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Abstract
The central theme of this study is to investigate a remarkable capability of a second-
gradient continuum model developed for pantographic structures. The model is
applied to a particular type of this metamaterial, namely wide-knit pantograph. As
the structure of this kind has low fiber density, applicability of such a continuum
model may be questionable. To address this uncertainty, numerical simulations
are conducted to analyze the behavior of a wide-knit pantographic structure, and
the predicted results are compared with those measured experimentally under
bias extension test. The results presented in this study show that the numerical
predictions and experimental measurements are in good agreement, and therefore,
in some useful circumstances, this model is applicable for the analysis of wide-knit
pantographic structures.
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1 Introduction1

Design of metamaterials has been of great interest to engineers and scientists due2

to the remarkable progress in additive manufacturing (AM) technologies in the last3

20 years. Currently, with newly developed and improved techniques, fabrication of4

materials with complex microstructures exhibiting exotic and uncommon properties is5

not a far-fetched conception as before1. In this paper, we particularly focus on the6

behavior of pantographic structures – a type of mechanical metamaterial. In general,7

metamaterials are classified based on the main interaction phenomena occurring in their8

microstructures. A mechanical metamaterial, therefore, is a multi-scale structure whose9

overall response is related to mechanical interaction between lower scales constituting10

the hierarchical architecture of the material. We refer the reader to the extensive review11

paper of Barchiesi et al.2 for state-of-the-art applications in the study of mechanical12

metamaterials.13

A pantographic structure, corresponding to a real 3D-printed rectangular specimen as14

given in Fig. 1, consists of a planar grid constituted by two orthogonally oriented families15

of continuous fibers connected by pivots located at intersections. Due to their distinct16

properties, pantographic structures have been extensively investigated in the literature3? .17

From a purely theoretical point of view, the mechanical behavior of pantographic18

structures is an excellent example to prove the existence of higher-gradient continua,19

i.e, continua whose deformation energies depend on higher gradients of displacement20

field as opposed to the well-known Cauchy continuum where the deformation energy is21

only a function of the first gradient of displacement. On the other hand, from a practical22

point of view, pantographic structures can be subjected to large deformations remaining23

in elastic regime, which may be a promising feature in different applications.24

Recent progress in manufacturing techniques have prompted the need for developing25

higher-gradient models as fabrication of materials with complex microstructures is26

becoming increasingly popular. Higher gradient modeling is actually not a new idea for27

mechanicians. In the history of mechanics, the roots of higher gradient modeling can28

be traced back to the impressive works presented by Italian mechanician Gabrio Piola29

in the mid-19th century4–9. Later, in the 20th century, higher gradient modeling was30
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Figure 1. 3D-printed wide-knit pantographic structure composed by two families of fibers
connected by pivots.

investigated and clearly formulated by different researchers. Here, we would especially31

like to mention two pioneering studies presented by Mindlin and Eshel10 and Paul32

Germain11. In Mindlin and Eshel10, the linear theory of elasticity was studied in the33

context of second gradient modeling, which the strain energy density depends on both34

the strain and its gradient. They studied the three different versions of strain energy35

density, providing the relation between those three different forms in terms of stress and36

boundary conditions. The differences between the strain energy densities come from the37

components included in the energy definitions. Importantly, to clarify the terminology,38

the term “second gradient” used in the present paper refers to the second gradient of39

displacement. As Mindlin and Eshel mentioned the first gradient of strain, the two40

terms “second gradient” and “first strain-gradient” are actually equivalent. Moreover,41

Mindlin and Eshel discussed how the angular moment balance equation cannot be derived42

directly by variational methods, and they rederived the complete equations starting43

from conservation laws (i.e. conservation of linear momentum, angular momentum44

and energy). Afterwards, Paul Germain11 published another influential study on higher45

gradient modeling. The main idea of the paper is to show how variational methods46

can be systematically applied to study higher gradient theories. As Germain discussed47

in his paper, the variational methods provide a very effective and systematic way to48

obtain the required equations compared to other approaches followed in the past. Indeed,49

as discussed in many related studies12,13, variational approaches are very powerful for50

mechanicians to establish new mathematical models quickly and efficiently. In this way,51

modern continuum mechanics applications can find more applications. In Germain11,52

micromorphic media of order one were derived in detail, and subsequently, the equations53

for the general micromorphic medium were presented. For interested readers, we refer54

to Toupin14, Eringen15, Misra and Poorsolhjouy16, Eremeyev17 and Solyaev et al.18 for55

further details.56
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Although promising theoretical effort was made on establishing higher gradient57

models, technology of that time was not sufficient to produce materials exhibiting such58

complex behaviors. Moreover, with increasing finite element method applications, the59

