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Abstract. We prove that the singularities of the R-matrix R(k) of the minimal quan-
tization of the adjoint representation of the Yangian Y (g) of a finite dimensional simple
Lie algebra g are the opposite of the roots of the monic polynomial p(k) entering in the
OPE expansions of quantum fields of conformal weight 3/2 of the universal minimal affine
W -algebra at level k attached to g.

1. Introduction

Let g be a finite dimensional simple Lie algebra over C, different from sl(2). Let Y (g)
be Drinfeld’s Yangian associated to g and W k(g, θ) the universal minimal affine W -algebra
at level k. The purpose of this paper is to explain a remarkable coincidence arising when
considering, on the one hand, the minimal quantization to Y (g) of the adjoint representation
of g, and, on the other hand, the OPE expansion for primary fields of W k(g, θ) of conformal
weight 3/2. To explain more precisely this coincidence we need some recollections. The
algebra Y (g) is a Hopf algebra deformation of U(g[t]) which has been introduced in the famous
paper [Dr] to construct solutions of the quantum Yang-Baxter equation. Its presentation
involves generators X and J(X), X ∈ g. In [Dr, Theorem 8] Drinfeld explains how to quantize
the adjoint representation of g to Y (g): the “minimal” way of getting this quantization is
to consider the space V = g ⊕ C and let the generators X, X ∈ g act in the natural way,
and the generators J(X), X ∈ g act by (2.4). Formula (2.4) involves a certain constant δ,
which depends just on the choice of the bilinear invariant form on g. Expanding on Drinfeld’s
work, Chari and Pressley [CP] studied the R-matrix R(k) associated to V , and found that
the blocks of this matrix corresponding the trivial and the adjoint isotypic components have
as singularities 1, h∨/2, and the roots r1, r2 of a degree two monic polynomial in k. Here and
further h∨ is the dual Coxeter number of g. It is implicit in their analysis that δ = −1

2r1r2.
See Remark 5.2.

Kac, Roan and Wakimoto [KRW] associated a vertex algebra W k(g, f), called a universal
affine W-algebra, to each triple (g, f, k), where f is a nilpotent element of g viewed up to
conjugation, and k ∈ C, by applying the quantum Hamiltonian reduction functor to the
affine vertex algebra V k(g). In particular, it was shown that, for k 6= −h∨, W k(g, f) has a
set of free generators, including a Virasoro vector ω. A more explicit presentation has been
obtained in [KW] when f is an element from the minimal non-zero nilpotent orbit. Since
e−θ, a root vector attached to the minimal root −θ, is such an element, we will denote this
vertex algebra by W k(g, θ). A further improvement has been obtained in [AKMPP], where it
has been proved that the OPE expansion of quantum fields of conformal weight 3/2 depends
on a canonical monic quadratic polynomial p(k). The surprizing fact is that its roots are −r1

and −r2.
1
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Our approach to the explanation is essentially Lie-theoretic, even if information coming
from the structure of vertex operator algebras generated by fields of low conformal weight
is needed. Our first step is to provide a proof of Theorem 8 in [Dr] convenient for our

goals. This is based on the analysis of certain g-equivariant maps G2 :
∧2 g → S3(g∗) and

G3 :
∧3 g → S3(g∗) (cf. (2.5)), which arise naturally when considering Drinfeld’s formula

(2.4). The crucial Lemma 2.2 has been suggested to us by C. De Concini. Along the way
we obtain a uniform formula for δ, see (4.18), (4.20), which easily specialize to Drinfeld’s
expressions for δ in each type of g. Remark that the handier formula (4.18) is given in terms
of the grading (3.1) on g associated to an element from the minimal nilpotent orbit.

On the W -algebra side, we consider the grading (3.1) and investigate the possible vertex
algebras generated by fields L, Jv with v ∈ g\ (cf. (3.2)), Gu with u ∈ g−1/2, with the

following λ-brackets: L is a Virasoro vector with central charge k dim g
k+h∨ − 6k + h∨ − 4, Ju

are primary of conformal weight 1, Gv are primary of conformal weight 3
2 , the Ju generate

an affine vertex algebra, and no other constraints. The existence of such vertex algebras is
guaranteed by [KW]. The final outcome is that imposing Jacobi identity, up to an overall
multiplicative constant, one obtains precisely the relations given by [KW]: see Proposition
5.8. Coming back to the explanation of the coincidence, one substitutes auxiliary relations
popping up in the proof of Proposition 5.8 (cf. (5.31), (5.32)) in formula (4.18) to get the
desired result: see Theorem 5.9.

As a byproduct of our analysis, we get the following results.

(1) Uniform fomulas for dim g: in Proposition 5.5 we get uniform formulas expressing
the dimension of g in terms of canonical data associated to the minimal grading (3.1).

(2) Application to the Deligne exceptional series: in particular, we can view the simple
Lie algebras in the Deligne exceptional series in this framework (cf. Remark 5.6),
providing a characterization in terms of the minimal grading which yields yet another
uniform derivation of the dimension formulas.

(3) OPE expansions of quantum fields of conformal weight 3/2: in Proposition 5.8, we
refine [AKMPP, Lemma 3.1] by providing a precise expression for the 0-th product
in the OPE expansions of quantum fields of conformal weight 3/2 in W k(g, θ).

2. Yangians

2.1. Setup and basic relations. Let g be a simple Lie algebra different from sl(2). Fix a
Cartan subalgebra h of g and a set ∆+ of positive roots for the (g, h)-root system ∆. Let Π
be the corresponding set of simple roots. For α ∈ ∆ we let gα denote the corresponding root
space. Choose a nondegenerate invariant symmetric form (·, ·) on g. Denote by αi, ωi, θ the
simple roots, the fundamental weights and the highest root, respectively. Set θ =

∑
i niαi.

Let {Xλ}λ∈Λ be an orthonormal basis of g.
As noticed in the Introduction, we will focus on the case when g is different from sl(2).

We recall the definition of the Yangian in this case.

Definition 2.1 ([Dr]). The Yangian Y (g) is the unital associative C-algebra generated by
the set of elements {X, J(X) : X ∈ g} subject to the defining relations

XY − Y X = [X,Y ]g, J([X,Y ]) = [J(X), Y ],(2.1)

J(cX + dY ) = cJ(X) + dJ(Y ),(2.2)
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[J(X), [J(Y ), Z]]− [X, [J(Y ), J(Z)]] =
∑

λ,µ,ν∈Λ

([X,Xλ], [[Y,Xµ], [Z,Xν ]]){Xλ, Xµ, Xν},
(2.3)

for all X,Y, Z,W ∈ g and c, d ∈ C, where {x1, x2, x3} = 1
24

∑
π∈S3

xπ(1)xπ(2)xπ(3) for all
x1, x2, x3 ∈ Y (g).

Remark 2.2. When g = sl(2) relation (2.3) follows from (2.1) and (2.2), but a further
complicated relation is needed: see [Dr], [GRW, Theorem 2.6], [GNW, 3.2] for details.

2.2. Drinfeld’s Theorem on the minimal quantization of the adjoint representa-
tion. In the following we provide a uniform approach to Drinfeld’s description of the minimal
quantization of the adjoint representation of Y (g).

The following statement sums up the content of Theorems 7 and 8 from [Dr].

Theorem 2.1 (Drinfeld). Let g be a simple Lie algebra, different from sl(2). Let V = g⊕C.
(a). There exists a unique constant δ ∈ C such that the natural action of g on V extends

to an action of Y (g) by setting

(2.4) J(x)(y, α) = (δαx, (x, y)).

(b). If either ni = 1 or ni = (θ, θ)/(αi, αi), then the fundamental representation Vωi of g
extends to a Y (g)-representation by letting J(x) act as 0.

Remark 2.3. For g = sl(2) relation 2.4 holds for any δ.

To prove Theorem 2.1 we need some preliminary work. Consider the maps G2 :
∧2 g →

S3(g∗) and G3 :
∧3 g→ S3(g∗) defined by setting

(2.5) G2(X ∧ Y )(a) = ([[X, a], a], [Y, a]), G3(X ∧ Y ∧ Z)(a) = ([[X, a], [Y, a]], [Z, a]).

Let ∂p(X1∧ . . .∧Xp) =
∑

i<j(−1)i+j+1[Xi, Xj ]∧X1∧ . . .∧ X̂i∧ . . .∧ X̂j ∧ . . . Xp be the usual
boundary operator for the Lie algebra homology. The next lemma has been suggested to us
by C. De Concini.

Lemma 2.2.
(1)

G3 = 1
3G2 ◦ ∂3.

(2) The maps G2, G3 are g-equivariant.

Proof. To prove (1) we start with the Jacobi identity:

[[X,Y ], a], a] = [[X, a], Y ], a] + [[X, [Y, a]], a] = 2[[X, a], [Y, a]] + [X, [[Y, a], a]]− [Y, [[X, a], a]],

so

G2 ◦ ∂3(X ∧ Y ∧ Z) = 6G3(X ∧ Y ∧ Z)

+ ([X, [[Y, a], a]]− [Y, [[X, a], a]], [Z, a]) + ([Z, [[X, a], a]]− [X, [[Z, a], a]], [Y, a])

+ ([Y, [[Z, a], a]]− [Z, [[Y, a], a]], [X, a]).

Using the invariance of the form we have

G2 ◦ ∂3(X ∧ Y ∧ Z)− 6G3(X ∧ Y ∧ Z) = (Z,R(X,Y, a)),

where

R(X,Y, a) = −[[X, [[Y, a], a]], a] + [[Y, [[X, a], a]], a] + [[X, a], a], [Y, a]]

+ [a, [a, [X, [Y, a]]]]− [a, [a, [Y, [X, a]]]]− [[[Y, a], a], [X, a]]).
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Since
[[X, [[Y, a], a]], a] = [[X, a], [[Y, a], a]] + [X, [[[Y, a], a], a]]

and
[[Y, [[X, a], a]], a] = [[Y, a], [[X, a], a]] + [Y, [[[X, a], a], a]],

we can rewrite R(X,Y, a) as

− [X, [[[Y, a], a], a]] + [Y, [[[X, a], a], a]] + [a, [a, [X, [Y, a]]]]− [a, [a, [Y, [X, a]]]]

= −[X, [[[Y, a], a], a]] + [Y, [[[X, a], a], a]] + [a, [a, [[X,Y ], a]]]].

Thus

G2 ◦ ∂3(X ∧ Y ∧ Z)− 6G3(X ∧ Y ∧ Z) = (Z,R(X,Y, a))

= (Z,−[X, [[[Y, a], a], a]] + [Y, [[[X, a], a], a]] + [a, [a, [[X,Y ], a]]]])

= −([[[Z,X], a], a], [Y, a])− ([[[Y, Z], a], a], [X, a])− ([[[X,Y ], a], a], [Z, a])

= −G2 ◦ ∂3(X ∧ Y ∧ Z).

To prove (2) observe that

G2(θ(x)(X ∧ Y )(a) = ([[x,X], a], a], [Y, a]) + (([[X, a], a], [[x, Y ], a])

= ([x, [[X, a], a], [Y, a]) + (([[X, a], a], [x, [Y, a]])

+ ([[X, [x, a]], a], [Y, a]) + ([[X, a], [x, a]], [Y, a]) + ([[X, a], a], [Y, [x, a]])

= ([[X, [x, a]], a], [Y, a]) + ([[X, a], [x, a]], [Y, a]) + ([[X, a], a], [Y, [x, a]]).

Since ∂3 is g-equivariant, it follows from (1) that G3 is g-equivariant. �

Identify S3(g∗) and S3(g) using the form (·, ·). Set

(2.6) φi = ad ◦ Symm ◦Gi :

i∧
g→ End(g),

where Symm : S(g) → U(g) is the symmetrization map, ad is the extension to U(g) of the
adjoint representation ad : g → End(g). If X ∈ ∧ig then, clearly, the map φi(X)(U, V ) =
(φi(X)(U), V ) is bilinear in U, V so φi defines a map gi : ∧ig→ g∗ ⊗ g∗.

