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Abstract
In this thesis is described the reasearch undertaken for the Ph.D. project

in Computer Vision, having the main objective to tackle human activity
recognition from RGB videos.

Human activity recognition from videos aims to recognize which human
activities are taking place during a video, considering only cues directly ex-
tracted from video frames. The related applications are manifold: healthcare
monitoring applications, such as rehabilitation or stress monitoring, monitoring
and surveillance for indoor and outdoor activities, human-machine interaction,
entertainment etc..

An important disambiguation has to be exposed before proceeding further:
the one between action and activity. Actions are generally described in literature
as single person movements that may be composed of multiple simple gestures
organized temporally, such as walking, waving or and punching. Gestures are
instead elementary movements of a body part. On the other hand, activities
are described as involving two or more persons and/or objects, or a single
person performing complex actions, i.e. a sequence of actions.

Human activity recognition is one of the main subjects of study of computer
vision and machine learning communities since a long time, and it is still an
hot topic due to its complexity.

A challenging task is to develop a system for human activity recognition,
due to well-known computer vision problems. Body parts occlusions, light
conditions, and image resolution are only a subset of this problems. Fur-
thermore, similitudes between activity classes make the problem even harder.
Activities in the same class may be exhibited by distinct persons with distinct
human body movements, and activities in different classes may be hard to
discriminate because they may be constituted by analogous information. The
way in which humans execute an activity depends on their habits, and this
drives the challenge of detecting activities quite difficult.

The main consideration coming out deeply analyzing the available literature
for activity recognition, is that an activity recognition robust system has to be
context-aware. Namely, not only the human motion is important to achieve
good performances, but also other relevant cues which can be extracted from
videos have to be considered.

The available state of the art research in computer vision still misses a
complete framework for human activity recognition based on context, taking
into account both the scene where activities are taking place, objects analysis,
3D human motion analysis and interdependence between activity classes. This
thesis describes computer vision frameworks which will enable the robust
recognition of human activities explicitly considering the scene context.

In this thesis are described the main contributions for context-aware activity
recognition regarding 3D modeling of articulated and complex objects, 3D hu-
man pose estimation from single images and a method for activity recognition
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based on human motion primitives. Four major publications will be presented,
together with an extensive literature review concerning computer vision ar-
eas such as 3D object modeling, 3D human pose estimation, human action
recognition, human action recognition based on action and motion primitives
and human activity recognition based on context. Future work concerning the
undertaken research will be to build a complete system for activity recognition
based on context, exploiting the several frameworks introduced so far.

Keywords: Computer Vision, Human Activity Recognition, 3D object
Modeling, 3D Human Pose Estimation.
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Chapter 1

Introduction

1.1 Introduction

The aim of the Ph.D. project is to create a framework for the recognition of
human activities from videos, based on human motion and on other relevant
cues present in the scene such as objects or the environment in which the
activity is taking place.

If for example we want to recognize the activity ‘Springboard diving’ from
an RGB video, beyond the motion of the person who is diving we can also
find in the scene relevant features for the recognition of this specific activity
such as the presence of the springboard, of the swimming pool or the bleachers.
Another relevant cue could be the interaction between the person and the
springboard.

The main consideration coming out deeply analyzing the available literature
for activity recognition, is that an activity recognition robust system has to be
context-aware. Namely, not only the human motion is important to achieve
good performances, but also other relevant cues which can be extracted from
videos have to be considered.

The available state of the art research in computer vision still misses a
complete framework for human activity recognition based on context, taking
into account both the scene where activities are taking place, objects analysis,
3D human motion analysis and interdependence between activity classes.
This thesis describes computer vision frmeworks which will enable the robust
recognition of human activities explicitly considering the scene context.

In order to succeed in this project we are working on different computer
vision problems. The initial research covered 3D object modeling from few or
single images, both of simple objects such as convex ones (Ntouskos et al., 2015b)
and of complex objects such as concave or with reflective surfaces (Natola et al.,
2016). 3D modeling of articulated objects was obtained modeling the single
aspects of object components (i.e. object main parts), and then assembling
them together. 3D modeling of complex objects was obtained collecting a
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database of 3D objects and using normal field information to learn a dictionary
describing the correspondence between visual features and 3D normal field.
The normal field is in turn used to model the 3D shape of new unseen objects.
The motivation of these researches related to the goal of the project is that the
3D shape of objects involved in the scene can highlight relevant information for
the recognition of object manipulability, this is the reason for our studies on
objects affordance (Sanzari et al., 2015), and especially can help to understand
which human activities are performed allowing to capture the interaction
between persons and objects.

The second step of the Ph.D. research project was dealing with action
recognition from 3D MoCap (Motion Capture) data, in particular we focused
on recognizing specific patterns relative to the 3D motion of different human
body parts such as the arms, the legs, the torso and the head. By representing
configurations of actions as manifolds, joint positions are mapped on a subspace
via principal geodesic analysis. The reduced space is highly informative
and allows for classification based on a non-parametric Bayesian approach,
generating behaviors for each sub-body part. Classifying these patterns specific
for different kind of actions we were able to obtain action recognition (Natola
et al., 2015b).

Facing the problem of action recognition based on 3D human skeleton
joints data, it was clear that it is not possible to deal only with 3D data for
our approaches. For this reason we focused on the problem of 3D human
pose estimation from single images (Sanzari et al., 2016). Through a good
estimation of 3D poses of human skeleton joints we are able to use not only
databases of 3D human motion, or special and expensive equipment such as
Vicon, to face the problem of action recognition. We are able now to obtain
3D data directly from RGB images and videos.

Currently we are working on two different problems: the discovery of human
motion primitives for the recognition and classification of human motion, and
the recognition of human activities based on context.

We are facing the problem of recognizing human motion building a robust
framework able to deal with the well-known problems related to human motion,
such as body parts occlusions. For this purpose we are analyzing the discovery
and recognition of human motion primitives from 3D skeleton data (Sanzari
et al., 2019), which are those movements that span an interval of time in
which a change in position of a limb or body part takes place. Human motion
primitives are discovered by optimizing the ‘motion flux’, a quantity which
depends on the motion of a group of human skeleton joints. Motion primitives
are recognized analyzing the geometric features belonging to different primitive
movements. The discovered motion primitives are in turn used to identify
human activities.

For the recognition of human activities based on context, the future work
will concern the development of a framework for activity recognition from RGB
videos based on the scene, the human motion and the presence in the scene of
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relevant objects, for example manipulated ones.

1.2 Thesis Structure

The research described in this thesis details the processes adopted for tackling
different computer vision problems needed to build the ground for a framework
to understand human activities from RGB videos based on context.

This involved detailed investigations into the resolution of some of the
inherent deficiencies discovered in the available approaches in the computer
vision literature. The research accomplished focused on three key research
areas: (i) 3D objects modeling, (ii) 3D human pose estimation and (iii) 3D
human motion analysis. The research performed was cross-disciplinary in
nature, with exhaustive analysis in interpreting and understanding how 3D
information can be gathered from 2D images in general.

In Chapter 1 a general introduction to the focal point research of the
thesis is done. In Chapter 2 the main objectives of the research are outlined,
providing the justification under the doctoral studies. In Chapter 3 a review
of the literature regarding the key research areas is described. In Chapter ??
a general background is introduced.

The major research objectives for this research were evaluated through a
series of scientific papers centred on the key research areas mentioned above.
The 3D modeling of objects was achieved examining articulated objects and
concave and reflective objects. The studies undertaken are described in Chapter
4 and 5. The paper Component-wise modeling of articulated objects outlines a
framework for 3D modeling of articulated objects based on the aspects of their
components. The paper Single image object modeling based on BRDF and
r-surfaces learning outlines a framework for 3D modeling of concave objects
with refective surfaces. In Chapter 6 is described the paper Bayesian Image
based 3D Pose Estimation which introduces a method for 3D human pose
estimation based on hierarchical Bayesian non-parametric models. In Chapter
7 is described the paper Discovery and recognition of motion primitives in
human activities which introduces a framework for the automatic discovery and
recognition of motion primitives in videos, used in turn to recognize human
activities.

In Chapter 8 are presented conclusions and future research directions.

1.3 List Of Publications By Candidate

Peer Reviewed Published Journal Papers:
• Sanzari, M., Ntouskos, V., & Pirri, F. (2019). Discovery and recognition

of motion primitives in human activities. PloS one, 14.4: e0214499.
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Peer Reviewed International Conference Papers:
• Ntouskos, V., Sanzari, M., Cafaro, B., Nardi, F., Natola, F., Pirri, F.,

& Ruiz, M. (2015). Component-wise modeling of articulated objects. In
Proceedings of the IEEE International Conference on Computer Vision
(pp. 2327-2335).

• Natola, F., Ntouskos, V., Sanzari, M., & Pirri, F. (2015). Bayesian
non-parametric inference for manifold based MoCap representation. In
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Chapter 2

Aims and Objectives

The aim of the project is to implement a framework able to tackle human
activity recognition from RGB videos, a wide problem leading to several
considerations.

In order to deal with human activity recognition from videos, human motion
is the most important problem to be faced. Besides human motion, other
relevant cues can be retrived from video frames, such as the scene or the objects
involved in the activity. This drives to face problems such as scene recognition,
object recognition, 3D object modeling, 3D human pose estimation, 3D person
tracking, etc..

A more precise definition of the objectives of this Ph.D. research project
requires a description of limitations of current state of the art methodologies.

An important disambiguation has to be exposed before proceeding further:
the one between action and activity. Actions are generally described in literature
as single person movements that may be composed of multiple simple gestures
organized temporally, such as walking, waving or and punching. Gestures are
instead elementary movements of a body part. On the other hand, activities
are described as involving two or more persons and/or objects, or a single
person performing complex actions, i.e. a sequence of actions.

Human activity recognition from videos aims to recognize which human
activities are taking place during a video, considering only features directly
extracted from video frames. The related applications are manifold: healthcare
monitoring applications, such as rehabilitation or stress monitoring, monitoring
and surveillance for indoor and outdoor activities, human-machine interaction,
entertainment etc.. Human activities can be classified into three main groups:
single person, multiple people interaction and crowd behavior. In this thesis,
among other computer vision problems, we will focus on single person activity
recognition.

Human activity recognition has a long history in the computer vision
research community, which is filled with a diverse number of approaches for
activity description and modeling. Among the computer vision problems,
activity recongition is still an hot topic. The reason for this variety and for
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the growing interest is that there is no single model which is able to generalize
well in every case. This requires the development of new techniques to improve
the accuracy of recognition algorithms under more realistic conditions.

The main consequence is that the great majority of existing algorithms are
customized for the specific activities needed to be recognized. This can lead
to optimal results for a specific subset of human activities, but to very poor
results when scaling up to a great number.

Exsisting approaches for activity recognition also include the usage of
external and wearable devices different from cameras. Smart homes are a usual
example of external sensing. These systems are able to recognize activities
such as eating, taking a shower, washing dishes, etc., because they depend
on data emerging from sensors placed in objects which people are presumed
to interact with. Approaches including the utilization of wearable sensors
relies on quantified attributes related to the typical movement of users, for
example using accelerometers, or are related to environmental parameters
such as temperature and humidity, or physiological signals such as breath or
heart rate. Other approaches include the usage of special equipment for 3D
human skeleton joints tracking, such as Vicon or X-sense. The extracted 3D
joints poses are the so called MoCap (Motion Capture) data, and are obtained
through wearable sensors (gyroscopes) or markers reflecting infrared lights
coming from several cameras. The main problem related to these approaches
is the need of user engagement, both to interact with specific object or to wear
sensors or markers.

The limitations of the approaches explained so far lead to the conclusion
that activity recognition from RGB cameras is the favorite solution for this
problem.

A wide variety of approaches for activity recognition from RGB videos
based on human features have been suggested so far, focusing on human
features segmentation, extraction and representation. These approaches make
use of features catching space and time relationship, the so called space-
time volumes (STV), or discrete Fourier transform (DFT) of image frames,
able to capture image intensity variations. The STV and DFT are global
features which are retrieved considering the whole image. Other methods make
use of local features insead. Local features, such as SIFT, HOG, etc., are
needed to prevail problems such as noise and occlusion, and potentially to
rotation and scale. In addition to global and local features, other processes
are also suggested to directly or indirectly model human body, to which the
3D pose estimation and body part tracking methodologies can be applied.
After selecting suitable features from frames or videos, activity detection
and classification algorithms are the next step. One of the most employed
classification algorithms is dynamic time warping (DTW), which is a similarity
measure for two sequences. The main drawback of DTW is that it needs
large templates. To overcome this issue, many model-based methods are
proposed. Model-based techniques can be partitioned into generative models
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and discriminative models. Generative models, that specifically reproduce the
generation process of the data sequences as managed by the hidden Markov
model (HMM) and dynamic Bayesian network (DBN). Discriminative models
produces fewer hypothesis on the distributions but depends deeply on the
quality of the data, such as support vector machines (SVMs), relevance vector
machines (RVMs) and artificial neural networks (ANNs). The main problem
related to this approaches is that there is no single model which is able to
generalize well in every case. This approaches lead to very poor results when
scaling up to a great number activities to be recognized.

Most approaches developed in the computer vision literature on activity
recognition focused on examining individual motion patterns of activities
as attested by popular activity datasets. These techniques model activities
individually and point to learn discriminative patterns for each activity class.
However, activities in usual and natural scenes hardly happen separately. The
interdependence between activity classes produces important cues for activity
recognition. Jointly modeling and recognizing connected activities in space
and time can improve recognition accuracy.

The limitations explained so far lead to the conclusion that a robust system
for activity recognition cannot rely only on human motion features, but has to
be context-aware.

It has been proven in (Oliva and Torralba, 2007) that context is very
important in human visual systems. As there is no official definition of context
in video analysis, we can consider all the involved objects and motion regions
as providing contextual information about each other, as well as the scene
where the activities are taking place. The most interesting elements related
to methods for activity recognition are emerging in those researches that are
able to connect several aspects leading to the recognition of human activities
in context (Caddigan et al., 2017; Rosenfeld and Ullman, 2016; Ramanathan
et al., 2015; Cheron et al., 2015; Jiang et al., 2011). This new wave is also
made possible thanks to the availability of image databases such as MSCoCo
(Lin et al., 2014) and the VisualGenoma (Krishna et al., 2016) advancing the
state of the art in the direction of building context knowledge (Jiang et al.,
2011). Most of the exsisting approaches for activity recognition from context
investigated human-object interaction, both in still images or videos, or perform
contemporary human and object tracking to achieve action recognition.

The available state of the art research still misses a complete framework
for human activity recognition based on context, taking into account both the
scene where activities are taking place, 2D and 3D objects analysis, 3D human
motion analysis and interdependence between activity classes.

To successfully recognize an activity in a video some important cues can
be employed, such as the cause effect relation connecting a subject pose and
some object in the scene, the time persistence of this relation during a video,
the recognition of other relevant objects not manipulated, the scene where
the activity is being performed. Another fundamental step to enable a robust
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activity recognition framework is to consider the interdependence between
activity classes. Relevant features can be computed related to objects, to
subjects pose and features enabled by tracking the poses and the interactions
between subjects-objects and amid relevant objects. The research conducted so
far during the Ph.D. project in 3D objects modeling, 3D human pose estimation
and 3D human motion analysis will enable the discovery of some such relevant
features.

All the deficiencies of state-of-the-art methodologies for activity recognition
brought us to explore computer vision areas such that 3D object modeling, 3D
human pose estimation from single images and 3D human motion analysis and
human activity recognition from RGB videos.

Our main contributions so far for context-aware activity recognition are:
the 3D modeling of articulated objects, (Ntouskos et al., 2015b); an approach
for understanding objects affordances studying the relation between points on
the 3D object model and the points of regard of a person picking up a the
object and looking at it, (Sanzari et al., 2015); a method to model complex
objects such as concave or with reflective surfaces (Natola et al., 2016); a
method for the recognition of human actions based on skeleton groups, (Natola
et al., 2015b); a method for 3D human pose estimation from single images
(Sanzari et al., 2016); and finally a method for activity recognition based on
human motion primitives (Sanzari et al., 2019).
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Chapter 3

Literature review

3.1 3D Object Modeling

The computer graphics, computer-aided design and computer vision literatures
are filled with an amazingly diverse number of approaches to surface description.
The reason for this variety is that there is no single representation of surfaces
that satisfies the needs of every problem in every application area.

Among all the computer vision problems, the single image modeling is one
of the most difficult amid the ill-posed inverse problems.

As a consequence, one needs to make additional assumptions on the object’s
geometry (such as piecewise planarity (Hoiem et al., 2005; Liebowitz et al.,
1999)), its albedo (shape from texture (Malik and Rosenholtz, 1997)), its
reflectance properties (shape from shading (Malik and Rosenholtz, 1997)), or
the image formation process (shape from defocus (Favaro and Soatto, 2005)).

Because these techniques make strong assumptions on shape, reflectance,
or exposure, they tend to produce acceptable results for only a restricted class
of images.

Existing approaches using image cues were demonstrated to generate plau-
sible 3D models, but they all impose more or less strong limitations on the
applicability to objects in real-world images. Moreover, many of these ap-
proaches give rise to hard computational challenges.

For a single image modeling problem, the surface model is obtained by
minimizing a surface smoothness objective function subject to constraints from
the apparent contour or from other image cues.

The main ingredient of the deformation algorithm is a variational mini-
mization problem, whose solution, given certain modeling constraints, is the
desired modified surface.

Variational minimization problems deal with maximizing or minimizing
functionals, often expressed as definite integrals involving functions and their
derivatives. The interest is in extremal functions that make the functional
attain a maximum or minimum value. The extrema of functionals may be
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obtained by solving the associated Euler–Lagrange partial differential equations,
specifying some initial conditions.

Because the problem is highly ill-posed, one needs other information to get
a plausible solution, and which can be expressed as constraints of the modeling
problem. This information is extracted from the image taken in consideration,
the most important is the apparent contour of the object, and many others
can be the light hitting the object, its brightness, its color.

Regarding the state of the art literature for the problem involving modeling
articulated objects, the great majority of these approaches rely on kinematic,
that is, the shapes are seen as compositions of geometrically or algebraically
defined primitives, connected by joints. These approaches are generally com-
putationally very expensive and require strong user input.

Pioneering work for the modeling of curved surfaces was done by Terzopoulos
et al. (Terzopoulos et al., 1988b; Terzopoulos et al., 1988a) although their
reconstructions are restricted to tube-like shaped objects.

Following the deformation methods introduced by Terzopoulos, shape gen-
eration from images provides good results by exploiting the contour generator.

The work of Prasad et al. (Prasad and Fitzgibbon, 2006; Prasad et al.,
2010) made further significant advances towards the modeling of arbitrary
curved surfaces and generalized the class of reconstructable objects to those of
higher genus. In practice, however, only objects with rather simple topology
can be modeled due to the use of a parametrized surface representation.

Similar to this work, Zhang et al. (Zhang et al., 2002) and Töppe et
al. (Töppe et al., 2011) introduced a single view modeling method able to
compute silhouette-consistent minimal surfaces from a depth map and from a
user specified volume.

The single view modeling methods, however, are not suitable for modeling
articulated objects since some of their assumptions become not valid. In
particular, the components of the object do not share the same plane of
symmetry.

Early approaches to this problem suggested a hierarchical composition of
the object components, represented as generalized cylinders (Binford, 1971),
geons (Biederman, 1987), or superquadrics (Dickinson et al., 1990; Pentland,
1986). In these early works, components were modeled with parametric 3D
shapes of few degrees of freedom, leading to limited resemblance to the actual
geometry of the component.

Recently, (Cashman and Fitzgibbon, 2013) demonstrated that for certain
classes of objects, deformable models can be used to learn the shape of the
object, based on the apparent contour imaged in different configurations and a
rough initial model of the object.

Multiple view modeling of different object classes from few images have
been successfully obtained using networks of objects with similar viewpoints
(Carreira et al., 2014), or for large scale mean shape reconstruction (Vicente
et al., 2014).
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We have recently proposed a novel approach to modeling articulated objects
from few images based on multiple views of the object’s main parts, (Ntouskos
et al., 2015b).

The fact that surface modeling from a single view has to deal with shading
and the way materials shine and reflect the light has become clear since the
works of (Nicodemus, 1965) and (Horn, 1977). Though only recently a great
deal of work has been done to merge the rich information that light conveys
about an object with its shape. Relevant examples are studies on specular
reflection of materials and light incidence (Magda et al., 2001; Mallick et al.,
2005), so as to dismiss the Lambertian hypothesis, and on how illumination
and reflectance combine to influence an object shape perception (Barron and
Malik, 2015) and its geometry (Oxholm and Nishino, 2012).

The concept of Bidirectional Reflectance Distribution Function (BRDF)
has been largely used in the computer vision community (Romeiro and Zickler,
2010) to infer the material reflectance properties of a known object. Some
approaches model objects in 3D by imposing an unknown BRDF such as in
(Magda et al., 2001), where the object shape is recovered with two different
methods requiring, however, multiple images of the same object. Retinex
theory, (Land and McCann, 1971), has been used for separating the shading
component from the reflectance one, in an image. A similar distinction is made
in (Barrow and Tenenbaum, 1978) for extracting the intrinsic characteristics of
surface orientation, reflectance and incident illumination, from a single image.

Very recently, we proposed a method to learn a non-parametric model of
surface appearance directly from the measured BRDFs in unknown illumination
environment, (Natola et al., 2016).

3.2 3D Human Pose Estimation
3D human pose estimation is the process of identifying how a human body is
configured in a given scene. Vision-based approaches are often used to provide
such a solution, using cameras as sensors. It is an important challenge for
many computer vision applications, such as surveillance, automotive safety
and behavior analysis, as well as Human Computer Interaction applications.

3D human pose estimation approaches can be classified in model based and
model free methods. The first ones [11,12] are those which learn a mapping
between visual appearance and human body pose, while the secon ones employ
human knowledge to recover the body pose. Search space is reduced considering
the human body appearance and structure.

Human pose estimation from images has been considered since the early
days of computer vision and many approaches have been proposed to face this
quite challenging problem. A large part of the literature has concentrated
on identifying a 2D description of the pose mainly by trying to estimate the
positions of the human joints in the images. Recently, attention has been
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shifted to the problem of recovering the full 3D pose of a subject either from
a single frame or from a video sequence. Despite this is an ill-posed problem
due to the ambiguities emerging by the projection operation, the constraints
induced by both human motion kinematics and dynamics have facilitated the
recovery of some accurate 3D human pose estimation.

Human pose estimation (HPE) has been extensively studied during the
years by considering videos, 2D images and depth data, (Liu et al., 2015;
Hen and Paramesran, 2009; Poppe, 2007). There exist several open problems;
among them we mention variations in human appearance, clothing and back-
ground, arbitrary camera view-point, self-occlusions and obstructed visibility,
ambiguities and inconsistency in the estimated poses.

Different features can be chosen to describe the different types of data.
Focusing on 2D input data, some works assume the 2D body joints locations
already given (Akhter and Black, 2015a), while others extract features from
silhouettes such as HOG (Dalal and Triggs, 2005), PHOG (Bosch et al.,
2007), SIFT (Lowe, 1999) and shape context (Belongie et al., 2002), or dense
trajectories (Zhou and De la Torre, 2014).

In detail, concerning 3D human pose estimation from videos, very recently
(Zhou and De la Torre, 2014) introduced a spatio-temporal matching (STM)
among 3D Motion Capture (MoCap) data and 2D feature trajectories providing
the estimated camera view-point and a selected subset of tracked trajectories.

Depth cues have also been considered for 3D human pose estimation, such
as in (Plagemann et al., 2010) where are introduced keypoint detectors based
on saliency of depth maps.

In the last years many works have approached the estimation of the poses
via deep learning as in (Li and Chan, 2014; Tompson et al., 2014; Ouyang
et al., 2014; Toshev and Szegedy, 2014; Mehta et al., 2018).

Assuming that joint positions are already given in 2D with the corresponding
image, (Akhter and Black, 2015a) propose to learn pose-dependent joint angle
limits from a MoCap dataset, to form a prior for estimating the 3D poses,
together with the camera parameters.

A novel class of descriptors, called tracklets, is defined and 3D poses are
recovered from them. In (Lehrmann et al., 2013), human pose is estimated
via a non-parametric Bayesian network and structure learning, considering the
dependencies of body parts.

3.3 Human Action Recognition
Human action recognition is still a challenging and stimulating problem espe-
cially when considering motion capture data (MoCap), which are relevant in
several applications including robotics, sports, rehabilitation and entertainment.
A considerable amount of work has been proposed so far to solve problems
arising in action recognition, such as view-point change, occlusions, likewise
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variations in behaviors amid different subjects performing the same action.
However there is a significant difference between MoCap and 2D/2.5D action
representations, and it could be argued without fear that the two recognition
problems are drastically different, as they address different feature spaces
and representations and, consequently, different recognition methods. MoCap
sequences represent actions by 3D points, and joints of the human skeleton
with appropriate kinematics. These data can be acquired by means of an
RGB-D sensor, such as the Kinect, by infrared marker tracking systems, such
as the Vicon System, or via back-projection techniques using multiple cameras.
With this kind of data, occlusions so far has not been considered a major issue,
such as with 2/2.5 D data, however variations amid behaviors is still a major
problem to be handled. Among the most relevant approaches we recall (Gong
and Medioni, 2011; Lv and Nevatia, 2006; Harandi et al., 2014; Ofli et al., 2012;
Wang et al., 2014b), all using noise and occlusion free datasets. In (Gong and
Medioni, 2011) actions are represented as structured-time series, with each
frame lying on a high-dimensional ambient space, from which a spatio-temporal
manifold is obtained by a dimensionality reduction approach, based on dynamic
manifold warping, accounting only for joints translation. In (Vemulapalli et al.,
2014), instead, both joints rotations and translations are considered, so as to
construct a novel class of features in SE(3) × · · · × SE(3), obtaining a full
feature space mapped on the Lie algebra. In (Harandi et al., 2014) actions
are represented via joint covariance descriptors, so as to work with symmetric
positive definite matrices, which lie on Riemannian manifolds. In most of
the approaches the representation of the joints space is a major issue and the
need for a viable compromise between space reduction and completeness seems
evident.

Indeed, the representation model is crucial, both for eliciting features and
for the recognition method used. For example, (Gong and Medioni, 2011;
Vemulapalli et al., 2014; Lv and Nevatia, 2006) consider a time-based ordering
for which a temporal alignment is needed. In particular, (Lv and Nevatia,
2006) decompose the 3D joints into subspaces representing either the motion
of a single body part, or of the combination of multiple ones.

