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Abstract

Statistical learning (SL) is the study of the generalizable extraction of knowledge

from data (Friedman et al. 2001). The concept of learning is used when human

expertise does not exist, humans are unable to explain their expertise, solution

changes in time, solution needs to be adapted to particular cases. The principal

algorithms used in SL are classified in: (i) supervised learning (e.g. regression and

classification), it is trained on labelled examples, i.e., input where the desired output

is known. In other words, supervised learning algorithm attempts to generalize a

function or mapping from inputs to outputs which can then be used speculatively

to generate an output for previously unseen inputs; (ii) unsupervised learning (e.g.

association and clustering), it operates on unlabeled examples, i.e., input where the

desired output is unknown, in this case the objective is to discover structure in the

data (e.g. through a cluster analysis), not to generalize a mapping from inputs to

outputs; (iii) semi-supervised, it combines both labeled and unlabeled examples to

generate an appropriate function or classifier.

In a multidimensional context, when the number of variables is very large, or

when it is believed that some of these do not contribute much to identify the groups

structure in the data set, researchers apply a continuous model for dimensionality

reduction as principal component analysis, factorial analysis, correspondence analy-

sis, etc., and sequentially a discrete clustering model on the object scores computed

as K-means, mixture models, etc. This approach is called tandem analysis (TA) by

Arabie & Hubert (1994).

However, De Sarbo et al. (1990) and De Soete & Carrol (1994) warn against this

approach, because the methods for dimension reduction may identify dimensions

that do not necessarily contribute much to perceive the groups structure in the data

and that, on the contrary, may obscure or mask the groups structure that could exist

in the data. A solution to this problem is given by a methodology that includes the

simultaneous detection of factors and clusters on the computed scores. In the case

of continuous data, many alternative methods combining cluster analysis and the

search for a reduced set of factors have been proposed, focusing on factorial meth-

ods, multidimensional scaling or unfolding analysis and clustering (e.g., Heiser 1993,



Abstract 2

De Soete & Heiser 1993). De Soete & Carroll (1994) proposed an alternative to the

K-means procedure, named reduced K-means (RKM), which appeared to equal the

earlier proposed projection pursuit clustering (PPC) (Bolton & Krzanowski 2012).

RKM simultaneously searches for a clustering of objects, based on the K-means

criterion (MacQueen 1967), and a dimensionality reduction of the variables, based

on the principal component analysis (PCA). However, this approach may fail to

recover the clustering of objects when the data contain much variance in directions

orthogonal to the subspace of the data in which the clusters reside (Timmerman

et al. 2010). To solve this problem, Vichi & Kiers (2001), proposed the factorial

K-means (FKM) model. FKM combines K-means cluster analysis with PCA, then

finding the best subspace that best represents the clustering structure in the data.

In other terms FKM works in the reduced space, and simultaneously searches the

best partition of objects based on the use of K-means criterion, represented by the

best reduced orthogonal space, based on the use of PCA.

When categorical variables are observed, TA corresponds to apply first multiple

correspondence analysis (MCA) and subsequently the K-means clustering on the

achieved factors. Hwang et al (2007) proposed an extension of MCA that takes into

account cluster-level heterogeneity in respondents’ preferences/choices. The method

involves combining MCA and k-means in a unified framework. The former is used

for uncovering a low-dimensional space of multivariate categorical variables while

the latter is used for identifying relatively homogeneous clusters of respondents. In

the last years, the dimensionality reduction problem is very known also in other

statistical contexts such as structural equation modeling (SEM). In fact, in a wide

range of SEMs applications, the assumption that data are collected from a single ho-

mogeneous population, is often unrealistic, and the identification of different groups

(clusters) of observations constitutes a critical issue in many fields.

Following this research idea, in this book we propose a good review on the more

recent statistical models used to solve the dimensionality problem discussed above.

In particular, in the first chapter we show an application on hyperspectral data

classification using the most used discriminant functions to solve the high dimen-

sionality problem, e.g., the partial least squares discriminant analysis (PLS-DA);

in the second chapter we present the multiple correspondence K-means (MCKM)

model proposed by Fordellone & Vichi (2017), which identifies simultaneously the

best partition of the N objects described by the best orthogonal linear combination

of categorical variables according to a single objective function; finally, in the third

chapter we present the partial least squares structural equation modeling K-means

(PLS-SEM-KM) proposed by Fordellone & Vichi (2018), which identifies simultane-

ously the best partition of the N objects described by the best causal relationship

among the latent constructs.



Chapter 1

Partial Least Squares

Discriminant Analysis: a

dimensionality reduction method

to classify hyperspectral data

1.1 Introduction

The recent development of more sophisticated spectroscopic approaches allows for

the acquisition of high dimensional datasets from which valuable information may

be extracted via different multivariate statistical techniques. The high data dimen-

sionality greatly enhances the informational content of the dataset and provides an

additional opportunity for the current techniques for analyzing such data (Jimenez

& Landgrebe 1998). For example, automatic classification (clustering and/or clas-

sification) of data with similar features is an important problem in a variety of

research areas such as biology, chemistry, and medicine (Hardy et al. 2006, Galvan

et al. 2006). When the labels of the clusters are available, a supervised classification

method is applied. Several classification techniques are available and described in

the literature. However, data derived by spectroscopic detection represent a hard

challenge for the researcher, who faces two crucial problems: data dimensionality

larger than the observations, and high correlation levels among the variables (mul-

ticollinearity).

Usually, in order to solve these problems (i) a first data compression or reduc-

tion method, such as principal component analysis (PCA) is applied to shrink the

number of variables; then, a range of discriminant analysis techniques is used to
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solve the classification problem, while (ii) in other cases, non-parametric classifi-

cation approaches are used to classify directly the original data without using any

dimensionality reduction methods (Jimenez & Landgrebe 1998, Agrawal et al. 1998,

Bühlmann & Van De Geer 2011, Kriegel et al. 2009, Ding & Gentleman 2005).

In this work, the dataset consists of three different varieties of olives (Moraiolo,

Dolce di Andria, and Nocellara Etnea) monitored during ripening up to harvest

(Bellincontro et al. 2012). Samples containing olives from 162 trees (54 for each

variety), and 601 spectral detections (i.e., dimensions/variables) were performed us-

ing a portable near infrared acousto-optically tunable filter (NIR-AOTF) device in

diffuse reflectance mode from 1100 nm to 2300 nm with an interval of 2. The use

of NIRS on olive fruits and related products is already known; applications for the

determination of oil and moisture content are now considered routine analyses in

comparison with relatively new methodologies, such as nuclear magnetic resonance

(NMR), or more traditional analytical determinations (Garcia et al. 1996, Gallardo

et al. 2005, León et al. 2004, Cayuela & Camino 2010).

Bellincontro et al. (2012) affirm that the determination of the optimal fruit ripen-

ing stage in virgin olive oil production is a critical choice based on the best combi-

nation of oil quantity and oil quality. Some of the most important aspects related

to virgin olive oil quality are deeply affected by the olive ripening stage. The mod-

ification of the phenolic fraction, in particular, has been extensively investigated:

the concentration of oleuropein reaches relatively high levels in immature fruit dur-

ing the growth phase and declines with the physiological development of the fruit.

Then, because of the well-known importance of the phenolic fraction for oil stability

and the sensory and health properties, it is essential to identify the harvest pe-

riod that ensures the ripening stage corresponding to the optimal phenolic content.

Many approaches have been proposed in recent years for the evaluation of the op-

timal harvesting period, and Near-infrared spectroscopy (NIRS) can be considered

an interesting, alternative technique for the nondestructive measurement of quality

parameters in food crops, including fresh fruit and vegetables.

This work is based on the use of partial least squares discriminant analysis (PLS-

DA). The idea is to test some different chemometric applications of NIR spectra,

with the aim of predicting qualitative attributes and discriminating cultivar ori-

gins using PLS-DA. PLS-DA is a dimensionality reduction technique, a variant of

partial least squares regression (PLS-R) that is used when the response variable

is categorical. It is a compromise between the usual discriminant analysis and a

discriminant analysis on the principal components of the predictor variables. In

particular, PLS-DA instead of finding hyperplanes of maximum covariance between

the response and independent variables finds a linear regression model by projecting

the predicted variables and the observed variables into a new space (Kemsley 1996).
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PLS-DA can provide good insight into the causes of discrimination via weights and

loadings, which gives it a unique role in exploratory data analysis, for example in

metabolomics via visualization of significant variables such as metabolites or spec-

troscopic peaks (Kemsley 1996, Brereton & Lloyd 2014, Wehrens & Mevik 2007).

However, for comparison purposes, we also analyze the results obtained by other

commonly used non-parametric classification models such as K-nearest neighbor

(KNN), support vector machine (SVM) (Balabin et al. 2010, Misaki et al. 2010,

Tran et al. 2006, Joachims 2005), and some variants of discriminant functions for

sparse data as such as diagonal linear discriminant analysis (DLDA), maximum un-

certainty linear discriminant analysis (MLDA), and shrunken linear discriminant

analysis (SLDA). All the three regularization techniques compute linear discrimi-

nant functions (Hastie et al. 1995, Clemmensen et al. 2011, Thomaz et al. 2006,

Fisher & Sun 2011, Dudoit et al. 2002, Guo et al. 2006).

The chapter is structured as follows: in Section 1.2 we provide a background on

the most commonly used non-parametric statistical methodologies to solve the clas-

sification problem of sparse data (i.e., KNN and SVM) and an overview of different

classifiers derived from linear discriminant analysis (LDA), in Section 1.3 we focus

on the PLS-DA model with a deeper examination of the PLS algorithm, in Section

1.4 we show a comparison of the results obtained by the application of PLS-DA and

those obtained by the other common classification methods, and finally in Section

1.5 we provide some suggestions and ideas for future research.

1.2 Background

In this section, we present a brief overview of different classifiers that have been

highly successful in handling high dimensional data classification problems, starting

with popular methods such as K-nearest neighbor (KNN) and support vector ma-

chines (SVM) (Dudoit et al. 2002, Zhang et al. 2006) and variants of discriminant

functions for sparse data (Clemmensen et al. 2011). We also examine dimensional-

ity reduction techniques and their integration with some existing algorithms (i.e.,

partial least squares discriminant analysis (PLS-DA)) (Kemsley 1996, Brereton &

Lloyd 2014).

1.2.1 K-Nearest Neighbor (KNN)

The KNN method was first introduced by Fix and Hodges (Fix & Hodges 1989)

based on the need to perform discriminant analysis when reliable parametric esti-
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mates of probability densities are unknown or difficult to determine. In this method,

a distance measure (e.g., Euclidean) is assigned between all points in the data. The

data points, K-closest neighbors (where K is the number of neighbors), are then

found by analyzing a distance matrix. The K-closest data points are then found

and analyzed in order to determine which class label is the most common among the

set. Finally, the most common class label is then assigned to the data point being

analyzed (Balabin et al. 2010).

The KNN classifier is commonly based on the Euclidean distance between a test

sample and the specified training samples. Formally, let xi be an input sample with

J features (xi,1, . . . ,xi,J), and n be the total number of input samples (i = 1, . . . , n).

The Euclidean distance between sample xi and xl (l = 1, . . . , n) is defined as

d(xi,xl) =
√

(xi,1 − xl,1)2 + · · ·+ (xi,J − xl,J)2. (1.1)

Using the latter characteristic, the KNN classification rule is to assign to a test

sample the majority category label of its K nearest training samples. In other

words, K is usually chosen to be odd, so as to avoid ties. The K = 1 rule is

generally called the 1-nearest-neighbor classification rule.

Then, let xi be a training sample and x∗
i be a test sample, and let ω be the true

class of a training sample and ω̂ be the predicted class for a test sample (ω, ω̂ =

. . . ,Ω), where Ω is the total number of classes. During the training process, only

the true class ω of each training sample to train the classifier is used, while during

testing the class ω̂ of each test sample is predicted. With 1-nearest neighbor rule,

the predicted class of test sample x∗
i is set equal to the true class ω of its nearest

neighbor, where zi is a nearest neighbor to x∗
i if the distance

d(zi,x
∗
i ) = min

j
{d(zj,x

∗
i )}. (1.2)

For the K-nearest neighbors rule, the predicted class of test sample x∗
i is set equal

to the most frequent true class among the K nearest training samples.

1.2.2 Support Vector Machine (SVM)

The SVM approach was developed by Vapnik (Suykens & Vandewalle 1999, Cortes

& Vapnik 1995). Synthetically, SVM is a linear method in a very high dimensional

feature space that is nonlinearly related to the input space. The method maps

input vectors to a higher dimensional space where a maximal separating hyperplane

is constructed (Joachims 2005). Two parallel hyperplanes are constructed on each

side of the hyperplane that separates the data and maximizes the distance between

the two parallel hyperplanes. An assumption is made that the larger the margin or
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distance between these parallel hyperplanes, the better the generalization error of

the classifier will be.

SVM was initially designed for binary classification. To extend SVM to the multi-

class scenario, a number of classification models were proposed (Wang & Xue 2014).