Lemma 2.3. The maps gi are alternating, thus they define maps gi : ∧ig→ ∧2g∗.

Proof. By Lemma 2.2, in order to prove the first statement, we need only to prove that, if
U, V ∈ g, then

(g2(X ∧ Y )(U), V ) = −(g2(X ∧ Y )(V ), U).

Explicitly

(g2(X ∧ Y )(U), V ) =
∑
σ

∑
p1,p2,p3

([[X, ap1 ], ap2 ], [Y, ap3 ]) ([apσ(1) , [apσ(2) , [apσ(3) , U ]]], V ) =

−
∑
σ

∑
p1,p2,p3

([[X, ap1 ], ap2 ], [Y, ap3 ]) (U, [apσ(3) , [apσ(2) , [apσ(1) , V ]]]).

Set τ = σ ◦ (13); then∑
σ

∑
p1,p2,p3

([[X, ap1 ], ap2 ], [Y, ap3 ]) ([apσ(1) , [apσ(2) , [apσ(3) , U ]]], V ) =

−
∑
τ

∑
p1,p2,p3

([[X, ap1 ], ap2 ], [Y, ap3 ]) ([apτ(1) , [apτ(2) , [apτ(3) , V ]]], U)

as required. �
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Extend (·, ·) to an invariant bilinear form on ∧2g (by determinants) and identify ∧2g∗ with
∧2g using this form. In particular we can view the maps gi as maps from ∧ig to ∧2g.

Lemma 2.4. The map g2 is symmetric:

(g2(X ∧ Y ), U ∧ V ) = (X ∧ Y, g2(U ∧ V )).

Proof. By unwinding all the identifications we find

(g2(X ∧ Y ), U ∧ V ) =
∑
σ

∑
p1,p2,p3

([[X, ap1 ], ap2 ], [Y, ap3 ]) ([apσ(1) , [apσ(2) , [apσ(3) , U ]]], V )

=
∑
σ

∑
p1,p2,p3

([apσ−1(2)
, [apσ−1(1)

, [apσ−1(3)
, X]]]], Y ) ([U, ap1 ], ap2 ], [V, ap3 ]).

Set τ = σ−1 ◦ (12); then

(g2(X ∧ Y ), U ∧ V ) =
∑
τ

∑
p1,p2,p3

([apτ(1)
, [apτ(2)

, [apτ(3)
, X]]]], Y ) ([U, ap1 ], ap2 ], [V, ap3 ])

= (X ∧ Y, g2(U ∧ U)).

�

Lemma 2.5. There is a unique costant k ∈ C such that

(2.7) g3 = k ∂3.

Proof. Since g 6= sl(2), recall that by [Ko] we have orthogonal decompositions

2∧
g = dg⊕ U2,(2.8)

3∧
g = Ker ∂3 ⊕ Imd = Ker ∂3 ⊕ d(U2),(2.9)

where d is the Chevalley-Eilenberg differential for Lie algebra cohomology, U2 is the subspace
of
∧2 g generated by 2-tensors x ∧ y with [x, y] = 0.
Moreover, again by [Ko], Homg(g, U2) = 0 and U2 is irreducible for g 6= sl(n), while, if

g = sl(n), U2 decomposes as U2 = V1⊕V2 with V1, V2 inequivalent irreducibles with V2 = V ∗1 .
Since

φ2 = ad ◦ Symm ◦G2 :
2∧
g→ End(g)

is g-equivariant, by the invariance of the form, g2 is also equivariant. It follows that g2(U2) ⊂
U2. If g 6= sl(n), then

(2.10) (g2)|U2
= k′I for some k′ ∈ C.

Note that (Im∂3)⊥ = Ker d. Since H2(g) = 0, Ker d = dg. It follows that Im∂3 = U2.
Since g3 = 1

3g2 ◦ ∂3, formula (2.7) is proven in this case by setting

(2.11) k = k′

3 .

If g = sl(n), by the same argument, we have that g2(Vi) ⊂ Vi, hence there is k such that
(g2)|V1

= kIV1 . Let x ∈ V2 and y = v1 + v2 ∈ U2 with vi ∈ Vi. Then

(g2(x), y) = (g2(x), v1 + v2) = (g2(x), v1) = (x, g2(v1)) = k(x, v1) = k(x, y).

Since the form is nondegenerate when restricted to U2, (2.7) holds in this case too. �
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2.2.1. Proof of Theorem 2.1. By (2.1) we must have

[x, J(y)](u, 0) = −(0, (y, [x, u])) = (0, ([x, y], u)) = J([x, y])(u, 0)

and
[x, J(y)](0, 1) = (δ[x, y], 0) = J([x, y])(0, 1),

which holds for all δ. It is clear that both sides of (2.3) act on (0, 1) trivially.
Define f : g× g× g→ End(g) by setting

([J(X), [J(Y ), Z]]− [X, [J(Y ), J(Z)]])(U, 0) = (f(X,Y, Z)(U), 0).

Then

(f(X,Y, Z)(U),W ) = δ(([Y,Z], U)(X,W )− (X,U)([Y, Z],W )− (Z,U)([X,Y ],W ))

+ δ((Y, U)([X,Z],W ) + (Z, [X,U ])(Y,W )− (Y, [X,U ])(Z,W ))

= δ([X,Y ] ∧ Z,U ∧W )− ([X,Z] ∧ Y,U ∧W ) + ([Y,Z] ∧X,U ∧W ))

= δ(∂3(X ∧ Y ∧ Z), U ∧W ).

We let the R.H.S. of (2.3) act on (U, 0):∑
λ,µ,ν∈Λ

([X,Xλ], [[Y,Xµ], [Z,Xν ]]){Xλ, Xµ, Xν}(U, 0)

= ( 1
24

∑
σ

∑
p1,p2,p3

([X,Xp1 ], [[Y,Xp2 ], [Z,Xp3 ]])[Xpσ(1)
, [Xpσ(2)

, [Xpσ(3)
, U ], 0)

= ( 1
24φ3(X ∧ Y ∧ Z)(U), 0),

so we must have δ(∂3(X ∧ Y ∧ Z), U ∧W ) = ( 1
24g3(X ∧ Y ∧ Z), U ∧W ). Thus, by Lemma

2.5, relation (2.3) holds if and only if

(2.12) δ = k
24 .

This proves claim (a) of the theorem. To prove claim (b), set

(2.13) gji = ρj ◦ Symm ◦Gi :
i∧
g→ gl(Vωj ),

where ρj : g → gl(Vωj ) is the j-th fundamental representation of g. Then, as shown in the
next table, U2 does not appear in Vωj ⊗ V ∗ωj , since its highest weight 2θ − ᾱ is not less than

or equal than ωj −w0(ωj) (here ᾱ is a simple root not orthogonal to θ and w0 is the longest
element in the Weyl group). In the exceptional cases we display the coordinates w.r.t. the
choice of the simple roots from Bourbaki.

Type of g, j 2θ − ᾱ ωj − w0(ωj)

An, 1 ≤ j ≤ [n+ 1]/2 ε1 + ε2 − 2εn+1, 2ε1 − εn − εn+1
∑j

h=1(εh − εn+2−h)
Bn, j = 1 2ε1 + ε2 + ε3 2ε1
Bn, j = n 2ε1 + ε2 + ε3

∑n
i=1 εi

Cn, 1 ≤ j ≤ n 2ε1 + ε2
∑j

i=1 εi
Dn, j = 1 2ε1 + ε2 + ε3 2ε1

Dn, j = n− 1 (n) 2ε1 + ε2 + ε3
∑n−1

i=1 εi
E6, j = 1 (6) (2, 3, 4, 6, 4, 2) (2, 2, 3, 4, 3, 2)
E7, j = 7 (3, 4, 6, 8, 6, 4, 2) (2, 3, 4, 6, 5, 4, 3)
F4, j = 4 (3, 6, 8, 4) (1, 2, 3, 2)
G2, j = 1 (6, 3) (2, 1)
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3. Minimal 1
2Z-grading of a simple Lie algebra

Choose root vectors x±θ ∈ g±θ so that (xθ|x−θ) = 1
2 . Set x = [xθ, x−θ]. The eigenspace

decomposition of ad x defines the minimal 1
2Z-grading:

(3.1) g = g−1 ⊕ g−1/2 ⊕ g0 ⊕ g1/2 ⊕ g1,

where g±1 = Cx±θ. Furthermore, one has

(3.2) g0 = g\ ⊕ Cx, g\ = {a ∈ g0 | (a|x) = 0}.
Note that g\ is the centralizer of the triple {x−θ, x, xθ}. We can choose h\ = {h ∈ h | (h|x) =
0} as a Cartan subalgebra of g\, so that h = h\ ⊕ Cx. Set, for u, v ∈ g−1/2,

〈u, v〉 = (xθ|[u, v])

and note that 〈·, ·〉 is a g\–invariant symplectic form on g−1/2.
We will use the following terminology.

Definition 3.1. We say that an ideal in g\ is irreducible if it is simple or 1-dimensional. We
call such an ideal a component of g\.

Write

g\ =
r⊕
i=1

g\i

with g\i irreducible. Recall that r = 1, 2 or 3. For a simple Lie algebra a we let h∨a to be its
dual Coxeter number and, if a is abelian, we set h∨a = 0. Set h∨ = h∨g and h∨i = h∨

g\i
. Let νi

be the ratio of the normalized invariant form of g restricted to g\i and the normalized form

on g\i . Set finally h̄∨i = h∨i /νi. For reader’s convenience, we display the relevant data in the
following Table (although we proceed uniformly, so we do not need to use them).

g g\ g1/2 h∨ h̄∨i
sl(3) C C⊕ C∗ 3 0

sl(n), n ≥ 4 gl(n− 2) Cn−2 ⊕ (Cn−2)∗ n 0, n− 2
so(n), n > 6, n 6= 8 sl(2)⊕ so(n− 4) C2 ⊗ Cn−4 n− 2 2, n− 6

so(8) sl(2)⊕ sl(2)⊕ sl(2) C2 ⊗ C2 ⊗ C2 6 2, 2, 2
sp(2n), n ≥ 2 sp(2n− 2) C2n−2 n+ 1 n

G2 sl(2) S3C2 4 4/3

F4 sp(6)
∧3

0 C6 9 4

E6 sl(6)
∧3 C6 12 6

E7 so(12) spin12 18 10
E8 E7 dim = 56 30 18

Consider now the involution σx = e2π
√
−1ad(x). Since αi(x) ≥ 0 for all simple roots αi

and θ(x) = 1, it follows that the set {1 − θ(x)} ∪ {αi(x) | αi simple root} is the set of Kac
parameters for the automorphism σx. In particular, since σx is an involution, either there is
a unique simple root αi0 such that αi0(x) 6= 0 or there are exactly two simple roots αi0 , αi1
such that αij (x) 6= 0. Let s be the number of simple roots not orthogonal to θ. If s = 1 then

αi0(x) = 1
2 and ni0 = 2. If s = 2, then αi0(x) = αi1(x) = 1

2 , ni0 = ni1 = 1.

Write g = k⊕ p for the eigenspace decomposition of σx. We observe that

k = span(xθ, x, x−θ)⊕ g\ ' sl(2)× g\, p = g1/2 ⊕ g−1/2.
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One can choose the set of positive roots for k so that the corresponding set of simple roots is
{−θ} ∪ {α ∈ Π | α(x) = 0} = {−θ} ∪ {α ∈ Π | (α|θ) = 0}.

