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Abstract
Among the basic cognitive skills of the biological brain in humans and other mammals, a fundamental one is the ability to
recognize inexact patterns in a sequence of objects or events. Accelerating inexact string matching procedures is of utmost
importance when dealing with practical applications where huge amounts of data must be processed in real time, as usual
in bioinformatics or cybersecurity. Inexact matching procedures can yield multiple shadow hits, which must be filtered,
according to some criterion, to obtain a concise and meaningful list of occurrences. The filtering procedures are often
computationally demanding and are performed offline in a post-processing phase. This paper introduces a novel algorithm
for online approximate string matching (OASM) able to filter shadow hits on the fly, according to general purpose priority
rules that greedily assign priorities to overlapping hits. A field-programmable gate array (FPGA) hardware implementation
of OASM is proposed and compared with a serial software version. Even when implemented on entry-level FPGAs, the
proposed procedure can reach a high degree of parallelism and superior performance in time compared to the software
implementation, while keeping low the usage of logic elements. This makes the developed architecture very competitive in
terms of both performance and cost of the overall computing system.
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Introduction

Pattern recognition is an innate human skill of utmost
importance in numerous activities [1]. Basic cognitive
psychology categorizes pattern recognition approaches in
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three models [1, 2], namely template-based, prototype-
based, and feature-based. According to the first model,
humans store learned schema in their long-term memory
and the new stimuli (input patterns) are best-matched
with these templates. As per the second model, humans
maintain average prototypes and the matching procedure
is more flexible with respect to the former case as it
allows variability in recognizing novel input stimuli. Finally,
according to the latter model, humans match features
extracted from the input pattern rather than the entire pattern
with other patterns or prototypes. Regardless of what is
currently considered the most reliable model, this kind of
recognition via matching procedures leads to perception,
which humans experience in everyday life.

Computer scientists and machine learning engineers tried
to mimic this human capability by developing biologically
inspired models. The most investigated application areas
are image analysis and foreground–background scenario
identification (also due to closeness to the most fundamental
source of input stimuli: the human eyes) [3–6]. However,
in computational sciences, recognizing visual objects is not
the only application for models based on the human-inspired
template matching procedure. In fact, much effort has been
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done to design matching procedures for several types of
structured data, including graphs and sequences [7]. For
example, the latter are particularly useful to represent text
data, which is processed in natural language processing
applications [8–11].

Approximate string matching (ASM) studies the problem
of matching two generic sequences defined on the same
alphabet and, unlike in exact string matching, a level
of inexactness is allowed: two strings match if their
dissimilarity is below a given threshold [12]. ASM is a
particular case of subgraph matching [13, 14] that has
been applied in different fields of science and technology,
including computational biology, signal processing, and
text retrieval. In computational biology, scientists try
to detect frequent patterns into DNA sequences of
nucleotides (motifs) using ASM to account for mutations
and evolutionary alterations of the genome sequences [15–
18]. In signal processing, ASM can be used to identify
patterns which have been corrupted by noise during
storage, transmission, processing, or conversion stages. The
main application fields are message exchanges, wireless
communications, audio, image, and video processing [19,
20]. ASM is extensively used for information retrieval in
large text collections where, due to the large amount of data
and the high variety of content, classical string matching
procedures are usually not suitable [21–25].

ASM also plays a fundamental role in granular com-
puting, which is a human-inspired computing and infor-
mation processing paradigm that explores multiple levels
of granularity in data [26]. The concept of granular com-
puting arose from many branches of natural and social
sciences [27–29], and it is at the basis of recently devel-
oped frameworks in computational intelligence [30–32]. In
this context, an ASM technique that identifies frequent and
meaningful motifs in sequence databases allows designing
advanced machine learning systems such as symbolic his-
togram approaches [33–35], where each pattern (a sequence
of objects/events) can be represented by a histogram of
motif instances.

The dissimilarity between two strings can be evaluated
as the cost of the edit operations required for transforming
a string into the other. The most common dissimilarities are
the Levenshtein, Hamming, Episode, and Longest Common
Subsequence distance; they differ on the edit cost definition
and on the type of the allowed edit operations, and their
computational costs range from linear to NP-complete [36].
The matching procedure can be implemented following
offline or online approaches, which differ on how sequences
are searched and indexed [37]. Several algorithms for
online pattern matching have been designed and they can
be grouped into four main classes, namely the Dynamic
Programming (DP), Automata, Bit-parallel, and Filtering
approaches [12]. The main advantage of online ASM is

providing detection in real time, which is essential in
situations where a prompt response is required.

Cybersecurity is a prominent example of application
of online ASM. In particular, network intrusion detection
systems (NIDSs) are devices or software applications used
to identify individuals who are using a computer system
without authorization and whoever has legitimate access to
the system, but is exceeding his privileges [38]. Traditional
NIDSs relied on exact pattern matching to detect an attack.
However, by changing the data used in the attack even
slightly, it is possible to evade detection. Therefore, a more
flexible detection system is required to scan efficiently
in real-time the whole inbound and outbound traffic to
match patterns from a library of known attacks, without
compromising the overall network speed.

In molecular biology, online ASM is exploited in quanti-
tative real-time polymerase chain reaction (PCR) [39].
Real-time PCR aims at amplifying a small target DNA
sample during PCR, performing a quantitation step after
amplification. This technique is useful when only a small
amount of DNA is available, which is insufficient for
performing an accurate analysis. In medicine, real-time
PCR is applied to the discovery of tumor cells, to the
diagnosis of infectious diseases, and to a plethora of other
predictive medicine and diagnostic tasks [40]; it is widely
used for studying genomes in several bacteria and protists
which cannot be cultured; in legal medicine and forensics,
it has been demonstrated to be crucial for analyzing
fingerprints and stains found at crime scenes [41, 42].

