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ABSTRACT. We prove that the singularities of the R-matrix R(k) of the minimal quan-
tization of the adjoint representation of the Yangian Y (g) of a finite dimensional simple
Lie algebra g are the opposite of the roots of the monic polynomial p(k) entering in the
OPE expansions of quantum fields of conformal weight 3/2 of the universal minimal affine
W-algebra at level k attached to g.

1. INTRODUCTION

Let g be a finite dimensional simple Lie algebra over C, different from si(2). Let Y(g)
be Drinfeld’s Yangian associated to g and W¥(g,#) the universal minimal affine 1W-algebra
at level k. The purpose of this paper is to explain a remarkable coincidence arising when
considering, on the one hand, the minimal quantization to Y (g) of the adjoint representation
of g, and, on the other hand, the OPE expansion for primary fields of W*(g, ) of conformal
weight 3/2. To explain more precisely this coincidence we need some recollections. The
algebra Y (g) is a Hopf algebra deformation of U (g[¢]) which has been introduced in the famous
paper [Dr] to construct solutions of the quantum Yang-Baxter equation. Its presentation
involves generators X and J(X), X € g. In [D1, Theorem 8] Drinfeld explains how to quantize
the adjoint representation of g to Y (g): the “minimal” way of getting this quantization is
to consider the space V = g ® C and let the generators X, X € g act in the natural way,
and the generators J(X), X € g act by (2.4). Formula involves a certain constant 9,
which depends just on the choice of the bilinear invariant form on g. Expanding on Drinfeld’s
work, Chari and Pressley [CP| studied the R-matrix R(k) associated to V', and found that
the blocks of this matrix corresponding the trivial and the adjoint isotypic components have
as singularities 1, h" /2, and the roots r1, 5 of a degree two monic polynomial in k. Here and
further A" is the dual Coxeter number of g. It is implicit in their analysis that § = —%7’17"2.
See Remark [5.2]

Kac, Roan and Wakimoto [KRW]| associated a vertex algebra W¥(g, f), called a universal
affine W-algebra, to each triple (g, f,k), where f is a nilpotent element of g viewed up to
conjugation, and k € C, by applying the quantum Hamiltonian reduction functor to the
affine vertex algebra V*(g). In particular, it was shown that, for k& # —hY, W¥(g, f) has a
set of free generators, including a Virasoro vector w. A more explicit presentation has been
obtained in [KW] when f is an element from the minimal non-zero nilpotent orbit. Since
e_p, a root vector attached to the minimal root —#, is such an element, we will denote this
vertex algebra by W¥(g,#). A further improvement has been obtained in [AKMPP], where it
has been proved that the OPE expansion of quantum fields of conformal weight 3/2 depends
on a canonical monic quadratic polynomial p(k). The surprizing fact is that its roots are —r;
and —7s.
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Our approach to the explanation is essentially Lie-theoretic, even if information coming
from the structure of vertex operator algebras generated by fields of low conformal weight
is needed. Our first step is to provide a proof of Theorem 8 in [Dr] convenient for our
goals. This is based on the analysis of certain g-equivariant maps Go : /\2 g — S3(g*) and
Gs : N*g — S3(g*) (cf. ([2.5)), which arise naturally when considering Drinfeld’s formula
(2.4). The crucial Lemma has been suggested to us by C. De Concini. Along the way
we obtain a uniform formula for §, see , , which easily specialize to Drinfeld’s
expressions for § in each type of g. Remark that the handier formula is given in terms
of the grading on g associated to an element from the minimal nilpotent orbit.

On the W-algebra side, we consider the grading and investigate the possible vertex
algebras generated by fields L, JV with v € g? (cf. (3-2)), G* with u € g_1/2, With the

following A-brackets: L is a Virasoro vector with central charge kkii,rfvg — 6k +hY — 4, Jv

are primary of conformal weight 1, G* are primary of conformal weight %, the J“ generate
an affine vertex algebra, and no other constraints. The existence of such vertex algebras is
guaranteed by [KW]. The final outcome is that imposing Jacobi identity, up to an overall
multiplicative constant, one obtains precisely the relations given by [KW]: see Proposition
5.8 Coming back to the explanation of the coincidence, one substitutes auxiliary relations
popping up in the proof of Proposition (cf. , ) in formula to get the
desired result: see Theorem [5.9
As a byproduct of our analysis, we get the following results.

(1) Uniform fomulas for dimg: in Proposition we get uniform formulas expressing
the dimension of g in terms of canonical data associated to the minimal grading .

(2) Application to the Deligne exceptional series: in particular, we can view the simple
Lie algebras in the Deligne exceptional series in this framework (cf. Remark ,
providing a characterization in terms of the minimal grading which yields yet another
uniform derivation of the dimension formulas.

(3) OPE expansions of quantum fields of conformal weight 3/2: in Proposition we
refine [AKMPP| Lemma 3.1] by providing a precise expression for the 0-th product
in the OPE expansions of quantum fields of conformal weight 3/2 in W*(g, 6).

2. YANGIANS

2.1. Setup and basic relations. Let g be a simple Lie algebra different from si(2). Fix a
Cartan subalgebra h of g and a set A, of positive roots for the (g, h)-root system A. Let II
be the corresponding set of simple roots. For o € A we let g, denote the corresponding root
space. Choose a nondegenerate invariant symmetric form (-,-) on g. Denote by «a;,w;, 6 the
simple roots, the fundamental weights and the highest root, respectively. Set 6 = ). n;ay.
Let {X)}xea be an orthonormal basis of g.

As noticed in the Introduction, we will focus on the case when g is different from si(2).
We recall the definition of the Yangian in this case.

Definition 2.1 ([Dx]). The Yangian Y'(g) is the unital associative C-algebra generated by
the set of elements {X, J(X) : X € g} subject to the defining relations

(2.1) XY -YX=[X,Y],, J(X,Y])=[J(X)Y],
J(eX +dY) = cJ(X)+dJ(Y),
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[J(X),[T(Y), Z] = [X,[J(YV), J(Z)] = D (X, Xa), [[Y X, [Z, X DX, X X0
RWIRZIN
for all X,Y,Z, W € g and ¢,d € C, where {z1,29,23} = izweeg Tr(1)Tr(2)Tr(3) for all
x1,x2,x3 € Y(g).

Remark 2.2. When g = sl(2) relation (2.3) follows from (2.1)) and (2.2), but a further
complicated relation is needed: see [D1], [GRW] Theorem 2.6], [GNW]| 3.2] for details.

2.2. Drinfeld’s Theorem on the minimal quantization of the adjoint representa-
tion. In the following we provide a uniform approach to Drinfeld’s description of the minimal
quantization of the adjoint representation of Y(g).

The following statement sums up the content of Theorems 7 and 8 from [D1].

Theorem 2.1 (Drinfeld). Let g be a simple Lie algebra, different from sl(2). LetV = g&C.
(a). There exists a unique constant § € C such that the natural action of g on V extends
to an action of Y(g) by setting

(2.4) J(@)(y, @) = (baz, (2,y)).
(b). If either n; =1 or n; = (0,0)/(q, «;), then the fundamental representation V,, of g
extends to a Y (g)-representation by letting J(x) act as 0.

Remark 2.3. For g = si(2) relation [2.4] holds for any 0.
To prove Theorem we need some preliminary work. Consider the maps Gs : /\2 g—
S3(g*) and Gs : A®g — S3(g*) defined by setting
(25)  GaAX AY)(a) = ([[X,a],a],[Y;a]), G3(X NY A Z)(a) = ([[X,d], [V, d]], [Z, a]),
Let Op(X1 A . AXp) = Y, (= 1)™HXG X AXI AL AXG A AX A X, be the usual

boundary operator for the Lie algebra homology. The next lemma has been suggested to us
by C. De Concini.

Lemma 2.2.

(1)
G3 = %Gg (¢] (93.
(2) The maps Ga,G3 are g-equivariant.
Proof. To prove (1) we start with the Jacobi identity:
[(X,Y],a],a] = [[X,a], Y], a] + [[X, [V, a]], a] = 2[[X, a], [V, a]] + [X,[[Y,a],a]] - [V, [[X, a], a]],
GQO@g(X/\Y/\Z) :6G3(X/\Y/\Z)
+ (X, [[Y al, o] = [V} [[X, al, a], [Z, a]) + ([Z, [[X, a], a]] = [X, [[Z, ], a]], [Y, a])
+ () [[2, a], al] = [Z,[[Y, ], a]], [X, a]).
Using the invariance of the form we have
Go0d3(X AY NZ)—6G5(X ANY A Z) = (Z,R(X,Y,a)),
where
R(X,Y,a) = —[[X, [V, ], . a] + [V, [X, a], al}, a] + [[X, ], ], [V, ]
+ o, [, [, [V, ] = [a, 0, [Y; [X, all]| - [[1Y; o], al, [X, a]]).
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Since
(X, [[Y.a],al], a] = [[X,al, [[Y, a],al] + [X, [[[Y. ], a], a]]
and
[V, [[X, al, ]}, a] = [[Y,a], [[X, a],a]] + [V, [[[X, a], a], a]],
we can rewrite R(X,Y,a) as
— [X,[[[Y, al, a], o] + [V, [[[X, a], a], a]] + [a, [a, [ X, [Y, a]]]] = [a, [a, [V, [X, a]]]]
= —[X,[[[Y; ], al, a]] + [V, [[[X, a], a], a]] + [a, [a, [[X, Y], a]]]].
Thus
Gaod3(X NY AZ)—6G3(X AY AZ) = (Z,R(X,Y,a))
= (Z,-[X,[[[Y,d],a],al] + [Y [[[X, a],al, a]] + [a, [a, [ X, Y], a]]]])
= _([[[Z’ X]va]’a]’ [Yv a]) - ([[[K Z]7a]’a]’ [Xv a]) - ([[[X’ Y]va]’a]’ [Z7 a])
== —GQ 083(X/\Y/\Z)
To prove (2) observe that