Consider the case s = 1. Then g\ is semisimple and the number of simple ideals of g\

equals the number of roots attached to αi0 . Moreover p is irreducible and its highest weight
as a k-module is −αi0 . Since αi0(θ∨) = 1, we see that p = Vsl(2)(ω1) ⊗ Vg\(−(αi0)|h\). (Here

Va(λ) denotes the irreducible finite dimensional a-module of highest weight λ). If U is a
ad(x)-stable space we let Uk denote the eigenspace corresponding to the eigenvalue k. Since
Vsl(2)(ω1) = Vsl(2)(ω1)1/2 ⊕ Vsl(2)(ω1)−1/2 we see that, as g\-module,

g1/2 ' g−1/2 ' Vg\(−(αi0)|h\).

In particular g±1/2 are irreducible as g\-modules.

If s = 2 we have g\0 = C$ with

(3.3) $ = ω∨i0 − ω
∨
i1 .

Moreover p = Vk(−αi0)⊕ Vk(−αi1). Arguing as above we obtain that

g1/2 ' g−1/2 ' Vg\(−(αi0)|h\)⊕ Vg\(−(αi1)|h\).

Since $ acts on Vg\(−(αij )|h\) as −(−1)jI we see that g−1/2 is the sum of two inequivalent

g\-modules.
As shown in [CMPP, Proposition 4.8], Vk(−αi0)∗ ' Vk(−αi1), hence,

Vg\(−(αi0)|h\)
∗ ' Vg\(−(αi1)|h\).

We now turn to the study of ∧2g−1/2 as a g\-module. Let d,dk be coboundary operators
for the Lie algebra cohomology of g, k respectively and set d1 = d − dk. By [P, Prop. 4.3],
∧2p = d1k⊕ V ′, where

(3.4) V ′ = span(u ∧ v | u, v ∈ p, [u, v] = 0).

We observe that ∧2g−1/2 = (∧2p)−1, so

∧2g−1/2 = d1(k)−1 ⊕ V ′−1.

As k = span(xθ, x, x−θ) ⊕ g\, we see that d1(k)−1 = Cd1(x−θ) ' Vg\(0). Set Πj = {α ∈ Π |
(α, αij ) 6= 0} ∪ {−θ}, W ′j = {−αij − sαij (α) | α ∈ Πj}, and

W ′ =


W ′0 if s = 1,

W ′0 ∪W ′1 if s = 2 and (αi0 , αi1) 6= 0,

W ′0 ∪W ′1 ∪ {−αi0 − αi1} if s = 2 and (αi0 , αi1) = 0.

Recall from [CMP] that
V ′ = ⊕λ∈W ′Vk(λ)

and that, if λ = −αij − sαij (α), then the highest weight vector is x−αij ∧ x−sαij (α). Set

explicitly {λ1, . . . , λp} = {λ ∈ W ′ | λ(x) = −1}, so that, the (−1)-eigenspace of ad(x) is

V ′−1 =

p⊕
i=1

Vg\(λi|h\).

Consider the map Φ :
∧2 g−1/2 → S2((g\)∗) defined by

(3.5) Φ(u ∧ v)(a) = 〈[u, a], [v, a]〉.
It is easy to check that the map Φ is g\-equivariant.
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Proposition 3.1. Let P :
∧2 g−1/2 → S2((g\)∗) be a g\-equivariant map. Then there are

constants f1, . . . , fp such that

P|V
g\

(λi) = fi Φ|V
g\

(λi)

for 1 ≤ i ≤ p.

Proof. By [R, Proposition 2.1], S2(g\) decomposes with multiplicity one. Since the same
happens to V ′ (cf. (3.4)), it suffices to prove that if P|V

g\
(λi) is nonzero then Φ|V

g\
(λi) is

nonzero.
Assume that g\ is semisimple. In this case we prove that KerΦ = {0}. It is enough to

check that Φ(x−αij ∧ x−sαij (α)) 6= 0 for all α ∈ Πj such that (αij + sαij (α))(x) = 1. Since

αij (x) = 1/2 and α(x) = 0, we see that sαij (α) = α+ αij . It follows that

(3.6) Φ(x−αij ∧ x−sαij (α))(a) = 〈[x−αij , a], [x−αij−α, a]〉.

Assume first that there is a unique simple root αi0 not orthogonal to θ. If αi0 is a short
root then x−θ+2αi0

∈ g\. Since −θ + αi0 − α,−αi0 + α are not roots, we obtain, taking
a = x−θ+2αi0

+ xα,

〈[x−αi0 , a], [x−αi0−α, a]〉 = 〈[x−αi0 , x−θ+2αi0
], [x−αi0−α, xα]〉 6= 0.

We can therefore assume that αi0 is a long root. Assume α short. The fact that αi0 is long
implies that (α|αi0) = −1, so

(θ − αi0 − α|α) = (−αi0 − α|α) = 1− (α|α) ≥ 0.

Since θ−αi0 = θ−αi0 −α+α is a root, it follows that θ−αi0 − 2α is a positive root. Since

(θ − αi0 − 2α|αi0) = 1− 2 + 2 = 1,

θ − 2αi0 − 2α is a positive root as well. We choose a = x−α + x−θ+2αi0+2α, so

〈[x−αi0 , a], [x−αi0−α, a]〉 = 〈[x−αi0 , x−α], [x−αi0−α, x−θ+2αi0+2α]〉
+ 〈[x−αi0 , x−θ+2αi0+2α], [x−αi0−α, x−α]〉
= 〈[x−αi0 , x−α], [x−αi0−α, x−θ+2αi0+2α]〉
+ 〈x−αi0 , [x−θ+2αi0+2α, [x−αi0−α, x−α]]〉
= 2〈[x−αi0 , x−α], [x−αi0−α, x−θ+2αi0+2α]〉
+ 〈x−αi0 , [x−αi0−α, [x−θ+2αi0+2α, x−α]]〉.

If −θ + 2αi0 + α is a root, then

(−θ + 2αi0 + α|αi0) = −1 + 4− 1 = 2,

contradicting the fact that αi0 is long. It follows that [x−θ+2αi0+2α, x−α] = 0, hence

〈[x−αi0 , a], [x−αi0−α, a]〉 = 2〈[x−αi0 , x−α], [x−αi0−α, x−θ+2αi0+2α]〉 6= 0.

We can therefore assume that α is long. Let Σ be the component of the Dynkin diagram
of g\ containing α. Let θΣ be its highest root. If α = θΣ, then g\ is not simple, for, otherwise,
g ' sl(3). Let Σ′ be the Dynkin diagram of another component of g\. Then α+ αi0 + θΣ′ is
a positive root as well as θ − α− αi0 − θΣ′ . Since αi0 is a long root, (θΣ′ |αi0) = −1, hence

(θ − α− αi0 − θΣ′ |αi0) = 1 + 1− 2 + 1 = 1,

so that θ − α− 2αi0 − θΣ′ is a positive root. We choose a = x−θΣ′ + x−θ+α+2αi0+θΣ′ .
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Arguing as above, we conclude that

〈[x−αi0 , a], [x−αi0−α, a]〉 = 2〈[x−αi0 , x−θΣ′ ], [x−αi0−α, x−θ+α+2αi0+θΣ′ ]〉 6= 0.

We can therefore assume both α and αi0 long roots and α 6= θΣ. Since (αi0 |α) < 0, we
have that αi0 + θΣ is a root. Since (θ|αi0 + θΣ) = (θ|αi0) > 0, we see that θ − αi0 − θΣ is a
positive root.

Since αi0 is long, by Lemma 5.7 of [CMP], α has coefficient 1 in θΣ. We now prove that

(3.7) (θΣ, α) = 0.

Indeed, if (3.7) holds, (θ−αi0 − θΣ, α) = 1 so θ−αi0 −α− θΣ is a root. Since (θ−αij − θΣ−
α, αi0) = 1− 2 + 1 + 1 = 1 > 0, we obtain that θ− 2αi0 − θΣ−α is a positive root. Choosing
a = x−θΣ + x−θ+α+2αi0+θΣ and arguing as above, we conclude that

〈[x−αi0 , a], [x−αi0−α, a]〉 = 2〈[x−αi0 , x−θΣ ], [x−αi0−α, x−θ+α+2αi0+θΣ ]〉 6= 0.

To prove (3.7) we need to use definitions and results from [CMPP]. If (3.7) does not hold,

then α /∈ A(Σ) (see [CMPP, Definition 4.1] for the definition of A(Σ)). Then A(Σ) = Π̂ \ Σ
and by [CMPP, Proposition 4.2], θ − θΣ is supported outside Σ so

θ =
∑

η/∈Σ,η 6=αi0

nηη + 2αi0 + θΣ.

This contradicts the fact that θ − α − αi0 is a root since α 6= θΣ and the coefficient of α in
θΣ is 1.

We are left with the case when g\ ha a 1-dimensional center generated by $ (cf. (3.3)). We
can assume that (αi0 |αi1) = 0. If this is not the case, then g = sl(3) and V ′ = {0}. Suppose σ
is a simple roots not orthogonal to αi0 . Then (−2αi0−σ)($) = −2. In particular Vg\((−2αi0−
σ)|h\) does not occur in S2(g\). It follows that P|V

g\
((−2αi0−σ)|h\ )

= Φ|V
g\

((−2αi0−σ)|h\ )
= 0.

Note that the highest weight vector of It remains only to check that Φ|V
g\

((−αi0−αi1 )|h\ ))
is

nonzero. Vg\((−αi0 − αi1)) is x−αi0 ∧ x−αi1 . We need to find a such that

〈[x−αi0 , a], [x−αi1 , a]〉 6= 0.

Let Σ be a component of g\ attached to αi0 , so that αi0 + θΣ, θ − αi0 − θΣ are both roots.
Since (θΣ|αi1) ≤ 0, hence (θ − αi0 − θΣ|αi1) > 0 and in turn θ − αi0 − θΣ − αi1 is a positive
root or zero. Choosing a = x−θΣ + x−θ+αi0+θΣ+αi1

in the first case and a = x−θΣ + hθΣ in
the second we are done. �

4. Calculation of δ

We note that for computing δ it is enough to compute

(4.1) (g2(a ∧ b), c ∧ d), a, b, c, d ∈ g,

where [a, b] = [c, d] = 0 and (a ∧ b, c ∧ d) 6= 0.
Indeed, recall from (2.10) that there is a constant k′ such that g2(a ∧ b) = k′a ∧ b. By

(2.11) and (2.12) we obtain

(4.2) δ = k′

72 =
(g2(a ∧ b), c ∧ d)

72(a ∧ b, c ∧ d)
.

We first use (4.2) to determine the dependence of δ from the choice of the form (·, ·). Let us

write δ as δ(·,·) to emphasize this dependence.
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Lemma 4.1.

δs(·,·) =
1

s3
δ(·,·).

Proof. Let us write g2 as g
(·,·)
2 to emphasize the dependence on (·, ·). Then,

s2(g
s(·,·)
2 (a ∧ b), c ∧ d) =

∑
t1,t2,t3,σ

s([[a, xt1 ], xt2 ], [b, xt3 ])s([x
tσ(1)

s , [x
tσ(2)

s , [x
tσ(3)

s , c]]], d)

hence

(g
s(·,·)
2 (a ∧ b), c ∧ d) =

1

s3
(g

(·,·)
2 (a ∧ b), c ∧ d).

It follows that

δs(·,·) =
s2(g

s(·,·)
2 (a ∧ b), c ∧ d)

72s2(a ∧ b, c ∧ d)
=

1

s3

(g
(·,·)
2 (a ∧ b), c ∧ d)

72(a ∧ b, c ∧ d)
=

1

s3
δ(·,·).

�

Lemma 4.1 allows us to choose as invariant form the normalized one, that we denote by
(·|·). Recall that the normalized invariant form is defined by setting (θ|θ) = 2. From now on

by δ we mean δ(·|·).
Choose a simple root αi0 such that (θ|αi0) 6= 0 (αi0 is unique up to type A). Set γ = θ−αi0 .