Cauchy continuum has been successfully applied in a large number of problems in60

various fields, and that is why scientists and engineers have disregarded higher gradient61

models for a long time. However, capabilities of advanced manufacturing techniques62

introduced in the last 20 years have clearly changed the opinions on developing higher63

gradient models.64

This study focuses on the mechanical behavior of wide-knit pantographic structures.65

Pantographic structures have been extensively investigated in the recent literature (for66

instance, see19–26). A pantographic structure is referred to as wide-knit if the number67

of the fibers composing the grid is low. According to authors’ best knowledge, this is68

the first study which investigates wide-knit pantographic structures as a second gradient69

continuum. In fact, in Andreaus et al.27, this kind of structure has been studied by70

means of a meso-scale model, where the fibers composing the pantographic structure71

were modeled as Euler-Bernoulli nonlinear beams. We show a natural way to model72

the mechanical response of pantographic structures with a continuous second gradient73

model even when these structures are wide-knit, i.e. with fibers close enough to justify74

the use of a continuous theory (which, instead, is a logical choice when studying dense75

knitted fabrics). A fundamental point proposed in this article is to establish that the76

presence of some particular microstructures require the use of a second gradient theory to77

adequately describe the resulting material, even when the microstructure cannot actually78

be considered at a deeper scale of observation, as in the usual microstructured continua.79

The organization of the paper is as follows: In Section 2, some important aspects of80

higher gradient modeling are remarked, and the model used in this study is summarized.81

Then, in Section 3, the theoretical predictions are presented and compared with82

experimental measures. Finally, in Section 4, we highlight our conclusions and try to83

provide some insights for future studies based on our observations.84

2 Microstructure and Higher Gradient Theories85

2.1 Microstructure induces higher gradient terms in equilibrium86

equations87

Continuum Mechanics allows to study many “natural” materials accurately, approaching88

a huge number of problems with only few adjustments. Moreover, with the help89

of standard homogenization techniques, complex materials (e.g. composites) can be90

treated with the same tools used for homogeneous ones. Currently, due to the massive91

developments in computer technology and programming, it is possible to study with very92

complex problems. Modeling methods like the Finite Elements reduce the complexity93

of the problem to a mere question of number of degrees of freedom. In fact, it is always94

possible to introduce a mesh, as accurate as it is needed, to divide the considered medium95

in a certain number of, namely, finite elements with simple geometry, and then it is an96

easy task to solve the equations of the Continuum Mechanics. The more complex is97
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the geometry of the medium, the finer will be the required computational mesh, and98

therefore, a greater number of finite elements, thus increasing the number of degrees of99

freedom (i.e. of equations to be solved by the simulation tool). Despite the introduction100

of such tools, in some cases, the solution may require heavy numerical computation.101

For instance, media with complex geometries such as structures composed of bars or102

fibers: accurately describing such structures requires meshes with a huge number of finite103

elements. It has already been mentioned that classical homogenization techniques make104

it possible to overlook the problem of composites, reducing them to equivalent materials105

that globally have the same mechanical responses as the composite.106

In the 1960s and 1970s, the problem of medium with microstructure was addressed107

by R. D. Mindlin, R. A. Toupin, and P. Germain in a number of papers. In their108

studies, different points of view of higher gradient modeling have been discussed to deal109

with materials equipped with microstructure, and they have shown how the existence110

of microstructure in some cases could induce higher order terms in the equilibrium111

equations of the material under consideration. Differently from classical homogenization112

techniques, in this case, equations containing terms dependent on second or higher order113

derivatives of displacement are obtained, inducing so-called higher gradient theory. Why114

do we pursue this way of thinking rather than trying to employ standard homogenization115

methods, for example, for composites? Our answer is very simple: the path followed by116

Mindlin, Toupin and Germain is effective and straightforward as the Principle of Virtual117