To increase the time performance of string matching
procedures, especially when dealing with big-data, their
concurrent processes can be effectively parallelized at CPU
level by executing microinstructions simultaneously, or
at circuit level by re-implementing arithmetic and logic
operations [43, 44]. Hardware implementation provides an
alternative solution to improve the speed of ASM algorithms
and several architectures have been proposed. The fas-
test implementations are custom architectures deploying
a large number of processing elements designed ad hoc
to execute a specific algorithm [45]. Other architectures,
instead, are based on general-purpose processors that can
be adopted to implement different algorithms [46, 47]. Con-
figurable devices, such as the field-programmable gate array
(FPGA), represent flexible hardware platforms that are
used to accelerate the computation, providing both a high
degree of programmability and reduced design time and
costs [48, 49].

None of the existing methods for performing online ASM
accounts for the presence of multiple shadow hits, which
are overlapping hits that appear as a consequence to the
flexibility in ASM. Usually, such shadow hits are filtered
afterwards by means of a post-processing phase which
increases the overall computational burden. Especially
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when dealing with data streams, this solution turns out to be
unfeasible both in terms of memory and time complexity,
hence the necessity to filter out shadow hits on the fly.

This paper introduces the online approximate string
matching (OASM) algorithm for retrieving a set of inexact
matches of a known pattern from a stream of symbols,
while filtering shadow hits on the fly. The proposed method
performs detection in real time and is suitable for real-
time applications and big-data streams. OASM is mainly
based on the evaluation of the Levenshtein distance between
a target pattern and a set of sequences, obtained by
shifting windows of pre-established lengths over the stream.
OASM follows a DP approach that provides a remarkable
speedup thanks to the massive parallelization capability
deriving from the inherent simplicity and regularity of its
structure. Both a software (SW-OASM) and a hardware
(HW-OASM) implementation of the algorithm are proposed
in this paper. HW-OASM is based on the systolic array
principle for the computation of the Levenshtein distance
that extends the work in [50]. Compared to its software
counterpart, experimental results show the effectiveness of
the HW-OASM especially when integrated in a multiple
online approximate string matching (MOASM) system.
The latter implements multiple instances of HW-OASM to
perform simultaneously parallel searches of distinct patterns
on a common input stream of symbols (not necessarily
finite). The performance of the proposed algorithm is first
evaluated in a controlled environment using synthetic data.
Successively, the algorithm is applied to a case study in
bioinformatics on real genome data. The analysis consists in
mining part of the human genome for RNA-binding protein
sites.

The remainder of the paper is organized as follows.
Section “Related Works” reviews related ASM approaches,
including hardware-based ones. Section “An Overview on
the Levenshtein Distance” introduces basic concepts and
details of the dissimilarity measure considered. Section “An
Online Search Algorithm Based on Approximate String
Matching” describes the OASM algorithm, and in the
Section “Case Study,” a real-world human genome case
study is presented to highlight the features of SW-
OASM, compared to other ASM approaches. Next, Section
“Proposed Hardware Implementation” provides details of
the hardware implementation, and in Section “Experi-
ments,” the performances of SW-OASM and HW-OASM
are compared on synthetic data. Finally, in Section “Conclu-
sions,” conclusions are reported.

RelatedWorks

In literature, there are two major approaches based on
DP for performing ASM on dedicated hardware, namely

FPGAs and (GP-)GPUs. In this paper, we focus on
FPGAs and refer the interested reader to works such as
[51–54] for ASM implementations on (GP-)GPUs. The
first approach relies on local/global sequence alignment
[55] (e.g., the Smith–Waterman’s algorithm [56], the
Needleman–Wunsch’s algorithm [57], or Myers’ fast
bit-vector algorithm [58]), while the second approach
exploits the Levenshtein distance (e.g., the Wagner–
Fischer’s algorithm [59]).

Implementation of the Smith–Waterman’s algorithm for
optimal local alignment on FPGAs can be found in [60],
where the authors implement the plain Smith–Waterman’s
algorithm. In [61], the Smith–Waterman’s algorithm has
been implemented on FPGAs without relying on systolic
arrays in order to exploit all processing units, whereas in
[62], the authors used systolic arrays driven by OpenCL.
In [63], the authors provide FPGA implementation for DP
and BLAST routines [64]. It is noteworthy that since the
Smith–Waterman’s algorithm was primarily developed for
nucleotide or protein sequence alignment, all works cited
so far are with regard to bioinformatics-related applications.
Conversely, in [65], the authors implement the Smith–
Waterman’s algorithm on FPGA for generic text search.
Finally, in [66], the authors use an FPGA in order to speed
up Myers’ algorithm.

General-purpose applications are more frequently relying
on the second approach, based on the Wagner–Fischer’s
algorithm. In [50], the authors adopt the plain Wagner–
Fischer’s algorithm, along with an improved version that
better exploits each cell. In [67], the Wagner–Fischer’s
algorithm has been applied to multimedia information
retrieval, also considering text search paradigms such as
wildcards and idioms. In [68], the authors provide an
FPGA implementation of the Wagner–Fischer’s algorithm
particularly suited for dealing with regular expressions.

FPGA implementations of systolic architectures have
been proposed for ASM [50, 65] and, in bioinformatics,
for DNA sequence alignment [60, 61, 63]. In the field of
music information retrieval (MIR), circuits implementing
ASM with dynamic programming cannot retrieve fragments
with different sizes [67] and other architectures with higher
flexibility only support symbol substitution [69]. Better per-
formance was achieved by application-specific integrated
circuit and FPGA with a comparable computational time
on different MIR approaches [70–73]. An efficient FPGA
implementation of ASM has been proposed for text min-
ing, where a restricted class of regular expressions is used
to define the patterns to search [68]. A work closely related
to this paper is a successful implementation of online ASM
on FPGA for NIDS applications [74].

Regardless of the particular algorithm used to implement
ASM (online and/or using dedicated hardware), none of
the works previously discussed filters shadow hits on the
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fly. In fact, those are discarded a posteriori, increasing
the overall computational burden. The proposed OASM
jointly provides (i) the ability of performing simultaneously
detection and shadow hits filtering; (ii) the ability of
working with data streams, avoiding to store the entire
input sequence and/or all multiple shadow hits. Contrarily to
previous works, in OASM, not only is the plain Levenshtein
distance parallelized, but so is the filtering procedure. This
makes the proposed approach a perfect candidate for being
implemented in FPGAs.