Choose root vectors ei0 , fi0 , in g±αi0 such that (ei0 |fi0) = 2
(αi0 ,αi0 ) and set xγ = [xθ, fi0 ],

x−γ = [x−θ, ei0 ].
We compute δ by specializing (4.2) to the case where (·, ·) = (·|·) and a = x−θ, b = x−γ , c =

xθ, d = xγ so that

(4.3) δ =
(g2(x−θ ∧ x−γ)|xθ ∧ xγ)

72(x−θ ∧ x−γ |xθ ∧ xγ)
=

(g2(x−θ ∧ x−γ)|xθ ∧ xγ)

36(x−γ |xγ)
.

We choose a basis {ui} of g−1/2 and let {ui} be its dual basis (i. e. 〈ui, uj〉 = δij). We

also choose an orthonormal basis {xi} of g\. Then, as basis of g, we can choose

(4.4) {xθ} ∪ {[xθ, ui]} ∪ {xi} ∪ {x} ∪ {ui} ∪ {x−θ}.

The corresponding dual basis (w.r.t. (·|·)) is

(4.5) {2x−θ} ∪ {ui} ∪ {xi} ∪ {2x} ∪ {−[xθ, u
i]} ∪ {2xθ}.

We choose an orthonormal basis {xri } for each component g\r so that we can set {xi} = ∪r{xri }.
Let Cg\ =

∑
i(xi)

2 be the Casimir element of g\ and Cg0 the Casimir element of g0. Since

Cg\ = Cg0 − 2x2 by Lemma 5.1 of [KW] we have that

(4.6)
∑
i

[xi, [xi, v]] = (h∨ − 3
2)v.

Recall also that it follows from Lemma 5.1 of [KW] that

(4.7) dim g−1/2 = dim g1/2 = 2h∨ − 4.

We extend 〈·, ·〉 on ∧2g−1/2 by determinants:

〈u ∧ v, w ∧ z〉 = 〈u,w〉〈v, z〉 − 〈u, z〉〈v, w〉.

We collect various formulas in the following lemma.
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Lemma 4.2. If u, v, w, z ∈ g−1/2 and a ∈ g\r, then∑
p

[[xsp, v], [a, xsp]] = δrs(h̄
∨
r )[v, a],(4.8)

∑
p

[xsp, [v, [a, x
s
p]]] = −δrs(h̄∨r )[v, a],(4.9)

∑
p

[xp, [a, [v, xp]]] = (h∨ − 3/2− h̄∨r )[v, a],(4.10)

[[xθ, u], [xθ, v]] = −〈u, v〉xθ,(4.11)

[u, v] = 2〈u, v〉x−θ,(4.12)

[[xθ, u], v] =
∑
i

〈u, [v, xi]〉xi + 〈u, v〉x,(4.13)

[v, [xθ, u]] =
∑
i

〈[v, xi], u〉xi + 〈v, u〉x,(4.14)

∑
i

[u, xi] ∧ [v, xi] = −〈u, v〉
2

∑
r

ur ∧ ur − 1
2u ∧ v,(4.15) ∑

i,j

〈[u, xi], [v, xj ]〉〈[w, xi], [z, xj ]〉 −
∑
i,j

〈[w, xi], [v, xj ]〉〈[u, xi], [z, xj ]〉

= (h∨ − 1)〈u,w〉〈v, z〉+ 1
4〈u ∧ w, v ∧ z〉,(4.16)

Proof. If r 6= s, then (4.8) and (4.9) are obvious. If r = s then, on one hand,∑
p

[xrp, [v, [a, x
r
p]]] =

∑
p,j

[xrp, [v, ([a, x
r
p]|xrj)xrj ]] = −

∑
p,j

[xrp, [v, (x
r
p|[a, xrj ])xrj ]] =

= −
∑
j

[[a, xrj ], [v, x
r
j ]] = −

∑
p

[[xrp, v], [a, xrp]].

On the other hand∑
p

[xrp, [v, [a, x
r
p]]] =

∑
p

[[xrp, v], [a, xrp]] +
∑
p

[v, [xrp, [a, x
r
p]]]

=
∑
p

[[xrp, v], [a, xrp]]− 2(h̄∨r )[v, a],

so ∑
p

[[xrp, v], [a, xrp]]− 2(h̄∨r )[v, a] = −
∑
p

[[xrp, v], [a, xrp]],

hence ∑
p

[[xrp, v], [a, xrp]] = (h̄∨r )[v, a],
∑
p

[xrp, [v, [a, x
r
p]]] = −(h̄∨r )[v, a],

and ∑
p

[xp, [a, [v, xp]]] =
∑
p

[xp, [[a, v], xp]]] +
∑
p

[xrp, [v, [a, x
r
p]]] = (h∨ − 3/2− h̄∨r )[v, a].

This proves (4.8), (4.9), and (4.10). Formulas (4.11), (4.12), (4.13), (4.14) are straightforward.
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We now prove (4.15). Note that g−1/2 ∧ g−1/2 = C
∑

i ui ∧ ui ⊕ V2 with V2 = span(u ∧ v |
[u, v] = 0). If u, v ∈ g−1/2, then the corresponding decomposition of u ∧ v is

u ∧ v =
〈u, v〉

dim g1/2

∑
i

ui ∧ ui + s, s ∈ V2.

If w, z ∈ g−1/2 then∑
n

[w, xn] ∧ [z, xn] = 1
2(Cg\(w ∧ z)− Cg\w ∧ z − w ∧ Cg\z).

Assume now [w, z] = 0 and set Csl(2) = 2(x2 + xθx−θ + x−θxθ) to be the Casimir element
of span(xθ, x, x−θ) ' sl(2). By [P], (Csl(2) + Cg\)(w ∧ z) = 2h∨(w ∧ z). Since

Csl(2)(w ∧ z) = Csl(2)w ∧ z + w ∧ Csl(2)z + 4xw ∧ xz,

Csl(2)w = 3
2w, and 4xw ∧ xz = w ∧ z, we obtain Csl(2)(w ∧ z) = 4w ∧ z so that Cg\(w ∧ z) =

(2h∨ − 4)w ∧ z. Using (4.6), the final outcome is that∑
n

[w, xn] ∧ [z, xn] = 1
2(2h∨ − 4− 2(h∨ − 3/2))(w ∧ z) = −1

2(w ∧ z),

By (4.7), (4.6), and the above formula applied to s, we find∑
i

[u, xi] ∧ [v, xi] = −〈u, v〉
2

2h∨ − 3

2h∨ − 4

∑
r

ur ∧ ur − 1
2(u ∧ v − 〈u, v〉

2h∨ − 4

∑
i

ui ∧ ui)

hence (4.15).
Finally, we prove (4.16):∑
i

〈[u, xi] ∧ [w, xi], v ∧ z) = −〈u,w〉
2

∑
r

(〈ur, v〉〈ur, z〉 − 〈ur, v〉〈ur, z〉)− 1
2〈u ∧ w, v ∧ z〉

= −〈u,w〉〈v, z〉 − 1
2〈u ∧ w, v ∧ z〉.

It follows that∑
i,j

〈[u, xi], [v, xj ]〉〈[w, xi], [z, xj ]〉 −
∑
i,j

〈[w, xi], [v, xj ]〉〈[u, xi], [z, xj ]〉

= −
∑
j

(〈u,w〉〈[v, xj ], [z, xj ]〉 − 1
2

∑
j

〈u ∧ w, [v, xj ] ∧ [z, xj ]〉

= (h∨ − 3/2)〈u,w〉〈v, z〉 − 1
2

∑
j

〈u ∧ w, [v, xj ] ∧ [z, xj ]〉

= (h∨ − 1)〈u,w〉〈v, z〉+ 1
4〈u ∧ w, v ∧ z〉,

which is precisely (4.16). �

We choose the basis {ai} for g to be the basis displayed in (4.4). Then the dual basis {ai}
is the basis given in (4.5). We start our computation of δ by computing

(4.17) G2(x−θ ∧ x−γ) =
∑
i,j,k

([[x−θ, ai], aj ]|[x−γ , ak])aiajak.

We have to compute expressions of type ([[x−θ, b1], b2]|[x−γ , b3]) with bi ∈ gdi . Such an
expression can be non-zero only if d3 − 1/2 = 1 − d1 − d2 i. e. d1 + d2 + d3 = 3/2. The
possibilities are
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d1 d2 d3 d1 d2 d3 d1 d2 d3

-1/2 1 1 0 1/2 1 0 1 1/2
1/2 0 1 1/2 1/2 1/2 1/2 1 0
1 -1/2 1 1 0 1/2 1 1/2 0
1 1 -1/2

For each of the cases above let S(d1, d2, d3) be the corresponding summand in the expression
of G2(x−θ ∧ x−γ) given in (4.17). Then direct computations yield

S(−1/2, 1, 1) = 4
∑
i

([[x−θ, ui], xθ]|[x−γ , xθ])(−[xθ, u
i])x2
−θ = 0,

S(0, 1/2, 1) = 2
∑
j

〈uj , x−γ〉ujxx−θ = 2xx−γx−θ,

S(0, 1, 1/2) = 2
∑
j

〈uj , x−γ〉ujxxθ = 2xx−γx−θ,

S(1/2, 0, 1) =
∑
i

[xi, x−γ ]xix−θ + x−γxx−θ,

S(1/2, 1/2, 1/2) = −1
2

∑
j,s

[uj , xs]u
j [xs, x−γ ]− 1

4

∑
j

uju
jx−γ ,

S(1/2, 1, 0) =
∑
i

[xi, x−γ ]xix−θ − xx−γx−θ,

S(1,−1/2, 1) = −2[xθ, x−γ ]x2
−θ = −ei0x2

−θ,

S(1, 0, 1/2) = 0,

S(1, 1/2, 0) =
∑
i

[xi, x−γ ]xix−θ − xx−γx−θ,

S(1, 1,−1/2) = 4
∑
j

〈x−γ , uj〉[xθ, uj ]x2
−θ = −4[xθ, x−γ ]x2

−θ = −2ei0x
2
−θ.

Summing up we find

G2(x−θ ∧ x−γ) = 3xx−γx−θ + 3
∑
i

[xi, x−γ ]xix−θ − 3ei0x
2
−θ

− 1
2

∑
j,s

[uj , xs]u
j [xs, x−γ ]− 1

4

∑
j

uju
jx−γ .

Note that
∑

j uju
j([xθ, u]) = 〈u, u〉 = 0, so

G2(x−θ ∧ x−γ) = 3xx−γx−θ + 3
∑
i

[xi, x−γ ]xix−θ − 3ei0x
2
−θ − 1

2

∑
j,r

[uj , xr]u
j [xr, x−γ ].

We now compute g2(x−θ ∧ x−γ)|xθ ∧ xγ) = ((Symm(G2(x−θ ∧ x−γ))(xθ)|xγ). We start by
computing

∑
j,r((Symm([uj , xr]u

j [xr, x−γ ])(xθ)|xγ). For this we note that, if u, v, w ∈ g−1/2,

([u, [v, [w, xθ]]]|xγ) = ([v, [xθ, w]]]|[u, xγ ]) =
∑
i

〈v, [w, xi]〉〈u, [fi0 , xi]〉+ 1
2〈v, w〉〈u, fi0〉,
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so, letting γs denote the eigenvalue of C
g\s

on g−1/2,

∑
r,j

([[uj , xr], [u
j , [[xr, x−γ ], xθ]]]|xγ)

=
∑
i,j,r

〈uj , [[xr, x−γ ], xi]〉〈[uj , xr], [fi0 , xi]〉+ 1
2

∑
j,r

〈uj , [xr, x−γ ]〉〈[uj , xr], fi0〉

=
∑
i,r

〈[xr, [fi0 , xi]], [[xr, x−γ ], xi]〉+ 1
2

∑
r

〈[xr, fi0 ], [xr, x−γ ]〉

=
∑
i,r,s

〈[xi, [xsr, [fi0 , xi]]], [xsr, x−γ ]〉 − 1
2

∑
r

〈[xr, [xr, fi0 ], x−γ ]〉

=
∑
s

(h∨ − 3/2− h̄∨s )
∑
r

〈[fi0 , xsr], [xsr, x−γ ]〉 − 1
2(h∨ − 3/2)〈fi0 , x−γ〉

=
∑
s

(h∨ − 3/2− h̄∨s )γs〈fi0 , x−γ〉 − 1
2(h∨ − 3/2)〈fi0 , x−γ〉

=
∑
s

(h∨ − 2− h̄∨s )γs〈fi0 , x−γ〉 =
∑
s

(h∨ − 2− h̄∨s )γs(xγ |x−γ).