Other approaches considering behaviors classification are (Ofli et al., 2012;
Wang et al., 2014b). In (Ofli et al., 2012), the most informative joints are
extracted by considering the fastest joints or the joints that mostly vary in
angles. However, this approach proves to be effective only if simple actions
are considered. Similarly, (Wang et al., 2014b) construct a so called "actionlet
ensemble", which is a collection of the most discriminative primitive actions,
which in turn are the representative features of subsets of joints of an ac-
tion sequence. These actionlets are learned within support vector machine
framework.

Recent advances in action recognition have been made thanks to the growing
capabilities of neural networks. Convolutional Neural Networks (CNNs) and
deep Convolutional Neural Networks (3D- CNNs) have been used for action
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recognition from RGB or RGBD videos encoding single or multiple video frames,
(Feichtenhofer et al., 2016; Yang et al., 2015; Wang et al., 2016; Karpathy
et al., 2014; Simonyan and Zisserman, 2014). CNNs applied to motion features
obtained from RGB videos (as for example optical flow features) have been
used in (Simonyan and Zisserman, 2014; Varol et al., 2018).

Long Short-Term Memory (LSTM) networks, recurrent neural networks
having the capability to process sequences, have been proposed for action
recognition in (Donahue et al., 2015; Yue-Hei Ng et al., 2015; Baccouche et al.,
2010; Baccouche et al., 2011) where video frames and motion features are
given as input to the networks. Also Attention-LSTMs (ALSTMs), taking into
account special frame regions in the form of attention, have been proposed in
(Li et al., 2018).

The main problem related to neural networks applied to a set of video
frames is that processing them highly increases the learning complexity. To
compensate for this problem very large datasets are required.

3.4 Action Recognition Based On Human Ac-
tion And Motion Primitives

While human motion in its generality is a vast research area, the paradigm
of motion primitives has mainly been explored from the point of view of
action primitives and temporal segmentation of actions. Many approaches
have explored video sequences segmentation to align similar action behaviors
(Gong et al., 2014), or for spatio-temporal annotation as in (Lillo et al., 2016).
Lu et al. (Lu et al., 2015) propose to use a hierarchical Markov Random
Field model to automatically segment human action boundaries in videos.
Similarly, (Bouchard and Badler, 2007) develop a motion capture segmentation
method. n-grams have been used to achieve action recognition based on action
primitives. In (Thurau and Hlaváč, 2007; Thurau and Hlavác, 2008) activities
are represented as temporal sequences of primitive poses. In (Thurau and
Hlaváč, 2007) action primitives are extracted reducing the dimensionality
of silhouettes binary images with principal component analysis (PCA). In
(Thurau and Hlavác, 2008) pose primitives are extracted using HOG features.
As a matter of fact, many of the earliest more relevant approaches share
the paradigm that understanding human motion requires view independent
representations and that a fine grained analysis of the motion field is paramount
to identify primitives of motion. In early days this required a massive effort in
visual analysis to obtain the poses, the low level features, and segmentation.
Nowadays, scientific and technological advances have made it possible to exploit
several methods to measure human motion, such as the availability of a number
of MoCap databases (Ionescu et al., 2014; Mandery et al., 2015; Sigal et al.,
2009). Furthermore, recent findings result in methods that can deliver 3D
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human poses from videos if not even from single frames (Sanzari et al., 2016;
Zhou et al., 2016; Tome et al., 2017).

Many research areas have taken advantage from the use of motion primitives,
in robotics for learning by imitation studies (Gams et al., 2016; Pastor et al.,
2009; Kulić et al., 2012) or learning task specifications (Ureche et al., 2015)
where primitives are analyzed from a dynamical point of view, or represented
as hidden Markov models (Inamura et al., 2004; Asfour et al., 2006; Billard
et al., 2006). In Neurophysiology by (Bizzi and Mussa-Ivaldi, 1995; Flash and
Hochner, 2005; Flash et al., 2013; Viviani and Flash, 1995; Flash and Handzel,
2007), where the idea that kinetic energy and muscular activity are optimized
in order to conserve energy is commonly employed.

Our view on motion primitive shares this hypothesis of energy minimality
during motion, likewise the idea to characterize movements using the proper
geometric properties of the skeleton joints space motion. However, for primitive
discovery, we go beyond these approaches capturing the variation of the velocity
of a group of joints using this as the baseline for computing the change in
motion by maximizing the motion flux.

Besides these works, only (Vecchio et al., 2003; Yang et al., 2013b; Holte
et al., 2010; Endres et al., 2013) have targeted motion primitives, to the best of
our knowledge. (Vecchio et al., 2003) focuses on 2D primitives for drawing, on
the other hand (Yang et al., 2013b) does not consider 3D data and generate the
motion field considering Lukas-Kanade optical flow for which Gaussian mixture
models are learned. Furthermore, they do not provide quantitative results for
motion primitives, but only for action primitives, which makes their method
not directly comparable with ours. To the best of our knowledge, only (Holte
et al., 2010) uses 3D data and explicitly mentions motion primitives, providing
quantitative results. The authors also consider optical flow to account for
the velocity field and focus on the recognition of motion primitives basing
on harmonic motion context descriptors. In particular, primitive discovery is
contextual to recognition. Since (Holte et al., 2010) deal only with upper torso
gestures we compare with them only the primitives they mention. And we
note, finally, that in our method start and end are unknown, and primitive
discovery is modeled by motion flux.

3.5 Context-Aware Action Recognition In Videos
Several authors have investigated human-object interaction in still images. Yao
et al. in (Yao and Fei-Fei, 2010b) use a random field model with structure
learning methods to learn patterns of connectivity between objects and human
body parts. Prest et al. in (Prest et al., 2012) define a human-object interaction
model learning the probability distribution of human-object spatial relations.
In (Yao and Fei-Fei, 2010a) a grouplet feature is proposed to recognize human-
object interactions. Among other approaches working on context in still images
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(Ramanathan et al., 2015) investigates a method to devise how actions are
related to each other in order to give a finer structure to the interpretation of
complex actions.

In videos human-object interaction has been addressed modeling the spatio-
temporal evolution of interactions between persons and objects. (Escorcia and
Niebles, 2013) model the spatio-temporal evolution of human-object interac-
tions introducing a related descriptor. (Lea et al., 2016) introduce a model for
action segmentation and classification from videos combining spatio-temporal
features in a spatio-temporal CNNs, capturing changes in objects relationships
during actions execution.

Visual trajectories have been investigated in (Packer et al., 2012; Prest
et al., 2013). Packer et al. in (Packer et al., 2012) perform action recognition
and object tracking using range and video sensors together with a real time
human pose tracker, describing actions as visual trajectories and constructing
a latent structural SVM to model manipulated objects. (Prest et al., 2013)
perform action recognition from videos modeling actions as trajectories of
objects with respect to humans positions, tracking objects and human poses
over time.

In (Yang et al., 2013a) the authors propose social network analysis based
features to encode relations between humans and objects to achieve human-
object interaction recognition from videos.

Several researchers investigated specific approaches for videos recorded using
first-person cameras, such as (Behera et al., 2012; Pirsiavash and Ramanan,
2012). In (Behera et al., 2012) the authors propose an approach for real-
time egocentric recognition of activities constructing histograms of atomic
events representing relationships between body parts and objects. Finally, in
(Pirsiavash and Ramanan, 2012) recognition of activities of daily living from
videos is performed exploring temporal structure and interactive models of
objects.
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The initial research conducted for the Ph.D. project covered 3D object
modeling from few images of simple objects such as convex ones (Ntouskos
et al., 2015b). The motivation behind these works related to the goal of the
project, namely activity recognition based on context, is that the 3D shape
of the objects involved in the scene can highlight relevant information for the
recognition of object manipulability and interaction with persons.

Here we present the work done for 3D articulated objects modeling, pub-
lished at the International Conference on Computer Vision 2015, which intro-
duces a method for computing 3D models of articulated objects, by decomposing
them into components and reassembling them using two or more images of
the object in a reference pose. In particular, aspects of articulated objects are
segmented from images downloaded from the web. 3D models of aspects are
than reconstructed using the strain energy functional. Objects components, i.e.
objects fundamental parts, are assembled toghether and finally, the complete ob-
ject 3D model is built. Furthermore, software code for this paper was made avail-
able at https://github.com/alcor-lab/articulated-object-modeling.

This Chapter is an exact copy of the conference paper referred
to above.

4.1 Abstract

We introduce a novel framework for modeling articulated objects based on the
aspects of their components. By decomposing the object into components, we
divide the problem in smaller modeling tasks. After obtaining 3D models for
each component aspect by employing a shape deformation paradigm, we merge
them together, forming the object components. The final model is obtained
by assembling the components using an optimization scheme which fits the
respective 3D models to the corresponding apparent contours in a reference
pose. The results suggest that our approach can produce realistic 3D models
of articulated objects in reasonable time.

https://github.com/alcor-lab/articulated-object-modeling
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4.2 Introduction

The problem of modeling articulated objects, like people, animals and complex
human artifacts has a long history in computer vision. Obtaining 3D models
of objects from images is essential for many high-level vision tasks. Early
approaches suggested a hierarchical composition of the object components,
represented as generalized cylinders (Binford, 1971), geons (Biederman, 1987),
or superquadrics (Pentland, 1986; Dickinson et al., 1990), just to cite a few well
known approaches to the structural descriptions theory. In these early works,
components were modeled with parametric 3D shapes of few degrees of freedom,
leading to limited resemblance to the actual geometry of the component.

With the popularization of more accurate deformable models, introduced
also by the computer graphics community (see (Botsch and Sorkine, 2008) for a
review), more realistic models of the components of an object can be obtained.
Recent works (Prasad et al., 2010; Töppe et al., 2013; Vicente and Agapito,
2013) have successfully shown how some types of animals can be modeled from
a single image, relying mainly on the symmetry of the animal’s shape and,
possibly, on further image cues. These approaches differ from the ones proposed
in computer graphics (e.g. (Nealen et al., 2007; Chen et al., 2013; Levi and
Gotsman, 2013)), since there, input from the 3D artist is essential. The single
view modeling methods, however, are not suitable for modeling articulated
objects since some of their assumptions become not valid. In particular, the
components of the object do not share the same plane of symmetry.

In this work, we provide a solution to the problem of modeling articulated
objects by explicitly modeling their components from various aspects. We
consider a hierarchical decomposition of the object into components. Depending
on the geometric complexity of the component, a different number of aspects is
required for the modeling. For example, the body of an animal typically requires
three to four representative aspects (left, right, front and back), while the legs
can be modeled also by a single aspect. An example of the decomposition in
components and aspects is presented in Figure 4.2. From each aspect, namely
a particular view of the component, an approximate model of the imaged
component is obtained using the deformation paradigm. Then, these aspect
models are merged together to form a component. Components are typical of
an object class and, in turn, are assembled considering a reference pose of the
object, providing a 3D model of the whole object. Here, we assume that the
object components are segmented out in the respective aspects. It is important
to note that the different aspects need not correspond to the same physical
object as soon as objects of the same class are sufficiently similar. We focus
our study on animals as they typically satisfy this property. An example of a
3D model obtained with our approach is shown in Figure 4.1.

The paper is organized as follows. In the next section we review related
work. In Section 4.4 we describe how components are modeled by their aspects,
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Figure 4.1. Left: Images of an animal downloaded from the web, Right: 3D
model obtained with the proposed method.

while in Section 4.5 we show how components are assembled to form the final
model. In Section 6.6 we provide an evaluation of the proposed method and
Section 4.7 adresses conclusions and future work.

4.3 Related work

Approaches based on geometric modeling of objects have recently become
popular in computer vision. Following the deformation methods introduced
in the pioneering work of Terzopoulos (Terzopoulos et al., 1988a), shape
generation from images has been proved to provide good results by exploiting
the contour generator of the object. Koenderink (Koenderink, 1984) establishes
a general rule relating the curvature of the contour and the curvature of the
surface, which is also investigated in (Cipolla and Giblin, 2000). Single view
modeling of objects with predefined genus and topology has been introduced
in (Prasad et al., 2006; Prasad et al., 2010) using images of the same object
family. Recently, (Cashman and Fitzgibbon, 2013) demonstrated that for
certain classes of objects, deformable models can be used to learn the shape of
the object, based on the apparent contour imaged in different configurations
and a rough initial model of the object. Additional image cues have been
considered in (Oswald et al., 2012; Töppe et al., 2013) to model object classes
from single views, and a similar approach has been taken by (Vicente and
Agapito, 2013), exploiting the contour generator. A recent review is found in
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Figure 4.2. Object decomposition and aspects of each component: Left: Images
of the object overlayed with segmentation masks, Right: Representative aspects
of each component.

(Oswald et al., 2013).
On the other hand, the relation between the apparent contour and the

contour generator, that we exploit here for reassembling the components, has
been studied since the early days of computer vision. As mentioned above,
Koenderink in (Koenderink, 1990) studies various properties of the contour
generator based on the results of differential geometry, though a comprehensive
study of the properties of contour generator of evolving implicit surfaces is found
in the work of (Plantinga and Vegter, 2006). The problem of fitting 3D objects
in their apparent contour has been treated in (Cashman and Fitzgibbon, 2013)
where an optimization is performed to find 3D-2D correspondences, considering
a parametric representation of the surface and an estimation of the view
direction, initialized by the user. The problem has been also treated in (Budd
et al., 2013) for non-rigid surface sequences. Our method, instead, uses a global
optimization scheme, in order to estimate the view direction without requiring
user input.

Finally, to improve visual quality, surface smoothing is applied at the
models. Level-set based methods have been widely used for this task (for a
survey see (Calakli and Taubin, 2011)). These approaches use an implicit
function representation of the surface and have the advantage of topological
flexibility. We follow the approach of (Liang et al., 2013), exploiting also the
convenience implicit surfaces offer in performing Boolean graphics operations,
for obtaining a model with no internal faces.

4.4 Modeling object aspects into components
In this section we present our approach for modeling the components of an
articulated object, such as an animal, by generating models corresponding to its
representative aspects and then merging them together. For each component,
we assume that a set of Nc images {I}Nci=1 of different representative aspects of
the component are collected. Moreover, the component is segmented out in the
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image, giving the corresponding aspect masks {Ai}Nci=1. Note that components
may share images as in shown in Figure 4.2. Moreover, the correspondence of
the aspect masks with the components is given. The method is divided in two
steps:
1. Given the segmentation masks of each aspect, a corresponding aspect model

is generated.
2. Models of the components are built by merging together the aspect models

of the component.
Figure 4.4 shows the results of these two steps for the component ‘head’ of the
giraffe.

4.4.1 Aspect modeling
The basic idea develops on the minimization of an elastic energy that deforms
the distance between nearby points, inducing local stretching and bending.
Given a mask A∈R2, the surface ϕ⊂R3 parametrized by the function r:A 7→R
is computed by minimizing the strain energy functional defined by the first
and second fundamental forms (Terzopoulos et al., 1987), plus an additional
regularization term. A linearization of the energy strain is attained by con-
sidering the first and second derivatives of r (Botsch and Sorkine, 2008). The
energy functional is:

E(r) =
∫
A

r>SQSrS + r>BQBrB − 2fr dudv (4.1)

with rS=(ru, rv)>, rB=(ruu, rvv, ruv)>, QS is a 2×2 matrix holding the stretch-
ing parameters and QB is a diagonal 3×3 matrix holding the bending ones.
Regularization conditions are applied to make the final surface growing faster
near the boundary and where the initial mask is thinner and convex. The
regularization is enforced by the function f : A7→R defined by:

f(u,v) =[δ1(u,v)γ1 + (1−δ1(u,v))γ2]h(u,v)
d(u,v)+ (4.2)

[δ2(u,v)γ3 + (1−δ2(u,v))γ4]
(
h̄−h(u,v)

)
with h(u,v)=dist{(u,v), ∂A}; d: A7→R is the distance between the point (u,v)
and its opposite point in the normal direction, given by its nearest orthogonal
projection on the boundary; h̄= max h(u, v); δ1: A 7→{0, 1} is the indicator
function of the convexity of a point relative to the mask; δ2: A7→{0, 1} is a
thresholding indicator function such that δ2=1 if h(u,v)<τ and δ2=0 otherwise;
γi, τ∈R+, i=1,2, 3, 4, are the respective weights with γ1<γ2 and γ3<γ4.

The scheme for finding the solution r(·) of the energy functional (4.1) is
based on the Finite Element method, as described in (Celniker and Gossard,
1991), applied to the associated Euler-Lagrange equation. The approximation



4.4 Modeling object aspects into components 23

Figure 4.3. Comparison of the solutions (height maps) and reconstructed surfaces
(meshes), Left: regularized with (4.2), Right: without regularization. (Best
seen in colors)

of the displacement r(u, v) which minimizes the energy functional (4.1) is
obtained as:

r(u, v) = X>Φ(u, v), (4.3)

where Φ contains the coefficients of continuous shape functions and X un-
known weights. These weights are obtained by solving the following quadratic
minimization problem

min
X

{
X>KX− F>X

}
, (4.4)

with K the stiffness matrix and F the regularization term. Algorithm 1
describes the steps involved. In order to constrain the solution at the boundary
∂A, homogeneous Dirichlet conditions are applied to the whole boundary of
the mask into the PDE problem formulation. Once the solution is computed
for the i-th aspect, i∈{1,. . .,Nc}, the corresponding mesh Bi is obtained from
the surface defined by the composition of ϕ with its reflection along the z=0
plane, as shown in Figure 4.3.

4.4.2 Component building
In order to obtain a model for each component, it is necessary to combine
together the models {Bi}Nci=1 produced from each aspect. To achieve this, 3D
transformations {T ri }Nci=1 are estimated between each aspect model Bi and a
reference model Br, in a way that produces a consistent model. Using feature
points extracted from the images of each aspect Ii (see Figure 4.2), an initial
registration of the models is achieved which is then refined by dense 2.5D
registration. Algorithm 2 shows the steps for registering the aspects.
The last step of Algorithm 2 (line 11) is a dense 2.5D registration between the
depth image of the reference aspect dr and the depth image d(0)

i corresponding
to the transformed i-th aspect. The registration is obtained via the following
minimization problem

min
ξi∈a(3)

‖dr − d(0)
i (ξi)‖L1 , (4.5)

with a(3) the Lie algebra of the 3D affine transformation group.
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Algorithm 1: Aspect modeling
Input: Aspect masks A = {Ai}Nci=1, parameters {QS}Nci , {QB}Nci
Output: {B}Nci=1

1 for Ai in A do
2 Define a triangulation T = {Tj}mj=1 over the points of the aspect’s

mask
3 Choose the set of shape functions to use (e.g. linear, quadratic) and

the quadrature nodes
4 for Tj in T do
5 Interpolate the shape functions at the quadrature nodes
6 Assemble the stiffness matrix and regularization term using a

quadrature rule
7 Find the weights of the shape functions solving the equation

KX = F
8 Find the displacements ri using eq. (4.3)
9 Compute a mesh Bi based on the triangulation

Algorithm 2: Aspect registration
Input: Index r, B = {Bi}Nci=1, I = {Ii}Nci=1
Output: {T ri }Nci=1

1 for Ii in I do
2 Detect a set of feature points {Fij}Mi

j=1 inside the segmentation mask
(e.g. by keypoints, SURF (Bay et al., 2006) features or similar)

3 Project {Fij}Mi
j=1 on {Bi}Nci=1 to obtain the 3D feature points

{Xij}Mi
j=1

4 for Bi in B \Br do
5 Find feature matches {Fij}Mi

j=1 ↔ {Frj}Mr
j=1

6 if #matches ≥ 3 then
7 Estimate 3D transformation T (0)

i based on {Xij}Mi
j=1 ↔ {Xrj}Mr

j=1
(up to affine transformation when the number of matches is
sufficient)

8 else
9 Ask user for manual initialization

10 Apply T (0)
i on Bi and compute depth image d̄(0)

i

11 Perform dense 2.5D registration of d̄(0)
i w.r.t. d̄r
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The objective function is non-smooth and non-linear in ξ. The use of
L1-norm is preferred, however, as it makes the method more robust with
respect to L2-norm. To overcome the problem of non-smoothness the Legendre-
Frenchel transform is applied leading to an equivalent saddle-point problem.
The objective function is then linearized with respect to ξ and a solution is
computed using the nonlinear conjugate gradient method in a coarse-to-fine
framework. The saddle point problem at the k-th iteration is

max
p∈P

min
δξ

(k)
i ∈a(3)

p>
(

(d̄r − d̄(k)
i )− J

ξ
(k)
i
δξ

(k)
i

)
, (4.6)

with δξ(k)
i the correction of ξi at k-th iteration, P the union of pointwise L1

balls, d̄r the discrete reference depth image, d̄(k)
i the (discrete) depth image

of aspect i transformed according to T (k) = exp(δξ(k)
i )T (k−1) and J

ξ
(k)
i

the
Jacobian of d(k)

i with respect to ξ(k)
i .

The optimization significantly improves the registration provided that the
initialization d̄(0)

i is situated in the convex basin of the optimal solution. More
details regarding the optimization problem (4.6) and how a solution is computed
are provided in the supplementary material. The final solution depends on the
choice of the reference aspect and the order in which the remaining aspects are
considered, however, given that Nc is typically a small number, the solutions
are equivalent.

After computing the transformations which lead to a consistent registration
of the aspect models, we need to merge them into a single component model.
To achieve this, we first compute a volumetric representation of each model’s
surface which facilitates the extraction of the surface envelope. We use the
definition of Inner Product Field (IPF), as described in (Liang et al., 2013).
Considering a surface S as the boundary between its interior and exterior
regions, then we can represent S by computing an IPF on a regular 3D grid in
the following way. Given a domain W ⊂ R3 and a set of points S∗ = {pi}Nci=1
sampled from the surface, for a generic point x ∈ W we denote by p(x) ∈ S∗
the nearest point in S∗ to x. The IPF is defined as

φ(x) = v(x)>n(p(x)), v(x) = x− p
‖x− p‖

, (4.7)

where n(·) is the surface normal at point p. Once IPFs are computed, we
have an implicit representation of the aspect surfaces and we can exploit
the following result: given two or more implicit surfaces φ1(x), . . . , φn(x),
then φ∪(x) = min (φ1(x), . . . , φn(x)) is the union of their interior regions and
corresponds to the envelope of the surfaces. As a final step, the component
model is slightly smoothed in order to attenuate possible irregularities and
artifacts. The smoothing is applied on the volumetric representation of the
object using the Level Set method according to the mean curvature flow (Osher



26 4. Component-wise modeling of articulated objects

Figure 4.4. Aspects modeling and component building of the giraffe head. Left:
side aspect, Center: front aspect, Right: component model.

and Fedkiw, 2003)
φt + Vn‖Oφ‖ = 0, (4.8)

where Vn = −bκ is the velocity field in the normal direction generated from
surface curvature κ. A mesh is then extracted by standard meshing techniques
(e.g. (Lorensen and Cline, 1987)).

4.5 Assembling of the articulated object

Figure 4.5. Two views of a giraffe in a reference pose with the overlayed component
masks.

The components are assembled in order to reconstruct the entire object in
a reference pose. In particular we use the apparent contours of the components
in two or more views of the object in a reference pose, as the ones displayed in
Figure 4.5. We assume here that the components are at least partially visible
in these images, that the corresponding masks are available and that they are
produced by an orthographic projection. The visibility requirement can be
relaxed as the number of views increases.

First, we recover the optimal transformation for each component, which
makes its projection comply with the apparent contour. We treat this as a
3D-2D registration problem. In particular, we consider that each component is
a sufficiently smooth surface S (e.g. of class C2) and the apparent contour is
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a planar contour γ. These two entities are related by the contour generator
(CG) which is a space curve Γ defined by the set of visible points on S where
the view direction v is locally tangent. Hence, the projection of Γ according
to v produces γ up to a 2D similarity transformation. In order to register
each 3D component in its apparent contour we find a view direction and the
corresponding CG which, under projection, gives a contour γ̂ as similar as
possible to γ.

Let Y(S) a set of points sampled on S. Under the given assumptions, it
suffices to identify two points Y1, Y2 ∈ Y(S) lying on Γ, to compute the view
direction. This can be seen by observing that Γ depends only on v, and two
points with non parallel normals n(Y1) and n(Y2) define the view direction up
to a sign, as v = n(Y1)× n(Y2).

We consider a discrete optimization problem, based on the energy function

E(Y1, Y2) =
∑

l={1,2}
(Evis(Yl) + Ecurv(Yl))

+Eang(Y1, Y2) + Edist(Y1, Y2). (4.9)

The first term of (4.9) corresponds to a visibility constraint, expressing the fact
that both points must be visible from the estimated viewpoint while the last
three terms take into account local geometric properties that the contour and
CG have to satisfy. All these terms are invariant with respect to 2D similarity
transformation, which is a computational bottleneck when considered. We
examine now in detail each term.

Ecurv is based on the relation between the curvature of the surface and
the curvature of the apparent contour. The curvature of γ, κγ(y) and the
curvature of Γ at the corresponding point κΓ(Y ) satisfy the relation

κΓ(Y ) = sin2 θ κγ(y), (4.10)

with θ the angle between v and the CG at Y (Koenderink, 1990; Cipolla, 1998).
Based on this result, suitable bounds regarding the curvature of γ, Γ and S
are provided by the following proposition:

Proposition. Let S be a smooth surface. Denoting as π(·) the projection
operation, the curvature of the contour γ at a non-cusp point y, the curvature
of Γ at the corresponding point Y and the principle curvatures of the surface
κS1 (minimum) and κS2 (maximum) at Y satisfy the inequality

κS1 (Y ) ≤ κΓ(Y ) ≤ κγ(y) ≤ κS2 (Y ), (4.11)
with: y ∈ γ, Y ∈ Γ,y = π(Y ).

Proof. Consider a generic point Y ∈ Γ. We assume first that Y is not umbilical.
The leftmost inequality is trivial as the curvature of Γ at Y , cannot be smaller
than the minimum curvature of the surface at Y . The second inequality follows
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from (4.10). To show the last inequality we consider the osculating sphere
OY of the surface at Y which has curvature κOY = κS2 (Y ). Regardless of the
view direction, γ at y can at most locally lie on the projected contour of OY

which is a circle with curvature κOY . Hence, the curvature of γ at y = π(Y ) is
locally bounded by the curvature κOY which is equal to κS2 (Y ). If the point is
umbilical then all equalities trivially hold.

Moreover, the sign of κγ(y) should match the sign of the Gaussian curvature
of S at Y (Koenderink, 1990).

Corollary. Considering a point y ∈ γ, a region R ⊆ S is an admissible region
of the corresponding point Y ∈ Γ iff κS1 (Z) ≤ κγ(y) ≤ κS2 (Z), ∀Z ∈ R and the
sign of κγ(y) matches the sign of the Gaussian curvature GS in R.