Go(0(z)(X AY)(a) = ([[z, X], a],a], [V, a) + (([[X; al, a], [[z, Y], ])
= ([z, [[X, a], a], [V, a]) + (([[X; ], ], [z, [Y; al])
+ (X, [z, dl], o], [Y; al) + ([[X, a], [, ]}, [Y; a]) + ([[X, a], @], [Y; [z, a]])
= ([[X, [z, a]l, al, [Y; a]) + ([[X, @], [z, a]], [V, a]) + ([[X; ], ], [, [, a]]).
Since 03 is g-equivariant, it follows from (1) that G3 is g-equivariant. O

t
Identify S3(g*) and S3(g) using the form (-,-). Set

(2.6) ¢; = ado Symmo G : /\g — End(g),

where Symm : S(g) — U(g) is the symmetrization map, ad is the extension to U(g) of the
adjoint representation ad : g — End(g). If X € A’g then, clearly, the map ¢;(X)(U,V) =
(6:(X)(U), V) is bilinear in U,V so ¢; defines a map g; : \'g — g* ® g*.

ES

Lemma 2.3. The maps g; are alternating, thus they define maps g; : N'g — N>g*.

Proof. By Lemma in order to prove the first statement, we need only to prove that, if
U,V € g, then
(2(XAY)(U), V) = —(g2(X ANY)(V),U).

Explicitly
(X AYYULV) =Y ST (X ap]s ap), [V agy]) ([P0, [aP), [aP), U], V) =
g p1,P2,P3
57T X ap, s ap), [Ya apy)) (U, [aP2®), [aPo@, [aPo), V]]]).
g p1,P2,P3

Set 7 = 0 o (13); then
SN (X ap, ] apy), [Ys apy)) ([P0, [aPe@ [aPo®) U], V) =

o Pp1,p2,P3
=30 D (X ap),ap,), [, apg)) ([aP70), [aP @), [P, V]]], U)
T P1,P2,P3
as required. ]
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Extend (-, -) to an invariant bilinear form on A%g (by determinants) and identify A2g* with
A?g using this form. In particular we can view the maps g; as maps from A’g to AZg.

Lemma 2.4. The map g2 is symmetric:
(2(XAY),UAV) = (X AY,g2(UNAV)).
Proof. By unwinding all the identifications we find
(X AY)UAV) =3 > (X ap,], ap), [Y, ap]) (fa?o0), [aPo) [aP), UL, V)

0 P1,P2,P3
- Z Z —1(2)’ —1(1)’ [apa—l(g)’X]]]]’Y) ([U7a’p1]7a’p2]7[‘/’ aPS])'
g P1,p2,p3
Set 7 = 01 0 (12); then
(92(X A Y S UN V Z Z apT (1) ap-r(z)ﬂ [apT(g) XH]L Y) ([U7 apl]a ap2]7 [V7 apg])

T P1,p2,P3

= (X AY, g2(UAT)).

O

Lemma 2.5. There is a unique costant k € C such that
(2.7) g3 =k 03.
Proof. Since g # sl(2), recall that by [Ko| we have orthogonal decompositions

2
(2'8) /\g = dg D UQ,

3
(2.9) /\g:Ker83®fmd:Ker83@d(U2),

where d is the Chevalley-FEilenberg differential for Lie algebra cohomology, Us is the subspace
of A% g generated by 2-tensors z A y with [z, y] = 0.

Moreover, again by [Ko|, Homg(g,Uz) = 0 and Uy is irreducible for g # si(n), while, if
g = sl(n), Uy decomposes as Uy = Vi @V with Vi, V5 inequivalent irreducibles with Vo = Vj*.

Since
2

¢2 = ado Symm o G : /\g — End(g)

is g-equivariant, by the invariance of the form, gs is also equivariant. It follows that go(Uz2) C
Us. If g # sl(n), then

(2.10) (92)v, = k'I for some k" € C.

Note that (Imd3)t = Kerd. Since H*(g) = 0, Kerd = dg. It follows that Im d;3 = Us.
Since g3 = % g2 © 03, formula (2.7)) is proven in this case by setting

(2.11) k=%,

If g = sl(n), by the same argument, we have that go(V;) C V;, hence there is k£ such that
(gg)‘vl = kly,. Let z € V3 and y = v; + vy € Uy with v; € V;. Then

(92(2),y) = (g2(x),v1 + v2) = (g2(2),v1) = (@, g2(v1)) = k(z,v1) = k(z,9).
Since the form is nondegenerate when restricted to Us, (2.7)) holds in this case too. O
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2.2.1. Proof of Theorem[2.1] By we must have
[z, J(1)](u, 0) = (0, (y, [z,u])) = (0, ([z, 9], u)) = J([z,y])(u,0)

and
[l’, J(y)](ov 1) = (5[LU, y]v 0) = J([xay])(ov 1),
which holds for all §. It is clear that both sides of act on (0,1) trivially.
Define f: g x g x g — End(g) by setting
((X), [J(Y), Z]] = [X, [J(Y), J(2)])(U, 0) = (f(X, Y, Z)(U),0).
Then

(f(X, Y, 2)(U), W)

S(([Y; 2, U)X, W) — (X, UN([Y, 2], W) = (Z, U)([X, Y], W)
+o((, UNX, 2], W) + (7, [X, UD(Y, W) = (Y, [X, U])(Z, W)

(X, YINZUANW) = (X, ZJAY, UANW) +([Y, Z] A X, U ANW))
=0(03( X ANY NZ),UANW).
We let the R.H.S. of act on (U,0):

Z ([Xv X)\]7 HYv Xu]> [Za XVH){XMXWXV}(U> O)
RWIRZIN

= (1) D> (XX (Y. X0 ) [Z, X3 ) X, 1)0 Xy [ Xy UL 0)

0  P1,P2,P3

= (5:03(X ANY A Z)(U),0),

so we must have §(03(X AY A Z),UAW) = (5793(X AY A Z),U AW). Thus, by Lemma
relation (2.3) holds if and only if
(2.12) 5= 4.

This proves claim (a) of the theorem. To prove claim (b), set

(2.13) gg = pjoSymmoGj : /\g = gl(Vy,),

where p; : g — gl(V,,,) is the j-th fundamental representation of g. Then, as shown in the
next table, Uz does not appear in V,,, ® ij_, since its highest weight 20 — & is not less than
or equal than wj — wo(wj) (here & is a simple root not orthogonal to § and wy is the longest
element in the Weyl group). In the exceptional cases we display the coordinates w.r.t. the
choice of the simple roots from Bourbaki.

Type of g, j 20 — & w; — wo(wj)
Ap, 1 <5< [n+1]/2| €1 + € — 2€p41,261 — €y — €nt1 Z%:l(eh — €nto-h)

B, j=1 2¢1 + €9 + €3 2€1
By, j=n 2¢1 + e+ €3 Z?:l €4

Cn,1<ji<n 2€1 + € Zgzl €
D,,j=1 2¢1 + €3 + €3 2¢1

Dy, j=n—-1(n) 2¢1 + €2t €3 Sl

Es, j =1 (6) (2,3,4,6,4,2) (2,2.3,4,3,2)
Er, =7 (3,4,6,8,6,4,2) (2,3,4,6,5,4,3)
Fy,j=4 (3,6,8,4) (1,2,3,2)
Go,j=1 (6,3) (2,1)
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3. MINIMAL %Z—GRADING OF A SIMPLE LIE ALGEBRA

Choose root vectors x1g € gig so that (zg|z_g) = % Set © = [xg,x_g|. The eigenspace
decomposition of ad x defines the minimal %Z—grading:

(3.1) g=0-109_1/2® 00 D g1/2 D 91,
where g+1 = Cx4gy. Furthermore, one has
(3:2) go=g'®Cs, ¢ ={acgl/(alx)=0}

Note that g’ is the centralizer of the triple {z_g,z, z9}. We can choose h? = {h € b | (h|z) =
0} as a Cartan subalgebra of g%, so that h = h? @ Cz. Set, for u,v € 9-1/2,

(u,v) = (zg][u,v])
and note that (-,-) is a giinvariant symplectic form on g_, /2-
We will use the following terminology.

Definition 3.1. We say that an ideal in g is irreducible if it is simple or 1-dimensional. We
call such an ideal a component of g'.