Similarly ∑
r,j

([[uj , xr], [[xr, x−γ ], [uj , xθ]]]|xγ) =
∑
s

(h∨ − 1− h̄∨s )γs(xγ |x−γ),

∑
r,j

([uj , [[uj , xr], [[xr, x−γ ], xθ]]]|xγ) =
∑
s

(h∨ − 2− h̄∨s )γs(xγ |x−γ),

∑
r,j

([uj , [[xr, x−γ ], [[uj , xr], xθ]]]|xγ) =
∑
s

(h∨ − 1− h̄∨1 )γs(xγ |x−γ).

Finally∑
r,j

([[xr, x−γ ], [uj , [[uj , xr], xθ]]]|xγ) +
∑
r,j

([[xr, x−γ ], [[uj , xr], [u
j , xθ]]]|xγ)

=
∑
i,j,r

〈uj , [[uj , xr], xi]〉〈[xr, x−γ ], [fi0 , xi]〉+ 1
2

∑
j,r

〈uj , [uj , xr]〉〈[xr, x−γ ], fi0〉

+
∑
i,j,r

〈[uj , xr], [uj , xi]〉〈[xr, x−γ ], [fi0 , xi]〉+ 1
2

∑
j,r

〈[uj , xr], uj〉〈[xr, x−γ ], fi0〉

= 2
∑
i,j,r

〈[uj , xr], [uj , xi]〉〈[xr, x−γ ], [fi0 , xi]〉.

Recall from (4.16) that∑
i,j

〈[u, xi], [v, xj ]〉〈[w, xi], [z, xj ]〉 −
∑
i,j

〈[w, xi], [v, xj ]〉〈[u, xi], [z, xj ]〉

= (h∨ − 1)〈u,w〉〈v, z〉+ 1
4〈u ∧ w, v ∧ z〉.
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so ∑
r,j

([[xr, x−γ ], [uj , [[uj , xr], xθ]]]|xγ) +
∑
r,j

([[xr, x−γ ], [[uj , xr], [u
j , xθ]]]|xγ)

= 2
∑
i,j,r

〈[uj , xr], [uj , xi]〉〈[xr, x−γ ], [fi0 , xi]〉

= −2(h∨ − 1)
∑
j

〈uj , x−γ〉〈uj , fi0〉 − 1
2

∑
j

〈uj ∧ x−γ , uj ∧ fi0〉

+ 2
∑
i,j,r

〈[x−γ , xr], [uj , xi]〉〈[xr, uj ], [fi0 , xi]〉

= −2(h∨ − 1)〈x−γ , fi0〉 − 1
2

∑
j

〈uj , uj〉〈x−γ , fi0 ]〉+ 1
2

∑
j

〈uj , fi0〉〈x−γ , uj〉

+ 2
∑
i,r,s

〈[x−γ , xsr], [xi, [xsr, [fi0 , xi]]]〉

= (2(h∨ − 1) + 1
2(dim g1/2 − 1))(xγ |x−γ) + 2

∑
s

(h∨ − 3/2− h̄∨s )
∑
r

〈[x−γ , xsr], [fi0 , xsr]〉

= 2(h∨ − 1) + 1
2(2h∨ − 4− 1))(xγ |x−γ) + 2

∑
s

(h∨ − 3/2− h̄∨s )γs(xγ |x−γ)

= 2
∑
s

(h∨ − h̄∨s )γs(xγ |x−γ).

The final outcome is that∑
j,r

((Symm([uj , xr]u
j [xr, x−γ ])(xθ)|xγ) = 6

∑
s

(h∨ − 1− h̄∨s )γs(xγ |x−γ).

The other terms are easier:

(Symm(xx−γx−θ)(xθ)|xγ) = −3/4(xγ |x−γ),

(Symm(ei0x
2
−θ)(xθ)|xγ) = 3(xγ |x−γ),∑

j

(Symm([xj , x−γ ]xjx−θ)(xθ)|xγ) = −3/2(h∨ − 3/2)(xγ |x−γ).

Summing up

(g2(xθ ∧ xγ)|x−θ ∧ x−γ) = (−3
∑
s

(h∨ + 1/2− h̄∨s )γs − 45/4)(xγ |x−γ).

Using (4.3) we obtain the following result

Proposition 4.3.

(4.18) δ = −
12
∑

s(h
∨ + 1/2− h̄∨s )γs + 45

144
.
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Remark 4.1. Relation (4.18) easily gives Drinfeld’s formulas for δ: if κ denotes the Killing
form of g, then

(4.19) δκ =


− 1

32n2 if g = sl(n),

− n−4
16(n−2)3 if g = so(n),

− n+2
64(n+1)3 if g = sp(2n),

− 5
144(dim g+2) if g is of exceptional type.

Remark 4.2. It is possible to give an alternative formula for δ without using the minimal
gradation. We already observed that we are reduced to evaluate (4.1). We’ll do it by choosing
a = c = u, b = d = v with u, v ∈ h. Let {xα} be a set of root vectors with [xα, xβ] = Nα,βxα+β

for α, β ∈ ∆, α 6= −β and Nα,β = −N−α,−β. Then

(4.20) (g2(u ∧ v), u ∧ v) = 6
∑

α∈∆+,β∈∆

α(u)(α+ β)(v)(α(v)β(u)− α(u)β(v))N2
α,β.

The computation of (4.19) starting from (4.20) is possible but quite less handy than using
(4.18).

5. Minimal W -algebras

It is known by [KW] that for k 6= −h∨ there is a vertex algebra W strongly and freely
generated by fields L, Jv with v ∈ g\, Gu with u ∈ g−1/2 with the following λ-brackets: L

is a Virasoro element with central charge k dim g
k+h∨ − 6k + h∨ − 4, Ju are primary of conformal

weight ∆ = 1, Gv are primary of conformal weight ∆ = 3
2 and

(1) [JvλJ
w] = J [v,w] + λδij(k +

h∨−h̄∨i
2 )(v|w) for v ∈ g\i, w ∈ g\j ;

(2) [JvλG
u] = G[v,u] for u ∈ g−1/2, v ∈ g\;

(3) [GuλG
v] = A(u, v, k) + λB(u, v, k) + λ2

2 C(u, v, k) for u, v ∈ g−1/2 with C(u, v, k) ∈ C,
and conformal weights of ∆(B(u, v, k)) = 1 and ∆(A(u, v, k)) = 2.

To simplify notation, we will not record the dependence on k in the functions A,B,C.

We choose the basis {xi} to be the union of orthonormal bases of g\r. Let T = L−1 be the
translation operator of W .

If p = a ⊗ b ∈ g\ ⊗ g\ write : p :=: JaJb :. We extend : · : linearly to obtain a map
: · : from g\ ⊗ g\ to W . Consider S2(g\) = {a ⊗ b + b ⊗ a | a, b ∈ g\} ⊂ g\ ⊗ g\. Since

: JuJv :=: JvJu : +TJ [u,v] and since the elements Jxi , Gui , L strongly and freely generate
W , we see that there exist maps

P : g−1/2 × g−1/2 → S2(g\), K,H : g−1/2 × g−1/2 → g\, Q : g−1/2 × g−1/2 → C

such that A(u, v) can be uniquely written as

A(u, v) =: P (u, v) : +TJK(u,v) +Q(u, v)L.

and

B(u, v) = JH(u,v).

By skewsymmetry [GuλG
v] = −[Gv−λ−TG

u] so

(1) C(u, v) = −C(v, u);
(2) H(u, v) = H(v, u);
(3) P (u, v) = −P (v, u), K(u, v) = −K(v, u) +H(v, u), Q(u, v) = −Q(v, u),
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hence C(·, ·) and Q(·, ·) are symplectic forms on g−1/2, and

P :
2∧
g−1/2 → S2(g\), H : S2(g−1/2)→ g\.

By applying the axioms of vertex algebra, (§ 1.5 of [DK]) we find for a ∈ g\, v, w ∈ g−1/2:

C([a, v], w) = −C(v, [a,w]).

Since g1/2, as a g\–module, is either irreducible or a sum U ⊕ U∗ with U irreducible and U

inequivalent to U∗, we see that, up to a constant, there is a unique symplectic g\-invariant
nondegenerate bilinear form on g−1/2. Since

〈u, v〉 := (xθ|[u, v])

is such a form, we have that

(5.1) C(·, ·) = Γ(k)〈·, ·〉
for some constant Γ(k).

For b ∈ g\, let b\i denote the orthogonal projection of b onto g\i. Write

P (v, w) =
∑
i,j,r,s

kr,si,j (v, w)(xri ⊗ xsj)

with kr,si,j = ks,rj,i .

5.1. Jacobi identities between two G and one J .
By Jacobi identity [Jxλ [GvµG

w]]− [Gvµ[JaλG
w]] = [[JaλG

v]λ+µG
w]. Explicitly

[Jaλ : P (v, w) :] + [JaλTJ
K(v,w)] + λQ(v, w)Ja + µ[JaλJ

H(v,w)]

− : P (v, [a,w]) : −TJK(v,[a,w]) −Q(v, [a,w])L− µJH(v,[a,w]) − µ2

2 c(v, [a,w])

=: P ([a, v], w) : +TJK([a,v],w) +Q([a, v], w)L+ (λ+ µ)JH([a,v],w) + (λ+µ)2

2 c([a, v], w).

Using Wick formula ((1.37) [DK]) and sesquilinearity we compute explicitly [Jaλ : P (v, w) :]

and [JaλTJ
K(v,w)]. Then, equating the coefficients in λ, µ, we find

Proposition 5.1.

H(v, w) =
∑
r

2Γ(k)

2k + h∨ − h̄∨r
[[xθ, v], w]\r.(5.2)

K(v, w) = 1
2H(v, w).(5.3)

Q([a, v], w) = −Q(v, [a,w]).(5.4)

P ([a, v], w) = −P (v, [a,w]) + ad(a)P (v, w).(5.5)

H([a, v], w) = Q(v, w)a+ [a,K(v, w)](5.6)

+
∑
i,j,r,s

kr,si,j (v, w)(2k + h∨ − h̄∨r )(a|xri )xsj +
∑
i,j,r,s

kr,si,j (v, w)[[a, xri ], x
s
j ].

∑
j,r

kr,rj,j (v, w)(2k + h∨ − h̄∨r ) +Q(v, w)(
k dim g

k + h∨
− 6k + h∨ − 4) = 3Γ(k)〈v, w〉.(5.7)

In particular, Q is an invariant symplectic form on g−1/2, hence

(5.8) Q(u, v) = D(k)〈u, v〉.
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5.2. Jacobi identities between three G.
We need auxiliary formulas. By Wick formula [DK, (1.37)]

[Guλ(: JyJz :)] =: G[u,y]Jz : + : JyG[u,z] : +λG[[u,y],z]

=: G[u,y]Jz : + : G[u,z]Jy : +TG[y,[u,z]] + λG[[u,y],z],

moreover, by sesquilinearity,

[GuλTJ
a] = T [GuλJ

a] + λ[GuλJ
a] = TG[u,a] + λG[u,a].

