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Beyond average firing rate, other measurable signals of neuronal activ-
ity are fundamental to an understanding of behavior. Recently, hidden
Markov models (HMMs) have been applied to neural recordings and
have described how neuronal ensembles process information by going
through sequences of different states. Such collective dynamics are im-
possible to capture by just looking at the average firing rate. To estimate
how well HMMs can decode information contained in single trials, we
compared HMMs with a recently developed classification method based
on the peristimulus time histogram (PSTH). The accuracy of the two
methods was tested by using the activity of prefrontal neurons recorded
while two monkeys were engaged in a strategy task. In this task, the
monkeys had to select one of three spatial targets based on an instruc-
tion cue and on their previous choice. We show that by using the single
trial’s neural activity in a period preceding action execution, both models
were able to classify the monkeys’ choice with an accuracy higher than
by chance. Moreover, the HMM was significantly more accurate than the
PSTH-based method, even in cases in which the HMM performance was
low, although always above chance. Furthermore, the accuracy of both
methods was related to the number of neurons exhibiting spatial selectiv-
ity within an experimental session. Overall, our study shows that neural
activity is better described when not only the mean activity of individual
neurons is considered and that therefore, the study of other signals rather
than only the average firing rate is fundamental to an understanding of
the dynamics of neuronal ensembles.

Neural Computation 31, 1–17 (2019) © 2019 Massachusetts Institute of Technology
doi:10.1162/neco_a_01216
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2 E. Marcos, F. Londei, and A. Genovesio

1 Introduction

As new techniques to simultaneously record neural activity are being de-
veloped, the need for analytical methods to take advantage of these huge
data sets is increasing in parallel. So far, the use of one or just a few sin-
gle electrodes to obtain neural data has allowed for only the recording of
a small number of neurons within a session. The most common approach
to identifying behavioral neural correlates was to replicate the same condi-
tions several times because since behavior is stochastic, even for the same
conditions the responses that were obtained varied. The average neural ac-
tivity in the different behavioral conditions was then compared. However,
it has been shown that not only the mean firing rate but other measures,
such as across-trials variability, carry relevant information of a task (Mar-
cos et al., 2013). In past decades, classification procedures have been applied
to neural data to decode stimulus-related information (Ghazanfar, Stam-
baugh, & Nicolelis, 2000; Gochin, Colombo, Dorfman, Gerstein, & Gross,
1994; Nicolelis et al., 1998; Nicolelis, Lin, & Chapin, 1997; Rolls, Treves,
Robertson, Georges-François, & Panzeri, 1998; Rolls, Treves, & Tovee, 1997).
Moreover, with the aim of reducing computational complexity, a minimum
distance method solely based on the peristimulus time histogram (PSTH)
of neurons has been proposed and presented as an alternative to more so-
phisticated classification methods (Foffani & Moxon, 2004) that allow for
varying contributions of the neurons, beyond the average firing rate of the
population.

In parallel with the classification problem, hidden Markov models
(HMMs) have been applied to describe the dynamics of neural ensembles
(Jones, Fontanini, Sadacca, Miller, & Katz, 2007; Mazzucato, Fontanini, & La
Camera, 2015). Assuming that state transitions occur following a Markov
stochastic process, HMMs can be applied to single trials to identify the dif-
ferent latent states and estimate the state of neural ensembles at each time
point (Escola, Fontanini, Katz, & Paninski, 2011; Ponce-Alvarez, Kilavik,
& Riehle, 2008; Ponce-Alvarez, Nácher, Luna, Riehle, & Romo, 2012; Sei-
demann, Meilijson, Abeles, Bergman, & Vaadia, 1996). For instance, using
HMMs, it has been shown that after taste delivery, neurons in the gusta-
tory system go through sequences of metastable states (Jones et al., 2007).
Here, we aimed to use a HMM to classify the neural activity observed in
a single trial while two monkeys performed a strategy task (Genovesio,
Brasted, Mitz, & Wise, 2005) and then to compare the classification perfor-
mance of the model with the recently developed PSTH-based method. In
the strategy task, the monkeys had to select one of three spatial targets based
on an instruction cue. We assessed the accuracy of the two methods using
the neural activity observed in the period after the cue delivery. The action
could be performed only after a “go” signal, and thus, in such a premove-
ment period, the neural activity is predictive of future choice. Our data set
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HMMs Predict the Future Choice Better Than a PSTH-Based Method 3

