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Abstract

We prove that when we decompose the expected utility function inside of an m-
dimensional metric space we refer to a preference ordering based on the notion
of distance. We prove that when we deal with a scale of measurable utilities we
refer to a preference ordering based on the notion of distance. A contingent con-
sumption plan is studied inside of an m-dimensional metric space because utility
and probability are both subjective. The right closed structure in order to deal with
utility and probability is a metric space in which we study coherent decisions un-
der uncertainty having as their goal the maximization of the prevision of the utility
associated with a contingent consumption plan.
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1 Introduction

When we speak about a univariate random quantity denoted by X we mean that it
admits two or more than two possible values. They are real numbers. One and only
one of them will be true a posteriori. Every possible value of X is connected with a
single random event contained in X. We consider incompatible and exhaustive random
events whose number is finite ((Nunke and Savage, 1952)). The set of all possible
values of X is denoted by

{xt %, X", (1.1)

where we consider x! < x> < ... < x™ without loss of generality. These possible values
are monetary values within this context, so X is a random gain meant in an algebraic



sense. This means that a loss is a negative gain. It follows that all possible values
of X or some of them could be negative. We consider the relationship “final wealth
= initial wealth + return of investment”, so all possible values of X represent different
and possible outcomes of an investment. We suppose that the final wealth is fully con-
sumed, so we also identify a contingent consumption plan in this way. It specifies what
it will be consumed in each different outcome of the random process under consider-
ation. We speak about a random process because we do not know a priori which is
the quantity belonging to {x!,x,...,x"} that will be consumed a posteriori ((Manzini
and Mariotti, 2014)). It is associated with the single random event which occurs. To be
in doubt between x',x2,... x™ involves that it is appropriate to assign to them subjec-
tive probabilities denoted by pi,p»,..., p. before knowing which is the true value of X
occurring. We deal with a distribution of probability in this way. We denote it by

[(xlapl)a(xz’pZ)w"a(xmvpm)]a (12)

where we have x! < x*> < ... <x™ as well as p; + p> +...+ p, = 1. Every distribution
of probability is always a coherent expression of the attitude of the individual under
consideration with respect to uncertainty about random events ((de Finetti, 1972a)). It
does not depend on one or more than one parameter like a pre-established distribution
((de Finetti, 1972b)). This means that one engages oneself in saying all what it is of
interest about the specific case that is considered. Thus, one does not prefer to race
on ahead occupying oneself with not real problems characterized by infinite and repeat-
able cases. On the other hand, it is known that the nature of probability is unitary in all
fields ((Pfanzagl, 1967)). Nevertheless, information used in order to make a coherent
evaluation of probability related to a given set of events can be different with respect
to its external aspects. This implies that the criteria for the evaluation of probability are
different ((Anscombe and Aumann, 1963)). However, they lead to an evaluation which
is always subjective. This is because an equiprobable judgment is itself subjective.
Such a judgment intrinsically characterizes symmetric probability. Concerning frequen-
tist probability, it makes sense that each individual relates probability back to observed
frequency only when he specifies the meaning and conditions of this thing. Symmetric
probabilities as well as frequentist probabilities are only elements of judgment evalu-
ated by each individual on the basis of his own judgment. Subjective probability results
from this necessary judgment. On the other hand, it is not excluded that subjective
probability coincides with symmetric probability. It is not even excluded that subjective
probability coincides with frequentist probability.



2 A decomposition of the possible outcomes of a contingent consump-
tion plan

Random events characterizing X are expressed by points in the space of X. Such a
space is a linear space. In particular, they are points belonging to an m-dimensional
linear space equipped with a Euclidean metric. We denote it by E™. This is because we
consider m possible values of X coinciding with x, i = 1,...,m. They are different from
one another because we deal with a partition of incompatible and exhaustive events
((Siniscalchi, 2009)). Given an orthonormal basis of E” denoted by {e;}, j=1,...,m,
we are able to consider m oriented straight lines of E” which are measured in the same
unit of length. They are pairwise orthogonal. The point where they meet is the origin
of E™. It is the zero vector of E™ ((von Neumann, 1936)). Each possible value of X
coinciding with x, i = 1,...,m, belongs to one of these m straight lines of E™. We do
not consider particular m-tuples of real numbers belonging to every straight line of E™
but we consider only real numbers connected with each of them. This thing results
from a particular geometric property that we are going to use. Each straight line of
E™ represents the whole of the space of alternatives whose number is infinite with
respect to one of m alternatives of X ((Tversky and Kahneman, 1974)). Each point on a
straight line of E™ corresponds to a single and possible alternative of X and vice versa.
Concerning one of m alternatives of X we observe that information and knowledge of
a given individual at a given instant permit him of not to excluding a real number only
((deGroot, 1962)). It remains possible for him because it is not either true or false
((Coletti, Scozzafava and Vantaggi, 2015)). Having said that, we observe that X is
geometrically identified with the components of an m-dimensional vector of E™. We
write

x=x'e;, (2.1)

with x € E™, because we use the Einstein summation convention. It follows that we are
able to consider the following