Write ;
¢=Pq
i=1

with gf irreducible. Recall that r = 1,2 or 3. For a simple Lie algebra a we let h! to be its
dual Coxeter number and, if a is abelian, we set hy = 0. Set hY = hy and h; = h:u- Let v;

(3

be the ratio of the normalized invariant form of g restricted to gE and the normalized form

on gE.. Set finally B;/ = h)/v;. For reader’s convenience, we display the relevant data in the
following Table (although we proceed uniformly, so we do not need to use them).

g g’ g91/2 hY 7_1;/
sl(3) C CoCr 3 0
sl(n),n >4 gl(n —2) C 2 (C"®*| n |0,n—2
so(n),n >6,n #8| sl(2) ® so(n —4) CleC? [n-2[2,n—6
so(8) sl2) @sl(2)@sl(2) | CPeC?xC? 6 2,2,2
sp(2n),n > 2 sp(2n — 2) Ccn—2 n+1 n
Gs sl(2) S3C? 4 4/3
F, sp(6) Ao CO 9 4
FEs s1(6) N C6 12 6
By s0(12) Spingo 18 10
Ey by dim = 56 30 18

Consider now the involution o, = e2mV=lad(@)  Gipce ai(z) > 0 for all simple roots «;
and 0(x) = 1, it follows that the set {1 — 6(x)} U {ei(z) | o; simple root} is the set of Kac
parameters for the automorphism o,. In particular, since o, is an involution, either there is
a unique simple root oy, such that «;,(z) # 0 or there are exactly two simple roots a,, o,
such that a;;(x) # 0. Let s be the number of simple roots not orthogonal to 6. If s = 1 then

o (z) = & and n;, = 2. If s = 2, then a;,(z) = ay, (z) = 3, Ny, = 0y, = L.
Write g = € @ p for the eigenspace decomposition of o,. We observe that
t = span(xg, v, z_9) ® gh ~ sl(2) x Qha P =01/2D9-1/2
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One can choose the set of positive roots for € so that the corresponding set of simple roots is
{-0}U{aecll|a(x)=0} ={-0U{acIl| («f) =0}.

Consider the case s = 1. Then g7 is semisimple and the number of simple ideals of g
equals the number of roots attached to «;,. Moreover p is irreducible and its highest weight
as a t-module is —a;,. Since a;,(0") = 1, we see that p = Viyz)(w1) ® Vs(— (i) jp2)- (Here
Va(A) denotes the irreducible finite dimensional a-module of highest weight \). If U is a
ad(x)-stable space we let Uy denote the eigenspace corresponding to the eigenvalue k. Since
Va2)(w1) = Vy2)(wi)1/2 © Vi2)(w1)—1/2 We see that, as gi-module,

g12=08-1/2%= Vgh(—(az‘o)\hh)-
In particular g/, are irreducible as gf-modules.

If s =2 we have gg = Cw with
(3.3) @ =w; — Wy
Moreover p = Vi(—a;,) ® Ve(—ai, ). Arguing as above we obtain that

9172 = 0172 2 Var(—(cig) p) © Ve (— (i, ) ge)-
Since w acts on Vi (—(a;)je) as —(—1)1 we see that g_; is the sum of two inequivalent

gf-modules.
As shown in [CMPP], Proposition 4.8], Ve(—ay,)* =~ Vi(—a;, ), hence,

Vi (= (@ig) g2)" == Vaa (= (i ) )

We now turn to the study of /\29_1/2 as a g'-module. Let d,d; be coboundary operators
for the Lie algebra cohomology of g, £ respectively and set d; = d — d¢. By [P, Prop. 4.3],
A’p =d8® V', where

(3.4) V' = span(u Av | u,v € p, [u,v] =0).
We observe that /\29_1/2 = (A%p)_1, so
/\29_1/2 = dl (E)fl D Vil
As £ = span(zg,z,r_g) @ g°, we see that di(£)_; = Cdy(z_g) ~ Vg (0). Set I = {a € 11 |
(@ 4;) # 0} U {0}, W) = {0, — 5, (@) | a € IL;}, and
W if s =1,
W =S Wiuw, if s =2 and (aj,, ;) # 0,
WEUWLU{—ai, —a; b if s =2 and (a4, a4, ) = 0.

Recall from [CMP] that
V' = @&rxew Ve(N)
and that, if X = —a;; — Sai, (cr), then the highest weight vector is Toa;, NTs, (a)- Set
ij

explicitly {A1,..., A} ={A € W' | A(z) = —1}, so that, the (—1)-eigenspace of ad(z) is
P
V= @Vgu()\iu,h)-
i=1

Consider the map ® : A\’ g_1/2 — S2((g")*) defined by
(3.5) O(u A v)(a) = ([u,al, [v, a]).
It is easy to check that the map ® is gi-equivariant.
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Proposition 3.1. Let P : \? g_1/2 = S2((g")*) be a gi-equivariant map. Then there are
constants f1,..., fp such that

By, on = fi P, o0
for1<i<p.
Proof. By [R] Proposition 2.1], S?(g") decomposes with multiplicity one. Since the same
happens to V' (cf. (3.4)), it suffices to prove that if Py, (n) is nonzero then @y, (y,) is
g g
nonzero.

Assume that g’ is semisimple. In this case we prove that Ker® = {0}. It is enough to
check that CIJ(a;_aij NT_g, (o)) # 0 for all a € II; such that (a;; + Sai, (a))(x) = 1. Since
i

a;;(z) = 1/2 and a(x) = 0, we see that Sai, (@) = a+ a;;. It follows that
(36) (I)(li—oéij A $fs%j (a))(a) = <[x_06ij ’ a]’ [x_aij —as CLD

Assume first that there is a unique simple root a;, not orthogonal to . If «;, is a short
root then T_9420;, € g“. Since —0 + «;, — a, —;, + « are not roots, we obtain, taking
a = $79+2aio + Ta,

<[x_0¢i0 ) a]? [x_aio_a? a]> = <[$—Oéio7x*9+20fi0]7 [x—aio—av xOéD # 0.

We can therefore assume that o, is a long root. Assume « short. The fact that «;, is long
implies that (o|a;,) = —1, so

0 — a;y — ala) = (—a;, — a]a) =1 — (ala) > 0.
Since 0 — o, = 0 — o, — o+« is a root, it follows that 6 — a;, — 2c is a positive root. Since
(0 — a;y —2a|agy) =1—-24+2=1,
0 — 20, — 2c is a positive root as well. We choose a = z_, + T 942015, 42005 SO
<[x—ai0 ,al, [x—aio—a) al) = <[x_06i0’x_06]’ [x_aio_OH 55—9—4—2(1,-04—204])
+ <[$—a¢0 » U—04-20; +2a); [m—aio —a» T—al)

= <[l'*ai0 5 l',a], [{L‘,aio,a, $—9+2ai0+2a]>

+

<x—ai07 [x—0+2ai0 +2a5 [x—aio—ow T—a]])
= 2<[90—ai0 ,T—al, [l’—aio —o T—0+20 +2a])
+ <:E*0li07 [337040 —as [$—9+20¢¢0+2a7 T-al]).
If —0 + 20, + « is a root, then
(=0 4204, + o|ajy) = —1+4—-1=2,

contradicting the fact that «;, is long. It follows that [x,nggaiOJrga, T_q] =0, hence

<[x—0£i0 ) a]a [x_aio_()” a]> = 2<[x—ai0 ) x—a]a [x—ocio —Q x79+2a¢0+2a]> 7é 0.

We can therefore assume that « is long. Let 3 be the component of the Dynkin diagram
of g containing «.. Let 6y, be its highest root. If v = 6y;, then g? is not simple, for, otherwise,
g ~ sl(3). Let X' be the Dynkin diagram of another component of g%. Then o + Qi + Oy is
a positive root as well as § — a — a;, — 0. Since «;, is a long root, (fsr|a;,) = —1, hence

(9—a—ai0—92/|ai0):1+1—2+1:1,

so that 6 — a — 2a;, — Oy is a positive root. We choose a = T_gy, + Togtat2a,)+0s -
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Arguing as above, we conclude that

<[x*a¢0 , (L], [l‘faio —oy a]> = 2<[337a¢0 s 33—92/]7 [l‘faio —oy x—9+a+2ai0 +92/]> 7é 0.

We can therefore assume both « and «;, long roots and a # fx. Since (q;,|a) < 0, we
have that «;, + 6y is a root. Since (0|a;, + 0x) = (8|as,) > 0, we see that 0 — a;, — 0% is a
positive root.

Since v, is long, by Lemma 5.7 of [CMP], a has coefficient 1 in #y,. We now prove that

(3.7) (fs,a) = 0.
Indeed, if (3.7)) holds, (6 — aj, — s, @) = 150 6 — @, —a — O is a root. Since (0 —ay; —Ox —

a,a5) =1—-2+1+1=1> 0, we obtain that § — 2a;, — sy, — v is a positive root. Choosing
a4 = T_g; + T—6+a+20;,+05 and arguing as above, we conclude that

<[‘T_0¢i0 ,al, [m—oéz‘o—OM al) = 2<[$—a¢0’x—92]7 [33—061‘0—0“ x—9+a+2aio+92]> # 0.

To prove ({3.7)) we need to use definitions and results from [CMPP]. If (3.7)) does not hold,
then o ¢ A(X) (see [CMPP. Definition 4.1] for the definition of A(X)). Then A(X) =11\ X
and by [CMPP| Proposition 4.2], § — 6y, is supported outside 3 so

0 = Z nyn + 20, + Os.
N n#Ea,

This contradicts the fact that § — o — o, is a root since o # 0y, and the coefficient of a in
Os is 1.