Formally, given training vectors xi ∈ �
J , i = 1, . . . , n∗, in two classes, and the label

vector Y ∈ {−1, 1}n
∗

(where n∗ in the size of the training samples), the support

vector technique requires the solution of the following optimization problem:

min
w∈H,b∈�,ξi∈�

1

2
wTw + C

n∗∑
i=1

ξi,

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , n∗,

(1.3)

where w ∈ �J is the weights vector, C ∈ �+ is the regularization constant (i.e.,

the ”cost” parameter), ξ are the data points to classify, and the mapping function

ϕ projects the training data into a suitable feature space H.

For a K-class problem, many methods use a single objective function for training

all K-binary SVMs simultaneously and maximize the margins from each class to

the remaining ones (Wang & Xue 2014, Weston & Watkins 1998). An example is

the formulation proposed by Weston and Watkins (Weston & Watkins 1998). Given

a labeled training set represented by {(x1, y1), . . . , (xn∗ , yn∗)}, where xi ∈ �
J and

yi ∈ {1, . . . , K}, this formulation is given as follows:

min
wk∈H,b∈�K ,ξ∈�n∗

×K

1

2

K∑
k=1

wT
kwk + C

n∗∑
i=1

∑
t �=yi

ξi,t,

subject to wT
yi
ϕ(xi) + byi) ≥ wT

t ϕ(xi) + bt + 2− ξi,t,

ξi,t ≥ 0, i = 1, . . . , n∗, t ∈ {1, . . . , K}.

(1.4)

The resulting decision function is given in Equation 1.5 (Wang & Xue 2014).

argmax
k

fm(x) = argmax
k

(wT
k ϕ(xi) + bk). (1.5)

1.2.3 Discriminant Analysis functions

In this section we present a comprehensive overview of different classifiers derived by

Linear Discriminant Analysis (LDA), and that have been highly successful in han-

dling high dimensional data classification problems: Diagonal Linear Discriminant

Analysis (DLDA), Maximum uncertainty Linear Discriminant Analysis (MLDA),

and Shrunken Linear Discriminant Analysis (SLDA). All the three regularization

techniques compute Linear Discriminant Functions, by default after a preliminary
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variable selection step, based on alternative estimators of a within-groups covari-

ance matrix that leads to reliable allocation rules in problems where the number of

selected variables is close to, or larger than, the number of available observations.

The main purpose of discriminant analysis is to assign an unknown subject to

one of K classes on the basis of a multivariate observation x = (x1, . . . , xJ)
′, where

J is the number of variables. The standard LDA procedure does not assume that

the populations of the distinct groups are normally distributed, but it assumes im-

plicitly that the true covariance matrices of each class are equal because the same

within-class covariance matrix is used for all the classes considered (Thomaz et al.

2006, Wichern & Johnson 1992). Formally, let Sb be the between-class covariance

matrix defined as

Sb =
K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T , (1.6)

and let Sw be the within-class covariance matrix defined as

Sw =
K∑
k=1

(nk − 1)Sk =
K∑
k=1

nk∑
i=1

(xk,i − x̄k)(xk,i − x̄k)
T , (1.7)

where xk,i is the J-dimensional pattern i from the k-th class, nk is the number of

training patterns from the k-th class, andK is the total number of classes (or groups)

considered. The vector x̄k and matrix Sk are respectively the unbiased sample mean

and sample covariance matrix of the k-th class, while the vector x̄ is the overall

unbiased sample mean given by

x̄ =
1

n

K∑
k=1

nkx̄k =
1

n

K∑
k=1

nk∑
i=1

xk,i, (1.8)

where n is the total number of samples n = n1 + · · ·+ nK .

Then, the main objective of LDA is to find a projection matrix (here defined

as PLDA) that maximizes the ratio of the determinant of the between-class scatter

matrix to the determinant of the within-class scatter matrix (Fisher’s criterion).

Formally,

PLDA = argmax
P

det
(
PTSbP

)
det (PTSwP)

. (1.9)

It has been shown (Devijver & Kittler 1982) that Equation (1.9) is in fact the

solution of the following eigenvector system problem:

SbP− SwPΛ = 0. (1.10)
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Note that by multiplying both sides by S−1
w , Equation (1.10) can be rewritten as

S−1
w SbP− S−1

w SwPΛ = 0

S−1
w SbP−PΛ = 0

(S−1
w Sb)P = PΛ,

(1.11)

where P and Λ are respectively the eigenvector and eigenvalue matrices of the S−1
w Sb

matrix. These eigenvectors are primarily used for dimensionality reduction, as in

principal component analysis (PCA) (Rao 1948).

However, the performance of the standard LDA can be seriously degraded if there

are only a limited number of total training observations n compared to the number

of dimensions of the feature space J . In this context, in fact the Sw matrix becomes

singular. To solve this problem, Thomaz et al. (2006), Yu & Yang (2001) have

developed a direct LDA algorithm (called DLDA) for high dimensional data with

application to face recognition that diagonalizes simultaneously the two symmetric

matrices Sw and Sb. The idea of DLDA is to discard the null space of Sb by diago-

nalizing Sb first and then diagonalizing Sw.

The following steps describe the DLDA algorithm for calculating the projection

matrix PDLDA:

1. diagonalize Sb, that is, calculate the eigenvector matrix V such that VTSbV = Λ;

2. let Y be a sub-matrix with the first m columns of V corresponding to the Sb

largest eigenvalues, where m ≤ rank(Sb). Calculate the diagonal m×m sub-matrix

of the eigenvalues of Λ as Db = YTSbY;

3. let Z = YD
−1/2
b be a whitening transformation of Sb that reduces its dimension-

ality from J to m (where ZTSbZ = I). Diagonalize ZTSwZ, that is, compute U and

Dw such that UT (ZTSwZ)U = Dw;

4. calculate the projection matrix as PDLDA = D
−1/2
w UTZT .

Note that by replacing the between-class covariance matrix Sb with total covariance

matrix ST (ST = Sb + Sw), the first two steps of the algorithm become exactly the

PCA dimensionality reduction technique (Yu & Yang 2001).

Two other approaches commonly used to avoid both the critical singularity and

instability issues of the within-class covariance matrix Sw are SLDA and the MLDA

(Thomaz et al. 2006). Firstly, it is important to note that the within-class covari-

ance matrix Sw is essentially the standard pooled covariance matrix Sp multiplied

by the scalar (n−K). Then,

Sw =
K∑
k=1

(nk − 1)Sk = (n−K)Sp. (1.12)
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From this property, the key idea of some regularization proposals of LDA (Guo

et al. 2006, Campbell 1980, Peck & Van Ness 1982) is to replace the pooled covari-

ance matrix Sp of the within-class covariance matrix Sw with the following convex

combination:

Ŝp(γ) = (1− γ)Sp + γλ̄I, (1.13)

where γ ∈ [0, 1] is the shrinkage parameter, which can be selected to maximize

the leave-one-out classification accuracy (Cawley & Talbot 2003), I is the identity

matrix, and λ̄ = J−1
∑J

j=1 λj is the average eigenvalue, which can be written as

J−1trace(Sp). This regularization approach, called SLDA, would have the effect of

decreasing the larger eigenvalues and increasing the smaller ones, thereby counter-

acting the biasing inherent in eigenvalue sample-based estimation (Thomaz et al.

2006, Hastie et al. 1995).

In contrast, in the MLDA method a multiple of the identity matrix determined

by selecting the largest dispersions regarding the Sp average eigenvalue is used. In

particular, if we replace the pooled covariance matrix Sp of the covariance matrix Sw

(shown in Equation (1.12)) with a covariance estimate of the form Ŝp(δ) = Sp + δI

(where δ ≥ 0 is an identity matrix multiplier), then the eigen-decomposition of a

combination of the covariance matrix Sp and the J × J identity matrix I can be

written as

Ŝp(δ) = Sp + δI

=
r∑

j=1

λjφj(φj)
T + δ

J∑
j=1

φj(φj)
T

=
r∑

j=1

(λj + δ)φj(φj)
T +

J∑
j=1

δφj(φj)
T ,

(1.14)

where r is the rank of Sp (note that r ≤ J), λj is the j-th eigenvalue of Sp,

φj is the j-th corresponding eigenvector, and δ is the identity matrix multiplier

previously defined. In fact, in Equation (1.14) the identity matrix is defined as

I =
∑J

j=1 φj(φj)
T . Now, given the convex combination shown in Equation (1.13),

the eigen-decomposition can be written as

Ŝp(γ) = (1− γ)Sp + γλ̄I

= (1− γ)
r∑

j=1

λjφj(φj)
T + γ

J∑
j=1

λ̄φj(φj)
T .

(1.15)

The steps of the MLDA algorithm are shown follows:

1. Find the Φ eigenvectors matrix and Λ eigenvalues matrix of Sp, where Sp =
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(n−K)Sw (from Equation (1.12));

2. Calculate Sp average eigenvalues as J−1trace(Sp);

3. Construct a new matrix of eigenvalues based on the following largest dispersion

values :

Λ∗ = diag
[
max(λ1, λ̄), . . . ,max(λJ , λ̄)

]
;

4. Define the revised within-class covariance matrix:

S∗
w = (n−K)S∗

p = (n−K)(ΦΛ∗ΦT ).

Then, the MLDA approach is based on replacing Sw with S∗
w in the Fisher’s criterion

formula described in Equation (1.9).

1.3 Partial Least Squares Discriminant Analysis

(PLS-DA)

Multivariate regression methods like principal component regression (PCR) and par-

tial least squares regression (PLS-R) enjoy large popularity in a wide range of fields

and are mostly used in situations where there are many, possibly correlated, predic-

tor variables and relatively few samples, a situation that is common, especially in

chemistry, where developments in spectroscopy since the seventies have revolution-

ized chemical analysis (Wehrens & Mevik 2007, Pérez-Enciso & Tenenhaus 2003).

In fact, the origin of PLSR lies in chemistry (Wehrens & Mevik 2007, Martens 2001,

Wold 2001).

PCR performs a principal components analysis on the predictors and then fits a

linear regression on the chosen reduced dimension. PLS-R, on the other hand, per-

forms the dimensionality reduction by repeatedly regress the response variable on

each single predictor: in fact, the response variable participates to the dimensional

reduction (Friedman et al. 2001).

Partial least squares discriminant Analysis (PLS-DA) is a variant of PLS-R that

can be used when the response variable Y is categorical. Under certain circum-

stances, PLS-DA provides the same results as the classical approach of Euclidean

distance to centroids (EDC) (Davies & Bouldin 1979) and under other circum-

stances, the same as that of linear discriminant analysis (LDA) (Izenman 2013).

However, in different contexts this technique is specially suited to deal with models

with many more predictors than observations and with multicollinearity, two of the

main problems encountered when analyzing hyperspectral detection data (Pérez-

Enciso & Tenenhaus 2003).
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1.3.1 Model and algorithm

PLS-DA is derived from PLS-R, where the response vector Y assumes discrete

values. In the usual multiple linear regression model (MLR) approach we have

Y = XB+ F, (1.16)

where X is the n× J data matrix, B is the J × 1 regression coefficients matrix, F is

the n×1 error vector, and Y is the n×1 response variable vector. In this approach,

the least squares solution is given by B = (XTX)−1XTY.

In many cases, the problem is the singularity of the XTX matrix (e.g., when

there are multicollinearity problems in the data or the number of predictors is larger

than the number of observations). Both PLS-R and PLS-DA solve this problem by

decomposing the data matrix X into P orthogonal scores T (n × P ) and loadings

matrix Λ (J × P ), and the response vector Y into P orthogonal scores T (n × P )

and loadings matrix Q (1 × P ). Then, let E and F be the n × J and n × 1 error

matrices associated with the data matrix X and response vector Y , respectively.

There are two fundamental equations in the PLS-DA model:

X = TΛT + E

Y = TQT + F.
(1.17)

Now, if we define a J × P weights matrix W, we can write the scores matrix as

T = XW(ΛTW)−1, (1.18)

and by substituting it into the PLS-DA model, we obtain

Y = XW(ΛTW)−1QT + F, (1.19)

where the regression coefficient vector B is given by

B̂ = W(ΛTW)−1QT. (1.20)

In this way, an unknown sample value of Y can be predicted by Ŷ = XB̂, i.e.

Ŷ = XW(ΛTW)−1QT. The PLS-DA algorithm estimates the matrices W, T, Λ,

and Q through the following steps (Brereton & Lloyd 2014).
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Algorithm 1 Partial Least Squares
1: Fixed P , initialize the residuals matrices E0 = X and F0 = Y;

2: for p = 1 to P do

3: Calculate PLS weights vector

Wp = ET
0 F0;

4: Calculate and normalize scores vector

Tp = E0Wp(W
T
pE

T
0 E0Wp)

−1/2 ;

5: Calculate the X loadings vector

Λp = ET
0 Tp;

6: Calculate Y loading

Qp = FT
0 Tp;

7: Update the X residuals vector

E0 = E0 −TpΛ
T
p ;

8: Update the Y residuals vector

F0 = F0 −TpQ
T
p ;

9: end for

10: Obtain output matrices W, T, Λ, Q.