consisted of the activity of prefrontal neurons recorded using single elec-
trodes in sessions with multiple neurons recorded simultaneously.

2 Materials and Methods

2.1 Procedures. Two adult male rhesus monkeys (Macaca mulatta; 7.7
and 8.8 kg) were trained to perform a strategy task. All procedures con-
formed to the Guide for the Care and Use of Laboratory Animals (National
Research Council, 1996) and were approved by the National Institute of
Mental Health (NIMH) Animal Care and Use Committee (IACUC).

2.2 Experimental Task. Each trial started with the presentation of a cen-
tral cue (0.7◦ white circle) at the center of the screen, together with three
potential targets (2.2◦ unfilled white squares), 14◦ left, up or right from the
center (see Figure 1a). The monkeys had to fixate their gaze on the cen-
tral cue (±7.5◦) for 1.0 s. Then the central cue disappeared, and an instruc-
tion stimulus (IS) appeared instead for a variable delay of 1.0, 1.5, or 2.0 s
(pseudo-randomly selected). Subsequently, the IS disappeared, serving as
a “go” signal and instructing the monkeys to make a saccade toward one
of the three targets within 2.0 s and fixate it (±6.7◦) for 1.0 s. Then the tar-
gets were filled in white, and after 0.5 ms, a 0.1 ml of fluid reward was
delivered if the response was correct. Correct responses depended on the
type of trials: repeat-stay, change-shift, or second-chance trials. After a cor-
rect response, if the IS was the same as in the previous trial, the monkeys
had to select the same spatial target as before (repeat-stay trial). If the IS
was different from the previous one, the monkeys had to select one of the
two alternative spatial targets (change-shift trial). In this case, the spatial
target was rewarded 50% of the time. After an unrewarded response, the
monkeys were presented with a second-chance trial in which they had the
opportunity to select the alternative target to get a reward. Each IS was se-
lected pseudorandomly from a set of three stimuli; 67% of the trials were
change-shift trials, whereas 33% were repeat-stay trials.

2.3 Surgery and Histological Analysis. Aseptic techniques were used
together with isofluorane anesthesia (1%–3%, to effect) to implant a 27 ×
36 mm recording chamber over the exposed dura mater of the right frontal
lobe of each monkey, together with head restraint devices.

Near the end of data collection, electrolytic lesions (15 A for 10 s, anodal
current) were made at two depths. After about 10 days, the animals were
deeply anesthetized and perfused with buffered formaldehyde. Later, the
brains were removed, sectioned on a freezing microtome, mounted on glass
slides, and stained for Nissl substance with thionin (Genovesio et al., 2005).
The surface projections of the recording sites by the recovered electrolytic
lesions and the marking pins inserted during perfusion were plotted.
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4 E. Marcos, F. Londei, and A. Genovesio