We are left with the case when g? ha a 1-dimensional center generated by @ (cf. (3.3))). We
can assume that (a;,|a;, ) = 0. If this is not the case, then g = sl(3) and V' = {0}. Suppose o
is a simple roots not orthogonal to a,. Then (—2a;,—0)(w) = —2. In particular Vi ((—20a, —
o)jps) does not occur in S2(g"). Tt follows that Plvgh((_2ai0_o-)|hh) = (I)\Vgh((—mio—”)mh) =
is

Note that the highest weight vector of It remains only to check that ¢|Vn((*aio*ai1)‘hh))
g

nonzero. Vg ((—ai, — @iy)) 18 ¥—a,) A T—q, . We need to find a such that
740 11
<|:x7a7,0 Y a]? I::L'*azl 9y a]> # O'

Let ¥ be a component of gh attached to a;,, so that oy, + 0x,0 — o, — Ox are both roots.
Since (fx|as,) < 0, hence (6 — o, — Ox|a;,) > 0 and in turn 6 — o, — Oy, — «;, is a positive
root or zero. Choosing a = x_g,, + T4,y +0s 4, in the first case and a = x_g,, + hg, in
the second we are done. O]

4. CALCULATION OF §
We note that for computing § it is enough to compute

(41) (QQ(G/\b),C/\d), a,b,c,deg,

where [a,b] = [¢,d] =0 and (a Ab,c A d) # 0.
Indeed, recall from (2.10) that there is a constant &’ such that g2(a A b) = k'a Ab. By
(2.11)) and (2.12]) we obtain

_w _ (g2laAbd),cnd)
(4.2) =T Ranbend

We first use (4.2)) to determine the dependence of § from the choice of the form (-,-). Let us
write § as 6(+) to emphasize this dependence.
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Lemma 4.1. .
55('7') — ?5(7)

Proof. Let us write gy as gg") to emphasize the dependence on (-,-). Then,

PN anb),end) = S s(llayan ] w], b )s(E2 222 292 ], d)

t1,t2,t3,0

hence 1
(g2 (anb),cnd) = (g5 (@nb).end).
It follows that

590 _ 2 Nanb),end) 1 (g5 @nb),end) 1 (),

72s2(a Ab,c A d) s3 72(aNb,cNd) s3
U

Lemma allows us to choose as invariant form the normalized one, that we denote by
(+]-)- Recall that the normalized invariant form is defined by setting (0|¢) = 2. From now on
by & we mean 61,

Choose a simple root «;, such that (6|a;,) # 0 (o, is unique up to type A). Set v = 0 —ay,,.
Choose root vectors e;,, fiy, in gia;, such that (e;|fi,) = (aio?aio) and set z, = [xg, fil,
P )

We compute ¢ by specializing to the case where (-,-) = (:|-)anda =z_p,b=2_,c =
zg,d = x so that

o (e hry)leg hr)  (galg Aaslay Ay)
T2(x_g N x_y|T9 N 2H) 36(x—vy|zy) '

(4.3)

We choose a basis {u;} of g_1/o and let {u'} be its dual basis (i. e. (u;,u?) = §;;). We
also choose an orthonormal basis {z;} of g%. Then, as basis of g, we can choose

(4.4) {zo} U{[zp,ui]} U{x;} U{z} U{u;} U{x_p}.

The corresponding dual basis (w.r.t. (:-)) is

(4.5) {2z_¢} U {ul} U{x;} U {2z} U{—[zs, u’]} U{2zg}.

We choose an orthonormal basis {x] } for each component g% so that we can set {z;} = U {al}.

Let Cys = Y (2:)? be the Casimir element of g% and Cy, the Casimir element of go. Since

C Cyo — 222 by Lemma 5.1 of [KW] we have that

gt =

(4.6) > i, [, 0]) = (B -

Recall also that it follows from Lemma 5.1 of [KW] that
(4.7) dimg_j/o = dimgyp = 2hY — 4.

).

N

We extend (-,-) on A%g_, /2 by determinants:
(uANv,wA z) = (u,w)(v, z) — (u, ) (v, w).

We collect various formulas in the following lemma.
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Lemma 4.2. Ifu,v,w,z € g_1/3 and a € gi, then

(4.8) > My ol o, zp]) = brs () [0, al,

p
(4'9) Z[xfw [’U, [a7 37}3]]] = _5TS(E1Y)[U7 a]?
(4.10) > lzp, [a, [, )]) = (hY = 3/2 = h))[v,al,
(4.11) [[zo, u], [xg,v]] = —(u,v)xy,
(4.12) [u,v] = 2(u, v)x_g,
(4.13) ([zo, u],v] = Z(u, [v, zi]))zi + (u,v)z,
(4'14) [v> [x97uH = Z([v>$i]7u>xi + (v,u)x,

)

(4.15) Z[u,xl] A v, x;] = _<u,2v) ZUT AU —tuAv,

Z([U,xi], [vaj]><[wa i, [zvij - Z<[w7xi]v [U7xj]><[u7xi]7 [zvij
Y] V]
(4.16) = (hY — 1){u,w){v,2) + 3 (u Aw,v A 2),

Proof. If r # s, then (4.8)) and (4.9) are obvious. If » = s then, on one hand,
> ey, (oo, 2glll = Y lg, [v, (o, apllef)af)] = = Dl o, (aplla, 2f)af]] =

p D.J D:J

= =Y llas a5, vy 50 = = S llef ol a3

On the other hand

> My, vl la, 2] = 2(h)) v, a] = = ([, 0], [a, 23]
hence
> My, 0), [a, 7)) = ()[w,al, > (2, [0, [a, 2]l = =(7))[v, a)
and

Y lzpfa, [o,a]]] = Z[%‘p,[[a o], 2p]] +Z wp, [v, [a, p]]] = (B = 3/2 = 1)) [v, a].

P

This proves (4.8), ([4.9), and (4.10). Formulas (4.11)), (4.12)), (4.13), (4.14)) are straightforward.
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We now prove (4.15)). Note that g_12 Ag_1/2 =C)_;u; A u' @ Vo with Vo = span(u A v |
[u,v] = 0). If u,v € g_y /2, then the corresponding decomposition of u A v is

UNY = ——— d1mg1/2 Zuz/\u +s, se V.
If w,z € g_y/o then
Z[w, Tp] A [z, 2] = %(Cgu(w Nz) = Cpw Az —wACypz).
Assume now [w,z] = 0 and set Cy9) = 2(2* 4 Tgz_g + £_gzg) to be the Casimir element
of span(xg, z,2_g) ~ s1(2). By [P], (Cya) + Cya)(w A 2) = 21" (w A 2). Since
Cae)(w A z) = Cgoyw Az +w A Cy)z + 4aw A 2z,

Capyw = 3w, and dzw A 2z = w A z, we obtain Caey(w A z) = 4w A z so that Cyz (w A 2) =
(2hY — 4)w A z. Using (4.6)), the final outcome is that

Z[w,xn] Az, xn] = %(th —4=2(hY =3/2))(wA z) = —%(w A z),

n

By (4.7), (4.6), and the above formula applied to s, we find

u,v) 2hY — 3 U, v ,
Zz:[u,xz] A v, x;] = S 5 >2hv — ZT:UTAUT — T(uAv— 22\/ _>4zi:ui Au')
hence (4.15)).
Finally, we prove (4.16):

Z([u, i) A [w, zil, v A z) = — 5 Z((ur,fu)@f,z} — (") (U, 2)) — SuAw, v A z)

[ r

—(u, w)(v, 2) — ${(u A w,v A z).

It follows that

Z<[u :L'Z] [7} x]])<[w azl] [Z $]]> —Z<[w xz] [U a:ﬂ)([u,xl],[z,x]])
:—Z (u, w) vx] Z.TJ QZU/\UJ Um] [vajD

= (hY —3/2){u, w){v, 2) 22 (uAw, v, ;] Az, z5])

= (B = 1) (u,w){v,z) + HuAw,vAz),
which is precisely . O
We choose the basis {a;} for g to be the basis displayed in (4.4). Then the dual basis {a’}
is the basis given in . We start our computation of & by computing
(4.17) Go(w_gN1—y) =Y ([x_p,ai, aj]|[x—s, ax])a’a’ a".
0,4,k
We have to compute expressions of type ([[x_g,b1],b2]|[x—~,b3]) Wwith b; € gg4,. Such an

expression can be non-zero only if d3 —1/2 =1 —d; —dy i. e. dy +ds + ds = 3/2. The
possibilities are



14 VICTOR G. KAC, PIERLUIGI MOSENEDER FRAJRIA, PAOLO PAPI

di_ | dy | dy || di|dy|dyl dr|ds|ds
a2 1 [ 1 (fo 121 (o0 11/2
121 0 | 1 |l1/2]1/2]1/2]|1/2] 1 | 0
1 [-1/2] 1 1] 0 [1/2] 1 |1/2] 0
1|1 |-1/2

For each of the cases above let S(dy, da, d3) be the corresponding summand in the expression
of Go(x_g N x_,) given in (4.17)). Then direct computations yield

S(=1/2,1,1) = 42([[95,9, uil, wol|[w—y, wo]) (= [wg, u'])a? g = 0,

S5(0,1/2,1) = 22<uj,x_ﬂ,>ujxx_g = 2xx_,T_9,
J

S5(0,1,1/2) = 22<u]~,az_y>uj:cx9 =2z _T_9,
J

S(1/2,0,1) = Z[mz, T_y|ziz_g + x_fxT_g,

5(1/27 1/27 1/2) = _% Z[uj,xs]uj[azs,mfv] - % Zujujmf’yv
J,s J

S(1/2,1,0) = Z[I‘i,ﬂ?,v]fml‘_g — XT_~T_g,
S(1,-1/2,1) = —2[xg,x_,]2% 5 = —e;y2% 4,
S5(1,0,1/2) =0,
S(1,1/2,0) = Z[xi,x_w]xix,g — TT_T_g,
S(1,1,-1/2) = 4Z<x,7,uj>[xg,uj]x2_9 = —A[zg,z_|2% 5 = —2€;y7% .
J