By Jacobi identity [Guλ[GvµG
w]]− [Gvµ[GuλG

w]] = [[GuλG
v]λ+µG

w]. We compute each term.

[[GuλG
v]λ+µG

w] = [(: P (u, v) : +1
2TJ

H(u,v) +Q(u, v)L+ λJH(u,v) + λ2

2 c(u, v))λ+µG
w] =

− [Gw−λ−µ−T : P (u, v) :]− 1
2(λ+ µ)G[H(u,v),w] +Q(u, v)(TGw + 3

2(λ+ µ)Gw) + λG[H(u,v),w]

= −[Gw−λ−µ−T : P (u, v) :] + 1
2(λ− µ)G[H(u,v),w] +Q(u, v)(TGw + 3

2(λ+ µ)Gw)

[Guλ[GvµG
w]] = [Guλ(: P (v, w) : +1

2TJ
H(v,w) +Q(v, w)L+ µJH(v,w) + µ2

2 c(v, w))]

= [Guλ : P (v, w) :] + 1
2TG

[u,H(v,w)] + 1
2λG

[u,H(v,w)]

+ 1
2Q(v, w)TGu + 3

2Q(v, w)λGu + µG[u,H(v,w)]

so

[Gvµ[GuλG
w]] = [Gvµ : P (u,w) :]

+ 1
2TG

[v,H(u,w)] + 1
2µG

[v,H(u,w)] + 1
2Q(u,w)TGv + 3

2Q(u,w)µGv + λG[v,H(u,w)].

Equating the coefficients of λ, µ and the constant term we find

Proposition 5.2.

1
2G

[H(u,v),w] + 3
2Q(u, v)Gw +

∑
i,j,r,s

kr,si,j (u, v)G[[w,xri ],x
s
j ](5.9)

= 1
2G

[u,H(v,w)] + 3
2Q(v, w)Gu +

∑
i,j,r,s

kr,si,j (v, w)G[[u,xri ],x
s
j ] −G[v,H(u,w)]

− 1
2G

[H(u,v),w] + 3
2Q(u, v)Gw +

∑
i,j,r,s

kr,si,j (u, v)G[[w,xri ],x
s
j ](5.10)

= G[u,H(v,w)] − 1
2G

[v,H(u,w)] − 3
2Q(u,w)Gv −

∑
i,j,r,s

kr,si,j (u,w)G[[v,xri ],x
s
j ]

Q(u, v)TGw + 2
∑
i,j

ki,j(u, v)TG[[w,xi],xj ] =(5.11)

1
2TG

[u,H(v,w)] + 1
2Q(v, w)TGu −

∑
i,j,r,s

kr,si,j (v, w)TG[[u,xri ],x
s
j ]

− 1
2TG

[v,H(u,w)] − 1
2Q(u,w)TGv +

∑
i,j,r,s

kr,si,j (u,w)TG[[v,xri ],x
s
j ]
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−
∑
i,j,r,s

kr,si,j (u, v) : G[w,xi]Jxj :(5.12)

=
∑
i,j,r,s

kr,si,j (v, w) : G[u,xi]Jxj : −
∑
i,j,r,s

kr,si,j (u,w) : G[v,xi]Jxj : .

Recall from Section 3 that g−1/2∧g−1/2 = C⊕V ′, where V ′ is the g\–module generated by
bivectors u∧v with [u, v] = 0, and that V ′ decomposes with multiplicity one and no component
is trivial. By Proposition 3.1, P|V

g\
(λh) = fh(k)Φ|V

g\
(λh) for some costant fh(k) ∈ C. Thus, if

u ∧ v ∈ Vg\(λh),

kr,si,j (u, v) = fh(k)(〈[[u, xri ], [v, xsj ]]〉+ 〈[[u, xsj ], [v, xri ]]〉).

If [v, w] = 0, (5.6) becomes

H([a, v], w) = [a,
∑
r

Γ(k)

2k + h∨ − h̄∨r
[[xθ, v], w]\r]

+
∑
i,j,r,s

kr,si,j (v, w)(2k + h∨ − h̄∨r )(a|xri )xsj +
∑
i,j,r,s

kr,si,j (v, w)[[a, xri ], x
s
j ].

Now compute

(H([xri , v], w)|xsj)

= ([xri ,
1
2H(v, w)]|xsj) +

∑
n,m,r′,s′

kr
′,s′
n,m (v, w)(2k + h∨ − h̄∨r′)(xri |xr

′
n )(xs

′
m|xsj)

+
∑

n,m,r′,s′

kr
′,s′
n,m (v, w)([[xri , x

r′
n ], xs

′
m]|xsj)

= ([xri ,
1
2H(v, w)]|xsj) + kr,si,j (v, w)(2k + h∨ − h̄∨r ) + δr,s

∑
n,m

kr,sn,m(v, w)([[xri , x
r
n], xsm]|xsj).

Since [a,H(v, w)] = H([a, v], w) +H(v, [a,w]) we can rewrite the above relations as

(H([xri , v], w)|xsj)− (H(v, [xri , w])|xsj)
= 2fh(k)(〈[[v, xri ], [w, xsj ]]〉+ 〈[[v, xsj ], [w, xri ]]〉)(2k + h∨ − h̄∨r )

+ δr,s
∑
n,m

2fh(k)(〈[v, xrn], [w, xsm]〉+ 〈[v, xsm], [w, xsn]〉)([[xri , xrn], xsm]|xsj).

More precisely

− Γ(k)

2k + h∨ − h̄∨s
(〈[v, xri ], [w, xsj ]〉+ 〈[v, xsj ], [w, xri ]〉)

= fh(k)(〈[[v, xri ], [w, xsj ]]〉+ 〈[[v, xsj ], [w, xri ]]〉)(2k + h∨ − h̄∨r )(5.13)

+ δr,s
∑
n,m

fh(k)(〈[v, xrn], [w, xsm]〉+ 〈[v, xsm], [w, xsn]〉)([[xri , xrn], xsm]|xsj).

If there are at least two simple components in g\, we have

(5.14) fh(k) = − Γ(k)

(2k + h∨ − h̄∨s )(2k + h∨ − h̄∨r )
,
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which is in particular independent from h. So we are reduced to determine fh(k) when g\

is simple or one-dimensional. Recall from the explicit description of the decomposition of
g−1/2 ∧ g−1/2 given in Section 3, that in this case V ′ is simple. We can therefore drop the

superscript from xri , k
r,s
i,j and we denote fh simply by f . Choosing in (5.13) v, w, i, j such that

〈[v, xi], [w, xj ]〉+ 〈[v, xj ], [w, xi]〉 6= 0 we can write

f(k) =
Γ(k)

(ξk + η)(2k + h∨ − h̄∨1 )

with ξ 6= 0. In particular

− (ξk + η)(〈[v, xi], [w, xj ]〉+ 〈[v, xj ], [w, xi]〉)
= (〈[v, xi], [w, xj ]〉+ 〈[v, xj ], [w, xi]〉)(2k + h∨ − h̄∨1 )

+
∑
n,m

(〈[v, xn], [w, xm]〉+ 〈[v, xm], [w, xn]〉)([[xi, xn], xm]|xj),

so ξ = −2 and

− (η + (h∨ − h̄∨1 ))(〈[v, xi], [w, xj ]〉+ 〈[v, xj ], [w, xi]〉)

=
∑
n,m

(〈[v, xn], [w, xm]〉+ 〈[v, xm], [w, xn]〉)([[xi, xn], xm]|xj).

To compute η we first observe that∑
n,m

(〈[v, xn], [w, xm]〉+ 〈[v, xm], [w, xn]〉)([[xi, xn], xm]|xj)

= −
∑
n,m

(〈[v, xn], [w, xm]〉+ 〈[v, xm], [w, xn]〉)([[xi, xn], xj ]|xm)

= −
∑
n

(〈[v, xn], [w, [[xi, xn], xj ]]〉+ 〈[v, [[xi, xn], xj ]], [w, xn]〉),

which implies, for any a, b ∈ g\

(η + (h∨ − h̄∨1 ))(〈[v, a], [w, b]〉+ 〈[v, b], [w, a]〉)

=
∑
n

(〈[v, xn], [w, [[a, xn], b]]〉+ 〈[v, [[a, xn], y]], [w, xn]〉).

Next we need some formulas: let Cg\ =
∑

i x
2
i be the Casimir element of g\ and Cg0

the Casimir element of g0. Since Cg\ = Cg0 − 2x2, by Lemma 5.1 of [KW] we have that∑
i[xi, [xi, v]] = (h∨ − 3

2)v. Now a lengthy computation yields∑
n

(xθ|[[v, xn], [w, [[a, xn], b]]] + [[v, [[a, xn], b]], [w, xn]])

= (h∨ − 3/2− 2h̄∨1 )(〈[v, b], [w, a]〉+ 〈[v, a], [w, b]〉)

+
∑
n

(〈[b, [v, xn]], [a, [w, xn]]〉+ 〈[a, [v, xn]], [b, [w, xn]]〉).

Consider the map Ψ : ∧2g−1/2 → S2(g\)∗ defined by polarizing (3.5):

Ψ(v ∧ w)(a, b) = 〈[v, a], [w, b]〉+ 〈[v, b], [w, a]〉,
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and note that∑
n

(〈[b, [v, xn]], [a, [w, xn]]〉+ 〈[a, [v, xn]], [b, [w, xn]]〉) = Ψ(
∑
n

[v, xn] ∧ [w, xn])(a, b).

By Lemma 4.2, (4.15), we have∑
n

(〈[b, [v, xn]], [a, [w, xn]]〉+ 〈[a, [v, xn]], [b, [w, xn]]〉) = −1
2(〈[b, v], [a,w]〉+ 〈[a, v], [b, w]〉).

The outcome is that∑
n

(〈[v, xn], [w, [[a, xn], b]]〉+ 〈[v, [[a, xn], b]], [w, xn]〉)

= (h∨ − 2− 2h̄∨1 )(〈[v, b], [w, a]〉+ 〈[v, a], [w, b]〉).

Thus η = −2− h̄∨1 . In particular

(5.15) f(k) = − Γ(k)

4(k +
h∨−h̄∨1

2 )(k +
h̄∨1
2 + 1)

.

This ends the computation of the proportionality factor fh(k).

It remains to compute Q(v, w) and P (v, w) with [v, w] 6= 0. To this end introduce

TRr(v, w) :=
∑
j

kr,rj,j (v, w).

Relation (5.6) gives

(H([xri , v], w)|xri ) = Q(v, w) + kr,ri,i (v, w)(2k + h∨ − h̄∨r )

+
∑
n,m

kr,rn,m(v, w)(([[xri , x
r
n], xrm]|xri ).

So ∑
i

(H([xri , v], w)|xri ) = dim g\rQ(v, w) + TRr(v, w)(2k + h∨ − h̄∨r )

+
∑
i

∑
n,m

kr,rn,m(v, w)([[xri , x
r
n], xrm]|xri ).

Using the relation
∑

i[x
r
i , [x

r
i , a]] = 2(h̄∨r )a for a ∈ g\r we obtain∑

i

(H([xri , v], w)|xri ) = dim g\rQ(v, w) + TRr(v, w)(2k + h∨ + h̄∨r ).

Since ∑
i

(H([xri , v], w)|xri ) = 2Γ(k)γr
2k+h∨−h̄∨r

〈v, w〉,

we have, recalling that Q(v, w) = D(k)〈v, w〉,

(5.16) TRr(v, w) =
1

2k + h∨ + h̄∨r

(
−dim g\rD(k) + 2Γ(k)γr

2k+h∨−h̄∨r

)
〈v, w〉.

Relation (5.7) becomes
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∑
r

2k + h∨ − h̄∨r
2k + h∨ + h̄∨r

(
−dim g\rD(k) + 2Γ(k)γr

2k+h∨−h̄∨r

)
+D(k)(

k dim g

k + h∨
− 6k + h∨ − 4) = 3Γ(k).