Figure 1: Strategy task and recording sites. (a) Temporal sequence of task
events. Each trial started with a cue presented in the center of the screen, to-
gether with three potential targets. After a fixation time in which the monkeys
were required to keep the gaze on the cue, an instruction stimulus (IS) appeared,
and the monkeys were required to keep fixating their gaze until the IS disap-
peared, serving as a “go” signal. After the go signal, the monkeys responded
with a saccade toward one of the three targets (empty squares). After maintain-
ing the gaze on the selected target for 1.0 s (holding target period), the three tar-
gets were filled in, and after a subsequent period of 0.5 s (prereward period), the
reward was provided if the response was correct. (b) Example trial cases. After
each correct trial, a repeat-stay (left) or a change-shift trial (right) could follow.
If the IS was the same as in the previous trial, the trial was a repeat-stay trial,
and thus the monkeys had to choose the same target as before. In contrast, if
the IS was different from the previous one, the trial was a change-shift trial, and
the monkeys had to select one of the other two alternatives. Only one of them
was rewarded randomly. If the response was unrewarded, the monkeys were
presented with the same trial, called a second chance trial, in which they had to
select the alternative target in order to get the reward. (c) Recording sites relative
to sulcus landmarks: dorsolateral prefrontal cortex and dorsomedial prefrontal
cortex (areas 6, 8, and 9). AS, arcuate sulcus: PS, principal sulcus.
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HMMs Predict the Future Choice Better Than a PSTH-Based Method 5

2.4 Data Collection. Eye position was recorded with an infrared ocu-
lometer (Bouis Instruments, Karlsruhe, Germany). Single-cell potentials
were isolated with quartz-insulated platinum-iridium electrodes (0.5–
1.5 M� at 1 kHz) positioned by a 16-electrode drive assembly (Thomas
Recording, Giessen, Germany) with 518 μm electrode spacing. Spikes were
discriminated online using a multispike detector (Alpha-Omega Engineer-
ing, Nazareth, Israel) or a multichannel acquisition processor (Plexon, Dal-
las, TX) or offline using an off line sorter (Plexon). Only spike waveforms
that clustered clearly in 3D principal component analysis, lacked interspike
intervals less than 1 ms, had waveforms clearly coupled with others over
time, and had stable and clearly differentiated waveforms were considered
for further analyses. The recorded locations, shown in Figure 1c, were lo-
cated in the dorsolateral prefrontal cortex and dorsomedial prefrontal cor-
tex (areas 6, 8, and 9).

The neural database consisted of 1456 neurons (Genovesio et al., 2005;
Genovesio, Brasted, & Wise, 2006; Genovesio, Tsujimoto, & Wise, 2006;
Genovesio, Tsujimoto, & Wise, 2008; Marcos & Genovesio, 2016; Tsujimoto,
Genovesio, & Wise, 2008). We further selected the neurons that had a mean
activity of at least 1 spike/s within the 200 to 800 ms after IS presentation.
With this additional constraint, we kept 887 neurons for further analyses.

2.5 Hidden Markov Model. A hidden Markov model (HMM) is a prob-
abilistic model used to describe dynamic systems. Here, we applied it to the
analysis of the activity of simultaneously recorded neurons (Abeles et al.,
1995; Jones et al., 2007; Ponce-Alvarez et al., 2012; Rabiner, 1989). In particu-
lar, we used a discrete-time HMM that consisted of two concurrent stochas-
tic processes: a discrete time Markov chain (Xt )t∈N that identifies the state
at step t and a sequence of observation symbols (Ot )t∈N that represents the
physical output of the system being modeled. An HMM is uniquely deter-
mined by the triplet (π, A, E). The initial state distribution π = {π (i)} is an
array of size n, where π (i) = P(Xk = i) ∀k ≤ i ≤ n. The state transition prob-
ability distribution A = {ai, j} is an n × n matrix (called a transition matrix)
whose elements ai, j correspond to the probability of changing from state i
to state j, ai, j = P(Xt+1 = j | Xt = i) ∀t ∈ N. Finally, the observation symbol
probability distribution E = {ai, j} is an n × m matrix (called an emission ma-
trix) that represents the probability that in state i, the jth output is emitted,
ei, j = P(Ot = j|Xt = i) ∀t ∈ N.

We define the likelihood of M, a generic HMM, as the probability that
the observation sequence OT

k = {O1, O2, . . . , OT} has been generated by the
model M: P(OT

k | M).
To calculate it, we used the forward-backward procedure (Rabiner, 1989).