Summing up we find

Go(x_g Nx_y) =3z2_2_9+ 3 Z[wz, T |zir_g — ei,riy

)

— % Z[uj, zg]u! [z, r_y| — % Z ujuj:c_v.
Jss J

Note that 3 uju! ([zg,u]) = (u,u) =0, so
Ga(x_g Nx_y) =3x0_T_9 + 3 Z[xz, T ]ziw_g — 3ejon’y — 1 Z[uj, x| [z, w0
) 7,7

We now compute ga(x_g A x_)|xg A ) = ((Symm(Ga(xz_g N x_))(xg)|z~). We start by

computing >, ((Symm([u;, zr|w’ [z, _4])(2zg)|z). For this we note that, if u,v,w € g_1/2,

(Tu, [v, [w, ] |zy) = (v, [zo, w]]|lu, 24]) = (v, [w, @il (u, [fig, @i]) + 3 (0, w) (u, fio),

i
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80, letting v, denote the eigenvalue of Cgu on g_i/2,

> (g @il [ ([, 2], 2]l

7‘7]’

= Z(uj, [z, x—'y],l’i]><[u]7$’r‘ [fio» Til)

27]77-

SURPRIZING COINCIDENCE

22 xra u]7aj1"]’fi0>

=" (e [figs @il [ 2 QZ fvr’fzo [ 7))

7,7

:Z([:ﬂi,[xi,[fio,xzﬂ »y QZ Ly, -737‘ flO ]>

=D (W =3/2=h)) Y (lfi, 23], [27,25]) — 5(h" = 3/2)(fip, x—)

S s

=D (Y =3/2= h))ys{fios w—y) = 5(hY = 3/2)(fig, 7

= Z(h —-2- )’Ys<fzoa > = Z(hv

S S

=2 = b )vs(zy |z —ry).

Similarly
;([[umr], [lzr, 2], [, zoll|z4) = ZS:(hV — 1= h)ys(@q o),
Ti([uj, ([uj, @], [[wr, 2], wolll|24) = g(hv = 2= h)ys(@ o),
é([uj, ([, 2] [[uj, 2], @o]]]|24) = Z;(hv — 1= hi)vs(aylo—s).
Finally

> (lwr ], [, [Tug, 2], zolllley) + Y ([ 2], [[ug, 20, [, zo]]] )

J .J

_Z u]?xr Ly <[x7’7x—7 fZO

1,5,1

[Bz 2 Z u] uj xr x—v]afio)

+ Z([uj’ xr]v [uj’ xi]><[xﬁx—’y]7 [flovxlb + % unj?x?“]a u]><[x7’>$—’v]v fi0>
7T

l7]7r

=2 Z<[uj’$7’]> [uj7xi]><[x7'7x*7]a [fioa 33‘1]>

Z7J7T

Recall from (4.16) that

> (@il o, 2w, @il [z, 25]) — Y (lw, @i, [, 25])([u, 2], 2, 25])

i,j 2

= (hY — 1){u,w) (v, z) + 3 (u Aw,v A 2).

15
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SO

D (llr, ey ] 1, g, 2, zolllley) + D (e, 2o, [[ug, 0], [, o] )

T, r,J
= 22<[“j’$7“]7 [ujvxi]><[xrvl'*’y]a [fios 2il)
,3,7
=—-2(hY —1) Z(uj, w, fi)) — %Z wj ATy ! A fig)
J J

+ ZZ<[x—'Y’ ‘/ET]v [ujv xi]><[xrauj]v [fio’xib

04,7

= —2(h" = 1){z_, fio) ZZuJ, Wa—y, fiol) + 5> (uj, fio)w—s,u!)
J

+2) [z, 3], [, [ m[fz‘oa%‘]m

@7,

= (2(h" = 1) + 5(dim gy o — 1)) (4 2—1) + 22 =3/2=h{) Y {lw—. 23], [figs 7))

T

=2(hY — 1)+ 1(2nY — 4 — 1)) (2, |2_,) + 22 —3/2 = hY)ys(zs |z )

= QZ(hV — 7 )ys(wylz—s).

s

The final outcome is that

Z((Symm([uj,xr]uj[xr, Ty])(z0)|zy) = GZULV — 1= )vs(zqr—sy).

j’/r
The other terms are easier:
(Symm(wz__9) (o)) = —3/4(w,|z_).

(Symm(einay)(ze)|a) = 3(z4|2—s),

Z(Symm([xj,x_y]x‘jx,g)(w(;)\xﬁ = —3/2(h" - 3/2)(wy|x—s).
J

Summing up

(g2(zg A )|z_g NT_s) 32 (WY 4+ 1/2 — hY)ys — 45/4) (|7 ).

Using (4.3)) we obtain the following result

Proposition 4.3.

123, (Y +1/2 — hY)vs + 45

4.1 = _
(4.18) 0 144
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Remark 4.1. Relation (4.18) easily gives Drinfeld’s formulas for ¢: if x denotes the Killing
form of g, then

—32% if g = si(n),
n—4 :
" ~16(n_2)3 if g = so(n),
(4.19) =4 Ml o
64(n+1)3 1 g - Sp(2n)7

—m if g is of exceptional type.

Remark 4.2. It is possible to give an alternative formula for ¢ without using the minimal
gradation. We already observed that we are reduced to evaluate . We’ll do it by choosing
a=c=u,b=d=wvwithu,v €bh. Let {z,} be aset of root vectors with [z, 23] = Ny gTa+s
fora,8€ A,a# —fp and Ny g = —N_, 3. Then

(420)  (g(uAv)urv)=6 > a(u)a+B)(v)(a()b(u) - a(w)bwv)N2
aEAT BEA

The computation of (4.19)) starting from (4.20)) is possible but quite less handy than using
@139).

5. MINIMAL W-ALGEBRAS

It is known by [KW] that for k # —h" there is a vertex algebra W strongly and freely

generated by fields L, J” with v € gf, G* with u € g_1/2 with the following A-brackets: L
k di

FTRY
weight A =1, GY are primary of conformal weight A = % and

v Jw v,w h\/_ﬁ:/
(1) [J2J¥] = JWul 4 X535 (k + “—~+) (v|w) for v € gE, w e gg-;

(2) [JYG"] = Gl for u e g_1/2,V € o’
(3) [GYGY] = Alu,v, k) + AB(u,v, k) + % C(u, v, k) for u,v € g_ 5 with C(u,v,k) € C,
and conformal weights of A(B(u,v,k)) =1 and A(A(u,v,k)) = 2.

To simplify notation, we will not record the dependence on k in the functions A, B,C.
We choose the basis {z;} to be the union of orthonormal bases of gE. Let T = L_q be the
translation operator of W.

Ifp=a®be g ®g" write : p :=: J%J® ;. We extend : - : linearly to obtain a map
.- : from g ® g' to W. Consider S?(g") = {a®b+b®a | a,b € g°} C g" ® g°. Since
D JUJY i=: JUJ% : +TJv and since the elements J%, G%, L strongly and freely generate
W, we see that there exist maps

is a Virasoro element with central charge — 6k + hY —4, J* are primary of conformal

P:g 1pxXg_ 10— Sz(gh)a K, H:g_ 1/3%X8_12— gha Q:9-12%X9-12—>C
such that A(u,v) can be uniquely written as
A(u,v) =: P(u,v) : +TJE®Y) 4+ Q(u,v)L.
and
B(u,v) = JHW),

By skewsymmetry [GYG"] = —[G" ,_,;G"] so

(1) Cu,v) = =C(v, u);

(2) H(u,v) = H(v,u);

(3) P(u,v) = =P(v,u), K(u,v) = —K(v,u) + H(v,u), Q(u,v) = —Q(v,u),
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hence C(-,-) and Q(-,-) are symplectic forms on g_; 5, and

2
P /\971/2 — 52(9u)a H: 52(971/2) — gt
By applying the axioms of vertex algebra, (§ 1.5 of [DK]) we find for a € g, v,w € g-1/2:
C([a,v],w) = =C(v, [a,w]).

Since gy /2, as a g?-module, is either irreducible or a sum U @ U* with U irreducible and U

inequivalent to U*, we see that, up to a constant, there is a unique symplectic gi-invariant
nondegenerate bilinear form on g_; /5. Since

<’LL, U> = (l’@‘ [u7 U])

is such a form, we have that

(5.1) C() =T(k)(, )
for some constant I'(k).
For b € g, let bE denote the orthogonal projection of b onto gE». Write

Pv,w) = Z k3 (v, w) (] @ a3)

Z‘?j77‘?'s
. r,s _ S,
with ki’j = k:j’i .

5.1. Jacobi identities between two G and one J.
By Jacobi identity [J{[G}G"]] — [G,[J3G"]] = [[J{G"]x1,G"]. Explicitly

[J§: P(o,w) 2] + [JETJE@OW] 4 AQ(v, w)J® 4 p[JgJH )]
2
- P(Ua [(I, ’LU]) : _T']K(w[a;w}) - Q(Uv [avw])L - MJH(U7[a7wD - %C(Ua [(I, w])
=: P([a,v],w) : +TJ5E@9) 4 Q([a, 0], w)L + (A + ) JH(@d0) - CH (g 4], ap).