An Overview on the Levenshtein Distance

Let the pattern p = 〈p(0), p(1), . . . , p(lp−1)〉 and the string
t = 〈t (0), t (1), . . . , t (lt−1)〉 be defined, respectively, as the
concatenation of lp and lt symbols of a finite alphabet
� and a generic substring s = 〈s(0), s(1), . . . , s(l−1)〉 =
〈t (i), t (i+1), . . . , t (i+l−1)〉 = t[i, l] be a subset of l

contiguous symbols in t starting from position i. The
dissimilarity between strings p and s can be measured by
means of the Levenshtein distance lev(p, s) ∈ N0, which
is the minimum number of single-character edits (insertion,
deletion, substitution) necessary to transform p into s. Let C
be a matrix of size (lp + 1) × (l + 1), whose elements are:

cn,m =

⎧
⎪⎪⎨

⎪⎪⎩

n, if m = 0
m, if n = 0
min(cn−1,m + 1, cn,m−1 + 1,

cn−1,m−1 + δn,m), if n,m > 0

(1)

where δn,m = (
p(n) �= s(m)

)
, n = 0, . . . , lp, m = 0, . . . , l.

The Levenshtein distance between p and s corresponds to
the element clp,l of the Levenshtein matrix C. Equation 1
shows that, for n,m > 0, each element cn,m of the
matrix C can be computed just by knowing its upper

(cn−1,m), left (cn,m−1), and upper-left (cn−1,m−1) neighbors.
Applying the DP method to the Levenshtein distance
computation consists in building column-wise (or row-wise)
the matrix C, element by element, by solving iteratively
the same simple problem, whose result will be used as
input of one of the successive iterations. Although the
algorithm is O

(
lp · l

)
in time, the space complexity is only

O
(
min(lp, l)

)
because only the previous column (or row)

has to be stored to compute the new one.
Applying ASM between p and t consists in finding the set

of all the substrings s ⊂ t with length ls ∈ [lp − K, lp + K]
that satisfy the condition:

lev(p, s) = k ≤ K, (2)

where the threshold K represents the maximum acceptable
level of inexactness [75]. Figure 1(a) depicts the matrix C
resulting from the computation of the Levenshtein distance
between the pattern p = 〈ABCD〉 and the substring s =
〈ABBDA〉 from the string t = 〈ABBDABCDACDB〉
defined over the alphabet � = {A, B, C, D} for K = 1
and i = 0. The gray-shaded cells in Fig. 1(a) represent
the values of the Levenshtein distances between p and the
three substrings t[0, 3] = 〈ABB〉, t[0, 4] = 〈ABBD〉, and
t[0, 5] = 〈ABBDA〉. There is no need to compute three
different distances since by computing only the distance
between p and t[0, 5] (element c4,5 of C), the other
two distances are available as intermediate computations
(elements c4,3 and c4,4 of C, respectively). By increasing i,
step by step, all the substrings of t are generated.

The DP method can be applied to compute subsequently
the Levenshtein distances between p and all the substrings
obtained by shifting a fixed mask of length lp + K over
t [76]. The DP approach reduces the overall number of
computations compared to brute force approaches or when
the same computation is repeated over and over [77].

Fig. 1 Example of the matrix C
computation with canonical (a)
and wave-front (b) approaches
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The DP approach for the Levenshtein distance compu-
tation exploits the relationship between each element cn,m

in C and its three neighbors cn−1,m, cn,m−1, cn−1,m−1. All
the elements on an anti-diagonal j can be computed at the
same time in a wave-front processing fashion, by combin-
ing the information contained in the anti-diagonals j − 1
and j − 2, together with the information related to the
symbols of the two compared strings. Starting from the
element c0,0 and ending with the element clp,l , the matrix
C is filled in 2lp + K − 1 steps, as shown in Fig. 1(b).
On the first step, the anti-diagonals 0 and 1 are com-
bined to obtain the anti-diagonal 2, and so on, up to the
step 2lp + K − 1, where the anti-diagonals 2lp + K − 1
and 2lp + K are combined to obtain the anti-diagonal
2lp + K + 1.

An Online Search Algorithm Based on
Approximate StringMatching

This section presents the proposed online algorithm that
combines the features of the DP method with a search
criterion based on priority rules to find inexact occurrences
of a known pattern p of length lp within a continuous stream
of symbols t. All the found occurrences are stored in a
set S to be used for further processing. Collecting all the
substrings s of length l ∈ [lp − K, lp + K] from the text
t that verify Eq. 2 at each position i, may lead to multiple
hits of the same occurrence of p [78]. Due to the online
setting considered, it is not possible to decide whether an
occurrence can be added to S at the time it is found, but it
depends on the symbols of t that are not yet processed. For
instance, if Eq. 2 is verified for two substrings s′ and s′′ that
start from two consecutive positions in t, respectively i and
i + 1, the two hits will correspond to the same occurrence
of p. The next subsection introduces a set of rules that
determine the priorities for accepting the hits found in the
text t as valid occurrences.

Priority Rules

Not all the overlapping substrings verifying Eq. 2 should
be considered as occurrences but, at the same time, the
online nature of the problem complicates deciding on the
fly which one should be kept or discarded. The proposed
solution consists in assigning temporary priority values
to the occurrences that verify Eq. 2. In the remainder of
the paper, smaller values denote higher priorities and they
depend on the degree of matching between p and s, and on
the position of the substrings in t.

Three rules define a priority scheme that allows to build
a greedy online algorithm with low complexity to solve the
actual NP-complete problem.

R1: Consider that the substring s′ = t[i′, l′] for which
lev(p, s′) = k′ ≤ K has already been found and assigned
with a priority level k′. Any other overlapping substring
s′′ = t[i′′, l′′] for which lev(p, s′′) = k′′ ≤ K becomes
an occurrence only if k′′ < k′.