Moreover, we used the algorithm of Baum-Welch (Baum, Petrie, Soules, &
Weiss, 1970), which iteratively estimates the initial parameters of the HMM
using real observations in order to maximize the likelihood P(OT

k | M).
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2.5.1 Choice of Initial Parameters. For each session of neurons analyzed,
we built a matrix of observations O = {oi, j}, where oi, j is the symbol ob-
served in the jth millisecond of the ith trial. In that position, we use 1 if no
neuron was active at that millisecond, or n + 1 if the nth neuron of the group
emitted a spike. This matrix was used for training of the HMM in the Baum-
Welch algorithm, together with the initial transition and emission matrices.
These two matrices were generated randomly. Then the values of the diago-
nal elements of the transition matrix were set much larger than the others—
all ≥ 0.9 (Seidemann et al., 1996). Similarly, we placed higher values on the
first column of the emission matrix, respecting the fact that no neuron was
active for more than 90% of the time on average in a trial. The algorithm is
very sensitive to initial estimates, and for this reason, in the calculation of
each HMM, we started with groups of five matrix pairs, a transition, and an
emission matrix and iterated the Baum-Welch algorithm until convergence.
For every pair of matrices, we then tested the likelihood of each trial and
calculated the average; the pair of matrices that identified the model with
a higher average likelihood is the one that was used to obtain the results
reported in this letter. The vector of the initial distribution π by convention
was set with probability 1 to start in the first state. A Bayesian information
criterion (BIC) analysis (Schwartz, 1978) was performed within each ses-
sion to estimate the optimal number of states. The likelihood of the HMM
increases proportionally to the number of states, but by using an excessive
number of states, the model can be overfitted. The BIC analysis penalizes
the likelihood of the HMM by estimating its complexity. The BIC for an
HMM with m states was calculated as follows (Ponce-Alvarez et al., 2012),

BIC(m) = ln[P(OT
k | M)] − γm

2
ln(T ),

where OT
k is the sequence of observations, P(OT

k | M) is the likelihood of the
model M with m states obtained through the Baum-Welch algorithm, γm is
the number of free parameters, and T is the length of the observed data. The
number γm of free parameters for an HMM with m states and n neurons is
given by m · n + m · (m − 1), which takes into account the contribution of
the emission and transmission matrices, respectively. Importantly, the ini-
tial state distribution π does not add any free parameters, as it is conven-
tionally set to 1 for state 1, without being recalculated during the algorithm.
To set the number of states of the HMM, we computed the BIC for each ses-
sion by varying the number of hidden states from two to eight. The optimal
number of states for each session was chosen as the one that resulted in the
highest BIC. The number of optimal states varied from two to four (mean
with an SEM of 2.3 ± 0.21).

2.5.2 Analyses. We built HMMs through the Baum-Welch algorithm
from the matrix of observations and initial transition and emission
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matrices. For each session, we built three different HMMs, one for each spa-
tial position of the choice made by the subject: right, up, and left. To test the
prediction power of the model, we eliminated a random trial from the data
set and used the remaining trials to train the three HMMs. Next, we as-
sessed the likelihood of each model for the eliminated trial and classified
the trial as belonging to the model with the highest likelihood. Finally, we
compared the direction identified by this model with the choice actually
made by the subject in that trial. This was done once for each trial within
a session. The accuracy of the model was calculated as the ratio between
the trials in which these directions match and the total number of analyzed
trials (Seidemann et al., 1996).

2.6 Classification Based on Peristimulus Time Histogram. We imple-
mented a classification analysis based on the peristimulus time histogram
(PSTH; Foffani & Moxon, 2004). First, we sorted the trials by the selected
spatial position and then used the mean activity in the interval 80 ms to
430 ms from the IS onset as the predictor variable. As in the HMM, we
considered groups of neurons that were registered simultaneously in the
same session. In each interaction, we removed one trial (test trial) from the
same condition from each neuron and calculated the neural response tem-
plates for each condition and neuron without considering that trial. Next,
we calculated the Euclidean distance between the test trial and their cor-
responding neural response templates. The test trial was classified as be-
longing to the condition with the lowest sum of calculated distances. If the
test trial actually belonged to the estimated condition, then the classifica-
tion was considered correct. This procedure was repeated 10,000 times for
each condition, and the reported accuracy corresponds to the proportion of
correct classifications.