Works (or, equivalently, the Principle of Virtual Powers) is employed.118

2.2 Variational principles in presence of microstructure119

The Principle of Virtual Works (PVW) can be used systematically to deduce the120

fundamental equations for a given theory in Continuum Mechanics. As we have121

mentioned, there are multiple approaches that one can use to address the description122

of continua and find the governing equations, but the PVW provides the fastest way to123

get the sought equations and prevents errors that, in other approaches, might be difficult124

to detect.125

As it was shown in Germain11, when considering the problem of microstructured126

continua (also called micromorphic in Eringen’s approach) the PVW provides equations127

of second gradient theories. Germain11 shows that, by applying the Virtual Powers128

Principle (where virtual velocities are involved), the classical equations of the Continuum129

Mechanics are easily obtained. Here, the crucial point is to assign the right kinematics.130

Therefore, in case of a usual continuum, this is considered to be composed of a131

continuous distribution of particles which are geometrically represented by a material132

point M and by its velocity components Ui. When considering the microstructure, from133

a macroscopic point of view each particle is still represented by a material point M ,134

but its kinematics must be defined more precisely. Germain gives a very clear and135

simple explanation of the relationship between kinematics, Principle of Virtual Powers136

and continuum theory. The main feature of the method explained in Germain11 is137

that, assigned the required kinematics, the associated continuum theory can be deduced138

immediately via the PVW (or PVP). This is the fundamental reason why this method139
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is simpler than others proposed in the literature: it all reduces to the search for the140

kinematics associated with the studied problem.141

2.3 Kinematics for the second gradient theory142

Following the work of Germain11, it can be shown how the kinematics due to the143

presence of the microstructure generates a second gradient continuum at macroscopic144

level. As mentioned earlier, in the classical description, a continuum consists of145

continuous distribution of particles, geometrically described by a point M and146

characterized by a velocity field, defined by its components Ui. However, in a theory147

which takes into account the presence of microstructure, each particle represented by148

a point M must be characterized by a more refined kinematics. Then, how do we149

describe the presence of microstructure from the kinematics point of view? At this stage,150

it is necessary to consider the continuum at microscopic level: each particle has to be151

considered as a continuum P (M) of small extension. Germain shows in detail how the152

previous assumption implies that the velocity field Ui associated with the continuum153

P (M) and the χij field of the relative velocity gradients (resulting in a second order154

tensor) have to be considered. This final result makes it necessary to introduce the second155

gradient of the relative velocities xijk, which is a third order tensor. Therefore, it is clearly156

shown that the presence of a microstructure can be naturally described by introducing157

higher order terms in the continuum theory considered. This is the starting point in the158

study of pantographic structures. A certain microstructure is chosen in order to have a159

second gradient continuum as simple as possible and then homogenization techniques160

are utilized to determine an appropriate continuum model.161

2.4 A second-gradient homogenized model162

In dell’Isola et al.20, it has been shown how to obtain a macroscopic second-gradient163

continuum model with a heuristic homogenization process which specifically consists in164

performing an identification procedure of macro-deformation energy which is associated165

to a postulated micro-model. Therefore, the macroscopic Lagrangian (line or surface)166

density of macro-deformation energy is obtained in terms of constitutive parameters167

appearing in the postulated expression of micro-deformation energy. Although the168

validity of the model presented by dell’Isola et al.20 has been shown in different studies169

(see for example28–34) to predict the mechanical behavior of pantographic metamaterials,170

experimental evidences have shown that further improvements are unavoidable to171

establish a more robust model. Therefore, in this study, an improved model presented172

by Spagnuolo et al.35 is adopted for the numerical simulations. In the study35, the173

proposed improved model takes into account that the two families of fibers constituting174

the structure may not follow a single placement field description, as it was presented in175

dell’Isola et al.20, due to the resistive behavior of pivots. Therefore, the strain energy of176

the model was formulated based on two independent placement fields to allow relative177

displacement between the two families of fibers.178

If we assume a 2D continuum whose reference configuration is given by a rectangular179

domain Ω = [0,L1]× [0,L2] ⊂ R2 (for example, in Fig. 1, L1 = L and L2 = `180
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represent the lengths of the sides of the ideal rectangle containing the pantographic181

structure) and by assuming that deformations are planar, the current configuration of Ω is182

described by the planar macro-placements χ1 and χ2 for each fiber family, respectively.183

Let be {D1,D2} an orthogonal basis for the reference configuration. By following184

Spagnuolo et al.35, the following strain energy is adopted in the numerical simulations185