In the following for brevity we omit the explicit relation with the sur-
face/curve points. Based on the previous result the curvature term can be
expressed as

Ecurv = σ−2
κ D[κS1 ,κS2 ] (κγ) +
σ−2
G max(− sgn(GSκγ), 0), (4.12)

with DJ (v) = min
w∈J

(‖v − w‖).
The term Eang expresses the fact that the angle between the normals n(Y1),

n(Y2) should match the corresponding angle on the apparent contour. The
same holds for the angle between each of the normals and the connecting
segment (Y2 − Y1) projected on the plane spanned by the normals. This gives

Eang = σ−2
n c(θn, θη) + σ−2

b c(θB, θb), (4.13)

with θn, θη the angles between the 3D and 2D normals respectively, and
θB, θb the angles between the base segment and one of the normals in 3D
and 2D respectively. The cost function c penalizes differences between the
corresponding angles (e.g. c(θ, φ) = tan(|θ − φ|)). The term Edist directs the
search towards points which have a distance similar to the distance between
the corresponding contour points. The distances are normalized with respect
to the diagonal length of the corresponding entity’s bounding box d(·), giving

Edist = σ−2
d

(
‖Y1 − Y2‖
d(S) − ‖y1 − y2‖

d(γ)

)2

. (4.14)

Finally, the term Evis represents the constraint that the points of the CG
should not be occluded and is taken equal to the maximum penetration depth
of the view ray passing through X with respect to S.

We find the global minimum of the energy function by using a branch-and-
bound search strategy. First, we find the two points on γ which result into
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the most restricted region on S based on the previous corollary, and use them
as initial points for the search. The pair of points which corresponded to the
lowest energy value gives us the view direction v. The remaining 2D similarity
transformation is then recovered by applying a shape matching technique
between the resulting contour and the measured one (see (Dryden and Mardia,
1998)).

This procedure gives the relative pose of each component with respect
to the view. Not depending on all the points of the apparent contour, it is
robust with respect to the visible portion of the contour and the shape of the
3D component. The solution can be refined by performing an iterative LSE
minimization.

By registering each component in the given view we recover their relative
position with the only exception of the translation in the viewing direction. We
solve this ambiguity by using the other views. In particular since the object is
imaged in the same pose from two or more known views, the depth ambiguity
is resolved. A single model is computed from the assembled components by
following the steps presented at the end of Section 4.4.2.

4.6 Evaluation

4.6.1 Modeling time
Our implementation of the proposed method consists of a mixture of Matlab
and CUDA code. The parts of our approach which allowed for massively
parallel implementation were realized in CUDA. These parts are: the 2.5D
registration of the modeled aspects, the computation of the IPF of each model
and the surface smoothing. The parts of aspect modeling and component
assembling are implemented in Matlab. A report of the time required for
computing the models presented in this section is presented in Table 4.1.

Model AM [sec] CB [sec] CA [sec] Sm [sec] Total [sec]
Cow 512 2.3 1125 0.10 1639
Horse 437 1.7 1451 0.05 1890
Dog 461 1.9 951.4 0.07 1414
Cat 495 2.0 1753 0.09 2250
Sheep 383 1.7 1355 0.07 1740
Hippo 501 1.8 1398 0.08 1901
Donkey 399 2.1 1224 0.10 1625
Giraffe 422 2.2 1286 0.05 1710

Table 4.1. Modeling time report (Legend: AM-aspect modeling, CB-component
building, CA-component assembling, Sm-smoothing).

The experiments were performed on a Desktop PC equipped with an Intel



30 4. Component-wise modeling of articulated objects

0.056

0.042

0.049

0.066

0.075

0.096

0.078

0.028

0.062

0.093

0.077

0.138

0.14

0.093

0.019

0.079

0.086

0.196

0.092

0.068

0.033

0.019

0.042

0.133

0.083

0.078

0.084

0.073

0.045

0.115

0.088

0.088

0.076

0.092

0.062

0.027

cow horse dog cat sheep hippo

cow

horse

dog

cat

sheep

hippo

0.103

0.179

0.168

0.177

0.123

0.131

0.133

0.115

0.1

0.121

0.093

0.171

0.201

0.176

0.08

0.143

0.132

0.167

0.139

0.131

0.105

0.088

0.088

0.138

0.135

0.149

0.093

0.093

0.073

0.135

0.18

0.247

0.183

0.175

0.166

0.092

cow horse dog cat sheep hippo

cow

horse

dog

cat

sheep

hippo

Figure 4.6. Model comparison (smallest values are highlighted), Left: Normalized
symmetric differences between the models, Center: Hausdorff distances between
the models, Right: Example of Hausdorff distance visualization for class ‘cow’.

i7 3.6GHz CPU, 16GB RAM and an NVIDIA GTX970 graphics card.

4.6.2 Model comparison
We performed an extensive comparison of the models obtained with our method
with respect to models downloaded from the web. Most of the downloaded
models were taken from the 3D warehouse of SketchUp, while the rest were
taken from other repositories. We evaluated the similarity of our models
with respect to the downloaded ones using two different similarity measures,
the Hausdorff distance (Aspert et al., 2002) and the normalized symmetric
difference. We considered our model as reference and preprocessed the models
taken from web in order to make the results comparable. The preprocessing
consisted of the following steps:

i model clean-up; remove internal faces, recover manifoldness and close
holes

ii manual orientation w.r.t. reference model
iii automatic non-isotropic scaling for matching the bounding box with the

reference model
The Hausdorff distance was computed directly on the meshes of the models.
For the symmetric difference, a volumetric representation was obtained via the
IPF of the models and the distance was taken as the difference between the
number of voxels that fell in the union and the number of those that fell in the
intersection of the two volumes, normalized by the total number of voxels. The
results of the comparison are presented in Figure 4.6 together with an example
of the visualization of the Hausdorff distance on one of our models, in relation
to a downloaded model of the same class. The numbers reported correspond
to average values of the distances with respect to all the downloaded models
of each class (3-4 models).

The results show that the models computed with our method actually
represent the modeled class, as the average distance with respect to the
downloaded models of the same class is consistently smaller in comparison to
the distances with respect to the other classes. Further analysis shows that
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the Hausdorff distance is usually higher around the parts which vary the most,
as for example the neck and the belly of the animal. More images regarding
the comparison between the downloaded and our models are provided in the
supplementary material and the accompanying video.

4.6.3 Perceptual study
Because of the nature of the problem, similarity distances may not always be
representative. To further evaluate the quality of our models we performed a
perceptual study with the help of volunteers.

Experiment Ten volunteers who did not know the purpose of the study
participated in the experiment. Six participants were male and four female,
while 60% had from 22 to 25 years and 40% from 25 to 29 years. Finally, three
subjects reported corrected-to-normal vision and the rest normal vision.

The models given in Figure 4.7 were used for conducting the study. On the
left column, the models obtained with our approach are presented, while the
right column contains the models downloaded from the web. The downloaded
models were hand picked in order to be in a pose similar to our models’
pose. Participants were invited to ask questions before the experiment. After
providing the necessary information and consent the task was resented to the
participants:

“Various 3D models will be shown on the screen during the ex-
periment. For each model, you need to identify the corresponding
animal and give a mark for its quality. You can interact with the
model for as long as you prefer before answering.”

The models were presented on the screen with a uniform green shaded material
on blue background, as shown in Figure 4.7. The participants marked the
answers on a special form, where the animal class could be specified freely and
a scale of discrete values from 0 to 5 was used for evaluating the quality of the
model. The order models were presented was randomized to avoid bias caused
by consistent ordering.

Outcome We consider the null-hypothesis H0 that participants randomly
selected the animal class, while the alternative hypothesis H1 is that users
correctly recognized the animal. Cross-tabulation was performed on the answers
provided by the participants regarding the class of animal represented by our
models and the resulting confusion matrix is shown in Figure 4.8. One can
observe that the participants almost always identified successfully the animal
class. In fact, the null hypothesis is rejected as the chi-square value is χ2 = 247,
corresponding to a practically vanishing p-value. It is important to note that
the participants did not know in advance the classes of animals involved. This
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Cow Horse Dog Cat Sheep Hippo
70% 50% 70% 30% 50% 50%

Table 4.2. Per-class percentage of votes above 3 (good) given to the models
reconstructed by our method.

justifies also the last row of the confusion matrix, as one participant recognized
the hippo as a pig.

The distribution of votes given by the participants for the model quality
is presented in Figure 4.9. The hand-made models received higher votes in
average, with a difference of 1.9 scale units with respect to the average vote
that our models received. This is understandable considering that our models
correspond to more abstract class models, lacking particular details like eyes,
nose and tail. Nevertheless, the percentage of the participants which gave a
vote above 3 (good) for the quality of our models (Table 4.2), indicates that
the models are of satisfying quality.

4.7 Conclusions and future work
We propose a method for computing 3D models of articulated objects, by
decomposing them into components. Realistic models of the object components
are built by merging together 3D models obtained from different aspects,
considering a type of aspect graph (Dickinson et al., 1990) which indicates the
essential aspects. Aspects are extracted from images downloaded from the web.
The entire object is obtained by reassembling the components using two or
more images of the object in a reference pose. Our experiments suggest that
our method is able to provide realistic models of the objects, both in terms of
a perceptual analysis, and by a quantitative analysis of their similarity with
respect to human created 3D models.

Extensions of this work in various directions can be pursued. An important
extension is the possibility to model the object in different configurations by
using the modeled components. This is already possible in our framework but it
can be facilitated by assembling the components using a single image. This can
be made possible by learning spatial relations between the components (joints,
joint range etc.) and possibly also a distribution of the object poses, which
would allow to compute realistic models even when some of the components
are occluded. Finally, an important extension would be the automatic selection
of the most representative aspects for each component from a set of images.
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Figure 4.7. Animal models used in the perceptual study,
Left: Models computed with our method, Right: Models downloaded from the
web.
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Here we present the work done for 3D modeling of concave objects with
reflective surfaces from single images, published at the Conference on Computer
Vision and Pattern Recognition 2016, which introduces a method to model
non-Lamberitan surfaces with either concave or sharp parts. We have created
a synthetic dataset using 3D models of a number of real objects, obtained
from different databases of 3D objects. From images obtained rendering these
objects with different materials, we extracted patcheas to learn a dictionary
describing the normal field for each patch. To obtain the 3D model of objects
in new unseen images, we used normals and curvatures inferred using the
learned dictionary. To resolve irregularities of the surface due to noise and
outliers we refine the 3D surface using a photo-consistency error.

This Chapter is an exact copy of the conference paper referred
to above.

5.1 Abstract
A methodology for 3D surface modeling from a single image is proposed.
The principal novelty is concave and specular surface modeling without any
externally imposed prior. The main idea of the method is to use BRDFs and
generated rendered surfaces, to transfer the normal field, computed for the
generated samples, to the unknown surface. The transferred information is
adequate to blow and sculpt the segmented image mask in to a bas-relief of
the object. The object surface is further refined basing on a photo-consistency
formulation that relates for error minimization the original image and the
modeled object.

5.2 Introduction
There is an increasing need for 3D models of objects, from single images,
for several applications such as digital archives of heritage and monuments,
anatomy models for pathology detection, small artifacts models for populating
rendered 3D scenes with objects or augmenting a MOCAP sequence with
tools for manipulation and, finally, for robotics. Likewise, there is a growing
awareness that 3D modeling, from a single image, helps to navigate the sea of
terabytes of images, for the object recognition challenge.

That surface modeling from a single view has to deal with shading and the
way materials shine and reflect the light has become clear since the works of
(Nicodemus, 1965) and (Horn, 1977). Though only recently a great deal of
work has been done to merge the rich information that light conveys about an
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Figure 5.1. An example of 3D surface of an object from ImageNet

object with its shape. Relevant examples are studies on specular reflection of
materials and light incidence (Magda et al., 2001; Mallick et al., 2005), so as
to dismiss the Lambertian hypothesis, and on how illumination and reflectance
combine to influence an object shape perception (Barron and Malik, 2015) and
its geometry (Oxholm and Nishino, 2012).

Here, we address these problems introducing a novel method, which is
unbiased to the changes of the ambient light, taking care of both concavities
and sharp parts of an object, this is the main contribution of this paper. Our
approach is related to SIRFS (Barron and Malik, 2015), who introduced priors
for shape, albedo and illumination, respectively, so as to learn the most likely
shape. Though here we do not introduce any prior, instead we formulate an
hypothesis.

Our hypothesis is that a sufficiently large number of patches, with varying
surface curvature, rendered with different materials, with known reflectance
properties, and varying incidence and reflection angles, can be used to estimate
these properties in unknown objects. Through this generalization, the reflected,
specular and diffuse light of a new object, seen in a single image, can be
recovered. We show that this hypothesis is plausible and proves to give
interesting results. Indeed, the normal field of the rendered surfaces, applied as
an external deformation force, basing on finite element method (Strang and Fix,
1973), is used to sculpt the unknown object surface. This gives very beautiful
results, that are further refined to meet photo-consistency requirements.

The paper is organized as follows. In the next section we give some pointers
to related works, despite we are not able to cover the whole extraordinary litera-
ture on the topic. In Section 5.4 we introduce the basic concepts supporting the
paper, namely the BRDF (Nicodemus, 1965), the MERL database (Matusik
et al., 2003), how rendered surfaces (r-surfaces) are generated, and few hints
for the reference database ImageNet (Deng et al., 2009) and for recovering
the object contour (Vese and Chan, 2002). In Section 5.5 we introduce the
unsupervised learning method to validate the hypothesis that the r-surfaces
convey sufficient information about unseen objects. The distribution of the
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data is inferred via a nested Dirichlet process mixture model (Ferguson, 1973;
Blei et al., 2010). Features of the highest level in the hierarchy are obtained by
sparse stacked autoencoders (Munro and Zipser, 1989; Olshausen and Field,
1997). The outcome is a selection of a BRDF and of the most plausible normals
on each patch covering the object image. These data, as described in Section
5.6, form the external forces of the energy, which deforms the planar patches,
covering the object mask, into the object surface. This extends the deformation
method (Terzopoulos et al., 1987) to concavities and sharp object parts. Finally,
the resulting surface model is made consistent with the object appearance in
the image, by revising the light effects, as described in Section 5.7. This is
obtained with a rich energy term taking care of both photo-consistency and
surface depth, optimized via total variation minimization. The high level ideas
of the approach are visualized in Figure 5.2. Results, shown in Section 5.8 are
very promising and new, with respect to the state of the art.

5.3 Related Works

Create database Estimate Features Learn Parameters Sample image 
patches estimate:

z-map, 
normal field

Fix normals, model 
surface, Z-map and 
normal-field

Photo-
Consistency

Rendering:
BRDF+Probe

Probe

Stacked 
autoencoder

in out in out(W ,W ,b ,b )

depth

normals

image features

N-DPM

Figure 5.2. High level ideas of the work.

The concept of Bidirectional Reflectance Distribution Function (BRDF)
has been largely used in the computer vision community (Romeiro and Zickler,
2010) to infer the material reflectance properties of a known object. Some
approaches model objects in 3D by imposing an unknown BRDF such as in
(Magda et al., 2001), where the object shape is recovered with two different
methods requiring, however, multiple images of the same object. Retinex
theory, (Land and McCann, 1971), has been used for separating the shading
component from the reflectance one, in an image. A similar distinction is made
in (Barrow and Tenenbaum, 1978) for extracting the intrinsic characteristics of
surface orientation, reflectance and incident illumination, from a single image.
Very recently, in (Narihira et al., 2015) the authors propose a convolutional
neural network approach to separate the albedo component from the shading.
Shape from Shading (SFS) recovers the shape of an object from a single
image, provided the illumination and the reflectance are given, see (Zhang
et al., 1999) and references therein. SFS makes strict assumptions, usually a
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Lambertian material with a single light, to find the solution for the otherwise
unconstrained problem. In (Oxholm and Nishino, 2012), reflectance and
geometry are jointly recovered by assuming a statistical BRDF model and
known lighting environment. In our work, instead, we learn a non-parametric
model of surface appearance directly from the measured BRDFs in unknown
illumination environment. (Richter and Roth, 2015) propose a discriminative
learning approach for the SFS problem, considering an uncalibrated illumination
without the assumption of a single point light. (Xiong et al., 2015) examine the
light locally on small patches in a Lambertian setting and for each image patch a
set of 3D surface patches, that may have generated the imaged ones, is sampled.
Differently from them, our approach is not based on Lambertian assumptions.
In (Saxena et al., 2009), a 3D model from a single image is reconstructed
basing on super-pixels segmentation and the Random Markov Field approach.
In (Chandraker et al., 2005), both inter-reflections and photometric stereo are
combined to resolve the generalized bas-relief ambiguity, but in a Lambertian
setting. Finally, (Vasilyev et al., 2008) consider specular objects estimating
the corresponding 3D shapes by means of shape from specular flow approach
with general motion.

5.4 Reflectance model and r-surfaces
In this section, we introduce some preliminary concepts concerning the BRDF,
the method for rendering object surfaces (r-surfaces), and finally the segmen-
tation algorithm for objects taken from ImageNet.
BRDF. The model considers incident directions (φi, ϕi), in spherical coordi-
nates, defined on the local reference frame of the surface element, within some
solid angle dωi and the direction of reflection (φr, ϕr) over some solid angle
dωr. We assume that the observer line of sight is orthogonal to the image
plane and centered on the object center of mass. We assume also a geometric
optics model, that is, the electromagnetic character of light can be ignored
(Nayar et al., 1991). Under this hypothesis waves interference and diffraction
can be disregarded. We consider three kinds of reflections: specular, diffuse,
and ambient. Specular reflection, in its ideal form, is a Dirac delta function,
so that φr = φi and ϕr = ϕi + π. The specular reflection preserves the solid
angle of the incident ray, namely dωi = dωr. Diffuse scattering is Lambertian,
not depending on the direction of reflection. Ambient scattering collects all
other kinds of reflection. In particular, lighting due to environment reflections
on the surfaces is here treated as noise, so that we actually model arbitrary
environment light probes.

Given the incoming light direction dωi and the reflected light direction dωr,
both defined with respect to the normal of an infinitesimal surface element, the
BRDF (Nicodemus, 1965) is the ratio between the amount of light reflected
from the surface along dωr, namely radiance, Lr, and the total amount of light
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incoming to the surface element along dωi, namely irradiance Ei.
There are two main databases for the BRDF values of several materials

under different light conditions, the MERL Database (Matusik et al., 2003),
for isotropic materials, and the UTIA one for the anisotropic materials (Filip
and Vávra, 2014). We have considered the isotropic BRDFs (see (Filip and
Vávra, 2014) for a discussion on isotropic and anisotropic BRDF), where the
material reflectance properties are invariant under rotation of the surface about
its normal. This because the MERL database is rich of most of the everyday
objects materials like aluminum, brass, chrome, plastic, and acrylic.
3D models and surface rendering. We have created a synthetic dataset
using 3D models of a number of real objects, obtained from different databases
such as 3D Warehouse and TurboSquid. To ensure a wide variety of surface
curvatures and curvature maps in our dataset, and to guarantee its semi-
completeness, we consider a number S of both smooth objects, such as tubes
and rings, and irregular ones such as gear wheels, see Figure 5.2, Panel 1, for
some examples. Each object surface is then rendered with Blender. Each of
the obtained r-surfaces, is of dimension m ×m pixels, with m ∈ {256, 512}
and, such that for each angle of incident and reflected light (φi, ϕi, φr, ϕr), and
BRDF material, an r-surface is made available. Note that the light direction
varies according to (φi, ϕi), while the view direction according to (φr, ϕr). Light
is distributed considering a hemisphere with the surface at the center of it.
The angles φi and φr vary with step size ∆φ ∈ (0, π/2), along the elevation
direction. While ϕi and ϕr vary with step ∆ϕ ∈ (0, 2π) along the azimuthal
direction. All in all, the total number of rendered objects per BRDF material
is N = 2Sa2c2, with a = d π

2∆φe+ 1 and c = d 2π
∆ϕe. The set of rendered objects

is B = {B1, · · · , Bb}, with b the number of considered BRDF materials, and
each Bi is made of N rendered objects. For the ambient light we used 16
different light probes, see (Debevec, 2008).
Segmentation. Images sample are taken from the ImageNet database (Deng
et al., 2009). ImageNet is plenty of objects of several categories, many of which
challenging for 3D modeling in terms of concavity, sharpness and specularity.
We have sampled some of them, provided they are not occluded. Each testing
image is well segmented, choosing manually a main object of interest. We
have implemented the level-set based method of (Vese and Chan, 2002), a
generalization of the active contours approach considering a multi-level set
framework.

5.5 Object properties transfer

In this section we address the following problem. Given examples XB ∈ Rh×N

of image patches of shaded surfaces with varying illumination and curvature,
about which we know probe, material, normals, and depth, with

√
h the size
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of the patch, we wish to recover the normals to the surface of a segmented
image IQ, of an unknown object Q, the material it is made of, and the probe.
To this end we have to establish a correspondence between the patches of
the unknown surface IQ and the patches of the known r-surfaces XB, in the
synthetic database. We can see the problem under the following perspective.
If we consider a hierarchy of properties of a patch, such as surface features
like depth, normals, probe, and image features, we can see that each group
of features is a scattered realization of a multivariate variable with unknown
probability distribution, whose density is an infinite mixture. We thus use a
nested Dirichlet process mixture as introduced in (Blei et al., 2010), see also
(Rodriguez et al., 2008; Paisley et al., 2015), defining prior distributions on
recursive data structures. Assuming that samples of specific patches have been
collected for each of J distributions and are contained in vector y = (y1, . . . , yJ),
here we consider that each one provides a different distribution modeling
mixtures for each group of features, though we deliberately neglect a sharing
level. We obtain a k-ary tree of infinite mixtures, such that each level provides
classification paths for the specific feature set, within which the next level
of features is nested. At each level of the hierarchy each mixture component
gathers patches of similar appearance, namely we have Z-patches for depth,
n-patches for normals, p-patches for probes and F -patches for visual features.

The idea is that a patch of a segmented image IQ, showing only image
features, is classified according to the highest level of the hierarchy. Then,
following the path of the corresponding branch of the tree of infinite mixtures,
the probe, the normals and the depth of the patch can be recovered, considering
the mean representative of the corresponding component. The advantage of
this non-parametric Bayesian approach is that even with 104, up to 105 patches,
it is possible to obtain good classification results. Note that at each node of the
tree the infinite mixture estimates parameters, hence components, according
to reallocated indices of the parents nodes, ensuring interchangeability at each
level, along a path. Note that the number of samples that can be used along a
path j at level ` is about N(∏j`

i=1 ncj`)−1, with ncj` the number of components
in the branch at level `.

A hierarchical model is built for each BRDF in the synthetic database (see
Section 5.8 for details). For each modelMB, B ∈ B, at the base level of the
hierarchy the mixture components are generated from the Z-patches, at the
next level from the n-patches, then the probes p-patches, and the leaves level
is generated from the F -patches. Here the F -patches are obtained by mapping
the RGB values into a feature space, so as to extract the features coded in
their representation, ensuring statistical independence of the data (Olshausen
and Field, 1997; Hinton and Salakhutdinov, 2006). Autoencoders are a popular
computational architecture to learn features from data (Bengio et al., 2013;
Ngiam et al., 2011), here we introduce a sparse stacked autoencoder, to obtain
the F -patches for each BRDF B ∈ B, which determines the features size from
sparsity.
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Distribution linking the object image and r-surfaces. Let Y be a multi-
variate whose density is an infinite Gaussian mixture, with unknown parameters.
The nested DPM model we consider is Y |ck,j`,θk,j` ∼ N (µck,j` ,Σck,j`), k →∞
and j` the level on the path j in the tree. Here ck,j` indicates the mixture
component k, at level `, on the path j and the θk,j` are in turns independently
sampled from an unknown distribution θk,j`|Gj` ∼ Gj`, on which is placed a
Dirichlet process Gj` ∼ DP (α`G0,`). Here α` is the concentration parameter,
affecting the number of components that will be generated, and G0,` is the base
distribution, typically the conjugate prior of the observation distribution (for
the DPM at each level in a path, we refer the reader to the recent (Blei and
Jordan, 2006; Sudderth, 2006) though the models go back to (Ferguson, 1973;
Antoniak, 1974)). Assume, now, that the parameters have been computed
for each group of features, that a nested DPMs MB is obtained for each
B ∈ B, actually each with 4 levels. Each nested DPM has a number of j-paths
according to the recursive structure induced by the groups of features. Given
a nested DPM for each B ∈ B we are concerned with the computation of the
data likelihood for a realization hQB , of a patch XQ, whose BRDF has been
identified to be B (see below). Once P (cj` = kj`|hQB ,MB), is established for
the leaf components at level ` = 4, along the path j then, going back along the
path and picking the mean value of the nodes in the path, we obtain the most
plausible features p-patch and n-patch matching hQB . Note that when the
DPM is trained, the realizations of Y are the patch features hB of the XB in
the synthetic database. To compute the nested DPM we have used conjugate
priors and an extension of (Jain and Neal, 2004), see also (Sudderth, 2006;
Natola et al., 2015b).
Stacked sparse autoencoder for each BRDF. Let Ω ⊆ Rh be the data
space, H the feature space, and X ∈ Ω be a patch. Autoencoders (Munro
and Zipser, 1989; Ngiam et al., 2011) provide a structured representation of
the sample data, by estimating an encoding map f : Λ × Ω 7→ H, and a
decoding map g : H × Λ 7→ Ω. Features generated by an autoencoder β(B)
take values h = f(Λβ, X) = σ(WinX + bin). Optimization for minimizing the
loss function is here obtained by the orthant projection method (Andrew and
Gao, 2007; Schmidt et al., 2012). The result of the optimization for the stacked
autoencoder are the parameters Λ(1)

β ∪ Λ(2)
β .

The final features for patches XB, for B ∈ B, is hB = σ(W (2)
in h(1)

B + b(2)
1 ⊗

11×M), of size k ×M ; here h(1)
B = σ(W (1)

in XB + b(1)
1 ⊗ 11×M) are the lighter

feature values, and ⊗ is the Kronecker product.
On the other hand, let XQ = (XQ1 , . . . , XQK ) ∈ Rh×K be the K patches of

IQ (segmented image of Q). The feature set for IQ is:

HQ/B =
{hQ=σ(W (2)

in σ(W (1)
in XQ+b(1)

1 ⊗11×K)+b(2)
1 ⊗11×K)|

(W (2)
in ,W

(1)
in ,b

(2)
1 ,b(1)

1 ) ∈ Λ(1)
β ∪Λ(2)

β ,∀B ∈ B}
(5.1)
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These features are obtained by evaluating each stacked autoencoder β(B), B∈B,
at XQ. To choose one, consider the average features for B∈B: s=1/M ∑

∀XB hB.
Let ε(x)=− log(x), be the Burg entropy, then according to (Csiszár, 1996) we
obtain Bregman divergence to measure similarity between the object features
and s:

XQ ∈ B? if B? = arg minB d(XQ, B), with
d(XQ, B)=

∑
∀hQ∈HQ/B

(ε(s)−ε(hQ))−∇ε(hQ)(s−hQ) (5.2)

This results in a full identification of the specific BRDF B for each XQ, as
the material of the patch. Once the BRDF B is chosen, the features hQ are
the specific realizations of the multivariate Y . Hence the nested DPM can be
applied, as gathered in the previous paragraph, in order to obtain the sought
for properties to be transferred to XQ.