R2: If s′ and s′′ have the same priority, the first
encountered substring becomes an occurrence, the other
one is discarded.

R3: If s′ and s′′ have the same priority and start at the
same position in t, the shorter becomes an occurrence.

Validation Process

It is possible to notice that the three rules do not resolve
completely the prioritization of the occurrences in presence
of overlaps. For example, consider three overlapping
substrings s′, s′′, and s′′′, so that:

– i′ < i′′ < i′′′;
– k′ > k′′ > k′′′;
– s′ ∩ s′′ �= 0, s′′ ∩ s′′′ �= 0, s′ ∩ s′′′ = 0

As t is processed symbol by symbol, priority k′ = 2 is
assigned to the occurrence relative to s′. Then, the substring
s′′ becomes an occurrence with priority k′′ = 1 verifying
rule R1. As more symbols are processed, s′′′ is found and
according to rule R1 it becomes an occurrence with priority
k′′′ = 0. Due to the condition s′ ∩ s′′′ = 0, only the
occurrence relative to s′′ should be discarded. To ensure this
behavior, it is necessary to introduce a further validation
procedure, which decides when it is possible to safely
discard an occurrence in presence of overlapping substrings.

The validation process proposed here uses one counter
r(k) per priority level:
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– When an occurrence with priority k < K is found, its
validation begins and r(k) starts counting from 0 up to
a value equal to the occurrence length;

– If overlapping occurrences with higher priority k∗ < k

are encountered, r(k) keeps counting until the end of
the occurrences.

When the validation process of the occurrence with
the highest priority is completed (its relative counter r(k)

reaches the target value), it can be decided which of the
validated occurrences can be added to S. Starting from
the occurrence with the highest priority and going down
to the validated occurrence with the lowest priority, the
substring relative to the highest priority is added to S.
Moving downwards, the validated occurrence with lower
priority k is added to S if the following condition is verified:

r(k) − l(k∗) > l(k) (3)

where k∗ < k represents the index (priority) of the
occurrence relative to the last substring added to S.

The pseudo-code in Algorithm 1 summarizes the whole
OASM procedure. The storage variable mem is a matrix
of size (K + 1) × 3, whose content is reset by calling
“reset(mem).” mem stores in his columns three quantities
for each one of the K + 1 possible priority levels of the
occurrence: its position i (column 1), its length l (column

2), and its associated validation counter r (column 3). The
variable idx contains the priority of last found occurrence
and the variable ins is a flag that enables the counting
check in the validation process. The counters r(k) of the
occurrences in mem are incremented by one each time a
new symbol of t is processed. Finally, the variable acc is
used to implement (3) and accumulates all the lengths l of
the validated occurrence that has just been added to S. Every
time substrings are added to S, the variables idx, ins, acc,
and mem are reset. The symbol “:” selects all the indexes
across one dimension.

Example The OASM algorithm is executed on the fol-
lowing example, where p = 〈ACBDA〉 and t =
〈CCCCDACCBDACBDAA . . . 〉 are defined over the
alphabet � = {A, B, C, D} and K = 2. Figure 2 illus-
trates the evolution through time of the variables stored
within mem: three occurrences (one per priority) relative to
different substrings are overlapping. As the counter of the
occurrence with priority 0 reaches 5, the validation process
is complete. The substring s = t[10; 5] = 〈ACBDA〉 is the
one with the highest priority and it represents the occurrence
that is validated. For the substring s = t[7, 4] = 〈CBDA〉,
instead, Eq. 3 has to be evaluated. Substituting numerical
values in r(1) − l(0) > l(1) gives 8 − 5 > 4, which is
false, so the occurrence with priority 1 is discarded. Finally
the substring s = t[3, 3] = 〈CDA〉 relative to the occur-
rence with priority 2 has to be added because evaluating
r(2) − l(0) > l(2) gives 12 − 5 > 3, which is true. In the
last evaluation, l(0) is present rather than l(1), since the last
validated occurrence is the one with priority 0, whereas the
one with priority 1 was discarded.

Complexity Analysis

The price to pay for filtering out unaccepted occurrences
with the proposed validation process is that the validated
occurrences are not instantaneously stored in S.

To analyze the complexity of the algorithm, we consider
the worst case scenario for a generic occurrence with
priority k. It occurs when (i) overlapping occurrences
with all priority values from 0 to K are found, (ii) all
the occurrences have a maximum length, and (iii) each
occurrence with priority k − 1 begins just before the end
of the occurrence with priority k. In this case, the substring
corresponding to the occurrence with the lowest priority
kmin cannot be added to S before d = lp(kmin + 1) +
kmin(kmin − 1)/2 symbols of t are processed.

The space complexity corresponds to the size of the
storage variable mem. According to the discussed worst
case scenario, the upperbound for the space required to store

mem is O
(
lp(K + 1) + K(K−1)

2 (2K + 1)
)

.
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Fig. 2 Content of mem over
time, in the proposed example

Case Study

microRNAs (miRNAs) [79, 80] are small non-coding
primary transcripted molecules (approx. 22 nucleotides
long) which serve as regulators of gene expression and
are essential components of normal organism development.
Found in plants, animals, and unicellular eukaryotes,
miRNAs control diverse biological functions by promoting
degradation or translation inhibition of target messenger
RNAs or by carrying out post-transcriptional regulation of
gene expression. miRNA genes are dispersed in various
genomic locations (intronic, exonic, or intergenic regions)
and can be transcribed independently or as a part of other
host genes.

miRNAs are encoded within the genome and are
often transcribed by RNA polymerase II or, rarely, by
RNA polymerase III as long precursor transcripts (several
hundreds or thousands of nucleotides), named primary-
microRNAs (pri-miRNAs) [81, 82]. Those pri-miRNAs
have the characteristic hairpin (or stem-loop) structure.

Within the nucleus, pri-miRNAs are cleaved by the
microprocessor complex formed by proteins DROSHA
and DGCR8 (also known as PASHA1) and the shorter
hairpin structure (approx. 72 nucleotides) formed by
this cleavage is referred to as precursor-microRNAs
(pre-miRNAs).