As a control, we also implemented a normalized PSTH-based method in
which the mean activity for each neuron and condition was replaced by a
z-score (z), which is defined by

zik = nik − n̄i

σi
,

where nik is the spike count of a neuron i and condition k, n̄i is the mean spike
count for neuron i, and σi is the standard deviation of the spike counts of
neuron i.

2.7 Selection of Experimental Sessions. The sessions of neurons an-
alyzed were chosen on the basis of three criteria: number of neurons,
number of trials in which all neurons were registered simultaneously, and
accuracy achieved by the models. We selected only sessions with at least
five neurons, 45 trials, and in which the trials in each spatial condition were
equally distributed or without notable differences. Between these sessions,
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8 E. Marcos, F. Londei, and A. Genovesio

we chose the two groups in which the HMM model reached either a high
or a low level of accuracy. We selected five sessions of each case. Only trials
that performed correctly and belonged to the repeat-stay or change-shift
strategy trials were used in the analyses. The time window in which the
analyses were carried out started 80 ms after the stimulus presentation and
lasted 350 ms. The total number of sessions included in the analyses is the
minimum one that ensured a statistical power above 0.95–10 experimental
sessions.

2.8 Neural Analyses.

2.8.1 Selectivity Index. For each individual neuron, three selectivity in-
dexes were calculated as

Selectivity index = N̄m − N̄n

N̄m + N̄n
,

where N̄ is the mean spike count observed in the period of analysis, and m
corresponds to one spatial position and n to an alternative one. Thus, for
each neuron, we obtained three selectivity indexes: one for left/up, one for
left/right, and one for up/right. We normalized the computed values so
that the selectivity indexes are within the range of 0 and 1, where 0 corre-
sponds to a lack of selectivity and 1 is the maximum selectivity that can be
observed.

2.8.2 Spatial Selectivity. We calculated the statistical significance of the
neural activity for the different spatial choices using a one-way ANOVA
with the neural activity in the 80 to 430 ms period after IS onset as the de-
pendent variable and left, up, and right choices as factors.

3 Results

Two monkeys were trained to perform a strategy task (Genovesio et al.,
2005; see Figures 1a and 1b), while a variable number of neurons were
recorded from their prefrontal cortex (see Figure 1c). Based on an instructed
stimulus (IS), they had to select one of the three spatial positions: the tar-
get position that was previously selected if the IS was the same as in the
previous trial (repeat-stay trials) or one of the other two spatial positions
otherwise (change-shift trials). Our analyses focused on the first part of the
IS period (80–430 ms after IS onset) because all of the information required
to make the decision was available at that point. In the selected sessions,
the two monkeys performed the task with high accuracy: 97% of trials were
correctly performed for monkey 1 and 90% for monkey 2.

We used the activity of simultaneously recorded neurons to compare
how well an HMM and a PSTH-based method could classify single trials
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Figure 2: Example of HMM states for an experimental session of eight simul-
taneously recorded neurons. One trial example of the HMM estimation in the
interval between 80 and 430 ms after IS onset. Four states (represented by differ-
ent colors) are estimated from the firing rate activity of the neurons. (Top) Raster
plot showing the activity of each neuron during a trial and the probability of be-
ing in each specific state. (Bottom) Mean activity profile of the neurons in each
state.

into trials with right, up, or left target choices. The HMM uses the infor-
mation from all simultaneously recorded neurons within an experimental
session and categorizes their activity into a small number of hidden states.
The activity of each single trial can then be described using those hidden
states. An example of the probability of being in a specific state at each time
point during the 80 to 430 ms after IS onset in a single trial is shown in Fig-
ure 2. In this case, eight neurons were recorded when monkey 1 performed
the strategy task. The different states are represented with colors and corre-
spond to a specific pattern of activation of the neurons (see the bottom panel
of Figure 2). At each time point, the neural activity was better described by
one unique state.