Solving for D(k) we find that

D(k) = Γ(k)E(k),

where E(k) is a complicated but explicit rational function in k, h∨, h̄∨r , γr, dim g, dim g\r. In
turn, substituting in (5.16), TRr can be expressed as

(5.17) TRr(v, w) = Γ(k)Er(k)〈v, w〉.
Let {ui}, {ui} be dual bases of g−1/2: 〈ui, uj〉 = δi,j . We have to compute P (

∑
i ui ∧ ui).

If u, v ∈ g−1/2, then

u ∧ v =
〈u, v〉

dim g1/2

∑
i

ui ∧ ui + s, s ∈ V2.

By covariance of P , we have P (
∑

i ui ∧ ui) =
∑

i,r αrx
r
i ⊗ xri , thus∑

i,r,s,m,n

kr,sm,n(ui, u
i)xrm ⊗ xsn =

∑
i,r

αrx
r
i ⊗ xri ,

hence
∑

i k
r,s
m,n(ui, u

i) = δr,sδm,nαr. In particular dim g\rαr =
∑

i,j k
r,r
j,j (ui, u

i) hence

dim g\rαr =
∑
i

TRr(ui, u
i) = Γ(k)Er(k)

∑
i

〈ui, ui〉 = Γ(k)Er(k) dim g−1/2.

Since Φ is equivariant we have likewise∑
i,r,s,m,n

(〈[ui, xrm], [ui, xsn]〉+ 〈[ui, xsm], [ui, xrm]〉)xrm ⊗ xsn =
∑
i,r

βrx
r
i ⊗ xri ,

hence ∑
i

(〈[ui, xrm], [ui, xsn]〉+ 〈[ui, xsn], [ui, xrm]〉) = δr,sδm,nβr

and

dim g\rβr =
∑
i,m

(〈[ui, xrm], [ui, xrm]〉+ 〈[ui, xrm], [ui, xrm]〉) = −2
∑
i,m

〈[xrm, [xrm, ui]], ui〉

= −2γr
∑
i

〈ui, ui〉 = −2γr dim g−1/2.

Since P (s) = f(k)Φ(s),

P (s) =
∑

n,m,r,s

f(k)(〈[u, xrm], [v, xsn]〉+ 〈[u, xsn], [v, xrm]〉)(xrm ⊗ xsn)

− 〈u, v〉
dim g1/2

f(k)
∑

i,m,n,r,s

(〈[ui, xrm], [ui, xsn]〉+ 〈[ui, xsn], [ui, xrm]〉)(xrm ⊗ xsn) =

∑
m,n,r,s

f(k)(〈[u, xrm], [v, xsn]〉+ 〈[u, xsn], [v, xrm]〉)(xrm ⊗ xsn)− 〈u, v〉
dim g1/2

f(k)
∑
i,r

βr(x
r
i ⊗ xri ) =

∑
m,n,r,s

f(k)(〈[u, xrm], [v, xsn]〉+ 〈[u, xsm], [v, xrm]〉)(xrm ⊗ xsn) + 〈u, v〉f(k)
∑
m,r

2γr

dim g\r
(xrm ⊗ xrm).
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The outcome is that

P (u ∧ v) = 〈u, v〉
∑
r,m

Γ(k)Er(k) + 2γrf(k)

dim g\r
(xrm ⊗ xrm)(5.18)

+
∑

m,n,r,s

f(k)(〈[u, xrm], [v, xsn]〉+ 〈[u, xsn], [v, xrm]〉)(xrm ⊗ xsn).

Observe from (5.14) that f does not depend on the choice of r, s, hence {h̄∨r } has at most
two elements, and if there are more than two components, {h̄∨r } is a singleton.

We now deal with the case in which g\ has three components. Suppose that g\ has a
nontrivial center. Then h̄∨1 = 0, also h̄∨2 , h̄

∨
3 vanish and g\ is 3-dimensional abelian. This

is not possible, hence g\ is semisimple, αi0 is long and is a node of degree 3 in the Dynkin

diagram of g. Therefore one of the components, say g\1, has to be sl(2). In particular
h̄∨1 = h∨1 = 2. By the above remark, we have h̄∨2 = h̄∨3 = 2 and indeed ν2 = ν3 = 1. Hence all
components are isomorphic to sl(2) and this forces g to be of type D4.

Set

p(k) =

(k +
h∨−h̄∨1

2 )(k +
h∨−h̄∨2

2 ) if g\ has two components,

(k +
h∨−h̄∨1

2 )(k +
h̄∨1
2 + 1) otherwise.

Observe that, combining (5.14) and (5.15), we have f(k) = − Γ(k)
4p(k) in all cases. We summarize

our findings in the following proposition.

Proposition 5.3. There are explicitly computable rational functions ar(k), b(k), c(k), dr(k)
such that, up to a constant C,

[GvλG
w] =

C

〈v, w〉∑
i,r

ar(k) : Jx
r
i Jx

r
i : +b(k)

∑
i,j,r

(〈[v, xri ], [w, xrj ]〉+ 〈[v, xrj ], [w, xri ]〉) : Jx
r
i Jx

r
j :

+

C

(
c(k)〈v, w〉L+

∑
r

dr(k)
(

1
2TJ

[[xθ,v],w]\r + λJ [[xθ,v],w]\r
)

+ λ2

2 〈v, w〉

)
.

More precisely

b(k) = − 1

4p(k)
, dr(k) =

1

k + h∨−h̄∨r
2

,

while ar(k) and c(k) are certain rational functions of degree respectively −2 and −1.

If we set ϕ(u, v)(w, z) =
∑

i,j,r,s k
r,s
i,j (u, v)〈[[w, xri ], xsj ], z〉 then ϕ is alternating in w, z so it

defines a map ϕ :
∧2 g−1/2 →

∧2 g1/2 and it is g\-equivariant, since ϕ = π ◦Symm ◦Φ where

π is the action of g\ on g−1/2.
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Relations (5.9), (5.10), (5.11) then become

1
2〈[H(u, v), w], z〉+ 3

2Q(u, v)〈w, z〉+ ϕ(u, v)(w, z)(5.19)

= 1
2〈[u,H(v, w)], z〉+ 3

2Q(v, w)〈u, z〉+ ϕ(v, w)(u, z)− 〈[v,H(u,w)], z〉,
− 1

2〈[H(u, v), w], z〉+ 3
2Q(u, v)〈w, z〉+ ϕ(u, v)(w, z)(5.20)

= 〈[u,H(v, w)], z〉 − 1
2〈[v,H(u,w)], z〉 − 3

2Q(u,w)〈v, z〉 − ϕ(u,w)(v, z),

Q(u, v)〈w, z〉+ 2ϕ(u, v)(w, z) =(5.21)

1
2〈[u,H(v, w)], z〉+ 1

2Q(v, w)〈u, z〉 − ϕ(v, w)(u, z)

− 1
2〈[v,H(u,w)], z〉 − 1

2Q(u,w)〈v, z〉+ ϕ(u,w)(v, z).

Lemma 5.4. Assume C 6= 0 for almost all k and set

R(k) =


−

∑
r dr(k)‖(hαi0 )\r‖2+3c(k)+2

∑
r ar(k)γr

2b(k) if g\ has two components,

−3/2d1(k)+3c(k)+(2h∨−3)a1(k)
2b(k) otherwise.

Then R(k) does not depend on k. More precisely

R(k) =


3−4h∨+2

∑
r h̄
∨
r ‖(hαi0 )\r‖2

2 if g\ has two components,

3−4h∨+3h̄∨1
2 otherwise.

Proof. Choose v = u in (5.19). Then we obtain

1
2(〈[H(u, u), w] + [u,H(u,w)], z〉)− 3

2Q(u,w)〈u, z〉 = ϕ(u,w)(u, z).(5.22)

Using the explicit formulas

H(v, w) = C
∑
r

dr(k)[[xθ, v], w]\r, Q(v, w) = Cc(k)〈v, w〉

and (4.16) we find

C
2

∑
r

dr(k)
∑
i

(〈u, [u, xri ]〉〈[xri , w], z〉+ 〈u, [w, xri ]〉〈[u, xri ], z〉)− 3C
2 c(k)〈u,w〉〈u, z〉 =

ϕ(u,w)(u, z).

We first evaluate the right hand side of (5.22): recall that

kr,si,j (u, v) = Cb(k)(〈[u, xri ], [v, xsj ]〉+ 〈[u, xsj ], [v, xri ]〉) + Cδi,jδr,sar(k)〈u, v〉,

so

ϕ(u,w)(u, z) =
∑
i,j,r,s

Cb(k)(〈[u, xri ], [w, xsj ]〉+ 〈[u, xsj ], [w, xri ]〉)〈[[u, xri ], xsj ], z〉(5.23)

+ C
∑
i,r

ar(k)〈[[u, xri ], xri ], z〉〈u,w〉

=
∑
i,j,r,s

Cb(k)(〈[u, xri ], [w, xsj ]〉+ 〈[u, xsj ], [w, xri ]〉)〈[[u, xri ], xsj ], z〉

+ C
∑
r

ar(k)γr〈u, z〉〈u,w〉.
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Take u = fi0 , w = z = [x−θ, ei0 ]. Passing to dual bases {xri }, {xir} of g\r and using (5.23),
relation (5.22) becomes

C
2

∑
r,i

dr(k)
(
〈fi0 , [fi0 , xri ]〉〈[xir, [x−θ, ei0 ]], [x−θ, ei0 ]〉+ 〈fi0 , [[x−θ, ei0 ], xri ]〉〈[fi0 , xir], [x−θ, ei0 ]〉

)(5.24)

− 3C
2 c(k)〈fi0 , [x−θ, ei0 ]〉2 =∑

i,j,r,s

Cb(k)
(
〈[fi0 , xri ], [[x−θ, ei0 ], xsj ]〉+ 〈[fi0 , xsj ], [[x−θ, ei0 ], xri ]〉

)
〈[[fi0 , xri ], xsj ], [x−θ, ei0 ]〉

+ C
∑
r

ar(k)γr〈fi0 , [x−θ, ei0 ]〉2.

We now evaluate the left hand side of (5.24). Assume first that g\ has two components,
then −θ+ 2αi0 is not a root. By weight considerations, 〈fi0 , [fi0 , xri ]〉 can be non zero only if
xri has weight −θ+ 2αi0 . Arguing in the same way, we also conclude that in the second sum
xri should belong to h, so that the left hand side of (5.24) simplifies to

C
2 (
∑
r

dr(k)
∑
i

〈fi0 , [[x−θ, ei0 ], hri ]〉αi0(hri )− 3c(k)〈fi0 , [x−θ, ei0 ]〉)〈fi0 , [x−θ, ei0 ]〉,

where {hri } is an orthonormal basis of h\r. The above formula can be further reduced to

(5.25) − C
2 (
∑
r

dr(k)‖(hαi0 )\r‖2 + 3c(k)))〈fi0 , [x−θ, ei0 ]〉2.

Assume now that g\ has only one component (i.e., it is simple or 1-dimensional). Then, if
u, v ∈ g−1/2,

[[xθ, u], v] = [[xθ, u], v]\ + 〈u, v〉x.

In this case (5.22) becomes

C
2 (d1(k)(〈[[[xθ, u], u]\, w] + [u, [[xθ, u], w]\], z〉)− 3C

2 Q(u,w)〈u, z〉 = ϕ(u,w)(u, z).

Since

[[[xθ, u], u]\, w] + [u, [[xθ, u], w]\] = [[[xθ, u], u], w] + [u, [[xθ, u], w]]− 〈u,w〉[u, x]

and [u, [[xθ, u], w]] = −[[[xθ, u], u], w] + [[xθ, u], [u,w]], we see that

[[[xθ, u], u]\, w] + [u, [[xθ, u], w]\] = [[xθ, u], [u,w]]− 1
2〈u,w〉u

= 2〈u,w〉[[xθ, u], x−θ]− 1
2〈u,w〉u = −3

2〈u,w〉u.