The pre-miRNAs are transported from the nucleus
to the cytoplasm by Exportin-5 together with Ran-
Guanine TriPhosphatase [80]. In the cytoplasm, DICER, a
cytoplasmic RNase III-type protein, dices the transported
pre-miRs near the hairpin loop, yielding a mature miRNA-
duplex of approx. 22 nucleotides. The duplex is loaded onto
the Argonaute protein (AGO). One strand of the duplex (the
passenger strand) is discarded, while the other strand (the
guide strand or mature miRNA) remains in AGO to form an
RNA-induced silencing complex [80].

1Partner of droSHA
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The end positions of mature miRNAs are gener-
ally assumed as DROSHA cleavage sites. However, pre-
and mature-miRNAs are often subject to end modifi-
cation/processing such as trimming and tailing, which
hinders the exact identification of DROSHA cleavage
sites [83]. Processing of pri-miRNA stem-loops by the
DROSHA/DGCR8 complex is the initial step in miRNA
maturation and crucial for its function. Nonetheless, the
underlying mechanism that determines the DROSHA cleav-
age site of primary transcripts has remained unclear: while
the mechanisms of pre-miRNA recognition and cleavage
by DICER are well characterized [84], an understanding
of how DROSHA/DGCR8 selectively recognizes and pre-
cisely cleaves pri-miRNAs remains unclear [85]. The prob-
lem of identifying cleavage sites for DROSHA relies on the
fact that failures at DROSHA processing step might lead to
miRNAs downregulation, a phenomenon observed in cancer
patients [86].

Baseline Algorithms for ASM

To show the effectiveness of the proposed OASM algorithm,
it is compared to two baseline ASM techniques.

The first, referred as Fully Naı̈ve, works in a brute force
fashion [87] according to the following three steps:

1. From the input stream, extracts all possible adjacent
substrings of any possible length;

2. Evaluates all pairwise Levenshtein distances between
substrings and the target sequence;

3. Discards all substrings whose distance with respect to
the target sequence is greater than the threshold K .

While being the most straightforward method, Fully Naı̈ve
does not consider multiple shadow hits and all the
occurrences found must be stored in order to be filtered
in a post-processing stage. Further, due to its brute force
nature, it is unsuitable for processing large input streams,
since the number of possible adjacent substrings of any
possible length grows quadratically with the length of the
text. Specifically, let l be the length of the text, the number
of non-empty adjacent substrings of any possible length is
l(l + 1)/2. Accordingly, the time and space complexity for
evaluating the Levenshtein distance with Wagner–Fischer’s
algorithm, as described in Section “An Overview on the
Levenshtein Distance,” is O(l · lp) with l and lp being
the input and target string lengths, respectively. Thus, the
overall complexity in the best case is O(lp), whereas in
the worst case is O(l2). Finally, the filtering procedure
must scan all possible substrings generated in step 1, and
its complexity is again O(l2). By strictly following the
three steps above, step 1 might lead to early out-of-memory
errors due to the storage of O(l2) possible substrings.
To avoid this, for each extracted substring, one can

evaluate the distance with respect to the target and discard
the substring if the distance is above the user-defined
threshold.

The second procedure, referred as Less Naı̈ve, tweaks the
Levenshtein matrix C [12, 68]. Again, let l and lp be the
lengths of the input stream and target string, respectively.
According to Section “An Overview on the Levenshtein
Distance,” to keep track of the prefixes, one initializes the
matrix C with a dummy row (0 to l) and a dummy column
(0 to lp), as shown in Fig. 1. Instead, if the dummy row
is initialized with all zeros, the Wagner–Fischer’s algorithm
computes the Levenshtein distance between the target and
substrings in the input stream. Therefore, rather than picking
the bottom-right element, one takes all positions in the last
row that are below the threshold K as the ending positions
of the hits.

Qualitative Analysis of the Results

After consultation with field experts,2 several human pre-
miRNAs of interest have been selected for the analysis. As
discussed above, since the end positions of mature miRNAs
cannot be considered as reliable cleavage sites, mining
pre-miRNAs neighborhood regions (both upstream and
downstream) can give some further insights to biologists.

To evaluate the capability of the proposed algorithm
to filter shadow hits on the fly, five of the suggested
pre-miRNAs have been considered, along with the corre-
sponding chromosomes. All data are freely available on ad
hoc biological online databases: the human miRNAs can be
found at miRBase [88], whereas the human chromosomes
(assembly GRCh38) can be retrieved from GenomeBrowser
[89]. The three algorithms, Fully Naı̈ve, Less Naı̈ve, and
OASM have been evaluated on the same data using the
same inexactness threshold K = 2. The number of hits
and their positions are reported in Table 1 and Fig. 3 visu-
ally depicts the amount of overlapping occurrences found in
each position.

From Table 1 and Fig. 3 clearly emerges that OASM
detects each occurrence accurately just one time since, in
contrast to the other two algorithms, it is able to discard
those detected sequences that are overlapping. Indeed,
neither Fully Naı̈ve nor Less Naı̈ve can deal with shadow
hits, thus requiring a mandatory additional post-processing
phase to validate the occurrences. Such a post-process
results in additional computation and, most importantly,
contrarily to the proposed OASM algorithm, the detection
cannot be done online.

2Dr. Giulia Piaggio and Dr. Aymone Gurtner. Regina Elena Institute
for Cancer Research, Rome, Italy.
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Table 1 Number of hits across 5 different pre-miRNAs by considering 200 nucleotides neighborhood (both upstream and downstream)

Input stream Target Fully Naı̈ve Less Naı̈ve OASM

hsa-mir-218-1 ± 200 nt (510 nt) aaaaaaaa 29 13 4

hsa-mir-515-1 ± 200 nt (483 nt) gcaacc 64 39 19

hsa-mir-519a-1 ± 200 nt (485 nt) acgttgca 8 6 4

hsa-mir-105-1 ± 200 nt (481 nt) aaccttgg 6 6 3

hsa-mir-1-2 ± 200 nt (485 nt) ctcattca 7 7 5

The total number of nucleotides is shown in brackets

Table 2 summarizes the time complexity of the ASM
algorithms. Execution times are not reported since the post-
processing filtering operation, which is required when using
Fully Naı̈ve and Less Naı̈ve algorithms, is not univocally
defined. In fact, it can be implemented in several ways
and executed at different times, in accordance to the
requirements of the task at hand. A detailed discussion and
analysis of the offline filtering operations for the naı̈ve
algorithms is beyond the scope of this work.