1.4 Application on real data

In this section we show an application of the method to real data. In particular, we

compare the results obtained by partial least squares discriminant analysis (PLS-

DA) and the other classification techniques discussed in Section 1.2. Brereton &

Lloyd (2014) report good motivations which brings the researchers to compare PLS-

DA with other discriminant functions. Moreover, we have also added other two

non-parametric approaches in our application study (i.e., SVM and KNN) which

are reference classification approaches to solve the high dimensionality problems.

1.4.1 Dataset

The dataset consists of 162 drupes of olives harvested in 2010 belonging to three

different cultivars (response variable): 54 Dolce di Andria (low phenolic concentra-

tion), 54 Moraiolo (high phenolic concentration), and 54 Nocellara Etnea (medium

phenolic concentration). Spectral detection is performed using a portable NIR de-

vice (diffuse reflectance mode) in the 1100–2300 nm wavelength range, with 2 nm

wavelength increments (601 observed variables) (Bellincontro et al. 2012). In Figure

1.1 the NIR spectra in function of wavelength range is presented.
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Figure 1.1: Representation of spectral detections performed on the 1100–2300 nm

wavelength range

1.4.2 Principal results

In order to evaluate the prediction capability of the model, the entire data set has

been randomly divided into a training set composed of 111 balanced observations

(i.e., about 70% of the entire sample, with each class composed of 37 elements), and

a test set (drawn from the sample) composed of 51 observations balanced across the

three cultivars (i.e., about 30% of the entire sample and each class composed by 17

elements) (Guyon et al. 1998).

The first step of the analysis consists in selecting the optimal number of compo-

nents P , i.e., the number of latent scores to consider for representing the original

variable space. For this purpose, the latent subspace must explain the largest possi-

ble proportion of the total variance to guarantee the best model estimation. Table

1.1 shows the proportion of the total variance explained by the first five components

identified by PLS-DA. The table shows that the first two components explain about

97% of the total variance, and only the first two latent scores have a very high con-

tribution.

Table 1.1: Cumulative proportion of the total variance explained by the first five

components (percent values)

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

Exp.Variance 61.152 35.589 0.892 0.982 1.167

Cum. Sum 61.152 96.741 97.633 98.615 99.782

Thus, it seems that the best latent subspace is represented by the plane composed

of the first two identified components. However, in order to guarantee the best
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model estimate, it is also useful to understand its prediction quality with regard

to the different subspace dimensions. In other words, the selection of the optimal

number of components must be related to some criterion that ensures the maximum

prediction quality of the estimated model. In this work, we propose the maximum

reduction of the misclassification error rate criterion - applied on the comparison

between the real training partition and the predicted training partition - in order

to choose the number of components of PLS-R. Figure 1.2 represents the error rate

values for different numbers of components (i.e., from 2 to 10 selected components).
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Figure 1.2: Error rate values with respect to different choices of components number

The scree-plot shown in Figure 1.2 suggests P = 3 as the optimal number of

components, where the minimum value of the misclassification error rate is equal to

0.07. Then, we can select three components to estimate the model.

Figure 1.3 shows the loadings distributions and the squared of the loadings distri-

butions of the three Ts’ latent scores, measured on all the observed variables (i.e.,

on the 1100–2300 nm wavelength range). By observing the behavior of the loadings,

we can say that the wavelengths from about 1100 nm to about 1500 nm have a high

negative contribution to the first two components, while they have a positive contri-

bution to the third component; the wavelengths from about 1500 nm to about 1900

nm have a negative contribution to all three components, with the largest contribu-

tion to the first component; finally, the wavelengths from about 1900 nm to about

2300 nm have a positive contribution to both the first and the third component,

while they have a negative contribution to the second component.
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Figure 1.3: The loadings distributions (top) and squared loadings distributions (bot-

tom) of the three latent scores measured on all the observed variables

The partition obtained by PLS-DA on the three latent scores is represented in

Figure 1.4.

0.0 0.5 1.0

0.
0

0.
5

1.
0 var 1

−
0.

5
0.

0
0.

5
1.

0

0.0 0.5 1.0

0.
0

0.
5

1.
0

var 2

−0.5 0.0 0.5 1.0 0.0 0.5 1.0

0.
0

0.
5

1.
0var 3

Dolce di Andria

Moraiolo

Nocellara Etnea

Figure 1.4: Partition obtained by PLS-DA represented on the three estimated latent

scores

From the figure, we can see that the partition identified by PLS-DA shows very

separated and homogeneous groups maintaining the same features of the original

partition of data. Note that PLS-DA partition has a very low misclassification rate,

equal to 0.002.

Now, we compare the classification results obtained by the PLS-DA procedure

with results obtained by other classifiers, including K-nearest neighbor (KNN), sup-

port vector machine (SVM), diagonal linear discriminant analysis (DLDA), maxi-
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mum uncertainty linear discriminant analysis (MLDA), and shrunken linear dis-

criminant analysis (SLDA). For the measurement of the model prediction quality,

we have used misclassification rate (MIS) and the chi-squared test (χ2). The mea-

sures have been computed on the comparison between the real data partition and

the predicted partition.

Formally, let Table 1.2 be the K ×K confusion matrix where the real data par-

tition (called R) and the predicted partition (called P ) have been compared,

MIS = 1− n−1

[
R∑

r=1

C∑
=1

nrc

]
.

Table 1.2: An example of a confusion matrix between the real data partition and

the predicted partition

Predicted partition

P1 · · · PC

Real partition R1 n11 · · · n1C n1·

...
...

. . .
...

...

RR nR1 · · · nRC nR·

n·1 · · · n·C n

Table 1.3 shows the results for the quality of the model predictions obtained on the

training set and the test set.

Table 1.3: Model prediction quality computed on the training set and the test set

Training set Test set

MIS χ2 MIS χ2

PLS-DA 0.002 153.283 0.008 77.182

KNN 0.027 151.744 0.157 65.294

SVM 0.072 152.688 0.137 69.750

DLDA 0.241 101.599 0.255 46.714

MLDA 0.078 149.577 0.010 72.311

SLDA 0.005 150.456 0.011 75.899

From the results, we can see that PLS-DA has the best performance on both

the training set and the test set. This result is confirmed by the representation of

the predicted partition on the first three Ts’ latent scores (i.e., on about 97% of
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From the scatter plot 3D we can see that in terms of classification, an appreciable

separation among all observations referring to the three cultivars used has been

obtained by a good discrimination among samples of the cultivar Dolce di Andria

(points in black color) and the two other cultivars, while the separation between

samples of the cultivars Moraiolo, and Nocellara Etnea (points in color red and

green, respectively) appears was a bit difficult.

1.5 Concluding remarks

Data acquired via spectroscopic detection represent a hard challenge for researchers,

who face two crucial problems: data dimensionality larger than the number of ob-

servations, and high correlation levels among the variables. In this work, partial

least squares discriminant analysis (PLS-DA) modeling was proposed as a method

to classify hyperspectral data. The results obtained on real data show that PLS-

DA identifies classes that are more homogeneous and better-separated than other

commonly used methods, such as other discriminant functions and some other non-

parametric classifiers.

Moreover, we think that PLS-DA is a very important tool in terms of dimen-

sionality reduction, as it can maximize the total variance of data using just a few

components (i.e., the Ts’ latent scores). In fact, the PLS-DA components enable

a good graphical representation of the partition, which is not possible with other

approaches.





Chapter 2

Multiple Correspondence

K -Means: simultaneous vs

sequential approach for

dimensionality reduction and

clustering

2.1 Introduction

In the era of ”big data”, complex phenomena - representing reality in economic,

social and many other fields - are frequently described by a large number of sta-

tistical units and variables. Researchers who have to deal with this abundance of

information are often interested to explore and extract the relevant relationships by

detecting a reduced set of prototype units and a reduced set of prototype latent vari-

ables, both representing the ”golden knowledge” mined from the observed data. This

dimensionality reduction of units and variables is frequently achieved through the

application of two types of methodologies: a discrete classification method, produc-

ing hierarchical or non-hierarchical clustering and a dimensionality reduction model

that defines the latent factors. The two methodologies, generally are independently

applied. In fact, firstly, the factorial method is used to determine a reduced set

of latent variables and then the clustering algorithm is computed on the achieved

factors. This sequential strategy of analysis has been called tandem analysis (TA)

by Arabie & Hubert (1996). With applying first the factorial method it is believed

that all the relevant information regarding the relationships of variables is selected
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by the factorial method, while, the residual information represents noise that can be

discarded. Then, the clustering of units complete the dimensionality reduction of

data by producing prototype units generally described by centroids, that is, mean

profiles of units belonging to clusters.

However, some authors have noted that TA in some situations cannot be reliable

because the factorial models applied first may identify factors that do not necessar-

ily include all the information on the clustering structure of units (Desarbo et al.

1991). In other words the factorial method may filter out some of the relevant in-

formation for the subsequent clustering. A solution to this problem is given by a

methodology that includes the simultaneous detection of factors and clusters on the

observed data. Many alternative methods combining cluster analysis and the search

for a reduced set of factors have been proposed, focusing on factorial methods, mul-

tidimensional scaling or unfolding analysis and clustering (Heiser 1993, De Soete

& Heiser 1993). De Soete & Carroll (1994) proposed an alternative model to the

K -means procedure, named reduced K -means (RKM), which appeared to equal pro-

jection pursuit clustering (PPC) earlier proposed by Bolton & Krzanowski (2003).

RKM simultaneously searches for a clustering of objects, based on the K -means

criterion (MacQueen et al. 1967), and a dimensionality reduction of the variables,

based on component analysis. However, this approach may fail to recover the clus-

tering of objects when the data have much variance in directions orthogonal to the

subspace of the data in which the clusters are allocated (Timmerman et al. 2010).

To solve this problem, Vichi & Kiers (2001) proposed the factorial K -means (FKM)

model. FKM combines K -means cluster analysis with PCA, then finding the best

subspace that best represents the clustering structure in the data. In other words,

FKM selects the most relevant variables by producing factors that best identify the

clustering structure in the data. Both RKM and FKM proposals are good alterna-

tive to TA in the case of numeric variables have been considered.

When categorical (nominal) variables are observed, TA corresponds to apply first

multiple correspondence analysis (MCA) and subsequently the K -means clustering

on the achieved factors (i.e., latent scores). As far as we know there are no stud-

ies that verify if TA has the same problems observed for quantitative variables.

Thus, the first aim of this work is to discuss if there are limits of TA in the case

of categorical data, the second and most relevant aim of the work is to present a

methodology, named multiple correspondence K -means (MCKM), for simultaneous

dimensionality reduction and clustering in the case of categorical data. The chapter

is structured as follows: in section 2.2 a background on the sequential and simul-

taneous approaches is provided, showing an example where TA for categorical data

fails to identify the correct clusters structure in the data. This is a good motivating

example that justifies the use of a simultaneous methodology. In section 2.3 details
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on the MCKM model are shown and the alternative least-square (ALS) algorithm

is proposed for MCKM parameters estimation. In section 2.4 the main theoretical

and applied proprieties of the MCKM are discussed and finally, in section 2.5 an

application on a real benchmark data set is given to show the MCKM performance.

2.2 Statistics background and motivating exam-

ple

Let X = [xij] be a N×J data matrix corresponding to N units (objects) on which J

categorical (nominal) variables have been observed, tandem analysis (TA) (Arabie &

Hubert 1996, Desarbo et al. 1991) is the statistical multivariate procedure that uses

two methodologies: (i) a dimensionality reduction (factorial) method for finding a

set of P factors (generally, P < J) that better reconstructing the J observed vari-

ables (e.g., principal component analysis (PCA) or factor analysis (FA)); and (ii) a

clustering method that partitions the N multivariate objects into K homogeneous

and isolated clusters (e.g., K -means (KM), or gaussian mixture models (GMM)).

In TA first the factorial method is applied to define a matrix of component scores;

then, the clustering method is applied, sequentially, on the component score matrix

to identify the clusters structure. The first methodology detects the maximal part of

the total variance by using a reduced set of P components; while the second method

maximizes the between variance of the total variance explained in the first analysis.

Thus, the variance explained by the factorial method could not be all the between

variance of the original variables necessary for the successive clustering methodol-

ogy. Actually, it may happen that some noise masking the successive clustering

could have been included in the P components. Vichi & Kiers (2001) show an in-

structive example where a data set formed by variables with a clusters structure and

other variables without clusters structure (noise), but having high variance, has been

considered. When TA is applied on this typology of data, PCA generally explains

also part of the noise data (i.e., where the maximum variance there is). These last

tend to mask the observed clusters structure, and as a consequence, several units

are misclassified.