Using the neural activity in the period of 80 to 430 ms after IS onset,
both the HMM and the PSTH-based method could predict the future choice
with an accuracy that was notably higher than chance (about 33%). Impor-
tantly, at that time, the monkeys had all of the information needed to make
their decision, but they were still not allowed to make a saccadic movement
toward the choice. The prediction power of the HMM was always higher
than that obtained with the PSTH-based method (see Figure 3a and section
2) for experimental sessions with high and low levels of accuracy of the
HMM. Thus, even for sessions in which the HMM did not reach high lev-
els of prediction, the accuracy of the PSTH-based method was always at a
lower range. The performance of both methods was significantly different
(p < 0.01, Wilcoxon’s matched-pairs signed-rank test), with a mean value
of 58% of correctly classified trials for the HMM and a mean value of 52%
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Figure 3: Accuracy of models and neural selectivity. (a) Percentage of correctly
classified trials for the HMM (blue), the PSTH-based method (green), and the
PSTH-based method with normalization (z-score; orange) for sessions with high
(left) and low (right) accuracy of the HMM. (b) Distribution of accuracy for
HMM, the PSTH-based method, and the normalized PSTH-based method. The
accuracy of the HMM model is significantly higher than the one obtained with
the PSTH-based method and the one obtained with the normalized PSTH-based
method (∗∗ p < 0.01, Wilcoxon’s matched-pairs signed-rank test). Dashed lines
indicate the mean of the distributions. (c) Accuracy of the PSTH-based model
for different bin sizes and experimental sessions. (d) Selectivity index of indi-
vidual neurons within each session. Each colored dot represents the selectivity
index of one neuron. The three selectivity indexes from one neuron are repre-
sented with the same color. The black line indicates the mean selectivity index
of the session. The asterisks indicate whether the neuron represented by the
color shows a significant modulation of its activity related to the spatial tar-
gets (see section 2: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, One-way ANOVA). The
percentages above the colored asterisks show the proportion of neurons with
significant spatial selectivity within each session.
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for the PSTH-based method (see Figure 3b). To control for possible changes
in the accuracy of the PSTH-based method related to the bin size used in
the analysis, we calculated the accuracy of the PSTH-based method vary-
ing it. The results show that the bin size used (350 ms) provided roughly
the best accuracy that could be obtained within the task period (see Figure
3c). Thus, the HMM outperformed the PSTH-based method, and, hence, it
could better extract the information on the future choice from the neural
activity. To control that the difference in accuracy between the HMM and
the PSTH-based method was not just related to differences on how the two
methods deal with the variability of the data, we performed a control with
the PSTH-based method. In this case, instead of using the mean activity of
the neurons for classification, we used the z-score. This is a normalized mea-
sure of the mean activity that takes into account the variability of the spike
counts (see section 2). The accuracy was not significantly different from that
obtained when the mean activity was used (p = 0.70, Wilcoxon’s matched-
pairs signed-rank test), and it was significantly lower than the one obtained
with the HMM (p < 0.01, Wilcoxon’s matched-pairs signed-rank test). This
confirms that the difference in accuracy between the models was not simply
due to the variability of the data.