Proposed Hardware Implementation

Top-Level Instance: LEV CORE

The LEV CORE module computes the multiple Levenshtein
distances between the pattern p and all the substrings
s extracted from a stream of symbols t and returns
only the list of occurrences result below a threshold K ,
according to the algorithm described in Section “An Online

Fig. 3 Hit positions for
experiments in Table 1. The
color map indicates the number
of overlapping occurrences
found in a given position
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Table 2 Computational complexities of the ASM algorithms

Algorithm Time complexity

Fully Naı̈ve O(l2) · [O(lp) → O(l2)] + O(l2) + offline filtering cost

Less Naı̈ve O(l · lp) + offline filtering cost

OASM O
(
l ·

(
lp(K + 1) + K(K−1)

2

))

Herein, let l and lp be the length of the input stream and the length of
the pattern to be searched within the input stream, respectively

Search Algorithm Based on Approximate String Matching.”
Figure 4(a) depicts the main I/O ports and the two main
sub-modules of the LEV CORE:

– LEV CALC computes at every new index stream value
the distances between p and the 2K + 1 substrings
s ∈ {t[i, lp − K], . . . , t[i, lp + K] }.

– LEV SEARCH elaborates the received data to search
for all the possible occurrences of p and to validate

the found occurrences that satisfy the priority scheme
described in Section “An Online Search Algorithm
Based on Approximate String Matching”, discarding
undesired shadow hits.

After the pattern p is loaded into the proper registers, the
elaboration starts as the continuous stream of data t flows
into the module. In Fig. 4(b), a time diagram of the main
signals (port-level and internal) is shown.

Distance Computation: LEV CALC

The systolic nature of the DP algorithm used to compute the
Levenshtein distance is highly parallelizable and particu-
larly suitable for direct hardware implementation. A systolic
architecture [90] consists of identical processing elements
arranged in an array that process data synchronously, exe-
cuting a short invariant sequence of instructions without an
intervening memory to store and exchange results across
the pipelined array. The advantage of this architecture is

Fig. 4 Conceptual block scheme
for LEV CORE module (a) and
relative timing for the main
signals (b)
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to make both the space and time of the calculation of the
Levenshtein matrix linear by parallelizing independent pro-
cesses. In the ordinary systolic architectures used in string
matching applications [91], two strings are shifted on each
other to compare step-by-step each pair of symbols. To com-
pute the distance, each symbol needs to be associated to an
additional (stored) information, which is the number that
identifies the position of the symbol within the stream t.
The LEV CALC sub-module here introduced implements
a counter-based systolic architecture that avoids the storage
of a priori known data. It computes the Levenshtein dis-
tances in a wave-front fashion returning all the elements of
the current anti-diagonal of C, filling the matrix in 2lp +
K − 1 steps, each one from now on referred to as stepcalc

(Fig. 4(b)). Figure 5 illustrates the conceptual architecture
of two consecutive processing elements of the systolic array,
on which the LEV CALC sub-module is based on.

The generic j th processing element contains both
sequential and combinational logic. The register p reg(j)

is configured with the j th symbol p(j) of the pattern p
(if unused, filled with special symbol $1). The register
sh reg(j) contains the shifting symbols sh(j) of the
substring s = t[i, lp + K] and at each stepcalc, contains
a different symbol of s. The special symbol $2 is used to
fill the unused sh reg positions during the shifting. The
special symbols $1 and $2 belong to the alphabet � but
cannot be used both in p and in t. The register a reg(j)

stores the result of the j th processing element produced

by l comb(j) during the current stepcalc. The register
a reg d(j) represents a delayed version of a reg(j).
The combinational block l comb(j) elaborates both the
information contained in the abovementioned registers and
the state of the upward counter cnt to yield the j th element
of the anti-diagonal of the matrix C.

The counter is used both to allow the shifting process
of the symbols sh(j) through the j th processing block,
and to provide the suitable n or m values of Eq. 1
to l comb(j) block when the corresponding processing
element represents an element cn,0 or c0,m of C respectively.
The j th element of the anti-diagonal in the current stepcalc

implementing a rearranged, yet equivalent, version of Eq. 1
is computed as:

l comb(j) = min

⎡

⎣
cleft(j),

cupper(j),

cupper−left(j)

⎤

⎦ + φ(j), (4)

where

cleft(j) =
{
a reg d(j), if j < cnt

cnt, otherwise

cupper(j) =
{

cnt, if j = 0
a reg(j − 1), if j > 0

Fig. 5 Details of the systolic
architecture of LEV CALC
module
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Fig. 6 Representation of the neighbors in the C matrix to compute
l comb(j)

cupper−left(j) =
{
a reg d(j − 1), if j < cnt

cnt − 1, otherwise

φ(j) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if cupper−left(j) > min

⎡

⎣
cleft(j),

cupper(j),

cupper−left(j)

⎤

⎦

p reg(j) �= sh reg(j), otherwise.

In Fig. 6, the four possible combinations of neighbors for
the computation of l comb(j) are located in the C matrix
frame to show how Eq. 1 turns into Eq. 4.

Finally, the MUX selector sel calc is constant and
uniquely determined with the length of the pattern p and
the value of the threshold K . Figure 7 shows the content
of p reg and sh reg in the inherent shifting mechanism
for the example discussed in Section “An Overview on the
Levenshtein Distance.”