If the J variables considered in the matrix X are categorical, then TA corre-

sponds, usually, to apply multiple correspondence analysis (MCA) and K -means

(KM), where this last is sequentially applied on the factors identified by MCA. The

researcher may ask if TA for the categorical variables has the same limits discussed

for the quantitative case. Before considering this, let us first formalize TA in the

categorical data case.
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The MCA model can be written as

J1/2JBL1/2 = YAT + EMCA , (2.1)

where Y = J1/2JBL1/2A is the N × P score matrix of MCA; A is the J × P

column-wise orthonormal loadings matrix (i.e., ATA = IP ); J
1/2JBL1/2 = X is the

centered data matrix corresponding to the J qualitative variables, with the binary

block matrix B = [B1, . . . ,Bj] composed by J indicator binary matrices Bj with

elements bijm = 1 if the ith has assumed categorym for variable j, bijm = 0 otherwise;

L = diag(BT1N); J = IN −N−11N1
T
N is the idempotent centering matrix with 1N

the N -dimensional vector of unitary elements.

The KM model applied on the MCA scores matrix Ŷ = J1/2JBL1/2Â can be written

as

Ŷ = UȲ + EKM , (2.2)

where U is the N × K binary and row stochastic memberships matrix, i.e., uik ∈

{0, 1} with i = 1, . . . , N and k = 1, . . . , K and U1K = 1N , identifying a partition

of objects and Ȳ is the K × P corresponding centroid matrix in the P -dimensional

space. Note that Y = XA, while Ȳ = X̄A. Finally, EMCA and EKM are the N ×J

error matrices of MCA and KM, respectively.

The least-squares (LS) estimation procedure of the model shown in Equation (2.1)

corresponds to minimize the loss function⎧⎪⎪⎨
⎪⎪⎩
||J1/2JBL1/2 −YAT ||2 →

A
min

ATA = IP

Y = J1/2JBL1/2

, (2.3)

while LS estimation of model shown in Equation (2.2) relates to minimize the loss

function ⎧⎪⎪⎨
⎪⎪⎩
||Ŷ −UȲ||2 →

U,Ȳ
min

U ∈ {0, 1}

U1K = 1N

, (2.4)

Thus, given the LS estimates Â, Û, ˆ̄Y of MCA and KM, and considering Y =

J1/2JBL1/2Â, the TA procedure has an overall objective function equal to the sum

(or mean) of the two objective functions of MCA and KM; formally,

f(Ŷ, Â, Û, ˆ̄Y) =
1

2

(
||J1/2JBL1/2 − ŶÂ

T
||2 + ||Ŷ − Û ˆ̄Y||2

)
. (2.5)

Therefore, TA is the procedure that optimizes sequentially the two objective func-

tions of MCA and KM, which loss can be summarized by the quantity shown in
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Equation (2.5). However, we now show with an example that this sequential es-

timation has some limits similar to those highlighted in the quantitative variables

case. In Figure 2.1, the heat-map of the data matrix of 90 units according to 6

qualitative categorical variables, each one with 9 categories, is shown.
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Figure 2.1: Heat-map of the 90 × 6 categorical variables with 9 categories for each

variable

This is a synthetic data set composed by multinomial distributions. The first two

variables are a mixture of three multinomial distributions with values from 1 to 3,

from 4 to 6 and from 7 to 9, respectively, thus defining three clusters of units, each

one with equal size (30 units). The other four variables are multinomial distribu-

tions with values from 1 to 9 with equal probabilities, thus these do not define any

clusters structure of data. We suppose that this is an example of a simulated data

set of 90 customers who have expressed their preferences on 6 products on the basis

of a Likert scale from 1 (like extremely) to 9 (dislike extremely), passing through 5

(neither like nor dislike).

The heat-map in Figure 2.1 is a graphical representation of data where the indi-

vidual values contained in the matrix are represented as different levels of blur from

white (value 1) to blue (value 9) (1 like extremely, 2 like very much, 3 like moder-

ately, 4 like slightly, 5 neither like nor dislike, 6 dislike slightly, 7 dislike moderately,

8 dislike very much, 9 dislike extremely). By examining the columns of the heat-

map (corresponding to products) it can be confirmed that the first two (products

A, B) have a well-defined clusters structure. In fact, the first 30 customers dislike

(moderately, very much and extremely) the two products having chosen attributes

from 7 to 9, for both products. Customers from 31 to 60 having values from 4 to 6

and from 1 to 3, for the first and second column, respectively, are almost neutral on
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the first product (like slightly, nether like nor dislike, dislike slightly), but they like

the second product (extremely, very much or moderately). Finally, customers from

61 to 90 have values from 1 to 3 and from 4 to 6 in the first and second column,

respectively, thus, they like the first product and are substantially neutral for the

second. For the other four products (C, D, E, F) the 90 customers do not show a

systematic clusters pattern with values that range randomly with equal probability

from 1 to 9. Therefore, the 90 customers have two patterns of preferences: ”clus-

tered” for products A, B and ”random” for products C, D, E and F.

On the 90× 6 data matrix defined, TA was applied by computing first the MCA

model and subsequently, by running the K -means algorithm on the first two compo-

nents identified by MCA. Figure 2.2, shows the biplot of categories of the 6 variables

named A, B, C, D, E, F and followed by a number between 1 and 9 to distinguish

categories. The total loss of the function shown in Equation (2.5) is 7.39.

Figure 2.2: Biplot of the 90×6 qualitative variables (A, B, C, D, E, F) with categories

from 1 to 9. The three generated clusters are represented by three different colors

It can be clearly seen from the biplot that the most relevant categories are those

of the two variables A and B together with other categories e.g., F7, C7, E9, D1

from variables F, C, E and D. Thus, the clustered and the random patterns of the

customers are assorted and not clearly distinguishable in the biplot. Furthermore,

TA tends to mask the three clusters of costumers, each one originally formed by 30

customers, as shown in Table 2.1. In fact, the points classified in the three groups

are 40, 28 and 22, respectively. Thus, 11 customers (12%) are misclassified (3 from

the second cluster and 8 from the last cluster). The adjusted Rand index (ARI)

discussed in Rand (1971) and Hubert & Arabie (1985) computed on the comparison
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between the generated three clusters and the three clusters obtained by K -means is

equal to 0.6579.

Table 2.1: Contingency table between K-Means groups and simulated groups

K-means groups

Group 1 Group 2 Group 3 Total

Simulated groups

Group 1 30 0 0 30

Group 2 3 27 0 30

Group 3 7 1 22 30

Total 40 28 22 90

Then, TA describes imprecisely the three clusters and defines components which

do not clearly distinguish the two different preference patterns: the clustered for

products A, B and the random for the products C, D, E, F.

2.3 Multiple Correspondence K -Means: model

and algorithm

2.3.1 Model

Hwang et al. (2006) propose a convex combination of the homogeneity both for the

criterion MCA and for the criterion K -means; in this work let us use a different

approach by specifying a model for the data, replacing Equation (2.2) into Equation

(2.1). Thus, it follows that

J1/2JBL1/2 = (UȲ + EKM)AT + EMCA , (2.6)

and rewriting the error term EMCKM = EKMAT +EMCA, the resulting equation is

here named multiple correspondence K -means (MCKM) model:

J1/2JBL1/2 = (UȲA
T
+ EMCKM) . (2.7)

MCKM model identifies, simultaneously, the best partition of the N objects de-

scribed by the best orthogonal linear combination of variables according to a single

objective function. The coordinates of the projections onto the basis are given by the

components yip collected in the matrix Y = XA. Within this subspace, hence, with

these components, a partition of objects is sought such that the objects are ”clos-

est” to the centroids of the clusters (Vichi & Kiers 2001). When X = J1/2JBL1/2 is

actually a quantitative data matrix, the least-squares (LS) estimation of the model
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shown in Equation (2.7) is equal to the reduced K -means (RKM) model proposed

by De Soete & Carroll (1994). Additionally, when Equation (2.7) is post-multiplied

both sides by A, the RKM model is transformed into the factorial K -means (FKM)

model, proposed by Vichi & Kiers (2001). Both models have been formalized for

numeric data.

The LS estimation of MCKM corresponds to minimize the objective function

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

||J1/2JBL1/2 −UȲA
T
||2 →

A,U,Ȳ
min

ATA = IP

U ∈ {0, 1}

U1K = 1N

. (2.8)

2.3.2 Alternating least-squares algorithm

The quadratic constrained problem of minimizing Equation (2.8) can been solved

by an alternative least-squares (ALS) algorithm, which is structured on three fun-

damental steps, as follows:

Step 0: Firstly, initial values are chosen for A, U and Ȳ; in particular,

initial values for A and U can be chosen randomly satisfying the constraints

shown in Equation (2.8), while initial values for Ȳ are then given at once by

(UTU)−1UTY.

Step 1: Minimize F ([uik]) = ||J1/2JBL1/2 − UȲA
T
||2 with respect to U,

given the current values of A and Ȳ. The problem is solved for the rows of U

independently by taking uik = 1 if F ([uik]) = min{F ([uiv]) : v = 1, . . . , P ; (v �=

k)}; uik = 0, otherwise.

Step 2: Given U, update A and implicitly Ȳ by minimizing the loss function

in Equation (2.8). The problem is solved by taking the first p eigenvectors of

XT (U(UTU)−1U)TX (Vichi & Kiers 2001).

Step 3: Compute the objective function in Equation (2.8) for the current

values of A, U and Ȳ. When the updates of A, U and Ȳ have decreased the

function value, repeat the step 1 and 2; otherwise, the process has converged.

ALS algorithm monotonically decreases the loss function and, because the con-

straints on U, the method can be expected to be rather sensitive to local minima.

For this reasons, it is recommended the use of many randomly started runs to find

the best solution. In some test, it has been valued that, for a good solution (a good
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local optimum value), the use of 500 random starts usually suffices. Note that the

algorithm is very fast.

2.4 Theoretical and applied properties

2.4.1 Theoretical Property

Proof 1: The least-squares solution of MCKM obtained by solving the quadratic

problem shown in Equation (2.8) subject to constraints ATA = IP , U ∈ {0, 1},

and U1K = 1N is equivalent to the minimization of the objective function shown

in Equation (2.5) used to give an overall estimation of the loss produced by tandem

analysis results. In other words, the following equality can be proved

2f(Ŷ, Â, Û, ˆ̄Y) = ||J1/2JBL1/2− ŶÂ
T
||2 + ||Ŷ− Û ˆ̄Y||2 = ||X−UȲA

T
||2 , (2.9)

where X = J1/2JBL1/2.

In fact, after some algebra the objective function of multiple correspondence K-

means can be written as

||X−UȲA
T
||2 = ||X−UX̄AA

T
||2 = tr(XTX)− tr(XTUX̄AA

T
) . (2.10)

Thus, it is necessary to prove that the objective function of TA is equal to Equation

(2.10).

||X−XAAT ||2 + ||XA−UX̄A||2 =

tr{(X−XAAT )T (X−XAAT )}+ tr{(XA−UX̄A)
T
(XA−UX̄A)} =

tr(XTX)− tr(XTXAAT )− tr(AATXTX) + tr(AATXTXAAT )+

+ tr(ATXTXA)− tr(ATXTUX̄A)− tr(AT X̄TUTXA) + tr(AT X̄TUTUX̄A) .

(2.11)

Now, knowing that UX̄ = U(UTU)−1UTX = PUX, where PU is the idempotent

projector of matrix U, Equation (2.11) can be written as

tr(XTX)− tr(ATXTXA)− tr(AATXTX) + tr(ATXTXA)+

+ tr(AATXTX)− tr(ATXTPUXA)− tr(ATXTPUXA) + tr(ATXTPUPUXA) =

= tr(XTX)− tr(ATXTPUXA)− tr(ATXTPUXA) + tr(ATXTPUXA) =

= tr(XTX)− tr(XTUX̄AA
T
) ,

(2.12)

which complete the prof.
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2.4.2 Applied Property

Let us apply MCKM on the 90× 6 data set used in section 2.2 to show the limits of

TA in the case categorical data are considered. In this case, the loss value obtained

minimizing the function shown in Equation (2.8) is equal to 7.23, better than the

loss obtained by TA, with an improvement of 2%. Even if the improvement seems

small this time the biplot of MCKM in Figure 2.3 shows a very clear synthesis of

the data.

Figure 2.3: Biplot of the multiple correspondence K-means . It can be clearly

observed that the three cluster are homogeneous and well-separated

Categories of products A and B are well-distinguished from categories of products C,

D, E, F and therefore the clustered and random patterns of preferences of customers

are clearly differentiated. Furthermore, the clusters structure of the customers is well

represented in the biplot. In fact, the three clusters are composed each one by 30

customers, as expected, and they are more homogeneous and well-separated with

respect to the clusters in the biplot of TA (Figure 2.2).

In particular, the red cluster is composed by customers who like products A and are

neutral on the product B (the first 30 rows, in the data set). The blue cluster is

composed by customers who like the second product B and dislike the first product

A (the second 30 rows of the data set). Finally, the green cluster of customers is

composed by people that dislike the product B and are neutral of on product A (the

third and last 30 rows of the data set). Then, this time no misclassifications are

observed for the clusters (see Table 2.2) and the two different patterns of products
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are differently represented in the plot as expected.

Table 2.2: Contingency table between MCKM groups and simulated groups

K-Means

Group 1 Group 2 Group 3 Total

Simulated groups

Group 1 30 0 0 30

Group 2 0 30 0 30

Group 3 0 0 30 30

Total 30 30 30 90

2.5 Application on South Korean underwear man-

ufacturer data set

The empirical data presented in this section, is part of a large survey conducted by

a South Korean underwear manufacturer in 1997 (Hwang et al. 2006), where 664

South Korean consumers were asked to provide responses for three multiple-choice

items. In Table 2.3 the frequency distributions of the three categorical variables are

shown.