W (εα, κα, γ,χ
1,χ2) =

2∑
α=1

(
1

2
Kα
e ε

2
α +

1

2
Kα
b κ

2
α

)
+

1

2
Kpγ

2 +
1

2
Kf‖χ1 − χ2‖2

(1)
where εα is the stretch of fibers

εα = ‖FαDα‖−1, (2)

κα is the fiber curvature

κα = ‖cα − (dα · cα)dα‖= ‖(I− dα ⊗ dα) cα‖ (3)

and γ denotes the shear distortion related to the angle change between fibers

γ =
∣∣∣cos−1(d1 · d2)− π

2

∣∣∣ . (4)

Here, cα is an auxiliary vector field,

cα =
∇Fα (Dα ⊗Dα)

‖FαDα‖
(5)

and dα is the unit vectors tangent to each fiber family in the current configuration

dα =
FαDα

‖FαDα‖
(6)

where Fα is the deformation gradient for each independent placement, Fα = ∇χα (no186

summation over α). The termsKe,Kb,Kp, andKf are the constant and positive material187

parameters related to stretching, bending, shearing, and fiber connectivity, respectively.188

Finally, the governing equations are obtained by the variational statement

δ

∫
Ω

W (εα, κα, γ,χ
1,χ2) dΩ = 0 ∀δu (7)

where δu belongs to the vector space of admissible displacement variations, i.e. test189

functions. In this study, as deformation is assumed to be quasi-static, kinetic energy is190

not included in the expression given in Eq. 7.191

Additionally, in order to characterize wide-knit pantographic structures more precisely,
a criterion referred to as wide-knit ratio is defined as follows

ω =
nfλ

`
=
nf (a

√
2)

`
(8)
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where nf is the number of fibers of one of the two families attached to the short side,192

` the length of the short side, and a is the depth of the fiber cross section (see Fig. 2).193

This ratio ω clearly lies within the range ω ∈ (0, 1], where, when the upper limit value is194

reached, then we are considering a grid which is very similar to a plate.195

Figure 2. Schematic representation of the dimensions involved in the computation of the
wide-knit ratio ω.

The used numerical code has been implemented with a standard package available196

in COMSOL Multiphysics R©, namely, Weak Form PDE. In Weak Form PDE package,197

energy terms are introduced along with defined dependent variables (two placement198

fields in this study), and a tensorial field, which is constrained to be equal to the gradient199

of placement fields (by using the method of Lagrangian multipliers), is defined so that200

energy expressions requiring a second gradient of placements are easily introduced36.201

3 Comparison of numerical simulations with experimental202

measurements203

In this section, by using the model detailed in the previous section, numerical predictions204

are presented for the wide-knit pantographic layer under study and compared with205

experimental measures. A 3D-printed wide-knit pantographic layer with the length,206

L = 210 mm, and height, ` = 70 mm, is considered in this study. The wide-knit ratio207

of the structure is about 0.09, which indicates a quite low fiber density. Fibers have208

a rectangular cross section with a = 0.9 mm and b = 1.6 mm, where a and b are the209

height and width of the cross section, respectively. Also, the two families of fibers are210

interconnected with pivots with a radius of 0.5 mm. The wide-knit pantographic layer211

is made of polyamide PA 2200, whose Young’s modulus is Yp = 1600 MPa, and the212

Poisson’s ratio is ν = 0.36. In the numerical simulations, the prescribed displacement213

boundary condition is applied at one of the short sides to simulate a bias extension214

test while the other short side is kept fixed. The following constitutive parameters215
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are used in the numerical simulations: Ke = 1.86× 105 N/m, Kb = 1.26× 10−2 Nm,216

Kp = 30 N/m, and Kf = 8× 106 N/m3.217

(a) u0 = 0 mm (b) u0 = 12 mm (c) u0 = 24 mm

(d) u0 = 36 mm
(e) u0 = 48 mm (f) u0 = 60 mm

Figure 3. Comparison between experimental measurements and numerical simulations
under bias extension test

The experimental measurements and theoretical predictions are compared during218

extension of the wide-knit pantographic structure under study in Fig. 3. The figures219

(see Figs. 3a-3f) are provided for different values of prescribed displacement, namely220

for u0 = 0, 12, 24, 36, 48, and 60 mm, respectively. As it can be seen by comparison,221

numerical results match perfectly the experimental measures. In order to have a better222

interpretation of the theoretical predictions, two sets of material lines have been assigned223

in the second-gradient continua, which are oriented exactly along the directions of fibers.224

In this way, it is shown how the second-gradient model can be effectively applied to225

investigate the mechanical behavior of wide-knit pantographic structures.226
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(a) Extensional Energy (We) (b) Bending Energy (Wb)

(c) Pivot Shearing Energy (Wp) (d) Fiber connectivity Energy (Wint)

(e) Total Energy (W )

Figure 4. Contribution of energy terms.