Using Wick formula ((1.37) [DK]) and sesquilinearity we compute explicitly [J{ : P(v, w) :]
and [Jf\‘TJK(“’w)]. Then, equating the coefficients in A, u, we find

Proposition 5.1.

(5.2)  H(v,w) = Z ) ol

2k + hY — hy
(5.3) K(v,w) = lH(v w).
(64)  Qla,v],w) = =Q(v, [a, w]).
(5.5) P(la,v],w) = —P(v, [a,w]) + ad(a) P (v, w).
(5.6)  H([a,v],w) = Q(v,w)a+ [a, K(v,w)]
+ Z k7 (v, w) )(2k 4+ hY — b)) (ala])zs + Z k;f(v,w)[[a,xﬂ,mj].
(5.7) Z k5 (v, w) (2K + RY —h))+ Q(v, w)(];;iuzvg — 6k +hY —4) = 30 (k) (v, w).

In particular, Q is an invariant symplectic form on g_y /5, hence

(5.8) Q(u,v) = D(k){u,v).
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5.2. Jacobi identities between three G.
We need auxiliary formulas. By Wick formula [DKJ (1.37)]
[GY(: JYT? 2)] =: Gl gz . . gyl . L pGllwyl 2]
= G[uvy} JZ S G[uvz} Jy . +TG[y7[uvz” + )\G[[u’y}’z]’
moreover, by sesquilinearity,
[GYTJY) = T[GYJY + A[GYJ?Y) = TG + Gl

By Jacobi identity [GY[G,G"]] — [GL[GXGY]| = [[GYG]x+,G"]. We compute each term.

[GLG¥]0 1, G) = [(: Plu,v) : +3TTHE) 4 Q(u, v) L+ AT 1 2 e, 0))y4 ,G*) =
—[G"_ i Pu,v) ] = 3+ ) GO 4 Q(u, 0) (TG + $(A+ 1) G™) + AGH (w0)]

— —[G¥ s Plu,0) 4 SO = )G L Qu,0) (TG + 3(A+ p)G™)

[GYIGEGY]]) = [G4(: P(v,w) : +3TTTO 4 Q(u,w) L + pT T 4 B (v, w))]
: P(v,w) ]+ %TG[“’H(”””)] + %)\G[U’H(”’w)}
+1Q(v, w)TG* + 3Q(v, w)AG® + pGI-H W)
SO
[GLIGRGT]] =[G« P(u,w) ]
LG | LG | Lo w) TG + 3Q(u, w)uG? + AGIH 0],
Equating the coefficients of A, u and the constant term we find

Proposition 5.2.

(59) IG[H(u v),w] + SQ(’LL ’U Gw + Z krs U U)G[[wx 1%

7J7T s

— %G[u Hww)] 4 2Q(v, w)G" + Z kS (w L w)Gweilas] gl H(uww))
(5.10) — 1G] 1 30 (u,v)GY + ik](u v)Glweils]

= GluHEw)] _ LGl Huw)] gé(u WG = S KD () GIE)
(5.11)  Qu,v)TG” +2> ki j(u,v) TGl = o

lpGeHwl ;;(v,w)TG“ — > (v, w) TG

— irg el — 1Q(u, w) TG iz k7S (u, w) TG0 73]

]’I’S
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(5.12) = > k() s G g
,],7"8
= Z k;ﬂj(v,w) : Gl g Z k: G[” il g .
i,j,T,S ’]rs

Recall from Sectionthat 9-1/2 Ag,l/g = Ca®V’, where V' is the g module generated by
bivectors uAv with [u, v] = 0, and that V'’ decomposes with multiplicity one and no component
is trivial. By Propositionﬂ P\V On) = fulk )@‘V (A for some costant f;(k) € C. Thus, if

UNvE vau()\h),
kiy (u,v) = (k) ({([w, 7], [0, 251]) + ([[w, 23], [0, 27]])).
w] =0, becomes
(k)

Hllaohw) =la > o 5 7

+ Z k7 (v, w) )(2k 4+ hY — b)) (ala})xs + Z k7 (v, w)|[a, 27], x5).

[[ZL‘Q,U], w]E]

7
7]’T5 i,j,T‘,S
Now compute
(H ([27, ], )I:vs»)
= (2}, $H(v,w)l|z5) + > ko (v,w)(2k + B — b)) (@] |2y ) (x5, 25)
nmr S
+ > k) (2], 2 ) 2] |2)

nmr S

= (2], 3 H (v, w)]|a) + k7 (v, w) 2k + hY = B)) + 85 D Kyt (v, w) ([, 2], ) |25).

Since [a, H(v,w)] = H([a,v],w) + H(v, [a,w]) we can rewrite the above relations as
(H (o, o), w)la) — (H(v, 2], w]) )
= 2 (k) ({[[v, 2], [w, 25]]) + ([[v, 23], [w, 27]])) (2k + B — b))
+0rs Y 2fu(k) (v, 2p], [w, 23,]) + ([0, a5], [w, 2 D) ([lef, @], 23] |25)-

More precisely

L(k) R
~ g v = a0l B )+ (23], o 210)
(5.13) = SR (Lo, 7], Lo, 23]0) + (Lo 23], o, 1) (2K + Y — )

+0rs Y fu(B)([s ah), [w, 23,]) + (v, 23], [w, 25])) ([[2F, 23], ] af).

If there are at least two simple components in g?, we have

B r(k)
(5.14) Ik) = = R TR )k T A Yy




YANGIANS VS MINIMAL W-ALGEBRAS: A SURPRIZING COINCIDENCE 21

which is in particular independent from h. So we are reduced to determine fy,(k) when g°
is simple or one-dimensional. Recall from the explicit description of the decomposition of
g_1/2 A 8—1/2 given in Section 3} that in this case V' is simple. We can therefore drop the
superscript from 7, k:‘? and we denote fj, simply by f. Choosing in v,w, 1, j such that
([v, 5], [w, z;]) + ([v, x]] [w, x;]) # 0 we can write

_ (k)
fh) = (&k +n)(2k 4+ hY — hY)

with & # 0. In particular

= &k +n)([v, @il [w, 25]) + ([v, 2], [w, zil))
= (v, @], [w, z;]) + (v, 5], [w, 23])) (2% + 1Y — hY)

+ Y (v, zal, [w, 2]} + ([0, 2], [w, a])) ([[25, 20], 2] |25),

so & = —2 and
— (n+ (K" = b)) ([v, 23], [w, 3]} + ([v, 23], [w, 2:]))
=Y (s @als fw, ) + ([o, @], [w, @) (25, 2], T l2;).

To compute 1 we first observe that

Z(([%xn]v [w,me + <[7),.7jm], [w,an)(sz, xn]7$m”x3)
= —Z v, Tnl, [w, 2m]) + ([0, 2], [0, 20])) ([23, 2], 25]|2m)

= - Z v xn xla$n] ‘TJH) + <[Ua Hxiamn]a$j]]a [w,xn]>),

which implies, for any a,b € g°
(n+ (h" - BV))(<[U al, [w, b]) + ([v, b}, [w, a]))
= Z v, 2], [w, [[a, zn], 0]]) + ([0, [[a, 2], ], [w, z0])).

Next we need some formulas: let Cpe = ), 3312 be the Casimir element of g* and Cj,
the Casimir element of go. Since Cypr = Cy, — 222, by Lemma 5.1 of [KW] we have that

Zz’[‘riv [(L‘i,’UH - (hv 2
> (@ollv, @), [w, [[a, z4], 0]]] + [[v, [[a, 2], B]], [w, 2,]])

n

= (b =3/2~ 2Bv)(([v> 0], [w, a]) + ([v, a], [w, b]))
+ Z U xn [wafn]D + <[a7 [’van”v [ba [w,:cn]]>)

)v Now a lengthy computation yields

Consider the map W : A? 9_1/2 — S2(g")* defined by polarizing (3.5):
(v Aw)(a,b) =([v,a],[w,b]) + ([v,b], [w, al),
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and note that

> (s fo,zalls o, [w, 2a]]) + (la, [0, 2all, [b, [w, 2a]])) = ([0, 20] A [w, 20]) (a, 1)

By Lemma , we have
DU [, zall, (o, [w, @a]]) + ((a, [0, @a]], [b, [w, 2a]])) = =5 ([b, ], [a, w]) + ([a, 0], [b, w])).

n

The outcome is that

> (v, za], [w, [[a, @a], b)) + ([o, [[a, @], b]], [w, 2a]))

= (h" =2 =2h)(([v, 8], [w, a]) + ([v, a], [w, b])).
Thus = —2 — hy. In particular
F (k)
4( )(k —|— 1 + 1)
This ends the computation of the proportionahty factor fy (k).

(5.15) Flk) = -

It remains to compute Q (v, w) and P(v,w) with [v,w] # 0. To this end introduce
Z k‘M (v, w)

Relation ([5.6) gives

(H ([, 0], w)[27) = Q(v,w) + KT (v, w) (2k + hY — BY)
+ 3k (v, w) ([, ), 2] |27).

So
S (H (), o], w)[a]) = dim gEQ(v, w) + TR, (v, w)(2k + hY — RY)

+ 3 Tk (w,w) ([, 73], 27, |2).