Table 2.3: Frequency distributions of the South Korean underwear manufacturer

data

BRAND (A) ATTRIBUTES (B) AGE (C)

A01. BYC 201 B01. Comfortable 398 C01. 10 - 29 239

A02. TRY 131 B02. Smooth 65 C02. 30 - 49 242

A03. VICMAN 30 B03. Superior fabrics 29 C03. 50 and over 183

A04. James Dean 72 B04. Reasonable price 33

A05. Michiko-London 11 B05. Fashionable design 67

A06. Benetton 13 B06. Favorable advertisements 7

A07. Bodyguard 166 B07. Trendy color 15

A08. Calvin Klein 40 B08. Good design 4

B09. Various colors 4

B10. Elastic 11

B11. Store is near 3

B12. Excellent fit 20

B13. Design quality 6

B14. Youth appeal 1

B15. Various sizes 1

In particular, the first item asked which of eight brands of underwear the consumer
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most prefers (A): (A01) BYC, (A02) TRY, (A03) VICMAN, (A04) James Dean,

(A05) Michiko-London, (A06) Benetton, (A07) Bodyguard, and (A08) Calvin Klein;

then, both domestic (A01, A02, A03, A04, and A07) and international (A05, A06,

and A08) brands were included. The second item asked the attribute of underwear

most sought by the consumers (B): (B01) comfortable, (B02) smooth, (B03) su-

perior fabrics, (B04) reasonable price, (B05) fashionable design, (B06) favourable

advertisements, (B07) trendy colour, (B08) good design, (B09) various colors, (B10)

elastic, (B11) store is near, (B12) excellent fit, (B13) design quality, (B14) youth

appeal, and (B15) various sizes. The last item asked the age class of each consumer

(C): (C01) 10-29, (C02) 30-49, and (C03) 50 and over.

The analysis starts with the application of multiple correspondence analysis and,

subsequently, the application of K -means on the computed scores (i.e., we apply

tandem analysis). Hwang et al. (2006), suggested to apply MCA by fixing the num-

ber of components equal to 2 since sizes of the adjusted inertias appeared to decrease

slowly after the first two. The results obtained by the MCA are shown in the Table

2.4.

Table 2.4: Results of the MCA model applied on the South Korean underwear

manufacturer data

Sing.

Value
Inertia Chi-square Inertia (%)

Cum.Inertia

(%)

0.726 0.527 1048.930 6.870 6.870

0.644 0.414 824.878 5.400 12.270

Total 0.941 1873.808 12.270

p-value = 0, Degrees of freedom = 196

From Table 2.4, it is worthy to note that the explained variance of the two com-

puted factors is equal to 12.27% of the total inertia. Note that Greenacre (1984)

recommends to adjust the inertias greater than 1/J using the formula proposed by

Benzécri (1979). In the Table 2.5 the computed loadings among the two components

and each category of the data are shown.

From the table, it easy to note that the categories with bigger contributions on

the first component are: the first two brands of underwear (A01 and A02) and the

seventh brand (A07); the fifth attribute (B05); the first and third class of the age

(C01 and C03). Whereas, the categories with bigger contribution on the second

component are: the third, fourth and fifth brand (A03, A04 and A05); the third,

fourth, tenth and thirteenth attribute (B03, B04, B10 and B13); second and third

class of the age (C01 and C03). Then, the two component scores represent a very
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high number of the categories. However, the variables brands (A) and age (C) are

more represented than attributes (B).

Table 2.5: Loading matrix of the MCA model applied on the South Korean under-

wear manufacturer data

Component 1 Component 2

Brand Attributes Age Brand Attributes Age

-0.250 -0.133 0.467 0.177 -0.152 0.102

-0.302 -0.065 -0.163 0.090 0.184 -0.374

-0.134 -0.008 -0.346 -0.363 0.285 0.312

0.135 -0.047 - -0.291 0.234 -

0.161 0.373 - 0.311 0.064 -

0.181 -0.046 - -0.031 -0.036 -

0.334 0.108 - 0.038 0.030 -

0.175 0.123 - -0.077 0.017 -

- -0.097 - - 0.027 -

- -0.082 - - -0.278 -

- -0.020 - - 0.162 -

- -0.002 - - -0.164 -

- 0.152 - - -0.231 -

- 0.099 - - 0.049 -

- -0.067 - - -0.073 -

Subsequently, according to TA approach, the K -means model on the two component

scores has been applied (Figure 2.4).

Figure 2.4: Biplot of the sequential approach applied on South Korean underwear

manufacturer data
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The fixed number of groups is K = 3 as suggested by Hwang et al. (2006). The

plot in Figure 2.4 shows the projection of the single category on the bi-dimensional

factorial plane and the distributions of the computed scores. We can note that the

three defined groups are underlined with different colors. The biplot shows that the

groups are not well separated and they are characterized by a high inside hetero-

geneity. In fact, it is very hard to understand the preferences of the consumers that

belong to the three groups.

Different results have been obtained with the multiple correspondence K -means

approach. Fixing the same number of components and groups, the explained vari-

ance of the two components are around to 20%. The component loadings of the

MCKM are represented in the Table 2.6.

Table 2.6: Loading matrix of the MCKM model applied on the South Korean

underwear manufacturer data

Component 1 Component 2

Brand Attributes Age Brand Attributes Age

0.429 0.029 -0.252 0.159 0.040 -0.057

0.346 0.028 0.062 0.128 0.068 -0.018

0.158 0.034 0.216 0.046 -0.045 0.086

-0.123 0.025 - -0.609 0.007 -

-0.048 -0.161 - -0.238 -0.074 -

-0.052 0.031 - -0.259 0.007 -

-0.694 -0.016 - 0.449 -0.018 -

-0.092 -0.046 - -0.454 0.005 -

- 0.061 - - 0.022 -

- 0.011 - - 0.034 -

- 0.052 - - 0.019 -

- 0.036 - - -0.093 -

- -0.052 - - -0.132 -

- -0.054 - - 0.035 -

- 0.030 - - 0.011 -

In the MCKM results the categories with bigger contributions on the first compo-

nent are: the first two brands of underwear (A01 and A02) and the seventh brand

(A07); the first and the third class of the age (C01 and C03). The categories with

bigger contribution on the second component are the fourth, fifth, sixth, seventh

and eighth brand (A04, A05, A06, A07 and A8) only. Then, unlike TA, in the

MCKM model the variable attributes (B) do not give a relevant contribution. In

Figure 2.5 is shown the biplot where are represented the component scores and the

three defined groups. From the plot we can note that the groups are well separated

and homogeneous. In fact, it easy to note that the green group (166 observations)

are the consumers that prefer the seventh brand (A07); the blue group (361 obser-
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vations) are the consumers that prefer the first three brands (A01, A02 and A03)

and they have mainly an age of 50 years and over (C03); finally the red groups (137

observations) are the consumers that prefer the fourth, fifth, sixth and eight brand

(A04, A05, A06, and A08).

Figure 2.5: Biplot of the simultaneous approach applied on South Korean underwear

manufacturer data

It is possible to verify these results observing the frequency distributions of the three

categorical variables shown in Table 2.3.

2.6 Concluding remarks

Tandem Analysis (TA) is a well-known sequential procedure for clustering and di-

mensionality reduction. It is frequently used in applications for quantitative data,

although is has several limitations. In particular, it can fail to find the correct

clusters structure with a reduced set of factors (Vichi & Kiers 2001). TA is also

frequently used when categorical variables are considered. It corresponds to apply

multiple correspondence analysis (MCA) on the original data and subsequently to

apply K-means model on the component scores matrix obtained by MCA to cluster

the statistical units.

In this work it was proved that also this TA has serious problems to correctly

classify units and synthesize the relationships of the observed categorical variables.

Thus, a model called multiple correspondence K -means (MCKM) was proposed

and estimated via least-squares (LS) by using an alternating least squares (ALS)
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algorithm. It has been proved that the LS estimation of MCKM corresponds to

optimize the loss function TA which is only imprecisely estimated by the sequential

application of MCA and K -means.



Chapter 3

Structural Equation Modeling and

simultaneous clustering through

the Partial Least Squares

algorithm

3.1 Introduction

In the last years, structural equation modeling (SEM) has become one of the refer-

ence statistical methodologies in the analysis of the statistical relationships between

observable (manifest) and non-observable (latent) variables. SEM is often used for

both to assess non-observable hidden constructs (i.e., latent variables) by means

of observed variables, and to evaluate the relations among latent constructs and

among manifest variables. In SEM, variables (manifest or latent) are considered

(i) endogenous if they are dependent, i.e., related to a set of variables that explain

them; (ii) exogenous if they are independent, i.e., explain a set of variables. Note

that endogenous variables may also cause other endogenous variables. SEM has the

property to estimate the multiple and interrelated dependencies in a single analysis

by combining factor analysis and multivariate regression analysis. SEM has been

used in many different fields, as in economics and social sciences, in marketing for

example to assess customer satisfaction (Steenkamp & Baumgartner 2000, Richter

et al. 2016, Rigdon 2016). Then, SEM allows to build latent variables (LVs), such

as customer satisfaction, through a network of manifest variables (MVs).

Covariance structure approach (CSA) (Jöreskog 1978) and partial least squares

(PLS) (Lohmöller 1989) are the two alternative statistical techniques for estimating
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such models. The reader may refer to Sarstedt et al. (2016) and Rigdon et al. (2017)

in order to understand PLS-SEM as a different statistical method from CSA.

An important research objective in the PLS-SEM context is the assessment of

the potential validity threats if the researchers do not account for unobserved het-

erogeneity. In this direction Jedidi et al. (1997) propose a simultaneous procedure

based on finite mixture estimated via the expectation-maximization (EM) algorithm

(Dempster et al. 1977, McLachlan et al. 2004). Hahn et al. (2002) affirm that this

technique extends CSA, but it is inappropriate for PLS-SEM. They propose the fi-

nite mixture partial least squares (FIMIX-PLS) approach that joins a finite mixture

procedure with an EM algorithm specifically regarding the ordinary least predic-

tions of PLS. Sarstedt (2008) and Sarstedt & Ringle (2010) review this technique

and concludes that FIMIX-PLS can currently be viewed as the most comprehensive

and commonly used approach for capturing heterogeneity in PLS-SEM. Following

the guidelines of Jedidi et al. (1997) and Hahn et al. (2002), Ringle et al. (2010)

present FIMIX-PLS, implemented for the first time in a statistical software appli-

cation, called Smart-PLS (Ringle et al. 2005). Vinzi et al. (2008) propose a new

method for unobserved heterogeneity detection in PLS-SEM: response-based pro-

cedure for detecting unit segments in PLS (REBUS-PLS). REBUS-PLS does not

require distributional hypotheses but may lead to local models that are different

in terms of both structural and measurement models. In fact, separate PLS-SEM

are estimated for each cluster, and the results are compared in order to identify, if

possible, differences among component scores, structural coefficients and different

loadings. This is certainly an interesting feature, which has the unique problem of

complicating the interpretation of results, since the number of the SEM parameters

to be mentioned increases at the increasing of the number of clusters. Following

this idea, Squillacciotti (2010) proposes a technique, called PLS typological path

modeling (PLS-TPM), that allows to take into account the predictive purpose of

PLS techniques when the classes are defined.

Other methods of PLS-SEM segmentation approach include prediction oriented

segmentation in PLS path models (PLS-POS) proposed by Becker et al. (2013),

genetic algorithm segmentation in partial least squares path modeling (PLS-GAS)

proposed by Ringle et al. (2014), and particularly segmentation of PLS path models

through iterative reweighted regressions (PLS-IRRS) proposed by Schlittgen et al.

(2016). For more details see also Sarstedt et al. (2017). Schlittgen et al. (2016)

conclude that PLS-IRRS gives similar quality results in comparison with PLS-GAS,

and it is generally applicable to all kinds of PLS path models. Moreover, the PLS-

IRRS computations are extremely fast.

In the current literature of PLS-SEM segmentation here examined, the existing

methods are almost all model-based segmentation approaches that try to find ho-
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mogenous groups in terms of the structural and/or measurement model relations.

They do not directly focus on mean differences in the observed of latent variables. In

this work, we propose a new approaches named partial least squares K-means (PLS-

SEM-KM). PLS-SEM-KM is based on the simultaneous optimization of PLS-SEM

and reduced k-means (De Soete & Carroll 1994), where centroids of clusters are lo-

cated in the reduced space of the LVs, thus, ensuring the optimal partition of the sta-

tistical units on the best latent hyper-plane defined by the structural/measurement

relations estimated by the pre-specified model. In this way, we segment the popula-

tion under the analysis and simultaneously identify the structural and measurement

relations that have produced that segmentation. These relations, not segment spe-

cific, represent a consensus of those that can be obtained by applying PLS-SEM

for each cluster. In fact, a relevant issue in marketing is the measurement of the

customer satisfaction by using PLS-SEM and at the same time the identification

of distinctive customer segments (Ter Hofstede et al. 1999, Wu & DeSarbo 2005,

Wedel & Kamakura 2012).