The upshot is that

−C
2 (3

2d1(k) + 3c(k))〈u,w〉〈u, z〉 = ϕ(u,w)(u, z).

Substituting u = fi0 and w = z = [x−θ, ei0 ] the left hand side of (5.24) becomes

(5.26) − C
2 (3

2d1(k) + 3c(k))〈fi0 , [x−θ, ei0 ]〉2.

Finally, if g\ has three components, since d1(k) = d2(k) = d3(k), formula (5.23) becomes

−C
2 (d1(k)‖(hαi0 )\‖2 + 3c(k)))〈fi0 , [x−θ, ei0 ]〉2
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which is indeed (5.26). To evaluate the right hand side of (5.23) in the current case, notice
that γr does not depend on r (see also (5.27) below). From this and relation (5.18) we deduce
that ar(k) does not depend on r. It follows, using (5.28) below, that

C
∑
r

ar(k)γr〈fi0 , [x−θ, ei0 ]〉2 = C
2 a1(k)(2h∨ − 3)〈fi0 , [x−θ, ei0 ]〉2,

as in the case when g\ has only one component.

The final outcome is that∑
i,j,r,s

(〈[fi0 , xri ], [[x−θ, ei0 ], xsj ]〉+ 〈[fi0 , xsj ], [[x−θ, ei0 ], xi]〉)〈[[fi0 , xri ], xsj ], [x−θ, ei0 ]〉

= R(k)〈fi0 , [x−θ, ei0 ]〉2,
where

R(k) =


−

∑
r dr(k)‖(hαi0 )\r‖2+3c(k)+2

∑
r ar(k)γr

2b(k) if g\ has two components,

−3/2d1(k)+3c(k)+(2h∨−3)a1(k)
2b(k) otherwise.

It follows that R(k) does not depend on k, hence it equals the value of its limit for k →∞.
This limit is

lim
k→∞

R(k) =


3−4h∨+2

∑
r h̄
∨
r ‖(hαi0 )\r‖2

2 if g\ has two components,

3−4h∨+3h̄∨1
2 otherwise.

�

There are several relations among the values γi,dim g\i, dim g, h̄∨i and h∨. Indeed, if g\i is

abelian, then g\i = C$ with $ as in (3.3). As noted in Section 3, $ acts on g−1/2 as ±I, so

the eigenvalue of C
g\i

= $2

($|$) is 1
($|$) . On the other hand ($|$) = tr(ad($)2)

2h∨ =
2 dim g−1/2

2h∨ ,

so we conclude that γi =
dim g\ih

∨

2(h∨−2) . Since h∨i = 0, this formula can be written as

(5.27) γi =
dim g\i(h

∨ − h̄∨i )

2(h∨ − 2)
.

By [P, (2.2)], the index ind
g\i

(g1/2⊕g−1/2) is (h∨− h̄∨i )/h̄∨i . The same index can be computed

as ind
g\i

(g1/2) + ind
g\i

(g−1/2) = 2 ind
g\i

(g−1/2) and this last quantity is computed by [P, (1.3)]

to be
γi dim g−1/2

2h̄∨i dim g\i
. Since dim g−1/2 = 2(h∨ − 2), it follows that (5.27) holds in these cases too.

By (4.6),

(5.28)
∑
r

γr = h∨ − 3/2

so, if g\ has two components one can solve for dim g\2 and obtain that

dim g\2 =
dim g\1(h̄∨1 − h∨) + 2(h∨)2 − 7h∨ + 6

h∨ − h̄∨2
.

Moreover, by (4.7),

(5.29) dim g = 4h∨ − 5 + dim g\.
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Our analysis provides more refined relations.

Proposition 5.5. If g\ has two components, then

(5.30) dim g =
(h∨ + 1)

(
2(h∨)2 + h∨(h̄∨1 − 2)− h̄∨1 (h̄∨1 + 2)

)
(h̄∨1 + 2)(h∨ − h̄∨1 )

, h̄∨1 + h̄∨2 = h∨ − 2.

Otherwise

(5.31) dim g =
2
(
5(h∨)2 − h∨ − 6

)
h∨ + 6

, h̄∨1 =
2(h∨ − 3)

3

or

(5.32) dim g = 2(h∨)2 − 3h∨ + 1, h̄∨1 = h∨ − 1.

Moreover, (5.32) occurs if and only if g\ is simple and αi0 is short.

Proof. Write explicitly the rational function R(k) − limk→∞R(k) as P/Q with P,Q poly-
nomials in k, h∨, h̄∨i and dim g. Since P is identically zero, by equating its coefficients to
zero and solving the system of equations with respect to dim g and h∨i /νi we get the above
formulas.

To finish the proof we show that h̄∨1 = h∨−1 if and only if g\ is simple and αi0 is short. Let Σ
be the set of simple roots of g\ and θΣ its highest root. Write θ =

∑
α∈Πmαα, θΣ =

∑
α∈Σ nαα

and note that nα ≤ mα for all α ∈ Σ. If h̄∨1 , since ν1 = 2/(θΣ|θΣ), we have

h̄∨1 = 1
2((θΣ|θΣ) +

∑
α∈Σ

(α|α)nα = 1
2

∑
α∈Π

(α|α)mα = (αi0 |αi0) + 1
2

∑
α∈Σ

(α|α)mα,

hence

(θΣ|θΣ)− 2(αi0 |αi0) =
∑
α∈Σ

(α|α)(mα − nα) ≥ 0.

It follows that αi0 is short. Then θ − 2αi0 is a root of g\ and this forces g\ to be simple,
otherwise the support of θ − 2αi0 would be disconnected.

Assume now that g\ is simple and αi0 is short. Then θ − 2αi0 is a root of g\. This forces
θΣ = θ − 2αi0 and (θ|α∨i0) = 2, so that (αi0 |αi0) = 1. We have

h∨ − 1 =
∑
α∈∆

(α|α)
2 mα =

∑
α∈Σ

(α|α)
2 nα + (αi0 |αi0) = (θΣ|θΣ)

2

∑
α∈Σ

(α|α)
(θΣ|θΣ)nα + (αi0 |αi0)

= h̄∨1 −
(θΣ|θΣ)

2 + (αi0 |αi0) = h̄∨1 ,

since (θΣ|θΣ) = (θ − 2αi0 |θ − 2αi0) = 2− 4(θ|αi0) + 4 = 2. �

Remark 5.6. A brief inspection of the Dynkin diagrams shows that g\ does not have exactly
two irreducible ideals precisely when g belongs to the Deligne’s series A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂
E6 ⊂ E7 ⊂ E8 or it is of type Cn. The first case occurs exactly when there is a long simple
root not orthogonal to the highest root.

Remark 5.7. It is worthwhile to recall that dim g = r(h + 1), where r is the rank of g and
h is the Coxeter number of g.
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Proposition 5.8. Let {xi} be an orthonormal basis of g\. Then

[GvλG
w] =

C

 1
4p(k)〈v, w〉

∑
i

: JxiJxi : − 1
4p(k)

∑
i,j

(〈[v, xi], [w, xj ]〉+ 〈[v, xj ], [w, xi]〉) : JxiJxj :

+

C

(
−k+h∨

2p(k) 〈v, w〉L+
∑
r

1

k+
h∨−h̄∨r

2

(1
2TJ

[[xθ,v],w]\r + λJ [[xθ,v],w]\r) + λ2

2 〈v, w〉

)
.

Proof. Substitute the values (5.31), (5.32), (5.30) in the explicit expressions for a(k), b(k),
c(k), d(k). �

Remark 5.1. Choosing C = 4p(k) one obtains a refinement of the formula (1.1) of [AKMPP]
which is in turn an improvement of the original formula of Kac and Wakimoto [KW].

Indeed, recall that (xθ|[ur, us]) = δr,s. As in [KW], we let 〈·, ·〉ne be the invariant form on
g1/2 defined by setting 〈v, w〉ne = (x−θ|[v, w]). Note that

〈[xθ, ur], [xθ, us]〉ne = −1
2δr,s.

In fact,

〈[xθ, ur], [xθ, us]〉ne = (x−θ|[[xθ, ur], [xθ, us]]) = 1
2(ur|[xθ, us]) = −1

2(xθ|[ur, us])
It follows that {[xθ, ur]} gives a basis of g1/2 and that {2[xθ, us]} is its dual basis.

If u ∈ g−1/2 then

[u, [xθ, us]]
\ =

∑
i

([u, [xθ, us]]|xi)xi = −
∑
i

(xθ|[[xi, us], u])xi,

[[xθ, u
r], v]\ =

∑
i

([[xθ, u
r], v]|xi)xi =

∑
i

(xθ|[[xi, ur], v])xi,

so

2
∑
r

: J [u,[xθ,ur]]
\
J [[xθ,u

r],v]\ : = −2
∑
i,j,r

(xθ|[[xi, ur], u])(xθ|[[xj , ur], v]) : JxiJxj :

= −2
∑
i,j,r

(xθ|[ur, [u, xi]])(xθ|[ur, [v, xj ]]) : JxiJxj :

= −2
∑
i,j

(xθ|[[u, xi], [v, xj ]]) : JxiJxj : .

Theorem 5.9. If g\ has one or three components, then

δ = −1

2

(
h∨ − h̄∨1

2

)(
h̄∨1
2

+ 1

)
,

while if g\ has two components, then

δ = −1

2

(
h∨ − h̄∨1

2

)(
h∨ − h̄∨2

2

)
and h̄∨1 + h̄∨2 = h∨ − 2. In particular, in both cases,

(5.33) p(k) = k2 +

(
h∨

2
+ 1

)
k − 2δ.

Proof. Just substitute (5.27), (5.31), (5.32), and (5.30) in formula (4.18). �
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Remark 5.2. Let V be a finite dimensional Y (g)-module. Using the (Hopf algebra) auto-
morphism τu, u ∈ C defined by τu(x) = x, τu(J(x)) = J(x) + ux, x ∈ g, the representation
V can be pulled back to give a one-parameter family of representations V (u).

Recall now that the R-matrix associated to Y (g)-modules V,W is of the form RV,W (u) =
IV,W (u)σ, where σ is the switch automorphism and IV,W (u) : V ⊗ W (u) → W (u) ⊗ V is
the unique intertwining operator which preserves the tensor product of the highest weight
vectors in V,W . Since IV,W (u) is a g-module map, it must preserve the isotypic components
in V ⊗W . Denote by (V ⊗W (u))g, (W (u) ⊗ V )g the isotypic components corresponding
to the adjoint representation and by (V ⊗ W (u))0, (W (u) ⊗ V )0 the isotypic components
corresponding to the trivial representation. Set also

Pg = IV,W (u)|(V⊗W (u))g , P0 = IV,W (u)|(V⊗W (u))0
.

Assume g is not sl(n). In the special case when V = W = V = g ⊕ C, then the adjoint
representation occurs in V ⊗ V with multiplicity three and the trivial representation with
multiplicity two.

As in Section 5.4 of [CP], choose the following bases for the g-highest weight spaces of
V ⊗ V of weight θ and 0:

{xθ ⊗ 1 + 1⊗ xθ, δ[xθ ⊗ 1, Cg], xθ ⊗ 1− 1⊗ xθ}, {1⊗ 1, 1⊗ 1− δCg}.

One the main results of [CP] is the explicit computation of the matrices of Pg and P0 in the
bases given above. The final outcome, as far as we are concerned, is that the entries of these
matrices are rational functions of u whose denominator is either g(u) = u2− (h

∨

2 +1)u−2δ =
p(−u) (using (5.33)), or u− 1, or (h∨/2− u)g(u).
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