Search and Validation: LEV SEARCH

The outputs generated by LEV CALC, together with
index stream, represent the inputs of the LEV SEARCH
sub-module whose architecture is schematized in Fig. 8(a).
This module implements the online search algorithm
described in Section “An Online Search Algorithm Based
on Approximate String Matching” and formalized in
Algorithm 1.

In an infinite loop cycling on i (corresponding to a
new index stream), the Levenshtein distances between p
and all the possible 2K + 1 substrings s ∈ {t[i, lp −
K], . . . , t[i, lp + K]} returned by LEV CALC, which
satisfy both the described priority rules (R1, R2, and
R3) and validation process, are stored in S. The logic
relative to the various checks performed by the algorithm
is located into the ENA GEN sub-block. There, [i, l, k]
= [index stream, target len, lev dist] are processed by the
priority rules (see Section “An Online Search Algorithm
Based on Approximate String Matching”), and Eq. 3 is

evaluated on the values of the counters r(k) during the
validation process. Within the same block, the variables
idx, ins, and acc defined in Algorithm 1 are implemented
as a status register, a flag, and an accumulation register,
respectively, and are used to generate the signals ena,
preset, ena acc, and valid. Figure 8(b) depicts a detail of
the sequential section which represents the state of the
algorithm (SEARCH ELEMENTs). The two-dimensional
array o reg of size (K + 1) × 3 implements the storage
variable mem in Algorithm 1 and it allows to retrieve
information relative to the current eligible occurrences. The
procedure executed in LEV CALC consists in a constant
number of stepcalc, whereas the algorithm implemented in
LEV SEARCH may have a different duration depending
on the validation process that is executed only if eligible
occurrences are found. A LEV SEARCH cycle is called
here stepsearch and its duration coincides with the number
of stepcalc necessary to complete one LEV CALC cycle
multiplied by its duration:

Tstepsearch
= (2 · lp + K − 1)Tstepcalc

. (5)

Fig. 7 Evolution of the content
of sh reg step by step to
implement the string shifting
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Fig. 8 Conceptual scheme of the
LEV SEARCH architecture (a)
and detail of the kth SEARCH
ELEMENT sub-block (b)

The proposed hardware architecture executes one stepcalc in
one clock cycle (Tclk), so the LEV CALC block generates
the first lev dist sample after 2lp −K−1 clock cycles and in
the same cycle the LEV SEARCH block starts processing it:

latcalc = 2lp + K − 1

latsearch =
{

K + 1 without validated occurrences
2K + 1 with validated occurrences

Although the latency of the LEV SEARCH is data
dependent, the operations of the two modules can be
pipelined. The total execution time depends on the latency
of the two blocks:

Texec ≈ Tstepsearch
lt = (2lp + K − 1) · Tclklt (6)

where Tclk is the clock period. It should be noticed that Eq. 6
is valid when K < 2(lp − 1), which is always verified since
the threshold K is always lower than lp. Figure 9 depicts the
pipelining process.

Resource Usage and Parallel Search

The LEV CORE has been completely described in VHDL
and parameterized in terms of:

– lp max: Maximum number of symbols per pattern;
– lsymb: Number of bits per symbol;
– K: Maximum threshold.

Table 3 reports synthesis results in terms of logic elements
(LE[#]) used, when varying the design parameters. The
largest synthesized LEV CORE modules (lsymb = 16,
lp max = 32, K = 4) use only 3% of the total available
resources on Altera Cyclone IV E FPGA (114800 LE).
Figure 10 depicts the results of Table 3, providing a clearer
view of the resource usage as the design parameters vary.
The planar shape of the surfaces and the lack of intersections
show the linear relation between resource usage and design
parameters.
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Fig. 9 Time execution diagram
in the pipelined structure

Table 3 LE utilization relationship with design parameters

lsymb lp max K LE (nos.) lsymb lp max K LE (nos.)

4 8 1 557 8 8 1 626
2 732 2 799
3 822 3 895
4 880 4 953

16 1 1122 16 1 1266
2 1286 2 1443
3 1391 3 1536
4 1472 4 1610

24 1 1687 24 1 1936
2 1840 2 2025
3 1960 3 2151
4 2064 4 2217

32 1 2252 32 1 2530
2 2394 2 2869
3 2529 3 3002
4 2656 4 3068

12 8 1 701 16 8 1 765
2 867 2 940
3 962 3 1031
4 1019 4 1090

16 1 1403 16 1 1543
2 1579 2 1706
3 1670 3 1810
4 1738 4 1865

24 1 2165 24 1 2349
2 2233 2 2438
3 2352 3 2547
4 2402 4 2616

32 1 2790 32 1 3067
2 3163 2 3428
3 3269 3 3537
4 3359 4 3616
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LEs

A parallel search of different patterns over the same text
t can be done efficiently, by deploying multiple instances of
LEV CORE. This is implemented by the multiple OASM
(MOASM) system, whose architecture is schematized in
Fig. 11. The synthesis of a MOASM system with 40 LEV
CORE modules (lsymb = 8, lp max = 16, K = 4)
and additional control logic resulted in 62,936 LE, which
corresponds to 55% of the resource usage on the same target
FPGA.

Experiments

In this section are reported experiments on synthetic data
in order to compare the speed performances of the software
(SW-OASM) and hardware (HW-OASM) implementation
of the proposed OASM algorithm. SW-OASM has been
implemented in C++ and executed on a CPU Intel Core i7-
4700MQ @ 2.40 GHz. HW-OASM has been described in

Fig. 11 Conceptual scheme of a MOASM system

VHDL-1993 and implemented on the FPGA Altera Cyclone
IV E mounted on the board Terasic DE2-115. Two tests are
performed using the same setup with randomly generated
sequences t of lt = 3104 symbols defined over the alphabet
� = {A, B, C, D}, and randomly generated patterns p that
are processed by both the implementations, for different
values of patterns length lp and threshold K .