Moreover, a different approach to select the optimal number of segments K is

provided. Note that in all the segmentation methods discussed above, researchers

must pre-specify a number of segments (clusters) when running the procedure. The

optimal number of segments is usually unknown. Ringle et al. (2014) and Schlittgen

et al. (2016) propose to firstly run FIMIX-PLS (Hahn et al. 2002, Sarstedt & Ringle

2010) to determine the number of segments and, then, subsequently run PLS-GAS

or PLS-IRRS to obtain the final segmentation solution. However, it has been argued

that the underlying assumption of a limited number of segments of individuals that

are perfectly homogeneous within segments in finite mixture models is too restric-

tive (Wedel & Kamakura 2012). Whereas, PLS-SEM-KM algorithm includes the

optimal K selection through the gap statistics proposed by Tibshirani et al. (2001).

The chapter is structured as follows: in the section 3.2 a detailed background

on SEM estimated via PLS procedure is provided; in section 3.3 the PLS-SEM-KM

model is presented and the PLS algorithm is given; in section 3.4 the performances

of PLS-SEM-KM are tested in a detailed simulation study providing a comparison

with the FIMIX-PLS approach proposed by Hahn et al. (2002); in section 3.5 the

results obtained by an application on real data are shown.

3.2 Structural equation modeling

Before showing the modeling details, the notation and terminology used in this work

is here presented to allow the reader to easily follow the subsequent formalizations

and algebraic elaborations.
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n, J # of: observations, MVs

H, L, P # of: exogenous LVs, endogenous LVs, LVs (P = H + L)

K # of: clusters

Ξ n×H exogenous LVs matrix

H n× L endogenous LVs matrix

Y n× P scores matrix (Y = [Ξ,H])

Γ L×H path coefficients matrix of the exogenous LVs

B L× L path coefficients matrix of the endogenous LVs

Z n× L errors matrix of the endogenous LVs

X n× J data matrix

E n× J errors matrix of the data

ΛH J ×H loadings matrix of the exogenous LVs

ΛL J × L loadings matrix of the endogenous LVs

Λ J × P loadings matrix (Λ = [ΛH ,ΛL])

T n×H errors matrix of the exogenous LVs

Δ n× L errors matrix of the endogenous LVs

U n×K membership matrix (binary and row stochastic)

Partial least squares (PLS) methodologies are algorithmic tools with analytic pro-

prieties aiming at solving problems about the stringent assumptions on data, e.g.,

distributional assumptions that are hard to meet in real life (Tenenhaus et al. 2005,

Vinzi et al. 2010). Tenenhaus et al. (2005) try to better clarify the terminology used

in the PLS field through an interesting review of the literature, focusing the at-

tention on the structural equation models (SEM) standpoint. Usually, a PLS-SEM

(called also PLS-PM, i.e., PLS path model) consists in a combination of two models:

• a structural model (or inner model), that specifies the relationships between

latent variables (LV). In this context, a LV is an non-observable variable (i.e.,

a theoretical construct) indirectly described by a block of observable variables

which are called manifest variables (MVs);

• a measurement model (or outer model), that relates the MVs to their own LVs.

3.2.1 Structural model

Let X be a n × J data matrix, summarized by P latent variables (j = 1, . . . , J ;

p = 1, . . . , P and P ≤ J), let H be the n × L matrix of the endogenous LVs with

generic element ηi,l, and let Ξ be the n×H matrix of the exogenous LVs with generic

element ξi,h, the structural model is a causality model that relates the P LVs each

other through a set of linear equations (Vinzi et al. 2010). In matrix form:

H = HBT +ΞΓT + Z, (3.1)
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3.2 can be written as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

=
[
ξ1 ξ2

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

λ3,1, 0

λ4,1 0

0 λ5,2

0 λ6,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H

+
[
η1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1,1

λ2,1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

L

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (3.6)

whereas, for the formative measurement models, we can use Equation (3.7) in the

case of exogenous LVs, and Equation (3.8) in the case of endogenous LVs.

[
ξ1

ξ2

]T

=
[
x1 x2 x3 x4 x5 x6

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

λ3,1, 0

λ4,1 0

0 λ5,2

0 λ6,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H

+

[
τ1

τ2

]
, (3.7)

[
η1

]
=

[
x1 x2 x3 x4 x5 x6

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1,1

λ2,1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

L

+
[
δ1

]
. (3.8)

3.3 Partial Least Squares K-Means

3.3.1 Model and algorithm

Given the n × J data matrix X, the n × K membership matrix U, the K × J

centroids matrix C, the J×P loadings matrix Λ=[ΛH ,ΛL], and the errors matrices

Z (n×L) and E (n× J), the partial least squares K-means (PLS-SEM-KM) model

can be written as follows:

H = HBT +ΞΓT + Z

X = YΛT + E = ΞΛT
H +HΛT

L + E

X = UCΛΛT + E = UCΛHΛ
T
H +UCΛLΛ

T
L + E,

(3.9)

subject to constraints: (i) ΛTΛ = I; and (ii) U ∈ {0, 1}, U1K = 1n. Thus, the

PLS-SEM-KM model includes the PLS and the clustering equations (i.e., X = UC



3.3 Partial Least Squares K-Means 44

and then, Y = XΛ becomes Y = UCΛ). In fact, the third set of equations is the

reduced K-means model (De Soete & Carroll 1994). The simultaneous estimation of

the three sets of equations will produce the estimation of the presupposed SEM de-

scribing relations among variables and the corresponding best partitioning of units.

PLS-SEM-KM model belongs to class of methodologies for the simultaneous un-

supervised classification and dimensionality reduction in a PLS-SEM context. The

method does not born as a segmentation-PLS approach for identifying segment spe-

cific relations but could be placed in the clustering field where a PLS analysis is

performed.

When applying PLS-SEM-KM, the number of groups K is unknown and the

identification of an appropriate number of clusters is not a straightforward task.

Several statistical criteria have been proposed. In this work we use the gap method

discussed in Tibshirani et al. (2001) embedded in the algorithm for estimating si-

multaneously also the number of clusters, i.e., a pseudo-F designed to be applicable

to virtually any clustering method. The gap method can also may be applicable to

any model-based clustering approach without restrictive assumptions on the scores

distribution. Given: the n×J standardized data matrix X; the J×P design matrix

of the measurement model DΛ, with binary elements equal to 1 if a MV is associ-

ated to a LV and 0 otherwise; the P ×P path design matrix of the structural model

DB, with binary elements equal to 1 if a latent exogenous or endogenous variable

explains a latent endogenous variable and 0 otherwise. Matrix DB is symmetrized.

Yh is the h-th exogenous latent score and Yl is the l-th endogenous latent score;

the symbol ⊗ indicates the element-wise product of two matrices, while ∗ indicates

the adjacent latent scores matrix, i.e., the set of latent scores that are related to

the Yh or Yl. The PLS-SEM-KM algorithm is a development of the Wold’s orig-

inal algorithm used to the PLS-SEM estimate in Lohmöller (1989). As you can

see from the step 7 of the algorithm (i.e., in the loadings estimation), the method

is performed for both reflective measurement models and formative measurement

models. U matrix is optimized row by row solving an assignment problem through

the objective function in the step 8 of the algorithm.

Therefore, the algorithm produces a matrix U of the segments assignment and a

matrix C of centroids with a unique common measurement and structural model co-

efficients. However, researchers that wish determining segment specific measurement

and structural model coefficients can apply group-specific PLS-SEM analysis. The

unique measurement and structural model coefficients is interpreted as a consensus

of the segment specific coefficients.
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Algorithm 2 PLS-SEM-KM algorithm
1: Initialize Λ = DΛ;

Choose K through the gap method applied on scores matrix Y = XΛ;

ω = 10−12, iter=0, maxiter=300;

2: Random generate the memberships matrix U;

Compute centers matrix C = (UTU)−1UTX;

Compute latent scores matrix Y = UCΛ;

3: iter=iter+1;

Inner approximation

4: Estimate covariance matrix ΣY = n−1YTJY (with J = In−111T );

5: Compute inner weights W = DB ⊗ΣY ;

6: Estimate new scores YW = YW;

Outer approximation

7: Update Λ→ Λn = CTUTYW (YT

W
YW )−1; (Reflective way)

→ Λn = (CTUTUC)−1CTUTYW ; (Formative way)

8: Update U→ argmin
U

∥∥X−UCΛnΛ
T
n

∥∥2,
subject to ΛT

nΛn = 1P , U = {0, 1}, U1K = 1n;

9: Compute new centers Cn = (UTU)−1UTX;

Stopping rule

10: Update K → Kn through the gap method applied on scores matrix Y = UCnΛn

11: if Kn �= K

go to step 2

12: else

13: if ‖CΛ−CnΛn‖
2
> ω & iter<maxiter, C = Cn, Λ = Λn;

repeat step 3-12;

14: else

exit loop 3-12;

15: end if

16: end if

Path coefficients estimation

17: for l = 1 to L do

18: for h = 1 to H do

19: Compute Yh = XΛh

20: Compute Yl = XΛl

21: Compute Γ = (YT

h∗Yh∗)−1YT

h∗Yl

22: Compute B = (YT

l∗
Yl∗)

−1YT

l∗
Yl

23: end for

24: end for

Note that, in the PLS-SEM-KM algorithm centroids matrix C and the loadings

matrix Λ simultaneously converge. It is important to remember that the algorithm,

given the constraints on U, can be expected to be rather sensitive to local optima.

For this reasons, it is recommended the use of some randomly started runs to find
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the best solution. The algorithm chooses the best solution among the randomly

started repetitions through the maximization of the R2∗ index discussed in the next

subsection.

3.3.2 Local and global fit measures

In PLS-SEM context, there is not a well-identified global optimization criterion to

assess the goodness of the model, since PLS-SEM models are variance-based models

strongly oriented to prediction and its validation mainly is focused on the predictive

capability.

According to the PLS-SEM approach, each part of the model needs to be validated:

the measurement model, the structural model and the global model (Vinzi et al.

2010). In particular, PLS-SEM provides different fit indices: the communality in-

dex for the measurement models, the R2 index for the structural models and the

Goodness of Fit (GoF) index for the overall model. However, there is some literature

criticizing the global GoF for the use in PLS-SEM (Henseler & Sarstedt 2013).

Communalities are simply the squared correlations between MVs and the corre-

sponding LV. Then, communalities measure the part of the covariance between a

latent variable and its block of observed variables that is common to both. For the

j-th manifest variable of the p-th latent score they are calculated as

com(xj,p, yp) = corr2(xj,p, yp). (3.10)

Usually, for each p-th block of MVs in the PLS-SEM model, the quality of the

entire measurement model is assessed by the mean of the communality indices as in

Equation (3.11).

comp(xj,p, yp) = J−1
p

Jp∑
j=1

corr2(xj,p, yp), (3.11)

where Jp is the number of the MVs in the p-th block. Note that, for each endogenous

LV of the structural model we have an R2 interpreted similarly as in any multiple

regression model. Then, we use the R2∗ to indicate the amount mean of variance

in the L endogenous latent constructs explained by its independent latent variables

(Vinzi et al. 2010, Sanchez 2013):

R2∗ = R̄2
L. (3.12)
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3.4 Simulation study

In this section, we have prepared a simulation study for assessing the performances of

the partial least squares K-means (PLS-SEM-KM) algorithm through a comparison

with finite mixture partial least squares (FIMIX-PLS) proposed by Hahn et al.

(2002). Firstly, a motivational example with comparing PLS-SEM-KM and the

usual PLS analysis is shown.

3.4.1 Motivational example

We know that for classification aim, the researcher could consider the sequential

approach of applying first PLS-SEM in order to determine the LVs and then ap-

ply a clustering methodology such as K-means or Gaussian mixture model (GMM)

clustering on the latent scores of the PLS-SEM in order to obtain homogeneous

clusters. However, Sarstedt & Ringle (2010) empirically illustrate the shortcomings

of using a sequential approach. Now, through a simulation example we show that

the sequential approach of PLS-SEM and K-means (i.e., the tandem analysis) may

fail to find the clustering structure in the data, as well as in the cases described also

in Vichi & Kiers (2001), where the researcher applies a dimensionality reduction

technique, such as principal component analysis (PCA) or factor analysis (FA), and

then applies a cluster analysis methodology on the factor scores. The simulated

data set is formed by two exogenous LVs, having a clustering structure into three

groups. Then, an endogenous LV has been generated by a Normal distribution.

This could be interpreted as a synthetic marketing data set where customers are

split in ”satisfied”, ”neither satisfied nor unsatisfied” and ”unsatisfied” according to

the ”perceived value” and ”perceived quality” constructs (exogenous LVs) and the

”satisfaction” construct (endogenous LV).