Furthermore, we tested whether the difference in accuracy within each
method was related to the number of neurons or to the neural selectivity
within each session (see section 2). We did not observe any correlation be-
tween the number of neurons recorded within an experimental session and
the accuracy achieved by each method (see the top panel of Figure 3a).
Indeed, when we compared the accuracy between two sessions with the
same number of recorded neurons (n = 7; sessions 94i and 16e), the per-
formance reached within each method was notably different: the accuracy
varied from 55% to 90% for the HMM and from 36% to 66% for the PSTH-
based method (see Figure 3a). Next, we calculated the individual selectivity
indexes for each neuron and checked the proportion of neurons with a sig-
nificant difference in activity related to the different spatial choices, that is,
the proportion of neurons coding the future spatial choice. Experimental
sessions with a higher proportion resulted in better accuracy for both the
HMM and PSTH-based method (see Figures 3a and 3d). For instance, if we
split the experimental sessions into two groups depending on whether they
contained a proportion of neurons with spatial selectivity higher or lower
than 30%, the difference between the two groups was remarkable for both
methods although not significant (p > 0.05, Mann-Whitney U-test). In par-
ticular, the mean accuracy of the HMM was 65% in the former case and
50% in the latter, whereas the PSTH-based method showed a performance
of 57% and 46%, respectively. Hence, the results indicate a possible link be-
tween the accuracy of the models and the number of recorded neurons cod-
ing the future spatial goal within a session. The specific value of the mean
selectivity index within a session was, however, not indicative of the ac-
curacy reached by the methods. Therefore, in the sessions considered, the
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accuracy of the models was not related to the number of recorded neurons
per se, but it seems to relate on the proportion of spatial selective neurons.
This means that sessions with a lower number of neurons could result in
higher accuracy compared to others with a greater number of neurons if
they contain a higher proportion of selective neurons.

4 Discussion

We compared two methods to classify neural data into different categories.
Our neural data consisted of the activity of some neurons recorded from
the prefrontal cortex while two monkeys performed a strategy task. In this
task, the monkeys had to choose one of three spatial targets based on the IS
displayed on the screen and on the previous IS and their previous choice.
We focused our analyses on the period after IS onset and therefore on a pe-
riod in which all of the information required to make a decision was avail-
able. We investigated the accuracy of an HMM and PSTH-based method.
The HMM uses the data from all neurons and all trials recorded within a
session to infer the hidden states that describe the dynamics of the neural
activity. In our task, three models were inferred from each session: one for
each group of trials with left, up, or right as selected targets. The estimated
models were then used to classify individual trials into the groups that most
likely described its dynamics. In contrast, the PSTH-based method classi-
fied individual trials solely using the mean activity observed for each spatial
choice and neuron and then combined the estimation from each individual
neuron to improve the predictive power. In our study, both methods were
able to predict the future choice of the monkeys with an accuracy higher
than chance. Importantly, we show that the HMM was always more accu-
rate than the PSTH-based method, even for experimental sessions in which
the prediction accuracy of the HMM was at a low level. Interestingly, the
accuracy of both methods tended to be correlated with the proportion of
spatial selective neurons within a session.

Decoding or classification methods for neuronal signals have been of
particular interest. One of the reasons is the development of brain-machine
interfaces (BMIs; Lebedev, 2014a; Lebedev & Nicolelis, 2006) and therefore
the need for accurate and versatile methods to interpret neural activity and
relate it to behavior. Large-scale recordings are fundamental to achieving
high levels of performance for BMIs (Chapin, 2004; Nicolelis & Lebedev,
2009; Schwarz et al., 2014), as the probability of having neurons with selec-
tive activity for a behavioral parameter increases with an increasing num-
ber of neurons in the sample (Lebedev, 2014b). Thanks to advances in the
decoding and recording techniques, BMIs have been successfully used by
monkeys to control the movements of two avatar arms simultaneously (Ifft,
Shokur, Li, Lebedev, & Nicolelis, 2013).