As it is seen in Fig. 3, the behaviors of fibers in the experiment and material lines in the227

simulation are quite similar to each other. Additionally, contributions of the energy terms228

given in the total deformation energy expression are investigated in Fig. 4. Each term229

is plotted for the particular value of prescribed displacement, u0 = 60 mm. As it can be230

observed in Fig. 4, pivots have a substantial role in the overall mechanical behavior of the231

structure. The shear energy is considerably large in the center of the specimen while fiber232
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connectivity energy is high around the intersections of the fibers connected to both lower233

and upper corners of the specimen. On the other hand, the terms related to extension and234

bending are slightly large at both ends of the specimen, especially on the fibers connected235

at the corners of the pantographic structure. It is clear that in the center of the specimen236

energy terms due to the existence of pivots are dominant.237

In order to give a better insight on pivot behavior during the extension test, distance238

between two families of fibers ‖χ1 − χ2‖ is plotted in Fig. 5 for a selected value of239

the prescribed displacement, namely u0 = 60 mm. As it can be seen in Fig. 5, relative240

distances on the fibers connected to the corners of the specimen are large. Indeed, this241

indicates that failure of the structure may potentially occur on these fibers.242

Figure 5. Relative displacement between two families of fibers.

Moreover, force-displacement plots of the experiment and simulation are compared243

in Fig. 6. In the experiment, it is observed that pivots may get broken when large244

displacements occur. As it is shown in Fig. 6, some minor jumps are observed around 60245

mm of displacement. Then, the experimental plot, at around 64.4 mm of displacement,246

has an abrupt jump: at this point, as it is shown in Fig. 7, three pivots got broken in247

the lower part of the specimen. The damage occurs around the intersection of the fibers248

connected at the lower corners of the specimen. Overall, the numerically obtained force-249

displacement plot compares very well with those experimentally measured .250

Prepared using sagej.cls



12 Journal Title XX(X)

Figure 6. Force-Displacement Plot (Experiment vs Simulation).

Figure 7. Pivot damage observed during bias extension test.

4 Conclusions251

In this work, inspired by the pioneering works of P. Germain11, Mindlin10, Toupin14
252

and Sedov37 on second gradient theories, we have shown that it is natural to model253

the mechanical response of pantographic structures with a continuous second gradient254

model even when the fibers of these structures are not dense enough to justify the use of255
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a continuous theory (which, instead, seems to be the natural choice when dealing with256

dense knitted fabrics).257

The fundamental point proposed in this paper was to show that the presence of a258

microstructure, or better an architecture, in some cases make it possible to use models259

where the strain energy depends not only on the gradient of the displacement, but also on260

its second gradient, even when microstructure cannot actually be considered at a deeper261

scale of observation, as it is the case in the usual microstructured continua.262

The concept of interpreting mechanical effects of microstructure by using a second263

gradient continuum is already a fascinating idea but it acquires greater importance when264

one considers a microstructure producing such effects even with few elementary cells. It265

should be now clear that such a structure, which can be considered as the corresponding266

homogenized metamaterial (even when one is very far from having a dense knitting),267

really exhibits high-performance mechanical properties. In the different fields of268

applications, it could be useful to consider the coupling with other kind of materials269

(e.g. granular materials38–44, laminated plates45–49, and micropolar materials50–52).270

The study presented here can be completed by an analysis of the damage in271

pantographic structures. General discussions to investigate the damage in higher272

gradient theories can be found in53–56. Problems related to modeling and simulation273

of metamaterials like those presented in this paper can be greatly simplified by the274

introduction of appropriate numerical tools57–72. Finally, the problem which has been275

briefly presented in this article can be investigated and many of its applications can be276

designed and tested. This requires accurate theoretical analyses: in the literature several277

points of reference can be found73–79.278
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