Using the relation S7,[27, [T, a]] = 2(hY)a for a € g* we obtain

> (H([z],v),w)|a]) = dim g2Q(v, w) + TR (v,w)(2k + h¥ + k).
Since
D (H () w)la}) = F2 5y (v, w),
we have, recalling that Q(v,w) = D(k){v,w),
1

5.16 TR (v,w) = —
(5.16) A Ty ATy AY

. )y
(— dim gi D (k) + %) (v, w).

Relation ([5.7)) becomes
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2k +h" — by 2T (k)vr k dimg y B
Zm( dim g}.D (’f”m)ﬂLD(lﬂ)(“hv — 6k + hY —4) = 3T (k).

Solving for D(k) we find that
D(k) =T(k)E(k),

where E(k) is a complicated but explicit rational function in k, hY,hY,,,dim g, dim gr In
turn, substituting in (5.16)), TR, can be expressed as

(5.17) TR, (v,w) =T(k)E.(k)(v,w).

Let {u;}, {ul} be dual bases of g 1/2° (u, u > = 0; ;. We have to compute P(>, u; Au )
Ifu,ve 9-1/25 then
(u,v)
/\ =
uUAv

- Zuﬂ\uﬂ-s, se V.
mgy /g =

By covariance of P, we have P()_, u; A u’) =D, 2] ®x, thus

Z Ko (Wi, u') 27, @ ), Zarac ® x,

©,7,8,Mm,n

hence Y, knvn (i, u®) = 0y 56m nay. In particular dim g, = >ij k:;;(ul, u’) hence

dim gloy, = ZTR ui,u') = T(k)Er(k) Y (us, u') = T(k)E,(k) dimg_y o
Since @ is equivariant we have likewise
>0 sy, [y w5)) + (ui, wp], [0 2y, ))ag, @ x5 = Braf @ af,

hence
Z(([Umﬂ?&] [, 23)) + (us, 3], [0, 27,1)) = 650,060
and Z
dim g} 8, = Z(([Uueﬁn] [, @y, ]) + ([wi zy,), [, a7,]) = =2 Z<[$Tm: [, ui]], u')
= =2 Z<u1: > = —2v,dimg_ 1/2-
Since P(s) = f(k)®(s),
D FE s a)s o 2p)) + (w25)], [, 27,)) (27, © ;)

— <u,v7) . wi,zl ], [ul, wi, 23], [ul, a” o @xd) =
Ty ) 30 (ol o 25+ () o ), %) =
3 S0 ) + el o) 8.0 - T 0 Y btef 97) =

> FR)(usap) o, 23]) + (u, 23], [0, am) (@, © 23) + (u,0) f(k) Y 2% 7 (T @ 27,).

m,n,r,s m,r dim gr

1, M,N,T,S
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The outcome is that

(5.18) P(uAv) = (u,v) Z F(k)ET((;;)n—;f%f(k) (x;, ®x;,)

+ ) SR el o 2) + (u,23], [, 2).]) (@, © 23).

m,n,r,s

Observe from that f does not depend on the choice of r, s, hence {hY} has at most
two elements, and if there are more than two components, {hY} is a singleton.

We now deal with the case in which g% has three components. Suppose that g’ has a
nontrivial center. Then hY = 0, also hy,hy vanish and g% is 3-dimensional abelian. This
is not possible, hence g? is semisimple, «;, is long and is a node of degree 3 in the Dynkin
diagram of g. Therefore one of the components, say gi, has to be sl(2). In particular
h = hY = 2. By the above remark, we have h h = 2 and indeed 15 = v3 = 1. Hence all

components are isomorphic to si(2 ) and this forces g to be of type Dj.
Set

(k+ hV_BY)(k + hv_ﬁg) if g% has two components,
(k+

p(k) = i

)(k+ = by +1) otherwise.

Observe that, combining ((5.14)) and (5.15)), we have f(k) = i;((k)) in all cases. We summarize
our findings in the following proposition.

Proposition 5.3. There are explicitly computable rational functions a,(k), b(k), c(k), d.(k)
such that, up to a constant C,

(v, w) ZaT(k) : JEJ% 4b(k) Z«[U’w ], [w, z5]) + {[v, 2%], [w, 21])) - gy | o

Z7J7r

C< va+Zd (TJ[“”]w]T+)\JHx9’”] })+§’<v,w>>.

More precisely

’ ( V_pVD?
4 h*—h;
p(k) k4
while a,(k) and c(k) are certain rational functions of degree respectively —2 and —1.

If we set ¢(u,v)(w,z) =, i km (u, v)([[w, {], 23], 2) then ¢ is alternating in w, 2 so it
defines a map ¢ : /\2 9_1/2 — /\ g1/2 and it is g-equivariant, since ¢ = 7o Symm o ® where

7 is the action of g? on 9-1/2-
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Relations m m ) then become
(5.19) 3 ([H (u, ), 0], 2) + 5Q(u, v)(w, 2) + ¢(u, v)(w, 2)
= 3{[u, H(v,w)], 2) + 5Q(v,w){u, 2) + (v, w)(u, 2) — ([v, H(u,w)], 2),
(5.20) — 5 ([H(u,v), w], 2) + 5Q(u,v)(w, z) + 30( v)(w, 2)
= ([u, H(v,w)], 2) — 3{[v, H(u, )], z) = §Q(u, w){v, 2) — p(u,w)(v, 2),
(u, v){w, z) + 2p(u,v)(w, 2) =
2 {[u, H (v, w)], 2) + 5Q(v, w){u, z) — p(v, w)(u, 2)
— 5{[v, H(u,w)], z) — 3Q(u, w){v, z) + p(u, w) (v, 2).
Lemma 5.4. Assume C # 0 for almost all k and set

2, dr(K)|[(ha; VHP+3e(k)+2 X, ar (k) yr
o 2b(k)

(5.21)

O

if gh has two components,
R(k) =
_3/2d1(k)+3c(k)+(2hY —3)a (k)

0R) otherwise.

Then R(k) does not depend on k. More precisely

8—4hV+2 Y, hY[|(ha; )FII2

if g% has two components,

R(k) = 7
% otherwise.
Proof. Choose v =u in (5.19). Then we obtain
(5.22) 3 ((H (w,u), w] + [u, H(u,w)], 2)) = 5Q(u, w){u, 2) = p(u, w)(u, 2).
Using the explicit formulas
= O el vl s Qo) = Celh) (e
and (4.16|) we find

§ Y dilk) Z(W, [w, D) ([, w), 2) + (u, [w, 7]} ([u, 27, 2)) = 5 c(k) (u, w)(u, 2) =

o(u, w)(u, z).
We first evaluate the right hand side of (5.22): recall that
ki (u,v) = Cb(k)(([u, 7], [v, 25]) + ([u, 23], [v, 27])) + Cbi j6rsar(k){u, v),

(5.23) p(u, w)(u,z) = Z Cb(k)(([u, 7], [w, 5]) + ([u, 23], [w, z7])){[[u, 7], 5], 2)
—i—CZaT(k)([[u a7, 27, 2) (u, w)
= Z Cb(k)(([u, ], [w, 25]) + ([u, 3], [w, 27]))([[u, 7], 5], 2)

+C Z ar (k) (u, z) (u, w).

25
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Take u = fi,,w = 2z = [x_g, €;,]. Passing to dual bases {z7}, {z.} of g* and using (5.23),
relation ([5.22)) becomes

(5.24)
Czd flov flm z]><[ [$—976i0“7[$—9>ei0]> <f10,[[.1' 97610]7 z]><[f107 r] [x 97610]))

Z Cb k) (<[fio=xﬂ7 Hxﬂ%eio]?m?]) + <[fio7xj'] [[‘T 976%0} ])) <[[f10’ l]’ J] [x 9’620]>
+CZCLT )Vr ona T— 9,6,0]>2.

We now evaluate the left hand side of (5.24]). Assume first that g” has two components,
then —6 + 2q;, is not a root. By weight considerations, (fi,, [fi,, #}]) can be non zero only if

x; has weight —0 + 2a;,. Arguing in the same way, we also conclude that in the second sum
x; should belong to b, so that the left hand side of ([5.24]) simplifies to

%(Zdr(kj)z flm[[‘r 9aelo]ahz]>alo(h ) 36( )<fi0,[x_9,€i0]>)<fio,[$_9,€i0]>,

where {h]} is an orthonormal basis of f),hn. The above formula can be further reduced to

(5.25) -5 Z dr (k)| (B EII? + 3e(k))){ fios [2-6, €io))*.
Assume now that g% has only one component (i.e., it is simple or 1-dimensional). Then, if
u,v € g_1/2,
([, u],v] = [[zg,u], v]" + (u,v)a.
In this case (5.22)) becomes
%(dl(k)«[[[x@? u]v u}h7 w] + [u’ HJJ@, u]? w}h]’ Z>) - %Q(u, w) <u7 Z) = cp(u, w)(uv Z)'
Since

[[[an U]v u]hvw] + [u’ Hw@?u]?w]h] = [[[$97u]’ u]v w] + [uv [[wQ’uLw” - <uv w>[u,x]

and [ua Hxﬁa ’LL},’U)H = _[[[1'97“]’ u]a ’LU] + Hxﬁa ’LL}, [uvw]]’ we see that
[[[xeau]au]h7w] + [u7 [[w97u]7w]n] = Hx97u]7 [uvwﬂ - %<u7w>u
= 2(u, w)[[zg, u], z_p] — 2 (u, whu = —3(u, w)u.