5.6 Bas-relief modeling of objects
In this section we present the method for modeling an object shape, given the
information obtained from the inference, described in Section 5.5. Accordingly,
we are given a number of patches XQ covering the segmented image of object
Q, the normal field transferred from some XB, and the position of the top left
corner within the domain Ω. Note that the patches are not overlapping.
Object modeling using normals and curvatures Here we define a bi-
nary mask A⊂R2 for image IQ by the mapping ν:Ω 7→{0, 1}. The surface,
parametrized by the function w:A 7→R3, where w(u, v) is the vector [x(u, v), y(u, v), z(u, v)]>,
is obtained by minimizing an energy functional G(w). The energy functional
G(w) is defined by the first and second fundamental forms (Terzopoulos et al.,
1987), and it embeds surface stretching and bending, plus external forces F
acting on it (Ntouskos et al., 2015b).

To correctly identify the external forces we compute the mean curvature
κ(u, v) for each (u, v)∈A, given the normal n(u, v) at each point of the surface,
as estimated by the N-DPM, see Section 5.5. The external forces are needed to
sculpt the surface inflation and are of the form F (u, v) = sign(κ(u, v))qn(u, v),
with q∈R+. The scheme for finding the solution w(·) is based on the Finite
Element method, as described in (Strang and Fix, 1973), applied to the Euler-
Lagrange equations associated to the functional G(w). Furthermore, we require
that each normal to the surface w(u, v) is a unit vector along wu×wv, with
wu,wv the partial derivatives of w. These conditions are imposed as follows:

n(u, v) ·wu(u, v) = 0
n(u, v) ·wv(u, v) = 0.

(5.3)

To linearize the constraints in the model parameters, we add to w further de-
grees of freedom including partial derivatives: ŵ(u, v) = [x, y, z, xu, yu, zu, xv, yv, zv]>.
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Figure 5.3. Modeled surfaces from the segmented images of a key, a mask and a
trumpet.

The constraints for (u, v), (5.3), can now be formulated as follows:[
0 0 0 nx ny nz 0 0 0
0 0 0 0 0 0 nx ny nz

]
ŵ(u, v)=

[
0
0

]
,

with nx,ny,nz the components of n(u, v) in the x, y, z directions. The con-
straints in linear form can be expressed as a matrix equation DU=C, with
D∈R2ω×l, C∈R2ω×1, and U = [ŵ(u1, v1)>, . . . , ŵ(uω, vω)>]>∈Rl×1 the vector
including the total number l of d.o.f. of the system, and ω being the total
number of points inside A. The quadratic minimization problem becomes:

min
U

{
U>KU−F>U+(DU−C)>Γ(DU−C)

}
, (5.4)

with K∈Rl×l the stiffness matrix, (Strang and Fix, 1973), F∈Rl×1 the vector of
the external forces and Γ∈R2ω×2ω a diagonal matrix with elements the weight
γi∈R of each constraint, for i=1, . . . , ω, defined as Γ = diag(γ1, γ1, ..., γN , γN).
To constrain the solution at the boundary ∂A, homogeneous Dirichlet conditions
are applied to the PDE problem. Once the solution U is computed, the
surface and corresponding mesh, obtained from the triangulation over A, are
reconstructed. Some modeled surfaces are shown in Figure 5.3.

5.7 Photo-consistency and smoothness
To resolve irregularities of the surface due to noise and outliers we refine the
initial surface. Function z(u, v) provides the height of the initial surface, as
discussed in Section 5.6. We model the image Î(z) considering the surface
z(u, v) rendered with the recovered probe and BRDF. The goal of the surface
refinement is to enforce photo-consistency with the given image while smoothing
out the initial surface. The photo-consistency error between the modeled image
Î and the shading of the surface Is in the given image is given by

Ephoto(z) = ‖Is − Î(z)‖1. (5.5)

As we consider objects of specular BRDF, intensity values of the images are
strongly affected by the surrounding environment. We considered the reflected
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environment as a texture modulating the intensities of the imaged object and
we approximate the shading image Is by separating the shading and specularity
components of the object via Retinex (Land and McCann, 1971).

Smoothing of the initial surface is achieved by applying total generalized
variation (TGV) regularization of the height map z(u, v) corresponding to the
initial surface. TGV regularization encourages a piece-wise smooth reconstruc-
tion of the height map with polynomial terms up to order η (Bredies et al.,
2010; Burger and Osher, 2013). This leads to

Edepth(z) = TGV η(z). (5.6)

Finally, to avoid excessive distortion of the surface, due to the presence of
outliers in the shading image Is, we require that the normals of the refined
surface are similar to the ones of the initial surface. Letting n(u, v) be the
normal of the surface at the point (u, v) and n0(u, v) the initial normal at the
same point, we consider the following fidelity term

Enorm(n) = ‖n(u, v)− n0(u, v)‖1. (5.7)

The final surface is obtained by minimizing the resulting energy-like func-
tional, for TGV 0 this is:

E(z)=Edepth(z) + w1Ephoto(Î(z)) + w2Enorm(n(z)), (5.8)

with wk the weights of the fidelity terms, k = 1, 2.
The function (5.8) is non-convex due to the terms Ephoto and Enorm. We

relax the problem by considering a local linear approximation of the S2 manifold
as described in (Zeisl et al., 2014). Let nl be the linearization point of the
normal field, and T = null(nl), then n(z) = T∇z + nl, up to a normalizing
constant. Integrability of the normal field (Papadhimitri and Favaro, 2013;
Reddy et al., 2009) is automatically satisfied in this case. The functional of
the relaxed problem is:

E(z, ζ) =
∫

Ω
|∇z|+ w1‖T∇z + nl − n0‖

+ 1
2θ (ζ − z)2 + w2|Is − Î(ζ)|dudv. (5.9)

The auxiliary variable ζ is purposefully added in (5.9) to separate the
photo-consistency from the rest of the terms, in so separating the problem into
two distinct minimization sub-problems. At each iteration the minimizer of the
photo-consistency term is estimated by point-wise search, while a minimizer
with respect to z is identified by primal-dual optimization (Chambolle and
Pock, 2010).

Considering the part of (5.9) depending only on z, we obtain its primal-dual
form by applying the Legendre-Fenchel transformation. Let P be the convex
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set obtained from the union of L1 balls, D the discretized gradient operator,
and z, ζ, n̄ the vectorized variables corresponding to z, ζ,n respectively, then
the primal-dual form of (5.9) is:

max
p,q∈P

1
2θ‖ζ

∗ − z‖2 + 〈p,D z〉 + w1〈q,T D z + n̄l − n̄0〉. (5.10)

Choosing suitable step sizes σ, τ > 0, a saddle point is found by the proximal
point iterations summarized below:

p(k+1) = ΠP
(
p(k)+τ D ẑ(k)

)
,

q(k+1) = ΠP
(
q(k)+τw1(T(k) D ẑ(k)+n̄(k)

l −n̄0)
)
,

z(k+1) = (1+ σ
θ(k) )−1

(
z(k)+ σ

θ(k)ζ
∗

− σD>(p(k+1)+w1T(k)>q(k+1))
)
,

ẑ(k+1) = 2z(k+1) − z(k),

n̄(k+1)
l = ΠS2(T(k) D z(k+1) + n̄(k)

l ),

with T(k) a matrix formed by the the null spaces of the corresponding vectors
n̄(k)
l , ΠX the projection on set X, and wk as mentioned in (5.8). θ decreases at

each iteration, enforcing the variables ζ and z to converge, approximating in
this way a solution of the original minimization problem.

The refinement produces smooth surfaces while preserving sharp disconti-
nuities of the initial surface supported by the appearance of the object in the
image.

5.8 Experiments and results
Unsupervised learning experiments. We consider the following BRDFs:
aluminum, brass, PVC, steel and plastic. For each material up to N=430 r-
surfaces are generated, and about 23.30×104 patches obtained. Transformation
of patches into feature space lasts 32.12×10 sec., for each β(B). DPM training
lasts about 60.40×104 sec. for each B. These on a computer equipped with
four Xeon E5-2643 3.7GHz CPUs and 64GB RAM.

MSE prediction error for autoencoders is shown in Figure 5.4. Material
choice (eq. 5.2) is 100% correct. To evaluate the accuracy of components
prediction for the observed object with the DPM, we use 3D models with
computed normals and rendered with BRDF (Figure 5.6). Results are given
in Figure 5.5, where the size N of the r-surfaces samples, varies from 48 to
430. Mixtures components range from a minimum of 18×10 to a maximum
of 27×102. Ground truth (GT) objects are also used to evaluate the NMSE
of mean normals between each XQ and each representative XB of the chosen
DPM component, Figure 5.5 right.
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Figure 5.4. On the left the deep features predicted by β(brass), with rank k=72,
m=256. On the right autoencoders β(steel) and β(brass) MSE prediction error,
according to reduced W (2)

in rank. Rank k is varied from a 22.6% reduction, up to
no reduction.

Figure 5.5. On the left components prediction accuracy for the ground truth
objects shown in Figure 5.6, varying the size of the sampled r-surfaces. On the
right accuracy w.r.t. mean normals.

Synthetic data We examine first the performance of the framework using
synthetic images for which the ground truth is available. We render various
3D models using the BRDFs of the materials we consider in this paper, taken
from the MERL dataset (Matusik et al., 2003). Renderings using the measured
BRDFs are obtained by using a data-driven light closure of the Cycles 3D render
engine in Blender. Photorealistic views of the 3D models are composed by using
suitable HDR light probe images for simulating surrounding environments.
Moreover, we compute the ground truth depth map and the normal map of
the rendered object with respect to the current view, by using specialized OSL
shaders.

We apply our method on these synthetic views and compare the results
with the ground truth. For evaluating the error in the depth field we use
the Z-MAE measure (Barron and Malik, 2015), normalized with respect to
the object bounding box diagonal. For the error of the normal field we use
the median angular error (N-MAE) (Barron and Malik, 2015), and the mean-
squared error of the normal field (N-MSE). The shading error is evaluated using
the L-MSE error introduced in (Grosse et al., 2009), considering a window of
size 20. Finally, the error between the modeled surface and the GT object is
measured using the normalized Hausdorff distance (Aspert et al., 2002). The
average values are computed by taking the geometric mean of the values, as
in (Barron and Malik, 2015). The results are shown in Table 5.1, and images
of the rendered 3D objects and the surfaces obtained from our method are
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presented in Figure 5.6. In the same figure, the absolute shading distance
and the distance between the meshes are also visualized. The images are best
viewed in color and on screen.
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Figure 5.6. Models with ground truth. 1st col. GT 3D model with BRDF; 2nd
col. modeled surface with BRDF; 3rd col. rotated view; 4th col. shading
difference; 5th col. Hausdorff distance.

Object Z-MAE N-MAE N-MSE L-MSE Hausdorff Average
boot 0.0749 0.6397 0.4052 0.0012 0.0460 0.1160

moka pot 0.0632 0.4260 0.2842 0.0808 0.0340 0.0640
dish 0.2434 0.3060 0.2426 0.0009 0.0594 0.0627

teapot 0.1265 0.4325 0.3976 0.0348 0.0713 0.1401
vase 0.0494 0.1737 0.1990 0.0193 0.0721 0.0750

Average 0.0936 0.3626 0.2944 0.0090 0.0544 0.0867
Table 5.1. Synthetic images results.

The results show that our algorithm produces plausible surfaces of the
imaged object from a single image. The material was successfully recognized
every time, while the average value of the median angular error is about 22°.
We observe that the shading distance does not always follow the angular
and depth error, justifying the use of different error metrics for assessing the
modeled surface quality. Three of the objects have significant concave parts
(boot, plate, vase) which are evident also in the modeled surfaces. Finally, we
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see that the metallic objects although showing an increased shading error, due
to residual reflections of the environment, are still modeled faithfully, according
to the shape metrics.

MIT dataset For an evaluation of our method with respect to publicly
available data we use the MIT intrinsic image dataset (Grosse et al., 2009), as
augmented in (Barron and Malik, 2015) to include the shape of each object.
We consider the objects apple, potato, teabag1, teabag2, paper1 as they exhibit
specularity and/or concavities. The objects of this dataset are made of different
materials with respect to the ones existing in the MERL BRDF dataset. To
overcome this problem we combine the shading and specularity images of
the objects to obtain new composite images without texture. The algorithm
recognizes plastic as the most similar material to the shaded-only object.
Figure 5.7 shows the reference images and the modeled surfaces for each object
of the dataset.
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Figure 5.7. MIT dataset. 1st col. reference image; 2nd col. modeled surface
with BRDF; 3rd col. rotated view; 4th col. shading distance (L-MSE); 5th
col. Hausdorff distance.
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Algorithm Z-MAE N-MAE S-MSE L-MSE Avg.
Ours 7.0197 0.2692 0.0261 0.0174 0.1712

Ours no FC no S 26.9816 0.5872 0.0394 0.0217 0.3412
Ours only contour (SfC) 37.1768 0.7728 - - -

Retinex+SIFS(Barron and Malik, 2015) 17.1914 0.9361 0.0006 0.0019 0.0654
SIFS(Barron and Malik, 2015) (grey, lab. light) 20.1445 0.9772 0.0005 0.0017 0.0640

Table 5.2. Results of full and ablated model on MIT dataset (Grosse et al., 2009).

Table 5.2 compares our results with (Barron and Malik, 2015). As the input
images are albedo-less, SIFS (Barron and Malik, 2015) was used as a baseline.
For the comparison the Z-MAE metric is reported with no normalization and
the S-MSE metric (Barron and Malik, 2015) is also considered. On one hand
the results show that SIFS achieves better results on shading metrics. This is
reasonable, since (Barron and Malik, 2015) directly optimizes over the rendering
error, while in our approach photo-consistency is sought after shape has been
recovered. Still, our method achieves higher accuracy on shape metrics, since
it primarily recovers the surface normals. On comparing the shape recovered
with the two approaches one can notice that (Barron and Malik, 2015), due to
the Lambertian assumption, distorts shape near reflections and specularities,
trying to interpret intensity changes as changes in shape. Additionaly, (Barron
and Malik, 2015) cannot always capture concavity of the surface (e.g. the
bowl of the spoon in Figure 5.8). Note that in Table 5.2 we considered also
a pre-processing with Retinex before applying SIFS, which helps in reducing
specularities, leading to better results in terms of shape, slightly penalizing
the shading distance. Table 5.2 presents also ablated versions of our method,
highlighting the importance of surface refinement.

Modeling of ImageNet objects We have manually selected from the
ImageNet dataset (Deng et al., 2009) images of objects made from the materials
described above. The 3D surfaces of the visible parts of these objects are
computed with the proposed framework. Figure 5.8 shows the selected images
together with renderings of the recovered surface as well as the computed depth
and normal maps before and after refinement. Comparison with the results
of (Barron and Malik, 2015) is also provided. We observe that the modeled
surfaces closely resemble the reference objects, when viewed from the image
vantage point with the recognized probe and BRDF. This is also evident by the
values of the shading difference and the L-MSE metric, reported in Table 5.3.

Algorithm Concave spoon Glove Trumpet Key Funnel Convex spoon mask Average
Ours 0.0792 0.0559 0.0571 0.0271 0.0189 0.0321 0.471 0.0570

(Barron and Malik, 2015) (color, natural ill.) 0.0669 0.0097 0.1600 0.0204 0.0072 0.0337 0.0077 0.0169

Table 5.3. L-MSE for ImageNet objects.
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5.9 Conclusions
We proposed a novel approach for BRDF aware modeling of 3D objects from a
single image. The contributions of the paper are twofold. On the one side, we
are able to fully model non-Lamberitan surfaces with either concave or sharp
parts, with limited error both in shading and shape. On the other side, we
have proved that the normal field of the surfaces to be modeled can be learned
from renderings of different objects surfaces. The contribution builds on three
main achievements. The first, is that we can represent the material reflectance
and specular properties, basing on deep features, as a hierarchy of features
that can be transferred via a nested Dirichlet process mixture to an unknown
surface. The second, is that the normal field can be used to define an external
force needed to sculpt a deformed surface into a refined shape representation of
the unknown object. Finally, we contribute with a new method based on TGV
to enforce photo-consistency between the generated surface and the appearance
of the object in the image. These results prove to be very promising, despite
the whole process seems to be still complex and time demanding.

In future work we will examine the steps needed to retrieve the geometry
of the full object, even if a prior is needed. Moreover, we will extend the
categories our model can afford and simplify the whole framework.
Acknowledgments
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Figure 5.8. Visual comparison between height and normal maps estimated before
and after the photo-consistency (PhC) and smoothing (S). Visual comparison
with (Barron and Malik, 2015) for the height and normal maps.
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Here we present the work done for 3D human pose estimation, published at
the European Conference on Computer Vision 2016, which introduces a method
for 3D human pose estimation from a single image based on a hierarchical
Bayesian non-parametric model, decomposing the human skeleton in groups.
A standard human activity dataset is employed, containing both information
about 2D and 3D skeleton joints, and a hierarchical model connecting 3D
poses and 2D visual features (namely PHOG features) was built. In order to
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Query image Detected 2D joints Dictionary based group 3D pose estimation Final result 

Figure 6.1. Method overview; 3D pose estimation given a query image.

infer the 3D skeleton data from new unseen images, a state-of-the-art method
for 2D skeleton joints extraction from images was employed. From image
regions sourrounding the 2D joints, PHOG features are extracted, and 3D
joints are inferred from the learned pose dictionary of each skeleton group.
The final complete 3D human pose, a full-pose consistency condition have been
formulated.

This Chapter is an exact copy of the conference paper referred
to above.

6.1 Abstract
We introduce a 3D human pose estimation method based on hierarchical
Bayesian non-parametric models. Considering a decomposition of the human
skeleton joints into groups, our model generates a dictionary representative of
the motion and the appearance of each group. Given a query image, the learned
dictionary is used to estimate the likelihood of the group pose based on its
visual features. The pose of the full-body is reconstructed taking into account
the pose consistency of the connected groups. The results show that the
proposed approach is able to accurately reconstruct the 3D pose of previously
unseen subjects.

6.2 Introduction
Human pose estimation from images has been considered since the early days
of computer vision and many approaches have been proposed to face this
quite challenging problem. A large part of the literature has concentrated
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on identifying a 2D description of the pose mainly by trying to estimate the
positions of the human joints in the images. Recently, attention has been
shifted to the problem of recovering the full 3D pose of a subject either from
a single frame or from a video sequence. Despite this is an ill-posed problem
due to the ambiguities emerging by the projection operation, the constraints
induced by both human motion kinematics and dynamics have facilitated the
recovery of some accurate 3D human pose estimation.

Group 1
Group 2 
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11

Figure 6.2. “Vitru-
vian” pose with de-
fined groups.

In this work we approach the problem of 3D pose
estimation from a single image building a hierarchical
framework based on Bayesian non-parametric estima-
tion. A schema of the framework is shown in (Fig. 6.3).
Following the schema flow, we divide the human body
into different parts and we study the idiosyncratic
motion behavior of each part independently from the
others. In this way we learn the principal motion
modes of each part. Each body part is specified by a
group of joints, and its motion is represented by pose
features obtained by the principal motion direction on
the SE(3) manifold with respect to a reference pose.
As a natural reference pose we consider the “Vitruvian
man” pose presented in Fig. 6.2 together with the selected groups.

The visual features for each group are the PHOG features of (Bosch et al.,
2007), which are computed using the state-of-the-art approach of (Yang and
Ramanan, 2013). Assuming a correspondence between the visual and pose
features both the space of visual features and pose features are partitioned,
in such a way that from the visual features it is possible to accede to the non
observed pose features. These nested partitions are built up for each group
with a hierarchical non-parametric Bayesian model, designed purposefully to
deal with the inverse projection problem, from 2D to 3D. Indeed, the goal is
to recover the unknown human poses just from the available visual features,
since visual features are the only available observations.

The hierarchical model is based on two nested countably infinite mixtures of
normal distributions. The first level builds a dictionary of 3D human poses by
considering various examples of 3D human poses taken from a large number of
motion sequences, while the second level takes into account the corresponding
images obtained from a number of view points. Indeed, the dictionary is
built by partitioning the space of 3D poses with a Dirichlet process mixture
model (DPM). The partition is defined on the space of poses specified by the
principal motion directions on the SE(3) manifold. The nested part of the
model builds the visual dictionary on top of the pose dictionary, and it is also
based on Dirichlet process mixture models. Here the mixture processes the
PHOG (Bosch et al., 2007) features extracted from a window centered at the
2D position of each joint in the given image.

Based on the learned dictionary 3D pose estimation is performed as follows
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Figure 6.3. Schematic representation of the proposed hierarchical model.

(Fig. 6.1). Given a query image we extract the 2D positions of the joint in
the image using a state-of-the-art approach (Yang and Ramanan, 2013) and
compute the corresponding PHOG features for each group. From these features
we infer the most likely cluster of the visual dictionary, which in turns indicates
the cluster of 3D poses with the highest probability for the given group. The
final 3D pose is reconstructed by assembling together the most representative
poses of the selected clusters for each group. Clusters are selected considering
also the compatibility between the group poses.

In the following, Section 6.3 discusses related work and Section 6.4 the
structure of the training and testing data, and preliminaries. Section 6.5
presents the architecture of the proposed model and how pose estimation is
performed. In Section 6.6 we present the results obtained with our method
in comparison with state-of-the-art 3D pose estimation approaches. Finally,
Section 6.7 discusses conclusions and future work.

6.3 Related Work

Human pose estimation (HPE) has been extensively studied during the years
by considering videos, 2D images and depth data, (Liu et al., 2015; Hen and
Paramesran, 2009; Poppe, 2007). There exist several open problems; among
them we mention variations in human appearance, clothing and background, ar-
bitrary camera view-point, self-occlusions and obstructed visibility, ambiguities
and inconsistency in the estimated poses.

Different features can be chosen to describe the different types of data.
Focusing on 2D input data, some works assume the 2D body joints locations
already given (Akhter and Black, 2015a), while others extract features from
silhouettes such as HOG (Dalal and Triggs, 2005), PHOG (Bosch et al.,
2007), SIFT (Lowe, 1999) and shape context (Belongie et al., 2002), or dense
trajectories (Zhou and De la Torre, 2014).
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In detail, concerning 3D HPE from videos, very recently (Zhou and De la
Torre, 2014) introduced a spatio-temporal matching (STM) among 3D Motion
Capture (MoCap) data and 2D feature trajectories providing the estimated
camera view-point and a selected subset of tracked trajectories. In our approach,
instead, as in (Simo-Serra et al., 2012; Wang et al., 2014a), body parts in 2D
are detected by using the algorithm introduced in (Yang and Ramanan, 2013).

In the last years many works have approached the estimation of the poses
via deep learning as in (Li and Chan, 2014; Tompson et al., 2014; Ouyang
et al., 2014; Toshev and Szegedy, 2014). In Zhou et al. (Zhou et al., 2016)
a convolutional neural network is used to estimate the 2D joint locations in
the image. 3D pose sequences are then estimated via an EM algorithm over
the entire video by considering a sparse model of 3D human pose in input
where each 3D body pose is represented by a linear combination of a predefined
basis of poses. Wang et al. (Wang et al., 2014a) propose an overcomplete
dictionary of poses learned from 3D human poses and HPE is managed by
minimizing an L1 norm error between the projection of the 3D pose and the
corresponding 2D detection, optimizing via alternating direction method. In
(Sigal and Black, 2006), body part detectors provide proposals for the location
of 2D pose of visible limbs. The 2D pose is then refined via non-parametric
belief propagation and the corresponding 3D pose is estimated by learning the
parameters of a mixture of experts model.

In (Agarwal and Triggs, 2006) a relevance vector machine is proposed to
learn a reconstruction function that is a linear combination over a set of basis
functions. The authors extract shape descriptors from a set of 2D images and
the corresponding 3D poses. (Mori and Malik, 2006) store a set of different
images and full body poses, both in 2D, together with the corresponding
viewpoint. A test image is directly matched with all the training images via
the shape context matching procedure. The 3D positions are then estimated
via the Taylor’s approach (Taylor, 2000). Differently from ours, their methods
is instance-based, which is not feasible for a real-time application, without also
the possibility of generalizing over the training images.

Assuming that joint positions are already given in 2D with the corresponding
image, (Akhter and Black, 2015a) propose to learn pose-dependent joint angle
limits from a MoCap dataset, to form a prior for estimating the 3D poses,
together with the camera parameters. A tracking-by-detection technique is
used in (Andriluka et al., 2010) to collect a small number of consecutive video
frames. A novel class of descriptors, called tracklets, is defined and 3D poses
are recovered from them. In (Lehrmann et al., 2013), human pose is estimated
via a non-parametric Bayesian network and structure learning, considering the
dependencies of body parts. In our approach, instead, nested non-parametric
clustering is considered to find relations among the appearance and the 3D
pose of each body part. As in (Lehrmann et al., 2013), our approach is able
to generalize over the observed data so as to generate new poses never seen
before.
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In (Ionescu et al., 2014), besides the construction of a large dataset, a
benchmark among various HPE approaches is performed. (Pons-Moll et al.,
2014) use boolean relationships between body components, called posebits, for
training an SVM for retrieving the 3D body pose. Finally, (Yasin et al., 2015)
consider annotated 2D images and MoCap data as independent input data to
first obtain an initial pose model which is then refined iteratively.

6.4 Description of Input Data
Human 3.6M Dataset The dataset we consider for the development of our
HPE algorithm is Human 3.6M (Ionescu et al., 2014), which includes about
3.6 million video frames with associated labelled joints and poses of different
human subjects performing actions. Relevant for us are the motion capture
(MoCap) data (provided as joints rotations and translations) acquired with the
Vicon MoCap System; data of 11 subjects performing 15 different actions are
available. The 3D joint poses are provided as transformation matrices evaluated
with respect to a fixed world origin as described in the next subsection.

