uD)− div

(
A∗∇uB

)
+ Iion(u

B − uD, w) = f1 , in ΩT ;

− div
(
A∗∇uB

)
− div

(
Âhom∇uD

)
= f1 − f2 , in ΩT .

(4.53)

�

Remark 4.12. In the connected/disconnected case, χD,j
0 (y) = yj, up to an additive

constant, so that Ahom
D = 0. Therefore, Ahom = Ahom

B and the limit problem is affected
only by the physical properties of the phase EB. �

4.3. The scaling ℓ = −1. In addition to what stated in Lemmas 4.1 and 4.3, we
can also state the following result.

Lemma 4.13. Under the assumptions of Lemma 4.1, we have that, up to a subse-
quence, still denoted by ε,

T b
ε ([u

ε])⇀ [u] weakly in L2(ΩT × Γ ). (4.54)

Here, with a little abuse of notation, [u] = uB − uD.
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Proof. Assertion (4.54) is a consequence of (2.36) and (3.28) in Proposition 3.12. �

Theorem 4.14. Assume to be in the connected/connected geometry. Let α, β, σB,ε
1 ,

σB,ε
2 , σD,ε, f1, f2, v0,wo and s0ε be as in Subsection 2.3 and assume that T b

ε (s0ε)⇀ s1
weakly in L2(Ω × Γ ). For every ε > 0, let (vε, uε, w̃ε) be the unique solution of
the system (2.24)–(2.32), complemented with the gating problem (2.9)–(2.10). Then,
there exist v, uB, uD ∈ L2(0, T ;H1

0(Ω)), v̂ ∈ L2(ΩT ;H
1
#(E

B)) with MEB(v̂) = 0,

û ∈ L2(ΩT ;X 1
#(Y )) with MEB(ûB) = 0 = MED(ûD), and w ∈ L2(ΩT ), such that

vε ⇀ v, uεχΩB,ε
T

⇀ uB, uεχΩD,ε
T

⇀ uD, w̃ε ⇀ w in the sense of Lemmas 4.1, 4.3 and

4.4. Moreover, v, v̂, uB, uD, û, w are the unique solutions of two-scale homogenized
system given by

|EB|vt − div



∫

EB

σB
1 (∇(v + u) +∇y(v̂ + ûB)) dy




+ |EB|Iion(v, w) = |EB|f1, in ΩT ; (4.55)

α|Γ |∂t[u] + β|Γ |[u]− div



∫

EB

(σB
1 + σB

2 )(∇uB+∇yû
B) dy




− div



∫

EB

σB
1 (∇vB+∇yv̂

B) dy


 = |EB|(f1 − f2), in ΩT ; (4.56)

α|Γ |∂t[u] + β|Γ |[u] + div



∫

ED

σD(∇uD+∇yû
D) dy


 = 0, in ΩT ; (4.57)

− divy(σ
B
1 ∇(v + uB) + σB

1 ∇y(v̂ + ûB)) = 0, in ΩT × EB; (4.58)

− divy(σ
B
2 (∇uB +∇yû

B)) = 0, in ΩT × EB; (4.59)

− divy(σ
D(∇uD +∇yû

D)) = 0, in ΩT × ED; (4.60)

σB
1 ∇(v + uB) + σB

1 ∇y(v̂ + ûB) · ν = 0, on ΩT × Γ ; (4.61)

σB
2 (∇uB +∇yû

B) · ν = 0, on ΩT × Γ ; (4.62)

σD(∇uD +∇yû
D) · ν = 0, on ΩT × Γ ; (4.63)

v(x, 0) = v0, in Ω; (4.64)

[u](x, 0) =
1

|Γ |

∫

Γ

s1 dσ, in Ω; (4.65)

v, uB, uD = 0, on ∂Ω, (4.66)

complemented with the gating problem (4.26)-(4.27).

Remark 4.15. In the connected/disconnected case, uD ∈ L2(ΩT ) and equations (4.55),
(4.56), (4.58), (4.59), (4.61), (4.62), (4.64), (4.65) are still in force, with v, uB having
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null trace on ∂Ω× (0, T ). However, as we will see in Remark 4.17 below, we will find
that equation (4.57) becomes

α∂t[u] + β[u] = 0 , in ΩT , (4.67)

(4.60) and (4.63) disappear, and equation (4.56) simplifies to

− div



∫

EB

(σB
1 + σB

2 )(∇uB+∇yû
B) dy




− div



∫

EB

σB
1 (∇vB +∇y v̂

B) dy


 = |EB|(f1 − f2), in ΩT . (4.68)

Therefore, the function uD can be explicitly determined in terms of uB and s1, i.e.

uD(x, t) = uB(x, t)−


 1

|Γ |

∫

Γ

s1(x, y) dσ(y)


 e−βt/α .