Recent FPGAs commonly host a high-speed link (e.g.,
PCIe 2.0 with 5 GT/s and the per-lane throughput 500 MB/s)
so, to compensate for the lack of a high-speed link on
the available FPGA, a simple link emulator for the online
input data transfer has been designed. This solution can
be considered acceptable since the purpose of the tests is
measuring the processing time of the LEV CORE block.
Since, two special symbols $1 and $2 are added to the
alphabet �, each symbol in p and t is coded with lsymb =
3 bits. The text t is stored into the FPGA in 1 Mbit
embedded memory and is sent, symbol by symbol, to the
processing logic that operates at 100 MHz (300 Mbit/s). The
resulting data flow is stored into another 1 Mbit embedded
memory element and is sent to a PC by a low-speed USB
link, to be analyzed once the test is completed. Figure 12
schematizes the HW-OASM architecture implemented for
the tests, whose details are the following.

– LEV CORE: Processing block with hardwired pattern
p, maximum pattern length lp = 15, alphabet size
= 3 bit (extended due to special symbols), maximum
threshold K = 5.

– LINK EMULATOR: 1 Mbit ROM, containing the text t
(5 symbols per memory location) plus control logic. It
sends a new symbol to the LEV CORE block at every
new incoming request pulse.

– RAM: One 1 Mbit RAM to dump the results (1 Mbit),
16-bit index (sufficient to recognize an occurrence),
3-bit threshold, 5-bit length (max. detected length is
lp + K = 20).

Fig. 12 System implemented for executing the experiments



Cogn Comput

0 1 2 3 4

Error Threshold (k)

0

5

10

15

20

25
C

o
m

p
u

ta
ti
o

n
 T

im
e

 [
s
]

FPGA - c = 16

PC - w = 8

PC - w = 10

PC - w = 12

PC - w = 14

PC - w = 16

PC - w = 18

PC - w = 20

Fig. 13 SW-OASM computation time for different word length (w)
and error threshold (k) pairs. HW-OASM computation time (dashed)
is constant on the same set of parameters used for SW-OASM

– USB I/F: USB device interface to transfer the dumped
results to an external PC.

– SYS FSM: finite state machine to coordinate the I/O
operations. Main control signals are start elab (start
of elaboration) and result return (command to start
returning the data stored in RAM via USB I/F).

The wall-clock time of the SW-OASM execution is
not deterministic, since there are usually other processes
running in the background that consume computational
resources. Therefore, each test run with SW-OASM for a
specific configuration has been repeated 100 times with
independently randomly generated datasets and the results
are reported as mean and standard deviation. Regarding
the test runs with HW-OASM, the results prove the
effectiveness of the linear deterministic model for the
execution time computation described in Eq. 6 with Tclk =
10 ns. The experimental results slightly depart from the
theoretical ones because of implementation details that

Table 4 Speed performance comparison between SW-OASM and
HW-OASM implementation for the first test

lp SW-OASM (s) HW-OASM (s)

5 46.51±0.74 0.0039

7 59.991±1.42 0.0051

10 78.973±3.54 0.0069

15 97.004±1.76 0.0099

Table 5 Speed performance comparison between SW-OASM and
HW-OASM implementation for the second test

K SW-OASM (s) HW-OASM (s)

2 9.731±0.50 0.0096

3 15.179±0.45 0.0099

4 30.858±2.90 0.0102

5 67.953±3.14 0.0105

prevent Tstepsearch
in Eq. 5 to be just dependent on lp and K .

In Fig. 13, the speed performance is reported, when different
thresholds K are used.

Two different tests are performed. In the first, whose
results are in Table 4, random patterns with lengths lp =
{5, 7, 10, 15} are generated and a threshold K = 3 is used.

In the second test, with results reported in Table 5,
random patterns with fixed length lp = 5 are generated and
different thresholds K = {2, 3, 4, 5} are used.

Conclusions

A basic cognitive skill always present in human beings,
as well in other animal species, is the generalization of
patterns at different abstraction levels. Speech recognition,
text understanding, and scene analysis are the most notable
examples, as the ability to recognize inexact patterns
in a sequence of objects or events. Approximate string
matching (ASM) is a particular case of subgraph matching
and is a fundamental tool in many practical applications,
such as bioinformatics, cybersecurity, diagnostic systems,
and financial trading. However, when using a tolerance
threshold, the ASM can produce shadow hits, i.e., it can
identify close multiple hits that, in turn, introduce unwanted
uncertainty in the overall template matching procedure
and thus in the knowledge discovery task. Of course, the
shadow hits could be filtered out offline afterwards in a
post-processing step. However, when dealing with online
applications, an alternative approach must be followed.

This paper introduces the online ASM (OASM) algo-
rithm to filter out shadow hits online, which is based on
a validation procedure that takes advantage of side infor-
mation provided during Levenshtein distance computations.
OASM is designed in plain dynamic programming and is
characterized by a high degree of parallelism, which can
be leveraged to design an efficient FPGA implementation.
The proposed architecture allows performing such a com-
plex retrieval procedure relying on inexpensive hardware,
such as the adopted entry-level Altera Cyclone IV E FPGA,
where only 3% of available logic elements are used. This
envisages further opportunities to increase the parallelism
of the whole procedure, by allocating on the FPGA more
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LEV CORE units to concurrently search for instances of
multiple motifs on the same sequence, or even on different
sequences. The execution time of the hardware implemen-
tation of such an enhanced implementation (MOASM sys-
tem) is independent of the number of the instantiated LEV
CORE modules, whereas the computational time in the soft-
ware counterpart scales linearly with the number of pattern
searched. Especially when the MOASM system is imple-
mented on high-end FPGA chips that allow the instantiation
of many LEV CORE modules, the I/O interface (usually
a PCI-Express bus) may easily become congested, due to
the possible huge number of results convoyed on a sin-
gle communication bus. This underlines the importance of
the proposed approach to filter out unwanted shadow hits
directly on the FPGA, which can greatly reduce the overall
I/O throughput. An important future work regards the imple-
mentation of a complete MOASM system and the transfer
of the Intellectual Property on a high-performance FPGA,
such as the Stratix V GX.
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