The upshot is that
%(%dl(k) + 3c(k)) (u, w) (u, z) = p(u, w)(u, z).
Substituting u = f;, and w = z = [x_g, €;,] the left hand side of becomes
(5.26) — S (3di(k) + 3c(k)) (fiy, [x—a, €i0))*
Finally, if g? has three components, since dy (k) = do(k) = d3(k), formula becomes

~ G (d1 (k)| (e, )*1 + (k) fio: [2—0, €i0))
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which is indeed ([5.26)). To evaluate the right hand side of (5.23)) in the current case, notice
that ~, does not depend on r (see also (5.27)) below). From this and relation (5.18]) we deduce
that a,(k) does not depend on r. It follows, using (|5.28]) below, that

Czar '77‘ floa T— 97610]>2 = %al(k)(2hv - 3)<fi07 [x—6’76i0]>27

as in the case when g% has only one component.
The final outcome is that
Z (<[f20)$:]7 [[x—G'? eio]vx;'b + <[fi0’ ‘/L‘j]’ Hx—Gv €i0], IZ]>)<Hf107 z]v ]] [‘r 0> elo]>
%,J,7,8
= R(k)<fio7 [x—Oa €i0]>27
where

dr ()| (hay )2 +3c(k)+2 3, ar(k)yr
_ 2 ey ”2b(k)c( J42 2 ar (b if g has two components,

R(k) =

o 3/2d1(kHSC(QkI))(Z)(th*S)al(k) otherwise.

It follows that R(k) does not depend on k, hence it equals the value of its limit for £ — oo.
This limit is
8—4hV 4232, hY||(ha, )72

3 if g has two components,

lim R(k) =
k=00 3—4hV+3RY

5 otherwise.

O

There are several relations among the values 7;, dim gf, dimg, hY and h". Indeed, if gZ is

abelian, then gZ Cw with w as in . As noted in Sectlon w acts on g_1/2 as £, so

On the other hand (w|w) = tr(ad(w)?) _ 2dimg_ 1/2,

is 2RV 2RV

the eigenvalue of Cg“. =

(WIW) (W\W)

o ol
so we conclude that v; = %. Since hY = 0, this formula can be written as

dim g (h" — 1)

2(hV —2)
By [P} (2.2)], the index ind (91/2 @g_1/2) is (hY —hY)/h}. The same index can be computed
as md (91/2) —i—md (g 1/2) = 2md (g 1/2) and this last quantity is computed by [P}, (1.3)]

S1nce dimg_;/p = 2(h 2), it follows that ([5.27) holds in these cases too.

(5.27) Vi =

; dim
to be M
2hV dim

By ([6),
(5.28) > p=hY—3/2

so, if g? has two components one can solve for dim gg and obtain that

: B(pv _ pV 2(RV)2 — THY
dimgg _ dimgj(hy —hY) + 7(5& )= —Th +6'

Moreover, by ,
(5.29) dim g = 4h" — 5 + dim g".



28 VICTOR G. KAC, PIERLUIGI MOSENEDER FRAJRIA, PAOLO PAPI

Our analysis provides more refined relations.

Proposition 5.5. If g% has two components, then

(hY + 1) (2(h¥)2 + RV (RY — 2) — Ry (RY +2))
(hY +2)(hY = hy) ’

(5.30) dimg = hY +hy =h" —2.

Otherwise

. 2(5(hY)2 —hY —6) ., 2V -3)
(5.31) dimg = e . h = =
or
(5.32) dimg = 2(h")? =30V +1, hY =h" -

Moreover, (5.32) occurs if and only if g* is simple and o, 18 short.

Proof. Write explicitly the rational function R(k) — limy_,~ R(k) as P/Q with P,Q poly-
nomials in k, h", B;/ and dimg. Since P is identically zero, by equating its coefficients to
zero and solving the system of equations with respect to dim g and h)/v; we get the above
formulas.

To finish the proof we show that 7Y = hY —1 if and only if g% is simple and «, is short. Let X
be the set of simple roots ofgh and Oy its highest root. Write § = Eaen mea, Oy = Zaez N
and note that n, < m, for all a € . If hY, since v; = 2/(0x|0s), we have

hY = %((02\92 )+ Z ala)ng = ;5 Z ala)me = (aig|aiy) + 5 Z ala)my,
acX a€ll aEX

hence

(62165) — 2aiglaig) = 3 (afa)(mq — 116) > 0.
acX

It follows that oy, is short. Then 6 — 2ay, is a root of g and this forces g° to be simple,
otherwise the support of § — 2a;, would be disconnected.

Assume now that g° is simple and «;, is short. Then § — 2a;, is a root of g?. This forces
Oz = 6 — 204, and (f|ay)) = 2, so that (aj,|ay,) = 1. We have

ala ala 0|0 ala
B ==y 0, = S 0 4 (agfas) = PN 08+ (o)

aEA aEX aEY
_ 7V _ (82)0x) _pV
= hi — =572 + (qig|ayy) = by,

since (Ox]0x) = (0 — 20, |0 — 20v,) = 2 — 4(0|ay,) + 4 = 2. O

Remark 5.6. A brief inspection of the Dynkin diagrams shows that g* does not have ezactly
two irreducible ideals precisely when g belongs to the Deligne’s series Ao C Go C Dy C Fy C
FEg C By C Eg or it is of type Cy. The first case occurs exactly when there is a long simple
root not orthogonal to the highest root.

Remark 5.7. It is worthwhile to recall that dimg = r(h + 1), where r is the rank of g and
h is the Cozeter number of g.
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Proposition 5.8. Let {z;} be an orthonormal basis of g*. Then
[GPAGY] =
C | by (00) Y 5T = b S (v i), [w, ) + (v 2], fw i) = 55T - | +
( 1,J

v zg,v],w]° zg,v],w]°
C (—%<v,w>L+ZM(;Tﬂ ol 4y glleow, ]T)+’\22<v,w>>.
2

Proof. Substitute the values (5.31)), (5.32)), (5.30) in the explicit expressions for a(k),b(k),
c(k),d(k). O

Remark 5.1. Choosing C' = 4p(k) one obtains a refinement of the formula (1.1) of [AKMPP]
which is in turn an improvement of the original formula of Kac and Wakimoto [KW].

Indeed, recall that (xg|[u,, u’]) = 6, 5. As in [KW], we let (-, -)ne be the invariant form on
g1/2 defined by setting (v, w)ne = (z_g|[v,w]). Note that

<[£L'9, ur]’ [l’g, us]>ne = _%61",3-
In fact,
([0, we), [20, uT) e = (o0, ur), [0, w7]]) = L(urwo, u?]) = —L(olfur, ]
It follows that {[zg,u"]} gives a basis of g5 and that {2[zg, us]} is its dual basis.
Ifue 971/2 then
[, [zo, us]l* = Y ([, [zo, uslllzi)zs = = Y (wollwi, us], ]},

([, u"], v]* = Z(vae,ur],v]lxi)xi = Z(fﬂel[[%m"]»v})%

237 gluleonell gleos 1ol = oS ([l ] ul) ol [z, o, v]) £ S5

Z7J7r

= 23 (gl [, 2l ol [u”, [v, ) = T

3,7

N

Theorem 5.9. If g* has one or three components, then

LR —RYN (RY
== L 41
= () (5 )

while if g° has two components, then

L (WYY (Y R
2 2 2

and hY + hY = hY — 2. In particular, in both cases,

(5.33) p(k) = k* + <h2v + 1) k — 26.

Proof. Just substitute (5.27)), (5.31)), (5.32)), and (5.30) in formula (4.18)). O
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Remark 5.2. Let V be a finite dimensional Y (g)-module. Using the (Hopf algebra) auto-
morphism 7, u € C defined by 7,(z) = z, 7,(J(z)) = J(z) + uz, x € g, the representation
V' can be pulled back to give a one-parameter family of representations V(u).

Recall now that the R-matrix associated to Y (g)-modules V, W is of the form Ry (u) =
Ivw(u)o, where o is the switch automorphism and Iyw(u) : V@ W(u) = W(u) ® V is
the unique intertwining operator which preserves the tensor product of the highest weight
vectors in V, W. Since Iyw(u) is a g-module map, it must preserve the isotypic components
in V@ W. Denote by (V® W(u))g, (W(u) ® V), the isotypic components corresponding
to the adjoint representation and by (V @ W (u))o, (W(u) ® V) the isotypic components
corresponding to the trivial representation. Set also

Py =Ivw(u)veww): o= Tviw(w)veww),:

Assume g is not sl(n). In the special case when V. =W =V = g @ C, then the adjoint
representation occurs in V ® V with multiplicity three and the trivial representation with
multiplicity two.

As in Section 5.4 of [CP|, choose the following bases for the g-highest weight spaces of
Y ®V of weight 6 and 0:

{x9®1+1®x9,5[m9®1,C’g],x9®1—1®a:9}, {1®1,1®1—5Cg}.

One the main results of [CP] is the explicit computation of the matrices of Py and P in the

bases given above. The final outcome, as far as we are concerned, is that the entries of these

matrices are rational functions of u whose denominator is either g(u) = u? — (% +1u—20 =

p(—u) (using (5.33)), or u — 1, or (kY /2 — u)g(u).
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