HMMs have been used to detect ongoing sequences of states in the neu-
ral activity of gustatory neurons in awake rats that emerged after taste
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delivery (Jones et al., 2007) or spontaneously during spontaneous ongoing
activity (Mazzucato et al., 2015). Moreover, Mazzucato et al. (2015) showed
that most of the neurons exhibited multistability during spontaneous ongo-
ing activity (three or more different firing rates across states) and bistability
during taste-evoked activity (a maximum of two different firing rates across
states). One hypothesis to account for such a difference in the number of
states between ongoing and evoked activity is that ongoing activity serves
as a repertoire of representations that is then sampled during evoked activ-
ity (Arieli, Sterkin, Grinvald, & Aertsen, 1996; Kenet, Bibitchkov, Tsodyks,
Grinvald, & Arieli, 2003; Luczak, Barthó, & Harris, 2009). An alternative
explanation is that ongoing activity serves as a Bayesian prior that dynam-
ically adjusts to the statistics of the external stimuli and slowly develops
toward the same dynamics observed during evoked responses (Berkes, Or-
bán, Lengyel, & Fiser, 2011; Fiser, Chiu, & Weliky, 2004).

The PSTH-based method relies on the information carried by the neu-
rons in their mean response. Most of the previous studies have focused
on this signal that, for instance, in the somatosensory area describes more
than 80% of the information about stimulus location (Panzeri, Petersen,
Schultz, Lebedev, & Diamond, 2001). However, reducing the signal carried
by many neurons to a mean firing rate can obscure the heterogeneous na-
ture of cell assemblies (Huang & Zeng, 2013; Mattia et al., 2013). Moreover,
not only the mean response but also its variability carry additional infor-
mation such as the recent experience (Marcos et al., 2013) or stimulus onset
(Churchland et al., 2010). Recently, new analytical techniques that account
for such cell type variety have been applied to measure multineuron ac-
tivity. For instance, correlations across neurons or machine learning meth-
ods such as HMMs are useful to understand the state and connectivity of a
network and relate the neural activity to behavior (Cortes & Vapnik, 1995;
Doiron, Litwin-Kumar, Rosenbaum, Ocker, & Josić, 2016; Helias, Tetzlaff, &
Diesmann, 2014; Pagan, Urban, Wohl, & Rust, 2013; Pernice, Staude, Car-
danobile, & Rotter, 2011; Raposo, Kaufman, & Churchland, 2014; Rust &
Dicarlo, 2010; Trousdale, Hu, Shea-Brown, & Josić, 2012). Our study shows
that although the mean firing rate of neurons alone could be used to classify
trials with relatively high accuracy, the specific dynamics of the population
could significantly improve accuracy.

Our study shows that with groups of up to 12 neurons, trials were bet-
ter classified using HMMs than solely using the mean individual firing
rates. New recording techniques allow for the simultaneous recording of
much larger numbers of neurons, in some cases up to hundreds of neurons
and across several brain regions (Dotson, Hoffman, Goodell, & Gray, 2017;
Nicolelis et al., 2003). The PSTH-based method has been shown to be very
sensitive to the number of neurons used, with an increase in accuracy with
an increase in the number of neurons considered (Cirillo, Ferrucci, Marcos,
Ferraina, & Genovesio, 2018; Falcone, Cirillo, Ferraina, & Genovesio, 2017;
Genovesio, Brasted, et al., 2006; Lebedev, Messinger, Kralik, & Wise, 2004;
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Marcos & Genovesio, 2016; Marcos, Nougaret, Tsujimoto, & Genovesio,
2018; Marcos, Tsujimoto, & Genovesio, 2017). Thus, at least two open ques-
tions arise from these new kinds of data sets: (1) Would the two methods
reach similar levels of performance for large numbers of neurons, or, even
in those cases, would the HMMs always be capable of extracting further
information than that obtain from the mean response? and (2) Would the
combination of data simultaneously recorded from different areas improve
accuracy similarly for both methods, or would the HMM be more sensitive
to the dynamics of different areas? It is also important to assess whether the
increase in the number of neurons makes the use of models as complex as
the HMM unreliable. Thanks to the current use of the new recording tech-
niques for experimental purposes, these questions will soon be answered.
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