Additionally, we consider the corresponding video frames captured from
high resolution RGB cameras from 4 different viewpoints. This is done to
ensure that we take in consideration a sufficiently varied set of poses captured
from different view points. We consider the 4 views of each pose as distinct
instances. Furthermore, we are given also the positions of the MoCap skeleton
mapped into the image domain. This is used for the 2D joints inference in
images, as explained in the following. As in (Zhou et al., 2016), we use 5
subjects (S1, S5, S6, S7, S8) for the training stages, and 2 subjects (S9, S11)
for testing. Moreover, we consider only 18 out of the entire set of 32 3D joints
by excluding joints corresponding to fingers and toes and by merging together
joints corresponding to the same 3D position in order to avoid redundancy in
the data. Therefore, for each video frame we have the association among the
image, the 3D joint poses, and the 2D joints mapped in the image.

PGA-based Features We now describe the basic principles used for ex-
tracting features representing the pose of each group. A MoCap sequence
amounts to the poses of a subject at regular time instances. At each time
instant the pose of the subject is represented by a given configuration of its
joints. In detail, a skeleton J is specified by 18 joints, where the first one is the
index of the root joint. Each joint has a single parent joint, except from the
root joint. The configuration of the i-th joint is represented by a homogeneous
transformation matrix Ti ∈ SE(3), a Lie Group with identity element defined
by the 4× 4 identity matrix. By defining a proper metric the Lie Group is a
Riemannian manifold, on which we can define (via the exponential mapping)
the notion of geodesic between two elements on the manifold (see (Flaherty
and do Carmo, 2013; Zefran et al., 1998; Duan et al., 2013)), which is locally
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the shortest path that connects two group elements. Henceforth each joint is
considered as a rigid body moving in space with respect to some coordinate
system. Note that this coordinate system may change according to the MoCap
system used for acquiring the data.

We breakdown the skeleton into 11 sub-body groups Gs, with s = 1, . . . , 11.
Each group contains Ms joints and is defined as Gs = {Jψ(1), . . . , Jψ(Ms)} ⊆ J ,
with ψ(·) providing the relation of the group joint indices with respect to the
skeleton indexes. All joints belonging to a group have a parent within the
same group, except the root of the group, which is included in at least one
other group, whenever it is not the root of the entire skeleton, this proviso is
required by the reconstruction of the full-body pose (Algorithm 4.

Table 6.1. Average geodesic distance between the Karcher mean and the rotations
of each joints for each group over the whole dataset.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
J1 1.102 1.152 1.152 1.149 1.144 1.143 1.108 1.145 1.106 1.110 1.141
J2 1.102 1.521 1.521 1.521 1.524 1.518 1.108 1.535 1.106 1.110 1.510
J3 - 1.520 1.519 1.519 1.540 1.521 - 1.530 - - 1.519

Breaking down the skeleton into groups is motivated by the idiosyncratic
motion of body parts, and to appraise this fact we use the Da Vinci’s Vitruvian
pose as the reference skeleton configuration, adapting an idea of (Taylor et al.,
2012). The Vitruvian pose and the joint groups considered here are shown in
Fig. 6.2. Now, given a pose, we find the transformation between the current
pose configuration and the Vitruvian pose, for each group Gs, s = 1, . . . , 11.
Then, the pose feature set for each group is obtained from the principal
direction, computed via Principal Geodesic Analysis (Fletcher et al., 2004)
from these transformations.

More specifically, for each Gs, s = 1, . . . , 11 the transformation matrices
mapping the joints from a current arbitrary pose to the Vitruvian pose are
computed, taking into account the dependencies from the parent pose. We
compute the Karcher mean (Karcher, 1977) µ of the group transformations,
following the algorithm of Afsari (Afsari et al., 2013). In particular, regarding
rotation averaging, the center of mass should be within a geodesic distance no
larger than π/2 in order to be unique, and thus well defined (Kendall, 1990;
Afsari et al., 2013; Hartley et al., 2013). Table 6.1 shows the average geodesic
distance between the intrinsic mean and the rotations of the individual joints
for each group over the whole dataset, suggesting that the Karcher mean
computation is well defined for this particular choice of groups.

Hence we compute the tangent space of SE(3) at µ and select the principal
direction. This direction is the one that best interprets the variability of the
motion that the group of joints performs in order to return to the configuration
of joints of that sub-body group, in the Vitruvian rest pose. The actual
computation of the principal direction in SE(3) is given in (Natola et al.,
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2015b), and for the transformation considered here the whole computation is
resumed in Algorithm 3.

Algorithm 3: Feature extraction for the pose of a group Gs of
joints

Data: The pose of the group Gs given by the corresponding set of
homogeneous transformations {Tψ(1), . . . , Tψ(Ms)}; the
Vitruvian joints configuration {T Vψ(1), . . . , T

V
ψ(Ms)}.

Result: Feature vector for the pose of the group Gs

1. Move the root of Gs to the root of the corresponding group in
Vitruvian pose.

2. Compute the “disparity” between each joint current pose and
the Vitruvian pose as Ĝs = {T̂ψ(1), . . . , T̂ψ(Ms)}, taking into
account the dependency of each joint pose from its parent
pose.

3. Compute the Karcher mean as in (Afsari et al., 2013),
extending it to translation.

4. Compute the variance S as in (Fletcher et al., 2004), but
using the twist u∨ = (ω>,v>)>, obtained from the Lie
algebra of the given transformations, to extend the PGA to
SE(3), with ω and v the instantaneous angular and linear
velocities, as in (Natola et al., 2015b).

5. Compute the eigenvector and eigenvalues of S and return the
first principal direction in the Lie algebra se(3).

6. Build the feature vector in R7 using the instantaneous
angular and linear velocities from the principal direction,
forming a twist, together with the norm of the instantaneous
linear velocity (Natola et al., 2015b).

2D joints estimation from Monocular images In both learning and
testing stages we extract PHOG visual features for each considered group.
For this purpose, given an image sampled from a video of the dataset in
Human 3.6M, the first step is the estimation of the 2D joints together with
suitable surrounding boxes in the image domain.

In detail, since we have considered the 3D skeleton subdivided into 11 groups
we recover 11 boxes (or windows), one for each imaged group. From each of
these boxes we extract the most suitable image descriptors for our purpose, that
are the Pyramid Histogram of Oriented Gradients (PHOG) (Bosch et al., 2007;
Dalal and Triggs, 2005). We have decided to consider a pyramid with levels
equal to 0 and 1 and 8 bins spanning an angle of 360 degrees, for each joint in



6.5 Features to poses mapping: a hierarchical model 61

the group, this choice leads to feature vectors of size m,m ∈ {16, 24, 32}.

Figure 6.4. Left: 2D joints estima-
tion using (Yang and Ramanan, 2013);
Right: HOG descriptor extraction for
a group of joints.

The estimation of the 2D joints
from images is performed using the
state-of-the-art approach (Yang and
Ramanan, 2013). This approach is
particularly suitable for the estima-
tion of the sought-after boxes sur-
rounding joints of human body. We
train a model using the algorithm de-
scribed in (Yang and Ramanan, 2013)
using images sampled from the videos
in the Human 3.6M dataset. In partic-
ular, we used 61750 images for train-
ing taken by the 5 different subjects
(S1, S5, S6, S7, S8) performing all the actions, provided together with the 2D
joints positions. We used 24700 images for testing taken from the remaining
subjects (S9, S11) performing the same actions. From the boxes obtained
we consider the central points being the 2D joints. Note that we know the
ordering of the parts and so of the joints. Fig. 6.4 shows the result of the boxes
extraction for two different testing images and the process of PHOG extraction
from an image of a group when the PHOG level is set to 0.

6.5 Features to poses mapping: a hierarchical
model

In this section we present the hierarchical model connecting 3D poses and
visual features, which make it possible to infer a human pose from the visual
features. The hierarchical model takes care of the main aspects of this inference
process. First of all it generates a dictionary of poses, for each group. The
dictionary collects poses in clusters, where the similarity within a cluster
is defined according to the parameters of the underlying distribution. In
particular, the dictionary for the poses is a list of indexes specifying for each
pose the set of poses sharing the same partition block – or the same parameters.
Because a set of similar poses admits several views, the visual features indexed
in the same partition generate a mixture of features too. Finally, a principle of
compatibility amid clusters of different groups is defined.

In this section we consider (X1, X2, . . . , XN), (Y1, Y2, . . . , YN) sets of real
valued random variables; with X = (x1, . . . ,xN) and Y = (y1, . . .yN) their
realization. In particular, we consider here a multivariate X, for the principal
direction of the poses of a group of joints, such that a random sample of
observations xi ∈ R7. We consider also a multivariate Y for the PHOG
features, with yi ∈ Rm, m ∈ {16, 24, 32}. To simplify reading we sometimes
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talk about poses, though in fact we consider the twists obtained by the principal
direction of the set of rototranslations of the joints of a group, with respect to
the same joints in the Vitruvian pose, as explained in Section 6.4.
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Figure 6.5. Plate representation of
S = 1, . . . , 11 fold replication of
the stacked DPM for pose and
visual features. Inner plates are
replicated for each DPM.

Given the training setsDX
s ={xi|xi∈R7, i=1, . . ., N}

andDY
s ={yi|yi∈Rm, i=1, . . ., N,m ∈ {16, 24, 32}}

as the sampled pose and visual features
for a group Gs, s=1, . . ., 11 (a subset of
joints as specified in Fig. 6.2), we want
to partition these sets, though neither the
partition dimensions nor the specific allo-
cations are known. Hence we resort to
the Bayesian nonparametric perspective
on mixtures with countably infinite num-
ber of components. In this perspective
we are given a measurable space X, a dis-
crete measure µ on this space, a collec-
tion of continuous observations, latent vari-
ables (θ1, . . . , θK) admitting a distribution,
with K a random number ≤ N , and a
probability distribution function F (·|θi),
parametrized by the random variables θi. This setting leads to the popu-
lar Dirichlet process mixture model, where F (·|θi) is the kernel of the mixture,
here the normal distribution, and µ ∼ DP (α, µ0), is the mixing measure, with
concentration parameter α and mean E{µ} = µ0. This is usually expressed in
a hierarchical representation as:

Xi|θi = F (·|θi), i = 1, . . . , K
θ1, . . . , θN |µ ∼iid µ and µ ∼ DP (α, µ0). (6.1)

Then X ∼
∫
F (X|θ)dµ(θ) is a mixture of distributions with countably infinite

number of components (Lo, 1984; Ferguson, 1983). Since the measure µ is
discrete, each pair of latent random variables can take the same value with
probability p > 0. Where the taken value is precisely that of a mixture
component. Hence the observations will be allocated by the latent variables to
a random number of components.

Different representations have been given of the DPM since (Ferguson,
1973) and several methods have been devised to sample the mixture param-
eters from the DP (α, µ0) (see (Gorür, 2007; Sudderth, 2006)). Recently a
number of contributions have explored advanced methods to obtain a parallel
implementation (Lovell et al., 2012; Chang and Fisher III, 2013), and to obtain
a distribution on the partition of the tangent space to the sphere (Straub
et al., 2015), introducing mixture models for data lying on the sphere, and on
Riemaniann manifolds (Kim et al., 2015). In this work we did not consider
our data as placed on a curved manifold. Despite features data for poses are
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obtained from the principal direction on SE(3), each twist extended with the
velocity norm, as described in Section 6.4 is independent of the others and
forms an exchangeable set. As we do not consider any trajectory between the
pose feature vectors we may not consider them on a curved manifold, though
we are exploring the interesting modeling that a manifold representation could
lead to. Several approaches have also considered different forms of hierarchical
and nested NPB models. Though here we could not use the hierarchical model
of (Teh et al., 2012), since the pose clusters of the same group, likewise the
visual features, do not share any element. Neither could be used across groups,
since groups have different ranges of PHOG variates and the number of clusters
depends on the number of poses of a specific body part.

Our proposed hierarchical model relies on the hypothesis that for the
training datasets there exists an index set {Z}Ni=1, with a bijective mapping h
between any two datasets. So, for each PHOG feature vector yi there exists
a corresponding pose vector xi in the training set. This fact does not affects
generality nor exchangeability, as we see below, since the index set labels the
sampled features not the partitions.

To generate an exchangeable random partition for the mixture of poses, we
consider the well known Chinese restaurant process (CRP) (Pitman, 2006).
On the other hand, to compute the parameter α we followed the approach
of (West, 1992), defining the prior of α as coming from the class of mixtures
of gamma distributions, with small initial scale and shape parameters. For
inference we resort to Gibbs sampling (Neal, 2000; Jain and Neal, 2004) with
conjugate priors.

Given the distribution on the partition induced by the mixture model, a
finite set of parameters θ̂1, . . . , θ̂K is obtained, together with a cluster indexing
c = (c1, . . . , cN) for each element in the training set. The prediction of a new
pose xN+1 is defined by the posterior predictive distribution:

p(xN+1|X) =
∑

c1,...cN+1

∫
p(xN+1|cN+1, θ)p(cN+1|c)p(c, θ|X)dθ (6.2)

Here:
p(c, θ|X) = 1

H

K∏
k=1

µ0(θk)
n∏
j=1

F (xj|θcj)P (cj), (6.3)

where H is the marginal likelihood of the mixture of Normals given the
computed parameters. And, according to the sampling process induced by the
CRP, p(cN+1|c) is:

p(cN+1 = k|c) =


nk

N − 1 + α
k ≤ K

α

N − 1 + α
otherwise

(6.4)

Here nk is the size of the set of elements in c having value k. Since poses
are continuous and somehow unpredictable, the case that a new pose asks for



64 6. Bayesian Image based 3D Pose Estimation

the initialization of a new cluster has probability greater than zero. However,
once the partition is specified, we make it available to the visual inference,
recovering the association between the index set {Z}Ni=1, and each element
in each cluster of the dictionary. Because of the label switching problem
we prefer to reallocate the indexes {Z}Ni=1 to the clusters. Hence, for each
pair θ̂ci = (ηci ,Σci) we sample a number of pose vectors {u}|ci|, proportional
to the current ones from (ηci , βD), with Σci = UDU>, and β a filtering
parameter. Given the sampled set we find, in the training set DX

s , the pose
vectors x which minimize the square error, w.r.t. some specific threshold,
i.e. {x ∈ X|||x − u||2 ≤ ε, ε > 0}. This fact allows, at the same time, to
regularize the clusters around their mean, and to reallocate the observations
into the clusters together with the observation index set {Z}Ni=1. Therefore
according to the model, the induced partition, and the reallocation, given
elements s = {xs1, . . . ,xsk}|θ̂cj we have that h−1(s) = zsj, a subindex set
zsj ∈ {Z}Ni=1, such that h(zsj) = {ys1, . . . ,ysk}, namely it returns a choice of
visual features. The subindex zsj specifies which set of features, having index
in {Z}Ni=1 should be allocated to the cluster generated by parameters θcj , due
to the bijection between the training data. Repeating this for all parameters
θ̂cj , j = 1, . . . K, and for each group, a CRP process is computed for each
feature set indexed by zsj. The probability measures generating these new set
of DPM, are obviously specific for each PHOG feature set. The structure of the
hierarchical model is illustrated in Fig. 6.5. Each feature set indexed by zsj can

Figure 6.6. Most representative poses of the learned dictionary for the groups Left
Arm, Hips, Right Leg, Left Foot, with respect to the “Vitruvian pose”.

specify different views of the same pose, and possibly under different lighting
conditions. Further, we expect that similar poses of different people, yet belong
to the same cluster, and the PHOGs might capture this, when represented by
a mixture distribution. Thus we induce a new partition exploiting the Gamma
additive property. For each cluster of poses, generated by each group, there
exists a set of models Ms = (M1

PHOG, . . . ,MKs
PHOG), with K varying according

to the group s, s = 1, . . . , 11.
Now, given a new observation y?, this could be either a query or a new

measure. Then the posterior predictive of eq. (6.2) should integrate with
respect to the parameters of the feature set indexed by zsj, for j = 1, . . . , K
and with respect to each feature set Yzsj , collected in the training. Without
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loss of generality we can do this into two steps. In the first step we compute
the density, finding the model that best fits y?. We can do this because the
index set for the visual features is not required for this step:

arg max
MPHOG

p(y?|ξ) =
∑
h

∑
j

πhjϕh(y?|ξhj,Mh
PHOG). (6.5)

Here the πs are the mixing proportion and ϕ(·|ξ) is the Normal density with
parameters ξ for the specific PHOG features set. Once the model is chosen,
hence the cluster, the predictive distribution in eq. (6.2), can be applied to
the PHOG feature y?. Note that if a new component is generated, this now
will have its reference pose being the mean of the cluster it is hooked to. Note
that if the subindexes of the clusters generated by the visual features y with
subindex zsj are needed, to identify a particular feature and its connection to
a particular pose, then a resampling is necessary, as we did with the poses.
Otherwise the mean pose can be used. We can see this process as a funnel
guiding visual features into the small opening of the pose set, and possibly
widening the opening as new observations come in.

Algorithm 4: Consistent pose cluster selection.

Data: Pairwise group compatibility probabilities rij (eq. 6.6).
Result: Most likely set of consistent pose clusters.

1 Find the most likely pose cluster for the root group (G8);
2 Add all the connected groups of G8 (denoted children(G8)) in the set
Gopen;

3 while Gopen is not empty do
4 for Each group Gs ∈ Gopen do
5 Find its most likely pose cluster taking into account the

compatibilities {rij}i∈{1,Ms} with respect to the selected cluster
j of its parent group parent(Gs)

6 Remove (Gs) from Gopen;
7 Add children(Gs) in Gopen

The final inference step requires a principle of compatibility amid groups
from which derive the consistent pose selection summarized in Algorithm 4.
We define the intergroup clusters compatibility as follows. Let i, j, be two
clusters from groups q and s. Let Wij = |zqj ∩ zsi| with | · | the cardinality and
let Dij = zqj ∪ zsi and p(mij = 1) = Wij/|Dij|.

The probability that the two intergroup clusters are compatible is given as:

rij = p(Dij|mij = 1)p(mij = 1)
p(Dij|mij = 1)p(mij = 1) + p(Dij|mij = 0)(1− p(mij = 1)) (6.6)
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With
p(Dij|mij = 1) = γ

∑
Dij

πiδDij(x) + (1− γ)
∑
Dij

πjδDij(x) (6.7)

Where δDij(x) = 1 if x ∈ Dij and zero otherwise, πi and πj are the mixing
proportions of the DPM of the two clusters, and 0 ≤ γ ≤ 1 balances the
contribution from the two clusters. While, where the two clusters are completely
uncorrelated:

p(Dij|mij = 0) =
∏
Dij

πiπj (6.8)

Figure 6.7. Most representative poses of the learned dictionary for the groups Left
Arm, Hips, Right Leg, Left Foot, with respect to the “Vitruvian pose”.

Full-pose consistency In order to reassemble the full-body pose of the sub-
ject we consider the structure of the skeleton and the proposed decomposition
into groups. Starting from the group of the hips, which contains the root joint,
we seek the most likely entries of the pose dictionary for the connected groups
(groups which share at least one joint). Let us indicate with ηGs the pose
(cluster) that best fits the image query specified by (y?Gs), for each group Gs.
We seek to maximize p((ηG1 , . . . , ηG11)|(y?G1 , . . . ,y

?
G11)). The tree-like structure

of the human skeleton, allows for a formulation of the problem using graphical
models and the optimal solution is easily obtained using the max product
algorithm. Once the most likely consistent set of pose clusters has been selected,
the full-body pose is reconstructed. In particular, starting from the root and
going toward the extremities, we obtain the most representative pose of the
selected cluster for each group and we make the reference frames of the shared
joints between the clusters coincide.

6.6 Results
Dictionary learning As described in Section 6.4, we consider the dataset
Human 3.6M (Ionescu et al., 2014) to evaluate our 3D pose estimation algo-
rithm. In order to obtain the dictionaries of the 3D poses we first apply the
decomposition of the joints in groups according to Fig. 6.2 and then compute
PGA-based features for each group joints, as described in Section 6.4. As
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the dataset contains 3D poses synchronized with video frames at a high rate
(50 Hz), we subsample with a factor of 5 in order to remove redundant data.
Further we compute the PHOG features as described in Section 6.4. The
number of clusters generated for each group by the DPM models are reported
in Table 6.2.

Table 6.2. Number of clusters generated by the DPM models for the PHOG and
the PGA-based features for each group of joints.

Groups 1 2 3 4 5 6 7 8 9 10 11 12
Nr. of pose clusters 56 155 38 85 20 49 90 88 58 49 52 16
Avg. nr. of visual components 18 31 31 25 22 22 4 22 22 11 18 13

The significance of pose clusters is shown in Fig. 6.7, where the mean poses
are visualized for the groups Left Arm, Hips, Right Leg, Left Foot.
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Figure 6.8. Error distribution for the PHOG (left) and the PGA (right) features.

3D pose estimation Using the learned dictionary of poses and visual features
we perform 3D pose estimation for the testing part of the dataset, namely
for the actions performed by subjects S9 and S11. For each query image, the
2D joint positions in the image are estimated by using (Yang and Ramanan,
2013), and they are grouped together forming the groups of Fig. 6.2. For each
group, the PHOG features are then extracted, as described in Section 6.4, and
the corresponding cluster of the visual dictionary is selected as the most likely
one according to the learned hierarchical model. We calculate the error of the
visual features as the euclidean distance of the extracted features with respect
to the most representative visual features of the selected cluster. The mean of
this error together with the 25th and 75th percentiles for each group, are shown
in the left box-plot of Fig. 6.8. Note that as the errors refer to distances, we
expect that they follow a χ2 distribution instead of a normal one. We observe
that the errors of the PHOG features are low in average for most of the groups.
The groups corresponding to the hands and the arms (G3, G4, G5, G6) show
higher errors, mainly because of the high variability of their appearance.

The 3D pose of the whole body is obtained according to Algorithm 4.
1More results are reported in the supplementary material
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Table 6.3. Average per joint error between the estimated 3D pose and the ground
truth in mm. Best values in bold.

Directions Discussion Eating Greeting Phoning Photo Posing Purchases
LinKDE(Ionescu et al., 2014) 132.71 183.55 132.37 164.39 162.12 205.94 150.61 171.31
Li et. al(Li and Chan, 2014) - 136.88 96.94 124.74 - 168.68 - -
Tekin et al.(Tekin et al., 2015) 102.39 158.52 87.95 126.83 118.37 185.02 114.69 107.61
Zhou et al.(Zhou et al., 2016) 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78
Ours 48.82 56.31 95.98 84.78 96.47 105.58 66.30 107.41

Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average
LinKDE(Ionescu et al., 2014) 151.57 243.03 162.14 170.69 177.13 96.60 127.88 162.14
Li et. al(Li and Chan, 2014) - - - - 132.17 69.97 - -
Tekin et al.(Tekin et al., 2015) 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28
Zhou et al.(Zhou et al., 2016) 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01
Ours 116.89 129.63 97.84 65.94 130.46 92.58 102.21 93.15

Figure 6.9. Examples of query images and the recovered 3D pose 1.

Examples of the recovered poses for query images of the subjects S9 and
S11 are shown in Fig. 6.9. We calculate the euclidean distance of the PGA-
based features of the true 3D pose of the subject, with respect to the most
representative PGA-based features of the selected cluster for each group. The
mean distance for each group together with the 25th and 75th percentiles,
are shown in the right box-plot of Fig. 6.8. We note that the average errors
of the PGA-based features are small for all groups, apart from G5 and G6
which correspond to the right arm and the right hand. The fact that the PGA
features reside in a deeper level of the hierarchical model affects the presence
of an increased number of errors above the 95th percentile.

We also compute the mean error of the joint positions of the recovered
3D pose with respect to the ground truth 3D pose of the subject. This error,
compared to the error of other state of the art approaches is reported in
Table 6.3. The results show that our method gives slightly worse results only
with respect to (Zhou et al., 2016) for the ‘Eating’ and ‘Purchases’ actions,
and for the walking actions with respect to (Tekin et al., 2015) and (Zhou
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et al., 2016). In summary, the proposed method outperforms other recently
proposed state of the art 3D pose estimation methods both in average and
also for the vast majority of actions considered in the Human 3.6M dataset.

Efficiency of the method For the 2D joints estimation training uses 61750
frames of the Human 3.6M dataset taking about 104 sec., (Yang and Ramanan,
2013) does not report efficiency. For the hierarchical DPM we consider a
training set of 130272 frames, asking for ∼ 8.5 × 105 seconds for the poses
partitioning and ∼ 7× 104 seconds for the visual features partitioning. This
considering main Gibbs cycles of 1800 iterations. Full-pose consistency takes
around 0.05 seconds for a single query, and the total percentage of queries not
satisfying it are around 23%. Once parameters are learned pose computation
takes around 0.96 seconds, with PGA and group computation taking around
0.07 seconds. These results are obtained with a computer equipped with four
Xeon E5-2643, 3.70GHz CPUs and 64GB RAM.

6.7 Conclusions
We present a novel method for 3D human pose estimation from a single image
based on a hierarchical Bayesian non-parametric model. The proposed model
captures idiosyncratic variations of the motion and the appearance of different
body parts, identified by groups of joints. The decomposition in groups avoids
redundant configurations, obtaining a more concise dictionary of poses and
visual appearances. Given the learned model a 3D pose query can be resolved
in real-time. The results show that the proposed model is able to generalize
and accurately reconstruct the 3D pose of previously unseen subjects. Our
results improve the current state of the art though we aim to further ameliorate
them, by considering additional constraints of the pose structure. We shall
also consider to move the NBP on the Riemann manifold of the features.
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Here we present the work done for the discovery and recognition of human
motion primitives, published at the journal PloS one in 2019. This work
introduces a framework for automatically discovering and recognizing human
motion primitives from video sequences, introducing the motion flux method.
A hierarchical model for the classification and recognition of the unlabeled
discovered primitives, for each skeleton group, was built. It was shown that



727. Discovery and recognition of motion primitives in human activities

each primitive category naturally corresponds to movements described using
biomechanical terms. Motion primitives categories were proven to be discrim-
inative for characterizing the activity performed by the human subjects in
videos, describing an application to abnormal behaviors detection. Finally, a
dataset of motion primitives was made publicly available to further encourage
result reproducibility and benchmarking of methods dealing with the discovery
and recognition of human motion primitives. The dataset can be found at
https://github.com/alcor-lab/MotionPrimitives.

This Chapter is an exact copy of the journal paper referred to
above.