In Figure 3.3a the scatterplot matrix of the three LVs shows the performance

of the sequential application of PLS-SEM and K-means. The clusters are not well

separated; in fact, the adjusted Rand index (ARI) (Rand 1971, Hubert & Arabie

1985) between the generated partition and the partition obtained by K-means com-

puted on the LVs of the PLS-SEM is equal to 0.64. Note that ARI is equal to 0

when two random partitions are compared and it is equal to 1 when two identical

partitions are compared. In Figure 3.3b the scatterplot matrix of the LVs shows the

simultaneous application of PLS-SEM and K-means as proposed in this work with a

specific methodology. This time the clusters are well separated and the partition is

clearly detected. ARI is equal to 1, i.e., the new methodology exactly identifies the

generated partition. We might think that this is only a simulated example. Thus,
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(a) (b) (c)

Figure 3.5: Scatterplot-matrix of (standardized) generated data with low, medium

and high error.

• Number of observations : small sample size (n = 150); large sample size

(n = 300).

• Number of segments (clusters): K = 3; K = 4.

• Segments size: balanced (mixture proportion when K = 3: p1 = 0.33, p2 =

0.33, p3 = 0.34; mixture proportion when K = 4: p1 = p2 = p3 = p4 = 0.25);

unbalanced 1 (mixture proportion when K = 3: p1 = 0.66, p2 = 0.17,

p3 = 0.17; mixture proportion when K = 4: p1 = 0.40, p2 = 0.20, p3 = 0.20,

p4 = 0.20); unbalanced 2 (mixture proportion when K = 3: p1 = 0.15,

p2 = 0.42, p3 = 0.43; mixture proportion when K = 4: p1 = 0.10, p2 = 0.30,

p3 = 0.30, p4 = 0.30).

• Standard deviation of data generation error : low error (σ = 1.5); medium

error (σ = 2.5); high error (σ = 3.5).

• PLS measurement model : Model 1: (reflective-Mode A) shown in left plot of

Figure 3.4; Model 2: (formative-Mode B) shown in right plot of Figure 3.4.

In order to have more stable results, we have randomly generated 100 datasets for

each factor level combination. Then, in particular we have 2× 2× 3× 3× 2× 100 =

7200 generated datasets.

3.4.3 Results

We have separated the simulation results in 4 different contexts, each of them with

18 different experimental cases random repeated 100 times. Table 3.1 shown the 18

different experimental cases.

In particular, we have context 1: path model 1 and K = 3, context 2: path model 2
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Table 3.1: Experimental cases list of the simulation study

Exp. Case Sample Size Segments size Error level

1 small balanced low

2 small balanced medium

3 small balanced high

4 small unbalanced 1 low

5 small unbalanced 1 medium

6 small unbalanced 1 high

7 small unbalanced 2 low

8 small unbalanced 2 meidum

9 small unbalanced 2 high

10 large balanced low

11 large balanced medium

12 large balanced high

13 large unbalanced 1 low

14 large unbalanced 1 medium

15 large unbalanced 1 high

16 large unbalanced 2 low

17 large unbalanced 2 medium

18 large unbalanced 2 high

and K = 3, context 3: path model 1 and K = 4, and context 4: path model 2 and

K = 4.

For evaluating the performance of the models we have used the R2∗ index shown

in Equation 3.12. In Table 3.2 we can see the arithmetic mean and the standard

deviation of the R2∗ values obtained for each experimental case of the first and sec-

ond simulated context by PLS-SEM-KM and FIMIX-PLS, respectively.

Similarly, in Table 3.3 we can see the arithmetic mean and the standard deviation

of each R2∗ distribution obtained for each experimental case of the third and fourth

simulated context by PLS-SEM-KM and FIMIX-PLS, respectively. Tables 3.2 and

3.3 show that the results obtained by PLS-SEM-KM are in almost all cases better

than model FIMIX-PLS. In Context 1, where the path model 1 has been considered,

the difference between PLS-SEM-KM and FIMIX-PLS are more relevant for cases

from 4 to 9 (from 22% to 29% better) and for cases from 13 to 18 (from 23% to 31%

better), corresponding to the unbalanced cases.

In the Context 2 differences are still in favor of the PLS-SEM-KM, but with a less

relevant magnitude (no more than 14%), this time in the balanced cases. Also in

contexts 3 and 4 the performance obtained by PLS-SEM-KM are almost always

better than that obtained by FIMIX-PLS. Furthermore, in terms of statistical sig-

nificance in almost cases the variability of the R2∗ distribution in FIMIX-PLS is

bigger than that shown in PLS-SEM-KM.

Moreover, the results show also that R2∗ index for both PLS-SEM-KM and

FIMIX-PLS reduces with the increase of the number of segments. This is expected

because the probability of misclassification increases. Note that in FIMIX-PLS, as
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Table 3.2: Mean and standard deviation of R2∗ obtained by of PLS-SEM-KM and

FIMIX-PLS for all experimental cases of the first and second simulated context

Context 1 Context 2

PLS-SEM-KM FIMIX-PLS PLS-SEM-KM FIMIX-PLS

Case μR2∗ σR2∗ μR2∗ σR2∗ μR2∗ σR2∗ μR2∗ σR2∗

1 0.982 0.028 0.975 0.117 0.979 0.061 0.961 0.134

2 0.969 0.027 0.956 0.121 0.971 0.022 0.970 0.136

3 0.951 0.029 0.911 0.299 0.924 0.131 0.922 0.153

4 0.979 0.019 0.873 0.322 0.982 0.020 0.877 0.342

5 0.955 0.049 0.899 0.332 0.963 0.037 0.821 0.422

6 0.936 0.062 0.900 0.345 0.939 0.064 0.800 0.452

7 0.978 0.023 0.897 0.356 0.982 0.023 0.854 0.358

8 0.952 0.036 0.888 0.346 0.945 0.082 0.821 0.367

9 0.938 0.032 0.856 0.398 0.939 0.090 0.810 0.379

10 0.984 0.019 0.977 0.021 0.984 0.029 0.910 0.116

11 0.964 0.029 0.966 0.018 0.947 0.098 0.899 0.118

12 0.950 0.029 0.949 0.020 0.939 0.120 0.934 0.125

13 0.978 0.024 0.874 0.312 0.972 0.076 0.844 0.314

14 0.958 0.043 0.896 0.299 0.958 0.041 0.831 0.333

15 0.938 0.047 0.877 0.333 0.936 0.050 0.897 0.334

16 0.982 0.016 0.853 0.278 0.981 0.019 0.855 0.278

17 0.954 0.044 0.855 0.299 0.962 0.029 0.819 0.299

18 0.913 0.055 0.800 0.310 0.937 0.039 0.821 0.299

such as in other segmentation models, the correct identification of the number of

clusters (segments) is not easy when the number of segments increases. This be-

cause FIMIX-PLS follows a mixture regression concept that allows the estimation

of separate linear regression functions, and in this way the number of parameters

exponentially increases when the number of segments increase, and the usual cri-

teria based on likelihood function, such as AIC and BIC become not very reliable

(Bulteel et al. 2013).

Furthermore, it is useful recall that we have generated data from normal mixture

model; thus FIMIX-PLS is advantaged since the data for the simulation study are

generated according to the FIMIX-PLS hypotheses, by assuming that each endoge-

nous latent variable ηl is distributed as a finite mixture of conditional multivariate

normal densities (Ringle et al. 2010). Conversely, in PLS-SEM-KM there are not

particular assumption on the distribution of data.

In order to understand the performance of PLS-SEM-KM algorithm we have also
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Table 3.3: Mean and standard deviation of the R2∗ obtained by of PLS-SEM-KM

and FIMIX-PLS for all experimental cases of the third and fourth simulated context

Context 3 Context 4

PLS-SEM-KM FIMIX-PLS PLS-SEM-KM FIMIX-PLS

Case μR2∗ σR2∗ μR2∗ σR2∗ μR2∗ σR2∗ μR2∗ σR2∗

1 0.951 0.062 0.944 0.213 0.986 0.014 0.911 0.322

2 0.933 0.098 0.932 0.230 0.968 0.032 0.898 0.342

3 0.924 0.054 0.900 0.244 0.947 0.035 0.834 0.365

4 0.947 0.053 0.900 0.344 0.984 0.019 0.899 0.347

5 0.935 0.067 0.879 0.368 0.973 0.024 0.874 0.365

6 0.916 0.057 0.877 0.377 0.943 0.033 0.832 0.388

7 0.963 0.041 0.851 0.346 0.988 0.013 0.823 0.384

8 0.939 0.065 0.846 0.375 0.962 0.056 0.810 0.399

9 0.921 0.055 0.842 0.385 0.937 0.038 0.800 0.399

10 0.972 0.031 0.893 0.210 0.988 0.017 0.892 0.313

11 0.947 0.057 0.866 0.231 0.962 0.072 0.881 0.333

12 0.923 0.059 0.842 0.265 0.928 0.095 0.890 0.373

13 0.961 0.049 0.893 0.398 0.987 0.015 0.834 0.372

14 0.945 0.044 0.821 0.397 0.965 0.039 0.831 0.389

15 0.911 0.070 0.811 0.399 0.933 0.070 0.810 0.399

16 0.959 0.040 0.864 0.213 0.982 0.018 0.852 0.342

17 0.932 0.071 0.833 0.364 0.953 0.086 0.822 0.355

18 0.920 0.066 0.821 0.388 0.938 0.055 0.814 0.387

studied the presence of local minima and situations of overfitting. Then, once es-

tablished that there are cases where the adjusted Rand index (ARI) is lower than

1 (i.e., the real partition is not identified), it is useful to analyze the single case

where the real partition has not been found by PLS-SEM-KM algorithm. Table

3.4 shows the performance of the model in terms of clustering capability for 100

randomly chosen experimental conditions. The second column of the table shows

the percentage of times the gap method, discussed in Section 3.3, identifies the real

number of clusters (K = 3 or K = 4). The third column shows the percentage of

times the algorithm finds the true partition (ARI = 1), while the fourth and the

fifth columns show the percentage of local minima and of overfitting, respectively

(i.e., when ARI < 1). In particular, we have local minima when the performance

(in terms of R2) obtained through the partition identified by the model is better

than the performance obtained through the generated real partition. Otherwise, we

have overfitting.
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Table 3.4: Performance of the PLS-SEM-KM algorithm using a single random start

in the three different error levels for 100 randomly chosen experimental conditions

(percentage values)

Sd. Error Optimal K Model is true Local minima Overfitting

σ = 1.5 100.00 99.40 0.10 0.50

σ = 2.5 100.00 77.30 7.20 15.50

σ = 3.5 100.00 75.40 9.40 16.00

We can try to reduce the number of local minima by increasing the number of initial

random starts. In these cases, the use of 15 random starts usually suffices, when the

error is not very high (σ = 1.5), and the groups structure is not masked. Indeed,

the algorithm finds the optimal solution in 99.40%; while there are 0.10% of local

minima cases and 0.50% of overfitting. However, in the cases where the groups

structure is masked as in the case of medium and high level of error, the algorithm

cannot completely eliminates the number of local minima. In these two cases the

algorithm finds the optimal solution in 77.30% and 75.40% of cases, respectively.

Thus, it is advisable to increase initial random starts when the clustering of the

data is not clear. Then, the algorithm chooses the best solution among the 15

repetitions through the maximization of the R2 index.

3.5 Application on real data

In this section an application on real data of the partial least squares K-means

(PLS-SEM-KM) model is presented. For this application the European Consumer

Satisfaction Index (ECSI) has been considered analyzing the ECSI approach in

mobile phone industry (Bayol et al. 2000, Tenenhaus et al. 2005).

3.5.1 ECSI model for the mobile phone industry

The dataset consists in 24 observed variables that represent the answers of 250

consumers of a mobile phone provider. We have chosen this data set which represents

a very well-known benchmark used to show many new methodologies in PLS-SEM.

In Figure 3.6 is represented the complete ECSI model for the mobile phone industry.

For underlining the good results obtained by PLS-SEM-KM a comparison with a

normal PLS-SEM analysis has been done. In this way, we prove that the PLS-SEM-

KM algorithm add the clustering aim to the simple PLS-SEM without change the

causal relationships among latent constructs and manifest variables.





3.5 Application on real data 56

phone provider”?

x18: Overall satisfaction

x19: Fulfillment of expectations

x20: How well do you think ”your mobile phone provider” compares with your ideal

mobile phone provider?

x21: You complained about ”your mobile phone provider” last year.

How well, or poorly, was your most recent complaint handled; or

You did not complain about ”your mobile phone provider” last year.

Imagine you have to complain to ”your mobile phone provider” because of a bad

quality of service or product. To what extent do you think that ”your mobile phone

provider” will care about your complaint?

x22: If you would need to choose a new mobile phone provider how likely is it that

you would choose ”your provider” again?

x23: Let us now suppose that other mobile phone providers decide to lower their fees

and prices, but ”your mobile phone provider” stays at the same level as today. At

which level of difference (in %) would you choose another mobile phone provider?

x24: If a friend or colleague asks you for advice, how likely is it that you would

recommend ”your mobile phone provider”?

3.5.2 Results

With applying the PLS-SEM-KM algorithm on the ECSI data, we have identified a

number of clusters K = 3, with the corresponding value of pseudo-F equal to 1.3994

as shown in Figure 3.7.