In particular, the damaged zone affects the macroscopic model only through the
physical properties (α, β) of the boundary of such a zone, while σD has no influence
in the homogenized limit. �

Proof of Theorem 4.14. In the weak formulation (2.33), let us take, as test functions,

ϕB = φB(x, t) + εψB(x, t, x/ε) and ϕD = φi
D(x, t) + εψi

D(x, t, x/ε) , i = 1, 2 ,

where φB, φ
1
D, φ

2
D ∈ C1(ΩT ), with compact support in Ω, for every t ∈ [0, T ], and

such that φB(x, T ) = φD(x, T ) = 0, for every x ∈ Ω, ψB ∈ C1(ΩT ; C1#(EB)), with

compact support in Ω, for every (t, y) ∈ [0, T ]×Y , and such that ψB(x, T, y) = 0, for
every (x, y) ∈ Ω × Y , ψD = (ψ1

D, ψ
2
D) ∈ C1(ΩT ;X 1

#(Y )), with compact support in Ω,

for every (t, y) ∈ [0, T ]×Y , and such that [ψD(x, T, y)] = 0, for every (x, y) ∈ Ω×Y .
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Then, we obtain

−
∫

ΩB,ε
T

vε(∂tφB + ε∂tψB) dx dt +

∫

ΩB,ε
T

σB,ε
1 ∇vε · (∇φB + ε∇xψB +∇yψB) dx dt

+

∫

ΩB,ε
T

σB,ε
1 ∇uε · (∇φB + ε∇xψB +∇yψB) dx dt +

∫

ΩB,ε
T

Iion(v
ε, w̃ε)(φB + εψB) dx dt

+

∫

ΩB,ε
T

(σB,ε
1 + σB,ε

2 )∇uε · (∇φ1
D + ε∇xψ

1
D +∇yψ

1
D) dx dt

+

∫

ΩB,ε
T

σB,ε
1 ∇vε·(∇φ1

D+ε∇xψ
1
D+∇yψ

1
D) dx dt+

∫

ΩD,ε
T

σD,ε∇uε·(∇φ2
D+ε∇xψ

2
D+∇yψ

2
D) dx dt

− αε
∫

Γ ε
T

[uε]∂t[φ
D + εψD] dσ dt + βε

∫

Γ ε
T

[uε][φD + εψD] dσ dt

=

∫

ΩB,ε
T

f1(φB + εψB) dx dt+

∫

ΩB,ε
T

(f1 − f2)(φ1
D + εψ1

D) dx dt

+

∫

ΩB,ε

v0(φB(0) + εψB(0)) dx+ αε

∫

Γ ε

s0ε
ε
[ψD](0) dσ , (4.69)

where, with a little abuse of notation, we denote by [φD] = φ1
D − φ2

D. Unfolding and
passing to the limit, we arrive at

− |EB|
∫

ΩT

v∂tφB dx dt +

∫

ΩT

∫

EB

σB
1 (∇v +∇y v̂) · (∇φB +∇yψB) dy dx dt

+

∫

ΩT

∫

EB

σB
1 (∇uB +∇yû

B) · (∇φB +∇yψB) dy dx dt+ |EB|
∫

ΩT

Iion(v, w)φB dx dt

+

∫

ΩT

∫

EB

(σB
1 + σB

2 )(∇uB +∇yû
B) · (∇φ1

D +∇yψ
1
D) dy dx dt

+

∫

ΩT

∫

EB

σB
1 (∇v +∇yv̂) · (∇φ1

D +∇yψ
1
D) dy dx dt

+

∫

ΩT

∫

ED

σD(∇uD +∇yû
D) · (∇φ2

D +∇yψ
2
D) dy dx dt
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− α
∫

ΩT

∫

Γ

[u]∂t[φD] dσ dx dt+ β

∫

ΩT

∫

Γ

[u][φD] dσ dx dt

= |EB|
∫

ΩT

f1φB dx dt + |EB|
∫

ΩT

(f1 − f2)φ1
D dx dt

+ |EB|
∫

Ω

v0φB(0) dx+ α

∫

Ω

∫

Γ

s1[φD](0) dσ dx , (4.70)

where we have used Lemmas 4.1, 4.3 and 4.13. In order to get the strong formulation
(4.55)–(4.66), we localize (4.70), taking first ψB = φ1

D = φ2
D = ψ1

D = ψ2
D = 0, then

φB = φ2
D = ψB = ψ1

D = ψ2
D = 0 and finally φB = φ1

D = ψB = ψ1
D = ψ2

D = 0, so
that we arrive at (4.55)–(4.57) and (4.64), (4.65). Moreover, we take φB = φ1

D =
φ2
D = ψ1

D = ψ2
D = 0, which gives (4.58) and (4.61). In the next step, we take first

φB = φ1
D = φ2

D = ψB = ψ2
D = 0 and then φB = φ1

D = φ2
D = ψB = ψ1

D = 0, in order
to obtain (4.59), (4.60) and (4.62), (4.63). The boundary condition (4.66) is a direct
consequence of the fact that v, u1D, u

2
D ∈ L2(0, T ;H1

0(Ω)).
Finally, the limit gating problem (4.26)–(4.27) and the uniqueness for the two-scale
homogenized system are obtained as in the proof of Theorem 4.5. �

Theorem 4.16. Assume to be in the connected/connected geometry. Then, the two-
scale system (4.55)–(4.66) can be rewritten as the single-scale degenerate parabolic
system given by

∂tv − div
(
A∗∇(v + uB)

)
+ Iion(v, w) = f1 , in ΩT ;

− div
(
A∗∇(uB + v)

)
− div

(
Ahom

B ∇uB + Ahom
D ∇uD

)
= f1 − f2 , in ΩT ;

α|Γ |
|EB|∂t[u] +

β|Γ |
|EB| [u] + div

(
Ahom

D ∇uD
)
= 0 , in ΩT ,

(4.71)

complemented with the initial and the boundary conditions (4.64)–(4.66) and the gat-
ing problem (4.26)–(4.27), where the matrix A∗ is defined in (4.39) and Ahom

B , Ahom
D

are defined in (4.51) and (4.52), respectively.

Proof. As in Subsection 4.1, thanks to (4.58) and (4.61), we can factorize

(v̂ + ûB)(x, y, t) = −ζ(y) · ∇(v + uB)(x, t) , (4.72)

where the cell functions ζ = (ζ1, . . . , ζN), with ζj ∈ H1
#(E

B) andMEB(ζj) = 0, are
the solutions of the cell problem (4.33). Moreover, taking into account (4.59), (4.62)
and (4.60), (4.63), we can factorize

ûB(x, t, y) = −χ̂B
0 (y) · ∇uB(x, t), ûD(x, t, y) = −χ̂D

0 (y) · ∇uD(x, t), (4.73)

where, for j = 1, . . . , N , χ̂B,j
0 ∈ H1

#(E
B), χ̂D,j

0 ∈ H1
#(E

D), MEB(χ̂B,j
0 ) = 0 =

MED(χ̂D,j
0 ) are the solutions of (4.50). Inserting (4.72) and (4.73) in (4.55)–(4.57),

we get the single-scale homogenized degenerate parabolic system (4.71), where the
matrices A∗, Ahom

B , Ahom
D are defined in (4.39), (4.51) and (4.52), respectively. �

Remark 4.17. In the connected/disconnected geometry, the system (4.55)–(4.65),
with uD (which now is only an L2(ΩT )-function) replaced by uB in (4.57), (4.60)
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and (4.63), and v, uB having null trace on the boundary ∂Ω × (0, T ), is still in force.
Then, in (4.73), the factorization of ûD is replaced by ûD = −χ̂D

0 · ∇uB, with χ̂D
0 as

above. However, as in Subsection 4.2, we obtain that χ̂D,j
0 (y) = yj, up to an additive

constant. This implies ∇uB +∇yû
D = 0 and, hence, (4.57) is replaced by (4.67) and

equations (4.60) and (4.63), actually, disappear. Moreover, equation (4.56) simplifies
in equation (4.68) and, finally, the matrix Ahom

D = 0. Therefore, the single-scale
degenerate parabolic system (4.71) becomes

∂tv − div
(
A∗∇(v + uB)

)
+ Iion(v, w) = f1 , in ΩT ;

− div
(
A∗∇(uB + v)

)
− div

(
Ahom

B ∇uB
)
= f1 − f2 , in ΩT ;

α∂t[u] + β[u] = 0 , in ΩT .

(4.74)

�

Remark 4.18. Notice that the limit problem (4.71), in the connected/connected case,
and the limit problem (4.74), in the connected/disconnected case, both lead to a
kind of tridomain model. Indeed, similarly as in Remark 4.7, let us denote by uB1 , u

B
2

and uD, respectively, the limits of the functions uB,ε
1 , uB,ε

2 and uD,ε, appearing in the

system (2.15)–(2.23). Recalling that vε = uB,ε
1 − uB,ε

2 , uε |ΩB,ε
T

= uB,ε
2 and uε |ΩD,ε

T
=

uD,ε, we can replace v = uB1 − uB2 and uB = uB2 in (4.71), thus obtaining

∂t(u
B
1 − uB2 )− div

(
A∗∇(uB1 )

)
+ Iion(u

B
1 − uB2 , w) = f1 , in ΩT ;

− div
(
A∗∇uB1

)
− div

(
Ahom

B ∇uB2 + Ahom
D ∇uD

)
= f1 − f2 , in ΩT ;

α|Γ |
|EB|∂t(u

B
2 − uD) +

β|Γ |
|EB| (u

B
2 − uD) + div

(
Ahom

D ∇uD
)
= 0 , in ΩT .

Analogously, (4.74) becomes

∂t(u
B
1 − uB2 )− div

(
A∗∇(uB1 )

)
+ Iion(u

B
1 − uB2 , w) = f1 , in ΩT ;

− div
(
A∗∇uB1

)
− div

(
Ahom

B ∇uB2
)
= f1 − f2 , in ΩT ;

α|Γ |
|EB|∂t(u

B
2 − uD) +

β|Γ |
|EB|(u

B
2 − uD) = 0 , in ΩT .

�
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