7.1 Abstract
We present a novel framework for the automatic discovery and recognition
of motion primitives in videos of human activities. Given the 3D pose of
a human in a video, human motion primitives are discovered by optimizing
the ‘motion flux’, a quantity which captures the motion variation of a group
of skeletal joints. A normalization of the primitives is proposed in order to
make them invariant with respect to a subject anatomical variations and data
sampling rate. The discovered primitives are unknown and unlabeled and are
unsupervisedly collected into classes via a hierarchical non-parametric Bayes
mixture model. Once classes are determined and labeled they are further
analyzed for establishing models for recognizing discovered primitives. Each
primitive model is defined by a set of learned parameters. Given new video data
and given the estimated pose of the subject appearing on the video, the motion
is segmented into primitives, which are recognized with a probability given
according to the parameters of the learned models. Using our framework we
build a publicly available dataset of human motion primitives, using sequences
taken from well-known motion capture datasets. We expect that our framework,
by providing an objective way for discovering and categorizing human motion,
will be a useful tool in numerous research fields including video analysis, human
inspired motion generation, learning by demonstration, intuitive human-robot
interaction, and human behavior analysis.

7.2 Introduction

Activity recognition is widely acknowledged as a core topic in computer
vision, witness the huge amount of research done in recent years spanning a wide

https://github.com/alcor-lab/MotionPrimitives
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Figure 7.1. The above schema presents the proposed framework and the process
to obtain from video sequences the discovered motion primitives.

number of applications from sport to cinema, from human robot interaction to
security and rehabilitation.

Activity recognition has evolved from earlier focus on action recognition
and gesture recognition. The main difference being that activity recognition
is completely general as it concerns any kind of human activity, which can
last few seconds or minutes or hours, from daily activities such as cooking,
self-care, talking at the phone, cleaning a room, up to sports or recreation
such as playing basketball or fishing. Nowadays there are a number of publicly
available datasets dedicated to the collection of any kind of human activity,
likewise a number of challenges (see for example the ActivityNet challenge
(Ghanem et al., 2017)).

On the other hand, the interest in motion primitives is due to the fact that
they are essential for deploying an activity. Think about sport activities, or
cooking, or performing arts, which require to purposefully select a specific
sequences of movements. Likewise daily activities such as cleaning, or cooking,
or washing the dishes or preparing the table require precise motion sequences
to accomplish the task. Indeed, the compositional nature of human activities,
under body and kinematics constraints, has attracted the interest of many
research areas such as in computer vision (Yang et al., 2013b; Holte et al.,
2010), in neurophysiology (Flash and Hochner, 2005; Polyakov, 2017), in sports
and rehabilitation (Ting et al., 2015), and in biomechanics (Hogan and Sternad,
2012) and in robotics (Amor et al., 2014; Moro et al., 2012; Azad et al., 2007).

The goal of this work is to automatically discover the start and end points
where primitives of 6 identified body parts occur throughout the course of
an activity, and recognize each of the occurred primitives. The idea is that
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these primitives sort out a non-complete set of human movements, which
combined together can form a wide range of human activities, in so providing
a compositional approach to the analysis of human activities.

The steps of the proposed method are as follows. Given a video of a human
activity both the 2D pose and 3D pose of the human are estimated (see (Sanzari
et al., 2016), and also (Tome et al., 2017)). Once the 3D poses of the joints of
interest are determined, we compute the motion flux. The motion flux method
provides a model from first principles for human motion primitives, and it
effectively discovers where primitives begin and end on human activity motion
trajectories.

Motion primitives discovered by the motion flux are unknown: they are
segments of motion about which only the involved specific body part is known.
These primitives are collected into classes by a non-parametric Bayes model,
namely the Dirichlet process mixture model (DPM), which gives the freedom
to not choose the number of mixture components. By suitably eliminating
very small clusters it turns out that discovered primitives can be collected
into 69 classes (see Fig. 7.12). For each of them the mixture model returns a
parameter set identifying the precise primitive class. We label the computed
parameters with terms taken from the biomechanics of human motion, by
inspecting only a representative primitive for each discovered class. Out of
these generated classes we form a new layer of the hierarchical model, to
generate the parameters for each class, further used for primitives recognition.
Under this last models each primitive category is approximated by a DPM
with a number of components mirroring the inner idiosyncratic behavior of
each primitive class.

Motion primitives classification is finalized by providing a label for each
primitive. Namely, given an activity (possibly unknown) and an unknown
primitive discovered by motion flux, we find the model the primitive belongs
to, hence the primitive is labeled by that model.

Experiments show that the motion flux is a good model for segmenting
the motion of body parts. Likewise, the unsupervised non-parametric model
provides both a good classification of similar motion primitives and a good
estimation of primitive labels, as shown in the results (see Section 7.7). The
approach therefore is quite general and it turns out to be very useful to any
researcher who would like to explore the compositional nature of any activity,
using both the proposed method and the motion primitives dataset provided.

To the best of our knowledge just few works, among which we recall
(Yang et al., 2013b; Holte et al., 2010), have faced the problem of discovering
motion primitives in video activities or motion capture (MoCap) sequences,
quantitatively evaluating the ability to recognize them.

Despite the lack of works on motion primitives we show that they are quite
an expressive language for ascertaining specific human behaviors. To prove
that, in a final application for video surveillance, described in Section 7.8, we
show that motion primitives can play a compelling role in detecting distinct
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classes of dangerous activities. In particular, we show that dangerous activities
can be detected with off-the- shelf classifiers, once motion primitives have been
extracted in the videos. Comparisons with state of the art results prove the
relevance of motion primitives in discovering specific behaviors, since motion
primitives embed significant time-space features easily usable for classification.

The contributions of the work, schematically shown in Fig. 7.1 are the
followings:
1. We introduce the motion flux method to discover motion primitives, relying
on the variation of the velocity of a group of joints.
2. We introduce a hierarchical model for the classification and recognition of
the unlabeled primitives, discovered by the motion flux.
3. We show a relevant application of human motion primitives for video
surveillance.
4. We created a new dataset of human motion primitives from three public
MoCap datasets ((Ionescu et al., 2014), (CMU, ), (Mandery et al., 2015)).

7.3 Related work

Human motion primitives are investigated in several research areas, from neu-
rophysiology to vision to robotics and biomechanics. Clearly, any methodology
has to deal with the vision process, and many of the earliest more relevant
approaches to human motion highlighted that understanding human motion
requires view independent representations (Weinland et al., 2006; Li et al.,
2010) and that a fine grained analysis of the motion field is paramount to
identify primitives of motion. In early days this required a massive effort in
visual analysis (Turaga et al., 2008) to obtain the poses, the low level features,
and segmentation. Nowadays, scientific and technological advances have made
it possible to exploit several methods to measure human motion, such as the
availability of a number of MoCap databases (Ionescu et al., 2014; Mandery
et al., 2015; Sigal et al., 2009), see for a review (Moeslund et al., 2006). Fur-
thermore recent findings result in methods that can deliver 3D human poses
from videos if not even from single frames (Akhter and Black, 2015b; Sanzari
et al., 2016; Zhou et al., 2016; Tome et al., 2017). Since then 3D MoCap data
have been widely used to study and understand human motion, see for example
(Ntouskos et al., 2013; Ntouskos et al., 2015a; Pirri and Pizzoli, 2011) in which
Gaussian Process Latent Variable Models or Dirichlet processes are used to
classify actions, or (Natola et al., 2015b) in which a non-parametric Bayesian
approach is used to generate behaviors for body parts and classify actions
based on these behaviors. In (Natola et al., 2015a) temporal segmentation
of collaborative activities is examined, or in (Fanello et al., 2010) different
descriptors are exploited to achieve arm-hand action recognition.
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Neurophysiology Neurophysiology studies on motion primitives (Bizzi and
Mussa-Ivaldi, 1995; Flash and Hochner, 2005; Flash et al., 2013; Viviani and
Flash, 1995; Flash and Handzel, 2007; Biess et al., 2007) are based on the idea
that kinetic energy and muscular activity are optimized in order to conserve
energy. In these works it has been observed that curvature and velocity of
joint motion are related. Earliest works such as Lacquaniti et al. (Lacquaniti
et al., 1983) proposed a relation between curvature and angular velocity. In
particular, using their notation, letting C be the curvature and A the angular
velocity, they called the equation A = KC

2
3 the Two-Thirds Power law, valid

for certain class of two-dimensional movements. Viviani and Schneider (Viviani
and Schneider, 1991) formulated an extension of this law, relating the radius
of curvature R at any point s along the trajectory with the corresponding
tangential velocity V , in their notation:

V (s) = K(s)
(

R(s)
1 + αR(s)

)β
(7.1)

where the constants α ≥ 0, K(s) ≥ 0 and β has a value close to = 1
3 . An

equivalent Power law for trajectories in 3D space is introduced by (Maoz and
Flash, 2014) and it is called the curvature-torsion power law and is defined as
ν = ακβ|τ |γ, where κ is the curvature of the trajectory, τ the torsion, ν the
spatial movement speed, β and γ are constants.

Computer Vision The interpretation of motion primitives as simple indi-
vidual actions or gestures is often purported, in any case they are related to
segmentation of videos and 3D motion capture data. Many approaches explore
video sequences segmentation to align similar action behaviors (Gong et al.,
2014) or for spatio-temporal annotation as in (Lillo et al., 2016). Lu et al. (Lu
et al., 2015) propose to use a hierarchical Markov Random Field model to au-
tomatically segment human action boundaries in videos. Similarly, (Bouchard
and Badler, 2007) develop a motion capture segmentation method. n-grams
have been used to achieve action recognition based on action primitives.

Besides these works, only (Vecchio et al., 2003; Yang et al., 2013b; Holte
et al., 2010; Endres et al., 2013) have targeted motion primitives, to the best of
our knowledge. (Vecchio et al., 2003) focuses on 2D primitives for drawing, on
the other hand (Yang et al., 2013b) does not consider 3D data and generate the
motion field considering Lukas-Kanade optical flow for which Gaussian mixture
models are learned. None of these approaches provide quantitative results for
motion primitives, but only for action primitives, which makes their method
not directly comparable with ours. (Holte et al., 2010; Endres et al., 2013)
use 3D data and explicitly mention motion primitives, providing quantitative
results. The authors account for the velocity field via optical flow basing
the recognition of motion primitives on harmonic motion context descriptors.
Since (Holte et al., 2010) deal only with upper torso gestures we compare with
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them only the primitives they mention. In (Endres et al., 2013) the authors
achieve motion primitives segmentation from wrist trajectories of sign language
gestures, obtaining unsupervised segmentation with Bayesian Binning. Again
here no comparison for motion primitives discovery or recognition is possible
as original data are not available.

Robotics In robotics the paradigm of transferring human motion primitives
to robot movements is paramount for imitation learning and, more recently
to implement human-robot collaboration (Ijspeert et al., 2013). A good
amount of research in robotics has approached primitives in terms of Dynamic
Movement Primitives (DMP) (Ijspeert et al., 2013) to model elementary motor
behaviors as attractor systems, representing them with differential equations.
Typical applications are learning by imitation or learning from demonstration
(Gams et al., 2016; Pastor et al., 2009; Kober and Peters, 2009; Park et al.,
2008), learning task specifications (Ureche et al., 2015), modeling interaction
primitives (Amor et al., 2014). Motion primitives are represented either via
Hidden Markov models or Gaussian Mixture Models (GMM). (Asfour et al.,
2006) present an approach based on HMM for imitation learning of arm
movements, and (Luo and Berenson, 2015) model arm motion primitives via
GMM.

It is apparent that in most of the approaches motion primitives are only
observed and modeled, instead we are able to learn and model them using
respectively the motion flux quantity and a hierarchical model. The main
contribution of our work is indeed the introduction of a new ability for a robot
to automatically discover motion primitives observing 3D joints raw pose data.
The outcome of our approach is also a motion primitives dataset not requiring
human manual operation.

Our view of motion primitive shares the hypothesis of energy minimality
during motion, fostered by neurophysiology, likewise the idea to characterize
movements using the proper geometric properties of the skeleton joints space
motion. However, for primitive discovery, we go beyond these approaches
capturing the variation of the velocity of a group of joints using this as the
baseline for computing the change in motion by maximizing the motion flux.

7.4 Preliminaries

The 3D pose of a subject, as she appears in each frame of a video presenting
a human activity, is inferred according to the method introduced in (Sanzari
et al., 2016). Other methods for inferring the 3D pose of a subject are available,
we refer in particular, to the method introduced by (Tome et al., 2017), which
improves (Sanzari et al., 2016) in accuracy.
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Figure 7.2. The six groups partitioning the human body with respect to motion
primitives are shown, together with the joints specifying each group and the
skeleton hierarchy inside each group: joints in yellow are the parent joints in the
skeleton hierarchy.

3D pose data for a single subject are given by the joints configuration.
Joints are associated with the subject skeleton as shown in Fig. 7.2 and are
expressed via transformation matrices T in SE(3):

T =
[
R d

01×3 1

]
(7.2)

Here R ∈ SO(3) is the rotation matrix, and d ∈ R3 is the translation vector.
T ∈ SE(3) has 6 DOF and it is used to describe the pose of the moving
body with respect to the world inertial frame. SO(3) and SE(3) are Lie
groups and their identity elements are the 3× 3 and 4× 4 identity matrices,
respectively. We consider an ordered list J = {j1

1 , j
1
2 , . . . , j

m
K−1, j

m
K} of K = 18

joints forming the skeleton hierarchy, as shown in Fig. 7.2, with m = 1, . . . , 6
being the groups each joint belongs to. The 6 groups G1, . . . , G6 we consider
here correspond to head, torso, right and left arm, right and left leg.

Each joint jmi , i = 1, . . . , 18, belonging to a group Gm, m = 1, . . . , 6, has
one parent joint jm,?i , which is the joint of the group closest to the root joint
root = j2

4 ∈ J , according to the skeleton hierarchy, namely it is the fourth
joint in the ordered list J and it belongs to the group G2, the torso. Parent
joints for each group are illustrated in yellow on the woman body in the left of
Fig. 7.2, they are in the order (j1

3 , j
2
4 , j

3
7 , j

4
10, j

5
13, j

6
16).

A MoCap sequence of length N is formed by a sequence of frames of poses.
Each frame of poses is defined by a set of transformations {T ki,m∈SE(3) : k =
1, . . . , N,m = 1, . . . , 6} involving all joints jmi ∈ J , i = 1, . . . , 18, according to
the skeleton hierarchy. Given a MoCap sequence of length N , for each frame k
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the pose of each joint is root-sequence normalized, to ensure pose invariance
with respect to a common reference system of the whole skeleton. Let T ki,m
be the pose of the joint jmi , according to the skeleton hierarchy, at frame k in
the sequence, and let jm,?i be the parent node of jmi , then the root-sequence
normalization is defined as follows:

T̂ ki,m =
(
(T 1
root,2)−1T 1

jm,?i ,m

) (
(T kjm,?i ,m)−1T ki,m

)
. (7.3)

Here (Troot,2) is the transformation of the root node, which is the joint j2
4

belonging to the group G2, the torso. Equation (7.3) says that the pose T ki,m of
joint jmi ∈ Gm at frame k is root-sequence normalized if obtained by a sequence
of transformations seeing first a transformation with respect to its parent node
(T kjm,?i ,m)−1, at frame k, and then with respect to the transformation of the
parent node with respect to the root node, taken at the initial frame of the
sequence. In Fig. 7.3 are shown joints position data for each skeleton group
after sequence-root normalization for all sequences in the dataset. More details
on the skeleton structure and its transformations can be found in (Natola et al.,
2015b; Sanzari et al., 2016).

7.5 Motion Primitive Discovery
We are considering now the problem of discovering motion primitives within a
motion sequence displaying an activity in a video. We begin by providing the
definition of a joint trajectory on which the temporal analysis is performed.

Definition 7.5.1 (Joint Trajectory). The trajectory of a joint j is given by
the path followed by the skeletal joint j in a given interval of time I = [t1, t2].
Formally:

ξj : I ⊂ R 7→ R3, (7.4)

Based on the definition above, motion primitives correspond to segments of
the joint trajectories of a group G. We identify motion primitives as trajectory
segments where the variation of the velocity of the joints is maximal and where
the endpoints of the segment correspond to stationary poses of the subject
(Marr and Vaina, 1982).
Preprocessing To overcome problems related to the finite sampling frequency
of the poses in the data, we compute smooth versions of the joint trajectories
by cubic spline interpolation. This interpolation provides a continuous-time
trajectory for all the joints of the group with smooth velocity and continuous
acceleration, satisfying natural constraints of human motion.
Motion Flux The motion flux captures the variation of the velocity of a group
with respect to its rest pose. The total variation of the joint group velocity is
evaluated along a direction g that corresponds to stationary poses of the group.
For groups 1, 3 and 4 this direction is defined by the segment connecting the
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Figure 7.3. Sequences of joint positions, for each skeleton group, after the root-
sequence normalization described in Section 7.4. Position data are in cm. The
green points show the most internal group joint data (e.g. the hip for the leg);
the yellow points show the intermediate group joint data (e.g. the knee for the
leg); the red points show the most external group joint data (e.g. the ankle for
the leg). The joints data are collected from the datasets described in Section 7.7.
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Figure 7.4. Overview of motion primitive discovery and recognition framework.
The top section shows primitives of the group ‘Arm’ from six different cate-
gories. Primitives are discovered by maximizing the motion flux energy function,
presented here above the colored bar, though deprived of velocity and length
components. These sets of primitives are used to train the hierarchical models for
each category. Primitives are then recognized according to the learned models.
The recognized motion primitive categories are depicted with different colors.
At the bottom, the group motion in the corresponding interval is shown.
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‘lowerneck’ and ‘upperneck’ joints while for groups 2, 5 and 6 by the segment
connecting the ‘root’ with the ‘lowerback’ joints.

Definition 7.5.2 (Motion Flux). Let G = {j1, . . . , jK} be a group consisting
of K joints and vj the velocity of joint j ∈ G. The motion flux with respect
to the time interval I = [t1, t2] is defined as

Φ(t2, t1) .=
∑
j∈G

∫ t2

t1
|v̇j(t) · g| dt. (7.5)

Discovery In order to discover a motion primitive, we identify a time interval
between two time instances (endpoints) where the group velocity is minimal
while the motion flux within the interval is maximal. This is done by performing
an optimization based on the motion flux of a group G, as defined in eq. (7.5).
More specifically, the time interval of a motion primitive is identified by
maximizing the following energy-like function:

P (ρ; t0) .= Φ(ρ, t0)− βv2
∑
j∈G

(
nvj(ρ)2+nvj(t0)2

)
+βs

∑
j∈G

(sj(ρ)−sj(t0)), (7.6)

where sj(t)=
∫ t

0 ‖ξ̇j(τ)‖dτ is the arc length function of ξj. The last term of eq.
(7.6) is a regularizer based on the length of the trajectory segment, introduced
in order to avoid excessively long primitives. The hyper-parameter βv acts
as penalizer associated to the soft-constraint on the stationarity of the poses
at the start and end of the primitive, while βs controls the strength of the
regularization on the primitive length. Both βv and βs depend on the scaling
of the data and the sampling rate of the joint trajectories.

Given a starting time instant t0, a motion primitive is extracted by identi-
fying the time instant ρ, which corresponds to a local maximum of (7.6). The
optimality condition of (7.6) gives:

∑
j∈G

(
|v̇j(ρ) · g| − βv

v̇j(ρ)
nvj(ρ) − βs‖ξ̇j(ρ)‖

)
=0. (7.7)

Given the one-dimensional nature of the problem, finding the zeros of (7.7)
and verifying whether they correspond to local maxima of (7.6) is trivial.

Based on the previous we provide a formal definition of a motion primitive.

Definition 7.5.3 (Motion Primitive). A motion primitive of a group of joints
G is defined by the trajectory segments of all joints j ∈ G corresponding to
a common temporal interval I = [tstart, tend] ⊂ R such that P (tstart; tend) >
P (ρ; tstart) ∀ρ ∈ (tstart, tend). Namely

γIG = {ξj1(t), . . . , ξjK (t)} for t∈[tstart, tend]. (7.8)
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Primitive discovery in an activity A set of primitives is extracted from
an entire sequence of an activity ς by sequentially finding the time instances
which maximize (7.6).

Let t0 and tseq denote the starting and ending instances of the sequence,
respectively. Let also

tn = arg max
ρ∈[tn−1,tseq ]

P (ρ; tn−1), (7.9)

and Iς = {[tn−1, tn] |n ∈ N and tn ≤ tseq} the set of time intervals defining
successive motion primitives in the sequence. The set of motion primitives
discovered in the entire sequence ς is given by

ΓςG = {γIG | I ∈ Iς}. (7.10)

As noted in the introduction, and also shown in Figure 7.5, there is a
significant motion variation across subjects, activities and sampling rates. For
example, for the upper limbs it is known that the range of motion varies from
person to person and is influenced by gait speed (de los Reyes-Guzmán et al.,
2014). This is in turn influenced by the specific task, and determining ranges
of motion is still a research topic (Gates et al., 2016) (for a review on range of
motions for upper limbs, see (de los Reyes-Guzmán et al., 2014)). This makes
analysis and recognition of motion primitives taken from different datasets,
activities and subjects problematic. To induce invariance with respect to these
factors we apply anatomical normalization.

More specifically, the main source of variation of the primitives is due to
the anatomical differences among the subjects. To remove the influence of
these differences on the primitives we consider a scaling factor kG based on
the length `G of the limb defined by group G, namely kG = 1/`G. Hence,
given a primitive γIG we scale the trajectory of each joint by the constant kG.
By applying the anatomical normalization to the entire collection of motion
primitives for group G discovered across all sequences of a dataset D we obtain
the set of motion primitive of the group, namely

ΓG = {ΓςG | ς ∈ D}. (7.11)

In Section 7.7 we provide a quantitative evaluation of the normalization
effectiveness, together with a comparison with additional normalization candi-
dates.

7.6 Motion Primitive Recognition
In the previous section we have shown that for each group of joints Gm,m =
1, . . . , 6, the motion flux obtains the interval I = [tstart, tend] matching the joint
trajectory of a sequence in so determining a primitive as a path γIGm : I ⊂
R 7→ R9, given a video sequence of a human activity. Here R9 is due to the
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Figure 7.5. Left: Motion flux of three motion primitives of group G3 labeled as
‘Elbow Flexion’, discovered from video sequences taken from the ActivityNet
dataset. Right: Motion primitives before and after the normalization, for clarity
only the curve of the out most joint is shown.(Best seen on screen, zoomed-in)

path being related to the 3 joints of each group Gm, as indicated in Fig. 7.2.
We have also seen that the path is normalized by the link length of a limb, to
limit variations due to bodies dissimilarities. For clarity from now on we shall
denote each primitive with γ unless the context requires to add superscripts
and subscripts, and in general subscripts and superscripts are local to this
section, also we shall refer to the group a primitive or trajectory belongs to
both with Gm and more in general with G.

We expect that the following facts will be true of the discovered motion
primitives:

1. Each primitive of motion is independent of the gender, (adult) age, and
body structure, under normalization.

2. Each primitive of motion can be characterized independently of the
specific activity, hence the same primitive can occur in several activities
(see Section 7.7 for a distribution of discovered primitives in a set of
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Figure 7.6. Number k of components for groups G1, G2 and G3. Values of k are
computed adjusting α so as to maximize the posterior p(α,Gm), given the data,
namely the sampled primitives in the groups.

activities).
3. The motion flux ensures that each unknown segmented primitive belongs

to a class such that: the number of classes is finite and the set of classes
can be mapped onto a subset of motion primitives defined in biomechanics
(see e.g table 1.1 of (Hamill and Knutzen, 2006)).

To show experimentally the above results we shall introduce a hierarchical
classification. The hierarchical classification first partitions the primitives of
each group into classes. Once the classes are generated a class representative
is chosen and inspected to assign a label to the class. We show that the
classes correspond to a significant subset of the motion primitives defined in
biomechanics, thus ensuring a proper partition. Each class is then further
partitioned into subclasses to comply with the inner diversification of each
class of primitives. This last classification is further used for recognition of
unknown discovered primitives.

Primitive recognition is used to both test experimentally the three above
results of the introduced motion flux method and for applications where
discovering and recognition of primitives of human motion is relevant (see for
example (Abernethy, 2013)).

7.6.1 Solving primitive classes
We describe in the following the method leading to the generation of all the
primitive classes illustrated in Fig 7.12.

We consider three MoCap datasets (Mandery et al., 2015; Ionescu et al.,
2014; CMU, ) guaranteeing the ground truth for the human pose and segment
the activities according to the motion flux method, described in the previous
section. Let ΓG be the set of primitives collected for group G according to
equation (7.11). Let γν ∈ ΓG, ν = 1, . . . , S, with S the number of primitives
in ΓG, γν = (ξνj1 , ξνj2 , ξνj3) is formed by the trajectories of the joints in G. Out
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of these trajectories we choose the one of the most external joint (see Figure
7.2) that we indicate with ξνE. We order these trajectories, each designating
a primitive in group G, with an enumeration 〈ΓG\ξE〉Sν=1, S the number of
discovered primitives for group G. Note that we can arbitrarily enumerate the
primitives of a group, restricted to a single joint, though they are unlabeled
and unknown, and this is what the first model should solve.

At this step, model generation amounts to find the classes of primitives
for each group G, taking the trajectories ξνE in the enumeration 〈ΓG\ξE〉Sν=1 as
observations.

Feature Vectors Given a trajectory ξνE, with ν the index in the enumeration
〈ΓG\ξE〉Sν=1, a feature vector is obtained by first computing curvature κ(s(t))
and torsion τ(s(t)) on the trajectory ξνE, where s(t) indicates the arc length as
already defined in Section 7.5 for trajectories. Then we take three contiguous
points (xi−1, yi−1, zi−1), . . . , (xi+1, yi+1, zi+1) on the trajectory ξ̂νE decimated by
a factor of 5 (Alt and Guibas, 2000), keeping the curvature and torsion of the
sampled points, after decimation. We choose curvature and torsion as they
suffice to specify a 3D curve up to a rigid transformation. The formed feature
vector is indicated by Fi, where the index i is the index of the middle point
(xi, yi, zi), it is of size 17× 1 and it is defined as follows:

Figure 7.7. Transposed feature vector of 3 contiguous sampled points on the
decimated trajectory.