Figure 3.7: Pseudo-F function obtained via gap method in PLS-SEM-KM algorithm

from 2 to 10 clusters
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Table 3.5 includes the loading values obtained by PLS-SEM-KM and PLS-SEM,

respectively. Note that in the PLS-SEM-KM model, the loading matrix Λ is nor-

malized (see Section 3 for details), then we need to normalize also the loading matrix

obtained by the PLS-SEM analysis to compare the results. From Table 3.5 we can

note that the models obtain very similar results, only in some particular case the

PLS-SEM loadings are slightly bigger than that obtained by PLS-SEM-KM.

Table 3.5: Loading values estimated by PLS-SEM-KM and PLS-SEM

Measurement model PLS-SEM-KM PLS-SEM

Image → x01 0.449 0.482

Image → x02 0.398 0.388

Image → x03 0.355 0.373

Image → x04 0.528 0.497

Image → x05 0.486 0.481

Expectation → x06 0.615 0.642

Expectation → x07 0.607 0.576

Expectation → x08 0.503 0.506

Perceived quality → x09 0.419 0.400

Perceived quality → x10 0.284 0.318

Perceived quality → x11 0.399 0.390

Perceived quality → x12 0.377 0.383

Perceived quality → x13 0.375 0.376

Perceived quality → x14 0.381 0.386

Perceived quality → x15 0.397 0.388

Perceived value → x16 0.624 0.694

Perceived value → x17 0.781 0.720

Satisfaction → x18 0.558 0.554

Satisfaction → x19 0.563 0.587

Satisfaction → x20 0.609 0.590

Complaints → x21 1.000 1.000

Loyalty → x22 0.585 0.656

Loyalty → x23 0.099 0.171

Loyalty → x24 0.805 0.735

Whereas, In Table 3.6 the path coefficients obtained by PLS-SEM-KM and PLS-

SEM are shown, respectively. Note that the latent scores used for the path coeffi-

cients estimation are standardized (i.e., the path coefficients are correlations). From

the structural models comparison, we note that, like to the measurement model, the

estimation results are very similar between the two approaches.

Table 3.6 shows that for both methods the Image construct has a positive relation-

ship with all its endogenous LVs, though it has a stronger effect on the Expectations

construct (0.51 and 0.49, respectively) than Satisfaction (0.18 and 0.15, respectively)
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Table 3.6: Path coefficients estimated by PLS-SEM-KM and PLS-SEM

Structural model PLS-SEM-KM PLS-SEM

Image → Expectation 0.507 0.493

Image → Satisfaction 0.177 0.153

Image → Loyalty 0.201 0.212

Expectation → Perceived quality 0.554 0.545

Expectation → Perceived value 0.048 0.066

Expectation → Satisfaction 0.071 0.037

Perceived quality → Perceived value 0.557 0.540

Perceived quality → Satisfaction 0.509 0.544

Perceived value → Satisfaction 0.191 0.200

Satisfaction → Complaints 0.523 0.540

Satisfaction → Loyalty 0.479 0.466

Complaints → Loyalty 0.067 0.050

and Loyalty (0.20 and 0.21, respectively). The Expectations construct has a signifi-

cant effect on the Perceived Quality only (0.55 and 0.54, respectively), while it has

very low effect on the Perceived Value (0.05 and 0.07, respectively) and Satisfaction

(0.07 and 0.04, respectively). The Perceived Quality block has effect on Perceived

Value (0.56 and 0.54, respectively) and Satisfaction (0.51 and 0.54, respectively).

The Perceived Value construct has an effect equal to 0.19 for PLS-SEM-KM and

0.20 for PLS-SEM, respectively, on the Satisfaction, which has an effect equal to

0.52 and 0.54 on the Complaints. Finally, the Complaints construct has effect on

the Loyalty only, with a correlation level equal to 0.07 and 0.05, respectively.

Now, we show the results obtained on the model assessment. In Table 3.7 we

can see a comparison of the fit measures obtained on each latent construct by PLS-

SEM-KM and PLS-SEM, respectively.

Table 3.7: Fit measures computed on each block of MVs in PLS-SEM-KM and

PLS-SEM

PLS-SEM-KM PLS-SEM

Communality R-Squared Communality R-Squared

Image 0.200 - 0.476 -

Expectations 0.333 0.257 0.471 0.243

Perceived quality 0.143 0.307 0.574 0.297

Perceived value 0.500 0.342 0.849 0.335

Satisfaction 0.333 0.677 0.682 0.672

Complaints 1.000 0.274 1.000 0.292

Loyalty 0.333 0.454 0.520 0.432

Average 0.592 0.385 0.570 0.378

From these results, we can say that the PLS-SEM-KM model shows performances
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slightly better than PLS-SEM in terms of both communalities and R2. In particu-

lar, for the PLS-SEM-KM model we have obtained the communality average equal

to 0.5916 and the R2 average equal to 0.3852. Then, in summary we can say that

the PLS-SEM-KM model does not change the quality of the causal relationships

estimation. In other words, our proposed model keeps the PLS structure adding the

clustering aim to the usual analysis.

The last step of the analysis is the description of the groups defined by PLS-

SEM-KM model. Table 3.8 shows the summary statistics of the three found groups

computed on the seven normalized latent scores.

Table 3.8: Summary statistics of the three groups of mobile phone customers

Group 1 (n = 92)

ξ1 η1 η2 η3 η4 η5 η6

Min 0.460 0.180 0.660 0.000 0.537 0.000 0.019

Q1 0.722 0.652 0.775 0.688 0.710 0.778 0.824

Median 0.802 0.773 0.837 0.778 0.787 0.889 0.898

Mean 0.796 0.752 0.840 0.763 0.794 0.832 0.862

Q3 0.861 0.849 0.905 0.878 0.875 1.000 0.956

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Group 2 (n = 112)

ξ1 η1 η2 η3 η4 η5 η6

Min 0.225 0.145 0.483 0.000 0.273 0.000 0.190

Q1 0.541 0.481 0.594 0.511 0.526 0.556 0.594

Median 0.600 0.584 0.648 0.622 0.599 0.667 0.698

Mean 0.607 0.584 0.643 0.591 0.589 0.638 0.696

Q3 0.681 0.664 0.687 0.667 0.647 0.778 0.804

Max 0.845 1.000 0.831 0.889 1.000 1.000 1.000

Group 3 (n = 46)

ξ1 η1 η2 η3 η4 η5 η6

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Q1 0.306 0.359 0.284 0.333 0.272 0.333 0.263

Median 0.440 0.497 0.414 0.444 0.353 0.444 0.467

Mean 0.392 0.471 0.398 0.423 0.345 0.447 0.460

Q3 0.494 0.599 0.486 0.556 0.445 0.667 0.626

Max 0.676 0.820 0.704 1.000 0.691 1.000 1.000

The first group, formed by 92 observations, indicates a highly satisfied profile of

customers (central values around the 0.8); the second group, formed by 112 obser-

vations, indicates a medially satisfied profile of customers (central values around

0.6); the third group, formed by 46 observations, indicates a lowly satisfied profile

of customers (central values around the 0.4).

Finally, to show that our proposal could be a useful tool also for group-specific
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segmentation, in Table 3.9 a comparison between the group-specific structural mod-

els estimated by PLS-SEM-KM and FIMIX- PLS is shown.

Table 3.9: Group-specific structural models estimated by PLS-SEM-KM and

FIMIX-PLS

Structural model PLS-SEM-KM FIMIX-PLS

k1 k2 k3 k1 k2 k3

Image → Expectation 0.305 0.011 -0.231 0.289 0.419 0.437

Image → Satisfaction 0.158 0.157 0.227 0.211 0.073 0.281

Image → Loyalty 0.019 0.217 0.145 0.046 0.300 0.121

Expectation → Perceived quality 0.349 0.137 0.357 0.470 0.316 0.508

Expectation → Perceived value 0.082 -0.159 0.059 0.077 0.084 0.172

Expectation → Satisfaction -0.006 0.133 0.005 0.046 0.112 0.016

Perceived quality → Perceived value 0.169 0.191 0.314 0.391 0.443 0.439

Perceived quality → Satisfaction 0.409 0.309 0.210 0.524 0.522 0.313

Perceived value → Satisfaction 0.081 0.281 0.379 0.174 0.266 0.207

Satisfaction → Complaints 0.289 0.057 0.349 0.349 0.324 0.293

Satisfaction → Loyalty 0.303 0.397 0.338 0.536 0.477 0.527

Complaints → Loyalty 0.016 -0.078 0.172 -0.300 0.113 -0.011

R2 Expectations 0.099 0.171 0.188 0.084 0.175 0.191

R2 Perceived quality 0.241 0.015 0.243 0.221 0.010 0.258

R2 Perceived value 0.179 0.233 0.305 0.187 0.227 0.300

R2 Satisfaction 0.645 0.644 0.457 0.618 0.617 0.445

R2 Complaints 0.145 0.112 0.112 0.122 0.105 0.086

R2 Loyalty 0.298 0.489 0.355 0.308 0.543 0.362

Average 0.268 0.277 0.276 0.220 0.253 0.235

Segment size 36.8% 44.8% 18.4% 34.8% 43.6% 21.6%

From the results we can see that PLS-SEM-KM obtains R2 almost always better

than FIMIX-PLS, even if only slightly. Very different are the estimated path co-

efficients by both approaches. In particular, seems that in FIMIX-PLS the three

identified segments do not particularly discriminate the structural relationships.

3.6 Concluding remarks

In a wide range of applications, the assumption that data are collected from a sin-

gle homogeneous population, is often unrealistic, and the identification of different

groups (clusters) of observations constitutes a critical issue in many fields.

This work is focused on the structural equation modeling (SEM) in the PLS-

SEM context, (i.e., SEM estimated via partial least squares (PLS) method), when

the data are heterogeneous and tend to form clustering structures. We know that the

traditional approach to clustering in SEM consists in estimating separate models for

each cluster, where the partition is a priori specified by the researcher or obtained

via clustering methods. Conversely, the partial least squares K-means (PLS-SEM-

KM) approach, provides a single model that guarantees the best partition of objects
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represented by the best causal relationship in the reduced latent space. Moreover,

our proposal, unlike the recent proposed methods, does not mainly focus on the

heterogeneous structural or measurement model relations (i.e., the group-specific

structural and measurement models identification) but on the mean differences of

individuals profile definition (i.e., prototypes) of segments, based on the isolation

(i.e., between cluster variance) and homogeneity (i.e., between cluster variance) cri-

teria of the groups.

The simulation study has highlighted a good reliability of the model, which guar-

antees good results in different experimental cases, when the data have a clustering

structure; conversely, the sequential approach to use PLS- SEM followed by cluster-

ing on the latent variables may fail to identify the correct clusters. The simulation

study shows that in almost all experimental cases PLS-SEM-KM achieves better

than finite mixture partial least squares (FIMIX-PLS) model proposed by Hahn

et al. (2002). Moreover, we recall FIMIX-PLS in the simulation study has been

advantaged since it is based on the assumption that each endogenous latent con-

struct is distributed as a finite mixture of multivariate normal densities, and we

have generated data from mixtures of normal distributions. However, imposition

of a distributional assumption on the endogenous latent variables may prove to be

problematic. This criticism gains force when one considers that PLS path model-

ing is generally preferred to covariance structure analysis (CSA) in circumstances

where assumptions of multivariate normality cannot be made (Ringle et al. 2012).

Conversely, in PLS-SEM-KM there are not distributional assumptions. Another

problem that was found for FIMIX-PLS, as such as for other segmentation models,

is the correct identification of the number of clusters (segments) when it increases

since the approach follows a mixture of regressions; concept that needs the estima-

tion of separate linear regression functions. In this way the number of parameters

exponentially increases at the increasing of the number of segments, and the usual

criteria based on likelihood function, as such as AIC and BIC are not very reliable

(Bulteel et al. 2013). In the PLS-SEM-KM algorithm the gap-method proposed by

Tibshirani et al. (2001) is used, and the simulation study shows that the real number

of clusters is identified in 100% of cases in all the simulated contexts.

On the other hand, in the application on real data we can say that PLS-SEM-KM,

in the optimal case (i.e., when the causal structure of the model well-represents the

partition that characterizes the data), does not particularly modify the results on

the structural and measurement models obtained by the simple PLS-SEM as shown

in literature (Bayol et al. 2000, Tenenhaus et al. 2005). Also in comparison with

FIMIX-PLS the results obtained by PLS-SEM-KM are generally better. Moreover,

the PLS-SEM-KM results in Table 3.9 show that it could be a useful tool also for

group-specific segments identification.
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However, in future research could be interesting to evaluate the PLS-SEM-KM

performance against the more recent approaches, as prediction oriented segmenta-

tion in PLS path models (PLS-POS) proposed by Becker et al. (2013), genetic al-

gorithm segmentation in partial least squares path modeling (PLS-GAS) proposed

by Ringle et al. (2014), and particularly segmentation of PLS path models through

iterative reweighted regressions (PLS-IRRS) proposed by Schlittgen et al. (2016).
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