The last two elements ν, ν|Fi| ∈ R of Fi are indicators. Namely, the indicator
ν is the index, in the enumeration 〈ΓG\ξE〉Sν=1, identifying the trajectory the
3 points belong to, the three points are the first 6 element of the feature
vector. On the other hand, the indicator ν|Fi| specifies the number of features
vectors the decimated trajectory ξ̂νE is decomposed into, here | · | indicates the
cardinality; These two indicators, allow to recover the path a feature vector
belongs to, and are normalized and denormalized as follows. Let FξG be the set
of all feature vectors for the trajectories in 〈ΓG\ξE〉Sν=1, and let their number
be W . Accordingly, let ν|F| = (ν|F1|, . . . , ν|FW |), then the normalization and
denormalization for the element ν|Fi| (and similarly for ν) is defined as follows,
with g indicating the denormalization:

ν̂|Fi| =
ν|Fi| −min(ν|F|)

max(ν|F|)−min(ν|F|)
g(ν̂|Fi|) = ν̂|Fi|(max(ν|F|)−min(ν|F|)) +min(ν|F|)

(7.12)
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Generation of the primitives classes Given the feature vectors for each
trajectory in the enumeration 〈ΓG\ξE〉Sν=1, the goal is to cluster them and
return a cluster for each class of primitives. Since we do not even know the
number of classes the primitives should be partitioned into, a good generative
model to approximate the distribution of the observations is the Dirichlet
process mixture (DPM) (Ferguson, 1973; Antoniak, 1974). The Dirichlet
process assigns probability measures to the set of measurable partitions of
the data space. This induces in the limit a finite mixture since, by the
discreteness of the distributions sampled from the process, parameters have
positive probability to take the same value, in so realizing components of the
mixture. Here we assume that feature vectors in the data space are realizations
of normal distributions with a conjugate prior. Namely the variables have
precision priors following the Wishart distribution and location parameters
prior following the normal distribution. The Dirichlet mixture model is based
on the definition of a Dirichlet process Π(·, ·) with Π ∼ DP (H,α) (D being the
Dirichlet distribution), where H is the base distribution and α the precision
parameter of the process (see (Teh, 2011)). In the Dirichlet process mixture
the value of the precision α of the underlying Dirichlet process influences the
number of classes generated by the model.

For determining the number of classes for each group G we estimate the
posterior P (α|G), of the precision parameter α according to a mixture of two
gamma distributions, as described in (West, 1992), choosing the best value.
This is a rather complex simulation process since it requires different initializa-
tions of the parameters of the gamma distribution for α within the estimation
of the parameters of the DPM, for each group G. Here the parameters of the
DPM are estimated according to (Jain and Neal, 2004). Distributions of α
for the groups G1, G2 and G3, according to different simulation processes, are
given in Fig. 7.6 where the number of components k for the maximum values
of each distribution, are indicated. Finally the DPM returns the parameters of
the components (for each group G) given the feature vector Fi, as:

ΘG = 〈k, {Θw | Θw = (πw, µw,Σw), w = 1, . . . , k}〉, k ≥ 1.
p(Fi|ΘG) = ∑k

w=1 πwN (Fi|µw,Σw). (7.13)

Note that the number of components k is unknown and estimated by the DPM,
hence it is one of the parameters for each group. The parameters µw and Σw

are the mean vector and covariance matrix of the w-th Gaussian component of
the mixture, indicated by N , and πw is the w-th weight of the mixture, with∑
w πw = 1. Hence, p(Fi|ΘG) is the probability of the feature vector Fi, given

the parameters ΘG.
We expect that each Θw ∈ ΘG indicates the parameters of a component

CG
w , collecting primitives of the same type, in group G. In other words, we

expect that two feature vectors, say Fp,Fq, of group G, belong to the same
component if their likelihood are both maximized by the same parameters
Θw ∈ ΘG.
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Assigning primitives to classes The classification returns, for each group
Gm, the number k of components indicated in Fig. 7.12, say k = 10 for
G1, G5, G6, k = 7 for G2 and k = 16 for G3, G4, also thanks to the specification
of the α parameter, as highlighted above (see Fig. 7.6). Components are formed
by features vectors. To retrieve the trajectories and generate a corresponding
class of primitives, ready to be labeled, we use the normalized indicators placed
in position 16th and 17th of the feature vector (Fig 7.7) and the denormalization
function g. Let CGm

w be a component of the mixture of the group Gm, identified
by parameters Θw ∈ ΘGm . Algorithm 5 shows how to compute the class of
primitives:

Algorithm 5: Obtaining classes of primitives from DPM components.
Here | · | indicates cardinality.
Input: Component CGm

w of DPM
Output: Class LGmw of primitives

1 Initialize Uν
ξE

= ∅, ν = 1, . . . , S, S number of primitives in ΓGm
2 foreach Feature vector Fi in CGm

w do
3 compute g(ν) and associate it with the trajectory ξνE;
4 Uν

ξE
= {Fi} ∪ Uν

ξE
;

5 compute g(ν|F|), number of feature vectors the trajectory ξνE is
decomposed into;

6 if |Uν
ξE
| ≥ 0.8g(ν|F|) then

7 find the primitive γν ∈ ΓGm designated by ξνE
8 assign the pair (γν ,Θw) to LGmw
9 return Class LGmw .

At this point we have generated the classes LGmw , w = 1, . . . , k, k ∈
{7, 10, 16} of primitive for each group Gm. To label the classes we proceed
as follows. Let p(γν |Θw) = 1/g(ν|F|)

∑
i p(Fi|Θw)δ(Fi), where δ(Fi) = 1 if

Fi ∈ Uν
ξE

and 0 otherwise. For each class LGmw the class representative is the
primitive maximizing p(γν |Θw). The representative primitive is observed and
labeled by inspection, according to the nomenclature given in biomechanics,
see (Hamill and Knutzen, 2006). The same label is assigned to the class LGmw ,
without need to inspect all other primitives assigned to the class.

Average Hausdorff distances between each primitive in a class and its class
representative, for each class in group G2, are given in Table 7.1, where classes
for G2 are enumerated according to the labels illustrated in Fig. 7.12. Note
that in Table 7.1 Rw is the class representative, so Rw ∈ LGmw , w = 1, . . . , 7;
∀ξE\Rw abbreviates ∀ξE ∈ LG2

w , ξE 6= Rw. Finally, Lw abbreviates LG2
w . Note

that distances with elements of other classes are obviously not considered,
hence the dashes in other classes columns.
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Table 7.1. Average Hausdorff distance to each class representative in G2

R1 R2 R3 R4 R5 R6 R7
∀ξE\R1∈L1 0.121 - - - - - -
∀ξE\R2∈L2 - 0.173 - - - - -
∀ξE\R3∈L3 - - 0.144 - - - -
∀ξE\R4∈L4 - - - 0.112 - - -
∀ξE\R5∈L5 - - - - 0.081 - -
∀ξE\R6∈L6 - - - - - 0.142 -
∀ξE\R7∈L7 - - - - - - 0.114

7.6.2 Models for recognition
The recognition problem is stated as follows. Given an unlabeled primitive γu,
for group Gm obtained by segmenting an activity (from any dataset) with the
motion flux method, γu is labeled by the label of class LGmw , if:

p(γu|Θw) > p(γu|Θi), ∀i, i 6= w (7.14)

We found experimentally that relying on the same parameters used for
finding the classes of primitives, described in the previous sub-section, does not
lead to optimal results. In fact, recomputing a DPM model for each class and
introducing a loss function on the set of hypotheses, computed by thresholding
the best classes, leads to an improvement up to the 20% in the recognition of
an unknown primitive.

To this end we compute a DPM for each class LGmw using as observations
the primitives collected in the class, by Algorithm 5. Therefore the generated
DPM modelMw for each class LGmw is made by a number of components with
parameters Θw = {Θw1 , . . . ,Θwρ}, with ρ varying according to the components
generated for class LGmw . The number of components mirrors the idiosyncratic
behavior of each class of primitives, therefore ρ varies for each class LGmw . To
generate these DPM models we use all the three trajectories of the primitives
γ ∈ LGmw , and for each of them we use the same decimation and feature vector
as shown in Fig. 7.7.

Given the refined classification, the recognition problem, at this point, is
stated as follows. Let γu = (ξu1 , ξu2 , ξu3) be an unknown primitive, of a specific
group G, and let {Fu1 , . . . ,Fuq} be the set of features the three trajectories
are decomposed into. Then γu ∈ LGmw , hence is labeled by the label of this
class, if:

p(Fu1 , . . .,Fuq |Θw)=
ρ∑
j=1

πj

q∏
n=1

p(Fun|Θwj)>p(Fu1 , . . .,Fuq |Θh)=
ρ′∑
j=1

π′j

q∏
n=1

p(Fun|Θhj)

(7.15)
for any parameter set Θh associated with a class LGmh of the group Gm. Here πj
and π′j are the mixture weights, with ∑j πj = 1 and ρ, ρ′ indicate the number
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of components of the chosen models. For example, the model of class LG2
w , with

w = 1, will have a set of parameters Θw = {Θw1 , . . . ,Θwρ}, while the model of
class LG2

w′ , with w′ = 3, will have a set of parameters Θw′ = {Θw′1
, . . . ,Θw′

ρ′
},

with wρ 6= w′ρ′ .
This formulation is much more flexible than (7.14), also because it computes

the class label by considering all the components and therefore it does not
care whether the features are scattered amid components, and does not need
to reconstruct the whole trajectories as was done for generating the classes
of primitives. Furthermore, under this refined classification we can improve
(7.15) considering a geometric measure to reinforce the statistics measure in
the choice of the class label for γu.

More precisely, let us form a set of hypotheses for an unknown primitive
with feature set {Fu1 , . . . ,Fuq} as follows (we are still assuming a specific
group Gm):

H = {〈Cwj ,Θwj〉|
q∏

n=1
p(Fun|Θwj)>η, 〈Cwj ,Θwj〉 ∈ Mw, w = 1, . . . , k} (7.16)

Namely Cwj is a component of the DPMMw, with w = 1, . . . , k, k the number
of classes in group Gm, and j = 1, . . . , ρ, such that the associated parameter
Θwj makes the joint probability of the features, the primitive is decomposed
into, greater than a threshold η. This means that we are collecting in H those
components coming from all the models of group Gm, whose joint probability
of the feature set of the unknown primitives γu forms an hypotheses set, or a
set from which we can select the correct label to assign to γu.

The advantage of the hypotheses set is that we delay the decision of choosing
the labeled class for the unknown primitive to further evidence, which we collect
by using geometric measures. The role of these geometric measures is essentially
to evaluate the similarity between the curve segments coming out from the
features of γu and those coming from the observations which are indexed in the
components in H. In the following we succinctly describe the new geometric
features, which are computed as follows, both for the features of the unknown
primitive γu and for the features coming from the observations indexed in Cwj .
Let us consider any pair 〈Cwj ,Θwj〉 ∈ H, by definition (7.16), Cwj indexes
features {Fν1 , . . . ,Fνs}, s varying according to the specific component Cwj . For
each of these features we consider the points of the trajectory ξν , recovered from
the decimated trajectory ξ̂ν , between (xi−1, yi−1, zi−1) and (xi+1, yi+1, zi+1). Let
us consider these curve segments, which we combine whenever they occur in
sequence in Cwj and call any of these curve segments y. In particular, the
collection of these segments in Cwj is called the manifold of Cwj , denoted
man(Cwj), and the collection of segments generated from the features of γu is
denoted man(γu), examples are given in Fig. 7.8.

We compute for each y both in man(Cwj) and in man(γu) the tangent t,
normal n and binormal b vectors. Based on these vectors, we compute the ruled
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Figure 7.8. Manifold generated by a component of the DPM model for Elbow
Flexion on the left and from a component of Shoulder Abduction on the right.

surface R = n×n′
‖n×n′‖ , where n′ is the derivative of n. The ruled surface forms a

ribbon of tangent planes to the curve segment y. In particular, let us distinguish
the curve segments in man(γu) denoting them yu. We compute the distances
between any curve segment y ∈ man(Cwj) and yu ∈ man(γu) as the distance
between the projection yπ of y on the ruled surface tangent to y, and the closest
point q of yu to yπ. We denote this distance δ(yu,y). We consider also the
distance between the Frenet frames at closest points q of yu and point q′ of yπ
denoted FR and computed as follows: FR(q,q′) = trace((I−Rq,q′)(I−Rq,q′)>),
with I the identity matrix and Rq,q′ the rotation, in the direction from q to
q′. Then the cost of a component Cwj in H, given an unknown primitive γu,
with feature set {Fu1 , . . . ,Fuq}, is defined as:

Cost(Cwj ∈ H|γu) = max{δ(yu,y)+FR(q,q′)|yu ∈ man(γu) and y ∈ man(Cwj)}
(7.17)

Note that both δ(yu,y) and FR(q,q′) were both computed looking at the min-
imum distance between a considered curve segment and the projection on the
ruled surface of the other curve segment. Hence the component minimizing the
above cost and maximizing the probability in (7.15) will indicate the class label,
since its related parameter indicates exactly a component of one of the classes
LGmw . Note that if in (7.15) η is taken to be equal to max(∏q

n=1 p(Fun|Θwj))
then H would have only a single element 〈Cwj ,Θwj〉. Hence to find the correct
label for γu we push η as high as possible using the above cost. More precisely,
the component of the class LGmw which should label the unknown primitive γu
is computed as follows:

C? = arg min
Cwj

sup
η
{Cost(Cwj ∈ H|γu)|

q∏
n=1

p(Fun|Θwj)>η} (7.18)
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To conclude this section we can note that the computation of the hierarchical
model that first generates the primitive classes and then uses these generated
sets to estimate model parameters to be used in the recognition of an unknown
primitive, has an exponential cost, in the dimension of the features and in the
size of the observations. However using the computed models to recognize
an unknown primitive is O(n2log n) where n is the size of γu, since all the
curve segments in the models can be precomputed together with the models.
Results on both the primitive generation and on recognition are given in the
next section.

7.7 Experiments

In this section we evaluate the proposed framework for discover and classifi-
cation of human motion primitives. For all the evaluations we consider three
reference MoCap public datasets (Mandery et al., 2015; Ionescu et al., 2014;
CMU, ).

First we evaluate the accuracy of the motion primitives discovered using
the motion flux, further we evaluate the accuracy of the classification and
recognition. Additionally, we examine the distribution of recognized primitives
with respect to the type of performed activity on the ActivityNet dataset
(Ghanem et al., 2017). Finally, we address the dataset of human motion
primitives we have created, which consists of the primitives discovered on the
three reference MoCap datasets using the motion flux, and the DPM models
established for each primitive category.

7.7.1 Reference Datasets

The datasets we consider for the evaluation of the motion flux are the Hu-
man3.6M dataset (H3.6M) (Ionescu et al., 2014), the CMU Graphics Lab
MoCap database (CMU) (CMU, ) and the KIT Whole-Body Human Motion
Database (KIT-WB) (Mandery et al., 2015). The sampling rates used in these
datasets are 50Hz for H3.6M, 60/120Hz for CMU and 100Hz for KIT-WB. In
order to have the same sampling rate for all sequences we have transformed
all of them to 50Hz. The pose of the joints specified in Fig. 7.2 are extracted
for each frame of the sequences as described in the preliminaries, considering
the ground-truth 3D poses. For KIT-WB the trajectories of the joints are
computed from the marker positions taken from the C3D files. We considered
40 activities from the three reference datasets. Fig. 7.9 shows the total number
of motion primitives discovered for the five most general activities according
to the ActivityNet taxonomy based on the motion flux for each group Gm.
Table 7.2 shows the total number of motion primitives discovered from the
three datasets.
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Figure 7.9. Total number of discovered primitives for each group for the five most
general categories of the ActivityNet dataset. Clock-wise from top-left: Eating
and drinking Activities; Sports, Exercise, and Recreation; Socializing, Relaxing,
and Leisure; Personal Care; Household Activities. Each color corresponds to a
different group following the convention of Fig. 7.12. Note: Axes scale is shared
among the plots.
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Table 7.2. Total number of unlabeled primitives discovered for each group using
the motion flux on the reference datasets

G1 G2 G3 G4 G5 G6
Total 1665 759 1773 1703 1152 1015

Figure 7.10. Example of synthetic motion primitive, specifically right arm Shoulder
Abduction (first row) and Elbow Flexion (second row), left leg Hip abduction
(third row) and Knee Flexion (fourth row). For each synthetic motion primi-
tive the four imaged poses match four representative poses extracted from the
animation of the aforementioned primitive.

7.7.2 Motion Primitive Discovery

To evaluate the accuracy of primitive discovery based on the motion flux, we
created a baseline relying on a synthetic dataset of motion primitives. This
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was necessary to mitigate the difficulty in measuring accuracy, due to the lack
of a ground truth.

The synthetic dataset of motion primitives we created is formed by anima-
tions of 3D human models for each of the 69 primitive classes discovered in Sec.
7.6. The human models were downloaded from the dataset provided by (Loper
et al., 2015) or acquired from (tur, ; ren, ). To obtain further characters the
shapes of the human models were randomly modified taking care of human
height and limb length limits.

Animations of the characters were produced moving the skeleton joints
belonging to the 3D human models from a start pose to an end pose representing
the primitives. Specifically, for each primitive of each skeleton group the
animation was generated in Maya or Blender (depending on the 3D human
model format) moving the group joints according to angles, gait speed and
limbs proportions as described in (de los Reyes-Guzmán et al., 2014; Gates
et al., 2016; Hamill and Knutzen, 2006; Abernethy, 2013).

The dataset reference skeleton, see Fig. 7.2 is matched with the 3D human
mesh models by fitting the joint poses of the synthetic data to the reference
skeleton, basing on MoSh (Loper et al., 2014; Varol et al., 2017). Examples of
synthetic motion primitives, namely the primitives Shoulder abduction and
Elbow flexion for the right arm, and Hip abduction and Knee flexion for the
left leg, are illustrated in Fig. 7.10, where for each primitive four representative
poses extracted from the animations are shown.

The baseline for evaluating accuracy was created generating 4500 random
length sequences of synthetic motion primitives placing them one after another
in a random order. Between two consecutive primitives a transition phase from
the end pose of the preceding one to the beginning pose of the subsequent one
was added.

With this procedure we know precisely the endpoints of each primitive.
Then we applied the ‘motion flux’ method described in Sec. 7.5 to the 3D

joints trajectories extracted from the automatically generated sequences and
collected the end points of the discovered primitives.

We use the Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) metrics to assess the accuracy of the collected endpoints with respect
to the known end points in the generated sequences. Let S be the total number
of generated sequences. Let {êi,s}

N
(s)
G

i=1 be the i-th automatically discovered
endpoint based on the motion flux for the generated sequence s = {1, . . . , S},
with N (s)

G the number of primitives for Group G and sequence s. Denoting
{ēi,s}

N
(s)
G

i=1 the i-th endpoint in the generated sequence s, the MAE and RMSE
metrics are defined as follows:

MAE= 1
S

S∑
s=1

∑N
(s)
G

i=1 |ēi,s − êi,s|
N

(s)
G

, RMSE=

√√√√√ 1
S

S∑
s=1

∑N
(s)
G

i=1 (ēi,s − êi,s)2

N
(s)
G

.
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Figure 7.11. Arc length distribution of original and scaled primitives of a specific
category for group G1 (left) and G4 (right). The first box in each box plot,
corresponds to the original arc length distribution, the next four are the arc length
distributions obtained scaling the primitives original data using the detailed
scaling factors. Each box indicates the inner 50th percentile of the trajectory
data, top and bottom of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, crosses are the
outliers.

Results shown in Table 7.3 prove that the proposed method discovers
motion primitives quite accurately, since the endpoints are close to those of
the automatically generated sequences.

Table 7.3. Accuracy of discovered primitive endpoints (in number of frames)

G1 G2 G3 G4 G5 G6 Overall
MAE 2.8 3.2 2.9 3.4 3.6 4.1 3.3

RMSE 3.7 4.2 4.1 4.6 4.8 5.2 4.4

Furthermore, to evaluate the effects of the normalization in Fig. 7.11
we show the arc length distribution of motion primitives with and without
normalization, as well as considering different normalization constants.

For comparison we consider alternative normalization constants based on
anatomical properties and execution style. Specifically, we consider normaliza-
tion based on the average velocity along γ ∈ ΓG, denoted as ‖v̄‖, and based
on the area AG covered by group G during its motion. The first is related to
the execution speed of the motion and the sampling rate of the data, while
the latter is considering anatomical differences among the subjects.

In Fig. 7.11 the first box in each plot corresponds to the original distribution
and the following boxes correspond to the distributions resulting by scaling
the original one with ‖v̄‖, ‖v̄‖/AG, 1/`G, and 1/AG, respectively. We note
that normalizing the primitives based on the inverse of the limb length, i.e.
`G, consistently results to an arc length distribution closer to the normal,
minimizing the number of outliers indicated by red crosses in the figure. This
result is consistent across different activities and groups justifying the choice
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Figure 7.12. Diagram showing the motion primitives of each group. Abbreviation
ext stands for external, int for internal, rot for rotation, exten for extension, and
flex for flexion.

of kG = 1/`G for anatomical normalization.

7.7.3 Motion Primitive Classification and Recognition

As discussed in Section 7.6, the set of primitive categories for each group is
generated by a DPM model given the collection of discovered primitives as
observations. In this way a total of 69 types of primitives were identified,
each described by the distribution parameters. By inspecting a representative
primitives for each category, we observed that they correspond to a subset of
motion primitives defined in biomechanics. Therefore we generated new DPM
models to obtain parameters and corresponding labels for each category. The
labeled collection of motion primitives is depicted in Fig. 7.12.

To evaluate the coherence of the generated classes we performed 10 cycles
of random sampling, with a rate of 10% at each cycle, of the primitives in each
class and verified the class consistency. Only ∼ 2% of the primitives were not
correctly classified, according to the label assigned to the class.

For the recognition we adopted the protocol P2 used for pose estimation
(see (Sanzari et al., 2016; Tekin et al., 2016)) using one specific subject for
testing. Table 7.4 presents the average accuracy of the recognition for each



987. Discovery and recognition of motion primitives in human activities

group, as well as an ablation study with respect to the components of the
cost function used in eq. (7.18). Fig. 7.13 shows the corresponding confusion
matrices. The results suggest that the DPM classification together with the
proposed recognition method capture the main characteristics of each motion
primitive category.

Finally, we evaluate the recognition accuracy by considering the same
sequences though computing the subject’s pose directly from the video frames
using (Sanzari et al., 2016). The corresponding results are shown in parentheses
in the last column of Table 7.4. We note that the recognition accuracy decreases
in average just by 4% by using the estimated pose.

Table 7.4. Primitive recognition accuracy and ablation study

Group Projection on Frenet frame Torsion Curvature All
tangent plane rotation

G1 0.82 0.80 0.70 0.72 0.84 (0.82)
G2 0.85 0.82 0.75 0.75 0.86 (0.84)
G3 0.80 0.80 0.73 0.74 0.82 (0.78)
G4 0.80 0.79 0.75 0.77 0.83 (0.76)
G5 0.87 0.86 0.72 0.72 0.88 (0.81)
G6 0.86 0.86 0.71 0.73 0.88 (0.82)

Average 0.83 0.82 0.73 0.76 0.85 (0.81)

7.7.4 Primitives in Activities
We examine the distribution of discovered motion primitives with respect to
the activities been performed by the subjects. We perform our analysis on
the sequences of the ActivityNet dataset. More specifically we use the 3D
pose estimation algorithm of (Sanzari et al., 2016) on the video sequences
of ActivityNet. We then extract motion primitives using the motion flux
and perform recognition based on the extracted poses. We consider only the
segments of the videos labeled with a corresponding activity. Additionally, we
use only the segments were a single subject is detected and at least the upper
body is visible. Fig. 7.14 display the distribution of the motion primitives for
the five most general activities according to the ActivityNet taxonomy.

7.7.5 Motion Primitives Dataset
The dataset of annotated motion primitives extracted from the MoCap se-
quences of H3.6M (Ionescu et al., 2014), CMU (CMU, ) and KIT-WB (Man-
dery et al., 2015) has been made publicly available at https://github.com/
MotionPrimitives/MotionPrimitives. The dataset provides the start and
end frames of each motion primitive together with the corresponding label as
well as a reference to the MoCap sequence from which the motion primitive
has been extracted.

https://github.com/MotionPrimitives/MotionPrimitives
https://github.com/MotionPrimitives/MotionPrimitives
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(e) K indicates the knee, L the leg and
H the hip
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Figure 7.13. Confusion matrices for motion primitive recognition. The matrices
for G1 and G2 are shown at the top, G3 and G4 at the middle, while G5 and
G6 are shown at the bottom.
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Figure 7.14. Distribution of the 69 primitives for the five most general categories of
the ActivityNet dataset. Clock-wise from top-left: Eating and drinking Activities;
Sports, Exercise, and Recreation; Socializing, Relaxing, and Leisure; Personal
Care; Household Activities. Each color corresponds to a different group following
the convention of Fig. 7.12.
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7.7.6 Comparisons with state of the art on motion prim-
itive recognition

We consider here the results of (Holte et al., 2010), so far the only work
providing quantitative results on human motion primitives, as far as we know.
Here performance is evaluated for 4 actions of the arms (gestures), namely
Point right, Raise arm, Clap and Wave. The authors perform two tests, one
without noise in the start and end frames of the primitives and one where the
primitives are affected by noise. In the noise-free case their overall accuracy is
94.4% while in the presence of noise the accuracy is 86.9%. Our results are
not immediately comparable with the ones of (Holte et al., 2010) since we
use public datasets (see above Section 7.7.1, while they have built their own
dataset, which is not publicly available. Furthermore, we have obtained by our
classification process 16 primitives for each arm which are in accordance with
biomechanics primitives. This notwithstanding, we mapped their 22 primitives,
denoted by the letters A, . . . , V to our defined primitives of the groups of Left
arm and Right arm (see Table 7.5). To maintain the use of public datasets we
have extracted videos from our reference datasets (see above Section 7.7.1) to
obtain the 4 above mentioned gestures from 10 different subjects. Hence, we
have computed the motion primitives recognition accuracy on these video sets,
to compare with (Holte et al., 2010). The results are shown in Table 7.5.

Table 7.5. Comparison with the 22 motion primitives of (Holte et al., 2010)

Shoulder
abd.

Shoulder
add.

Elbow
ext.

Elbow
flex.

Shoulder
Int.
Rot.
and
elbow
flex.

Shoulder
Ext.
Rot.
and
elbow
ext.

Elbow
Upper
med.
flex.

Elbow
Up-
per
med
ext.

A,B,C Point 92.3 96.8
D,E,F right (89.6) (93.5)

82.5
G,H,I Raise 84.5 77.5
J,K,L arm (81.4) (73.6)

87.5
M,N,O Clap 91.7 89.2
P,Q,R (87.6) (85.9)

90.0
S,T Wave 85.4 87.7
U,V (81.3) (82.9)

87.5

In Table 7.5 the capital letters in the first column indicate the primitives
in the language of (Holte et al., 2010). In the second column are listed the
actions formed by the primitives indicated in the first column. In the first row
are indicated the primitive taken from our biomechanics language, which we
mapped on the (Holte et al., 2010) primitives. Results are on the diagonal, in
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gray the results of (Holte et al., 2010). We have indicated in parentheses the
values illustrated in the confusion matrices. While the values in the confusion
matrices were mean precision averages over all experiments for all actions in
all the considered datasets, here the results are with respect to an amount of
videos comparable to the experiments of (Holte et al., 2010), hence they are
significantly better for the indicated primitives. Despite the results are not
quite comparable since we have measured our results on public databases, and
in 3D, we can observe that our approach outperforms in all but one case the
results in (Holte et al., 2010).

7.7.7 Discussion
The results show that our framework discovers and recognizes motion primitives
with high accuracy with respect to the manually defined baseline while providing
competitive results with respect to (Holte et al., 2010), the only work, to the
best of our knowledge, providing quantitative results on similarly defined
motion primitives.

Additionally, given the importance of studying human motion in a wide
spectrum of research fields, ranging from robotics to bioscience, we believe that
the human motion primitives dataset will be particularly useful in exploring
new ideas and for enriching knowledge in these areas.

7.8 An application of the motion primitives
model to surveillance videos

In this section we show how to set up an experiment by using motion primitives.
In particular, the application we have chosen is the detection in surveillance
videos of dangerous human behaviors. To set up the experiment we consider
videos of anomalous and dangerous behaviors, and prove that idiosyncratic
primitives, among those identified in Figure 7.12, appear to characterize these
behaviors. The application is quite interesting because it highlights how the
combination of primitives allows to detect specific human behaviors. On the
one side the motion primitives are used for detection and on the other side they
can be used also for characterizing classes of actions or classes of activities.

7.8.1 Related works and datasets on abnormal behav-
iors

There is a significant amount of literature on abnormality detection in surveil-
lance videos. Only few of them, though, are concerned with dangerous behav-
iors. These methods can be further divided into those detecting dangerous
crowd behaviors, in which the individual motion is superseded by large flows
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as in (Mohammadi et al., 2016; Mohammadi et al., 2015; Mousavi et al., 2015;
Hassner et al., 2012), and those detecting closer dangerous human behaviors.

Among the latter there are methods focusing on fights (Gracia et al., 2015),
methods specialized on violence (Zhou et al., 2018; Gao et al., 2016; Deniz
et al., 2014; Xu et al., 2014), on aggressive behaviors (Kooij et al., 2016), and
on crime (Sultani et al., 2018). A review on methods for detecting abnormal
behaviors, taking into account some of the above mentioned ones, and also
discussing available datasets, is provided in (Mabrouk and Zagrouba, 2018).

In the last years, also due to the above studies, a number of datasets have
been created from real surveillance videos, or from movies repositories. The
most used ones are UCSD Anomaly (Mahadevan et al., 2010), Avenue Dataset
(Lu et al., 2013), the Behave (Blunsden and Fisher, 2010) dataset, the Violent
Flows dataset (Hassner et al., 2012), the Hockey Fight Dataset (Nievas et al.,
2011), the Movies Fight Dataset from (Nievas et al., 2011) too and, finally,
the recent UCF-crime introduced by (Sultani et al., 2018). To these datasets
some authors, studying abnormal behaviors in surveillance videos, have added
specific activities from UCF101 (Soomro et al., 2012).

To detect dangerous behaviors we considered four of the above datasets
most suitable for the task of analyzing human behaviors with small groups of
subjects. The first dataset is the Hockey Fight Dataset provided by (Nievas
et al., 2011), which is formed by 1000 clips of actions from hockey games of
the National Hockey League (NHL). A second dataset, also introduced by
(Nievas et al., 2011) is the Movies Fight dataset, which is composed of 200 video
clips obtained from action movies, 100 of which show a fight. Videos in both
these datasets are untrimmed but divided in those where there are fights and
those where there are no fights. The third dataset is the UCF-Crime dataset
introduced by (Sultani et al., 2018). This dataset is formed by 1900 untrimmed
surveillance videos of 13 realworld anomalies, including abuse, arrest, arson,
assault, road accident, burglary, explosion, fighting, robbery, shooting, stealing,
shoplifting, and vandalism, and normal videos. These videos have varying
length from 30 sec. up to several minutes. In a number of these videos, like
explosion and road accident, no human behavior is observable. Among the
others there are a number of videos not including human behaviors. Therefore
we have chosen a subset of all the UCF-crime dataset for both training and
testing. In particular, we have chosen abuse, arrest, assault, burglary, fighting,
robbery, shooting, stealing, and vandalism. Finally we have taken videos from
UCF101 dataset, which includes 101 human activities.

Given the above selected datasets we aim at showing that once the primitives
are computed an off-the-shelf classifier can be used to detect specific behaviors,
in this case the dangerous ones.

The method we propose requires to compute the primitives on a selected
training set, separating the untrimmed videos with dangerous behaviors from
the normal ones, as described below, and then training a non-linear kernel SVM
on the two datasets, as illustrated in Section 7.8.3. The trained classifier is
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then tested on the test sets and results are reported in Section 7.8.4, comparing
with state of the art approaches.

The main idea we want to convey here is that once primitives are computed
all the relevant features for distinguishing a behavior are embedded in the
primitive category of the specific group (see Section 7.8.4) and therefore the
classifier has to deal just with them and not with other features such as
poses, images, time and tracking, in so alleviating the classifier burden and
allowing to deal with state of the art classifiers. Furthermore, the primitive
parameters, used to estimate the primitive classes, are no more needed for
the further classification of behaviors. This is the main advantage of human
motion primitives modeling, namely their effectiveness in characterizing specific
behaviors.

7.8.2 Primitives computation
For primitives computation we collected all the videos from hokey and fight-
movie datasets, we collected from the UCF-crime dataset the videos from abuse,
arrest, assault, burglary, fighting, robbery, shooting, stealing, and vandalism.
Finally, from UCF101 we collected 276 videos from the datasets Punch and
SumoWrestling and further 276 videos from other sports, randomly chosen
as in (Gracia et al., 2015). The total number of videos collected is 3050 for
primitive computation, as illustrated in the following table:

Table 7.6. Datasets for primitive computation in dangerous behaviors detection

Hockey Fight-Movies UCF-crime UCF101
Danger. Normal Danger. Normal Danger. Normal Danger. Normal

Video sets 500 500 100 100 650 650 276 276
Training 70% 70% 70% 70% 70% 70% 100% 70%
Test 30% 30% 30% 30% 30% 30% 0% 30%

To compute the primitives for each subject from a small group of people
appearing in a frame of a video, we have fitted 3D poses basing on the SMPL
model (Loper et al., 2015) of human mesh recovery (HMR) (Kanazawa et al.,
2018a). HMR recovers together with joints and pose also a full 3D mesh from a
single image (see Figures 7.15 and 7.16), and it is accurate enough to estimate
multiple subject poses in a single frame.

Having more than a subject requires to track each subject pose across
frames, in order to compute the motion primitives for each of them. To
this end we used the joints given by SMPL model in world frame, for the
following body joints (see the preliminary Section 7.4): left and right hip, left
and right clavicle (called shoulder in HMR), and the head. These joints are
well suited for tracking since they have slower motion with respect to other
body parts. Tracking amounts to find the rotations and translations amid all
the bodies appearing in two consecutive frames, and identifying the rotation
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and translation pertaining to each subject across the two frames. Consider
two consecutive frames indexed by t and t+1, and let J (t) = {j(t)

1 , . . . , j
(t)
5 }

and J ′(t+1) = {j′(t+1)
1 , . . . , j′

(t+1)
5 } be the joints in world frame of the above

mentioned body components, where joint subscripts indicate in the order left
and right hip, left and right clavicle and head. We first find the translation d
and rotation R between any two set of joints appearing in the frames t and
t+1 (see also Section 7.4):

(R,d) = arg min
R∈SO(3),d∈R3

5∑
i=1

wi‖(R j
(t)
i + d)− j′(t+1)

i ‖2 (7.19)

With wi > 0 weights for each pair of joints in (t) and (t + 1). Let Ĵ =
(∑5

i=1wiji)/
∑5
i=1wi be the weighted centroids of the set of joints J . The

minimization in (7.19) is solved by computing the singular value decomposition
UΣV > of the covariance matrix J̄ (t)W (J̄ ′(t+1))> of the normalized joints
J̄ (t), J̄ ′(t+1), obtained by subtracting the weighted centroid to each joints set.
Here W is the diagonal matrix of the weights wi. Let H be the diagonal matrix
diag(1, det(V U>)), then the rotations and translations between sets of joints
are found as:

R = V HU> and d = Ĵ ′(t+1)
−RĴ (t) (7.20)

Finally, once we have obtained the rotation matrices and the translation
vectors between the sets of considered joints of all the fitted skeletons, from
frame t to frame t+ 1, we can track each individual skeleton Sk. A skeleton
S

(t+1)
k belongs to the same subject fitted by skeleton S

(t)
k , at frame t, if the

rotation Rk and translation dk, obtained according to eq. (7.20) between the
chosen joints J (t) of S(t)

k and J ′(t+1) of S(t+1)
k , satisfy

(Rk,dk) = arg min
Rk∈SO(3),dk∈R3,k=1:s

‖J ′(t+1) − ((J (t)Rk)> + dk)>‖F (7.21)

With ‖ · ‖F the Frobenious norm and s = NS!/((NS−2)!2!), with NS the
common number of fitted skeletons S in both frame t and t+ 1.

Once the skeletons are tracked we can compute the unknown primitives
from the flux (see Section 7.5) as paths γTGm : I ⊂ R 7→ R9, for each group
Gm, with I the time interval, specified by the frame sequence, and scale it
as described in Section 7.5. We can then use the parameters Θ learned with
the recognition model, detailed in Section 7.6.2, to assign a label LGmw to each
primitive segmented by the motion flux as precised in eq. (7.18). Namely,
we find the model identified by the parameter Θw, which maximizes the
probability of the primitive under consideration. We recall that for each group
Gm, m = 1, . . . , 6 there are q models with q ∈ {7, 10, 16} (see the primitives
representation in Figure 7.12).

Our model of motion primitives relies significantly on the accuracy of the
3D pose estimation. We have chosen the model HMR (Kanazawa et al., 2018a)
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based on SMPL (Loper et al., 2015), in place of (Natola et al., 2015b; Tome
et al., 2017), since it is most recent and highly accurate. Still not all the videos
chosen obtain a reasonable fitting, therefore after skeleton fitting and tracking
a number of videos from UCF-crime have been removed from the considered
set.

7.8.3 Training a non-linear binary classifier
All the computed primitives are labeled by their name (e.g. Elbow flex),
according to the recognition model, as specified above. A set of primitives
for a given video is formed as follows. Primitive names are embedded into
real numbers r ∼ Unif(0, 1), such that for each primitive name there is a
precise real number. Given frame t for each skeleton appearing in the frame we
form a vector of dimension 6× 1, where the 6 elements are the corresponding
embedded primitive names occurring at frame t. Let γ(t)

Gm denote the primitive
of the body group Gm, and u the mapping of the primitive name to the real
number:

x(t)
j = (u(γ(t)

G1), u(γ(t)
G2), . . . , u(γ(t)

G6))> (7.22)
Where j indicates the j-th skeleton appearing in frame t. Note that t and j
are actually indicated just for forming the training set, to select from all the
gathered vectors x those that have changing primitives. Namely, for training,
from the set of all vectors in each frame, we have retained only those vectors
in which at least one primitive changes, for each recorded skeleton.

For training we have selected videos for both dangerous behaviors and
normal behaviors, thus labeling them with 1 for dangerous and −1 for normal
behaviors, as follows. We selected 70% of fighting and 70% of not fighting from
both hockey and fight movies; from UCF101 we have selected all videos in
Punch and SumoWrestling, getting 276 videos and further 276 videos randomly
from sport activities. For UCF-crime we proceeded as follows. We have
selected the videos from all the crime activities specified above with time
length less than 60sec. and cropped the first and last 10sec., in order to do
a weak supervised training, namely, as in (Sultani et al., 2018) we have not
trimmed the video. Thus we obtained 173 videos for abnormal activities and
we selected 173 videos from the normal activities. The total number of videos
for training is 1634 videos. All the remaining video with computed primitives
have been used for testing.

The resulting data structure is:

{(x1, y1), . . . , (xn, yn)} with x ∈ R6, y ∈ {−1, 1| −1 if normal, 1 if dangerous}
(7.23)

The SVM (Vapnik, 2013) is a popular classification method computing, for
two non-separable classes, the classifier:

f(x) = (∑n
i=1 yiαiK(xi,x) + b)

ŷ = sgn(f(x)) (7.24)
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where K is the kernel function ϕ(xi)>ϕ(xj) with ϕ the feature map, here we
considered the RBF kernel exp

(
−η‖xi − xj‖2

`2

)
, with η a tunable parameter.

Classification is obtained by solving the constrained optimization problem:

max
α

1
2α
>Ωα− e>α subject to y>α = 0, 0≤αi≤λ (7.25)

Here Ω is a square n×n positive semidefinite matrix, with ωi,j = yiyjK(xi,xj),
e is a vector of ones, the non zero αi define the support vectors, and λ is the
regularization parameter of the primal optimization problem minw,b,ξ

1
2ww> +

λ
∑n
i=1 ξi (Scholkopf and Smola, 2001). To obtain posterior probabilities we

applied the Platt scaling (Platt et al., 1999), proposing a sigmoid model to fit
a posterior on the SVM output:

P (y = 1|f(x)) = 1
1 + exp(Af(x) +B) (7.26)

Here the parameters A and B are fitted by solving the maximum likelihood
problem:

minz=(A,B)F (z) = −
n∑
i=1

(ti log(pi) + (1− ti) log(1− pi)) (7.27)

Using as prior the number of positive N+ and negative N− examples in the
training data, with pi = P (y = 1|f(xi)), ti = (N+ + 1)/(N+ + 2) if yi = 1 and
1/(N− + 2) if yi = −1. See also (Lin et al., 2007) for an improved algorithm
with respect to (Platt et al., 1999).

To obtain the probability that at a given frame t a dangerous event occurs
we compute the average response to the primitives of each subject which has
been detected. More precisely, let s be the number of subjects in frame t for
which the primitives are computed, then the observation x(t) = (x(t)

1 , . . . ,x(t)
s ).

Given x(t), and assuming that the SVM scores for each x(t)
i are independent,

we can define the probability that a dangerous event Y is occurring at t, in a
surveillance video, as the expectation:

P (Y |x(t)) =
s∑
i=1

p(ŷ(t)
i |x

(t)
i )P (yi = 1|f(x(t)

i )) (7.28)

Here p(ŷ(t)|x(t)) is computed by remapping the scores to [0, 1] such that∑s
i=1 p(ŷ

(t)
i |x

(t)
i ) = 1. Testing has been done on the videos on which the

primitives have been precomputed, and the results are shown together with
comparisons with the state of the art in Section 7.8.4. Note that the method
is not yet suitable for online detection of dangerous behaviors, still it can
be advanced to online detection, by lifting the computation of the flux with
motion anticipation.
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Table 7.7. AUC comparison with state-of-the-art methods on the UCF-Crime
dataset.

Method Binary classifier Hasan et al. (Hasan et al., 2016) Lu et al. (Lu et al., 2013) (Sultani et al., 2018) (Sultani et al., 2018) w. constraints Ours
AUC 50.0 50.6 65.51 74.44 75.41 76.15

7.8.4 Results and comparisons with the state of the art

We discuss now the results achieved by our method for abnormal behavior
detection based on human motion primitives. Figure 7.15 shows some quali-
tative results of dangerous behaviors detection in four videos. Three videos
correspond to crime activities, namely Abuse, Fighting and Shooting, while
the last displays a normal activity. The curve plotted in the graphs provides
for each frame the probability that a dangerous event is occurring, according
to eq. (7.28). The highlighted region corresponds to the interval where a
crime activity occurs. From this graphs it is evident that the crime activity
detection follows closely the ground truth. For each example we also show
two representative frames overlaid with the human meshes identified by HMR.
Similarly, Figure 7.17 shows some representative examples of fitted human
meshes for videos taken from Hockey and Movie Fights datasets.

Fig. 7.19 presents the ROC curves of the proposed method for the four
datasets considered, namely UCF-Crime, UCF101, Hockey Fights and Movie
Fights. The corresponding values of the area under curve (AUC) are 76.15%,
91.92%, 98.44% and 98.77%, respectively. Table 7.8 presents the mean accuracy,
its standard deviation and the area under the receiver-operating-characteristic
(ROC) curve of our method in comparison with other state-of-the-art methods.
The results of the other methods are taken from (Gracia et al., 2015). We
observe that our method achieves better performance on the Hockey Fights
and Movies Fights datasets while it has very similar performance with the best
performing method on the UCF101 dataset.

Additionally, in Figure 7.18 we present the frequency graphs of primitive
occurrences for groups G2 and G3, for the crime activities Abuse, Fighting,
Robbery, and Shooting. The graphs show that each type of activity manifests
itself by a different combination of idiosyncratic motions of the limbs. This
fact can be used to achieve finer grained categorization of the crime activities,
however, we do not examine further this possibility in this work.

Figure 7.19 presents the ROC curves of the proposed method for the four
datasets considered, namely UCF-Crime, UCF101, Hockey Fights and Movie
Fights. The corresponding values of the area under curve (AUC) are 76.15%,
91.92%, 98.44% and 98.77%, respectively. Table 7.8 presents the mean accuracy,
its standard deviation and the area under the receiver-operating-characteristic
(ROC) curve of our method in comparison with other state-of-the-art methods.
The results of the other methods are taken from (Gracia et al., 2015). We
observe that our method achieves better performance on the Hockey Fights
and Movies Fights datasets while it has very similar performance with the best
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Figure 7.15. Results of the proposed method on videos from UCF-Crime dataset.
From top: Abuse, Fighting. Colored window shows ground truth anomalous
region.
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Figure 7.16. Results of the proposed method on videos from UCF-Crime dataset.
From top: Shooting, Normal. Colored window shows ground truth anomalous
region.
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(a) (b)

(c) (d)

Figure 7.17. Instances of videos with human meshes fitted using HMR from Hockey
and Movies datasets (Nievas et al., 2011).
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Figure 7.18. Frequency graphs of the occurrences of primitives for groups G2 (torso)
and G3 (right arm) in the videos of Abuse, Fighting, Robbery, and Shootingof
the dataset UCF-crime.
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Figure 7.19. ROC curves of the proposed method for UFC-Crime, UFC101, Hockey
and Movies datasets.

performing method on the UCF101 dataset.
Finally, Table 7.7 gives a comparison of the results achieved by our method

on the UCF-Crime dataset in comparison with results from other state-of-
the-art methods as reported in (Sultani et al., 2018). In this case we have to
highlight that our results are not directly comparable with the ones reported
in (Sultani et al., 2018) as we restrict our analysis on videos where human
subjects are visible. Nevertheless, the results indicate that also on this database
the proposed method is able to achieve state-of-the-art performance on crime
activity detection.

7.9 Conclusions
We presented a framework for automatically discovering and recognizing human
motion primitives from video sequences based on the motion of groups of joints
of a subject. To this end the motion flux is introduced which captures the
variation of the velocity of the joints within a specific interval. Motion primitives
are discovered by identifying intervals between rest instances that maximize
the motion flux. The unlabeled discovered primitives have been separated into
different categories using a non-parametric Bayesian mixture model.
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Table 7.8. Comparison with state-of-the-art methods on the datasets Movies,
UCF101 and Hockey.

Method Classifier Datasets
Movies Hockey UCF101

BoW (STIP) SVM 82.3±0.9/0.88 88.5±0.2/0.95 72.5±1.5/0.74
AdaBoost 75.3±0.83/0.83 87.1±0.2/0.93 63.1±1.9/0.68
RF 97.7±0.5/0.99 96.5±0.2/0.99 87.3±0.8/0.94

BoW (MoSIFT) SVM 63.4±1.6/0.72 83.9±0.6/0.93 81.3± 1/0.86
AdaBoost 65.3±2.1/0.72 86.9±1.6/0.96 52.8±3.6/0.62
RF 75.1±1.6/0.81 96.7±0.7/0.99 86.3±0.8/0.93

ViF SVM 96.7±0.3/0.98 82.3±0.2/0.91 77.7±2.16/0.87
AdaBoost 92.8±0.4/0.97 82.2±0.4/0.91 78.4±1.7/0.86
RF 88.9±1.2/0.97 82.4±0.6/0.9 77±1.2/0.85

LMP SVM 84.4±0.8/0.92 75.9±0.3/0.84 65.9±1.5/0.74
AdaBoost 81.5±2.1/0.86 76.5±0.9/0.82 67.1±1/0.71
RF 92±1/0.96 77.7±0.6/0.85 71.4±1.6/0.78

(Deniz et al., 2014) SVM 85.4±9.3/0.74 90.1±0/0.95 93.4±6.1/0.94
AdaBoost 98.9±0.22/0.99 90.1±0/0.90 92.8±6.2/0.94
RF 90.4±3.1/0.99 61.5±6.8/0.96 64.8±15.9/0.93

(Gracia et al., 2015) v1 SVM 87.9±1/0.97 70.8±0.4/0.75 72.1±0.9/0.78
AdaBoost 81.8±0.5/0.82 70.7±0.2/0.7 71.7±0.9/0.72
RF 97.7±0.4/0.98 79.3±0.5/0.88 74.8±1.5/0.83

(Gracia et al., 2015) v2 SVM 87.2±0.7/0.97 72.5±0.5/0.76 71.2±0.7/0.78
AdaBoost 81.7±0.2/0.82 71.7±0.3/0.72 71±0.8/0.72
RF 97.8±0.4/0.97 82.4±0.6/0.9 79.5±0.9/0.85

Ours SVM 99.1±0.3/0.99 97.2±0.8/0.98 93.3±2.1/0.92

We experimentally show that each primitive category naturally corresponds
to movements described using biomechanical terms. Models of each primitive
category are built which are then used for primitive recognition in new sequences.
The results show that the proposed method is able to robustly discover and
recognize motion primitives from videos, by using state-of-the-art methods for
estimating the 3D pose of the subject of interest. Additionally, the results
suggest that the motion primitives categories are highly discriminative for
characterizing the activity been performed by the subject.

Finally, a dataset of motion primitives is made publicly available to further
encourage result reproducibility and benchmarking of methods dealing with
the discovery and recognition of human motion primitives.
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Chapter 8

Conclusions: Implications and
Future Directions

In this concluding chapter we summarize the contributions of this thesis, and
discuss the possible impacts and the important directions of future work.

8.1 Summary of thesis contributions
Problems related to three main computer vision areas were addressed in this
thesis: 3D object modeling from single or multiple images, 3D human pose
estimation from single images and human motion analysis from RGB videos.

We proposed a method for computing 3D models of articulated objects
from few multiple images, by decomposing them into components. Realistic
models of the object components were built by merging together 3D models
obtained from different aspects. The entire object was obtained by reassembling
the components using two or more images of the object in a reference pose.
Furthermore, software code for this paper was made available at https://
github.com/alcor-lab/articulated-object-modeling.

We proposed an approach for BRDF aware modeling of 3D objects from a
single image. We were able to fully model non-Lamberitan surfaces with either
concave or sharp parts and we have proved that the normal field of the surfaces
to be modeled can be learned from renderings of different objects surfaces.

We presented a method for 3D human pose estimation from a single image
based on a hierarchical Bayesian non-parametric model. The proposed model
captures variations of the motion and the appearance of different body parts,
identified by groups of human skeleton joints. The decomposition in groups
avoids redundant configurations, obtaining a more concise dictionary of poses
and visual appearances.

We presented a framework for automatically discovering and recognizing
human motion primitives from RGB video sequences based on the motion of
groups of 3D skeleton joints of a subject. The motion flux is introduced which

https://github.com/alcor-lab/articulated-object-modeling
https://github.com/alcor-lab/articulated-object-modeling
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captures the variation of the velocity of the joints within a specific interval. The
unlabeled discovered primitives have been separated into different categories
using a non-parametric Bayesian mixture model. Each primitive category
naturally corresponds to movements described using biomechanical terms.
Models of each primitive category are built which are then used for primitive
recognition in new sequences. The results show that the proposed method
is able to robustly discover and recognize motion primitives from videos, by
using state-of-the-art methods for estimating the 3D pose of the subject of
interest. Additionally, the results suggest that the motion primitives categories
are highly discriminative for characterizing the activity been performed by the
subject. Furthermore, a dataset of motion primitives is made publicly available
at https://github.com/alcor-lab/MotionPrimitives.

8.2 Direction for future work
The natural future direction will be to build a framework for activity recognition
from RGB videos based on context. The available state of the art research still
misses a complete framework for human activity recognition based on context,
taking into account both the scene where activities are taking place, objects
analysis, 3D human motion analysis and interdependence between activity
classes. This thesis describes computer vision frmeworks which will enable the
robust recognition of human activities explicitly considering the scene context.

The main contribution will be to consider an human activity in context,
both taking into account the dynamic relations a person is carrying on with
objects in the scene and other related objects, which can be more or less
relevant. This information will boosts the recognition accuracy of complex
activities, which would be otherwise hard in videos such as those taken from the
web, for example those collected in both ActivityNet (Fabian Caba Heilbron
and Niebles, 2015) and (Kuehne et al., 2011).

To successfully recognize an activity in a video some minimal conditions
need to be satisfied, these are: revealing a cause effect relation connecting a
subject pose and some object in the scene, time persistence of this relation and
the recognition of other relevant objects that allude to the activity in course.
To comply with these conditions, relevant features can be computed related to
objects, to subjects pose and features enabled by tracking the poses and the
interactions between subjects-objects and amid relevant objects. The research
conducted so far in 3D objects modeling, 3D human pose estimation and 3D
human motion analysis will enable the discovery of such relevant features.

In order to detect objects in the scene, very popular neural networks can
be used, such as the Faster R-CNN network (Ren et al., 2015), delivering the
object class together with its bounding box. Furthermore, features enabled
from the 3D shape of objects can be used (Ntouskos et al., 2015b; Natola
et al., 2016). To estimate the 2D pose of the subjects in the video, Realtime

https://github.com/alcor-lab/ MotionPrimitives
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Multi-person network (RTMPOSE) (Cao et al., 2016) or the popular OpenPose
network (Cao et al., 2018) can be used, providing an estimation of the 2D
poses of multiple subjects appearing in the scene. To verify persistence of
objects prediction in a time lapse the T-CNN tracking method (Kang et al.,
2016) can be used, building on a temporal convolutional network that operates
on a spatio-temporal object proposal. To recover 3D human pose from 2D
pose, methods such as (Sanzari et al., 2016; Pavllo et al., 2019; Kanazawa
et al., 2018b) can be used. Finally, to analyze 3D human motion we can use
(Sanzari et al., 2019).

The proposed method will allow to not only recognize the activity but
to identify also the subjects and the objects involved in the specific activity.
Furthermore, incorporating information regarding the nature of the scene will
further assist the recognition process. It would be crucial to use the information
that an activity takes place outdoors, indoors in a rural or in an urban scene
in order to robustly discriminate between a wide range of activities.
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