Proposition 2.1. Let X = {x',x?,...,x"} be a contingent consumption plan, where we
have x' < x> < ... <x™ without loss of generality. If {e;}, j=1,...,m, is an orthonormal
basis of E™ then x = x'e; € E™ is a direct and orthogonal sum of m vectors belonging to
m one-dimensional subspaces of E™. O

Proof. We show that each contravariant component of x € E™ can be viewed as an
m-dimensional vector of E™. It is denoted by H% i=1,...,m. This vector and the
corresponding vector of the orthonormal basis of E™ denoted by e;, i =1,...,m, are



collinear. This is because there exists a real number denoted by « such that it turns out
to be
()X = ae;, (2.2)

where we have i = 1,...,m. With regard to we observe that o takes any value in
R. If we have i=1in then the vector e; identifies a straight line having a given
direction in E™. When o takes a value in R we note that a identifies an m-dimensional
vector lying on the same straight line established by e; in E™. We therefore say that
this m-dimensional vector and e, are collinear. The same thing goes when « takes all
values in R. In particular, we observe that a always takes a value coinciding with the
first contravariant component of x. We note that only the first component of x in (2.1) is
not equal to 0. All other components of it are equal to 0. We therefore write

(1>X :Xlel. (23)

If we have i=2in then the vector e; identifies a straight line having a given direction
in E™. This direction is orthogonal to the one of e¢;. When « takes a value in R we note
that « identifies an m-dimensional vector lying on the same straight line established by
e, in E™. We therefore say that this m-dimensional vector and e, are collinear. The same
thing goes when « takes all values in R. In particular, we observe that o always takes
a value coinciding with the second contravariant component of x. We note that only the
second component of x in is not equal to 0. All other components of it are equal to
0. We therefore write

X = x’es. (2.4)

If we have i =m in then the vector e, identifies a straight line having a given
direction in E™. This direction is orthogonal to the one of e;. It is also orthogonal to the
one of e; and so on until you get to e,,_;. When o takes a value in R we note that «
identifies an m-dimensional vector lying on the same straight line established by e, in
E™. We therefore say that this m-dimensional vector and e,, are collinear. The same
thing goes when « takes all values in R. In particular, we observe that a always takes a
value coinciding with the m-th contravariant component of x. We note that only the m-th
component of x in is not equal to 0. All other components of it are equal to 0. We
write

(mX =X"en. (2.5)

Each random event geometrically coincides with a straight line belonging to E”. Each
straight line of E™ identifies an one-dimensional subspace of E™. The direct sum of m



one-dimensional subspaces of E” coincides with E™ itself, so we write

where each E{;’), i=1,...,m, denotes the i-th one-dimensional subspace of E™. We note
that this direct sum is also orthogonal. Also, it turns out to be

dimEE’}) +... +dimE(mm) =dimE"™, (2.7)
where we have dimE™ = m. After taking (2.6) into account we write

where each HX is an element of EE"), i=1,...,m, while x is an element of E™. The

i i
contravariant components of (X are given by

HX = (i)xi5ij7 (2.9)

where we have i = 1,...,m. We note that 5,/ denotes the Kronecker delta. If it turns out
to be i = j then we have 8/ = 1. If it turns out to be i # j then we have &/ = 0. We note
that is characterized by the Einstein summation convention. Thus, we are able to
write

(i)xl 5l + (i)x2521 +...+ (l.)me,}l
(l.)xl 8% + (i)x2522 +...+ (l.)x’"ﬁ,,%

HX= ; (2.10)

1sm 2sm m
0% O + X 0 + ..+ X" Oy

where we have i=1,...,m. O

We say that we have x' < x* < ... < ¥ without loss of generality because we could
indifferently choose any ordered m-tuple of straight lines of E” ((Mattsson and Weibull,
2002)). All these straight lines of E™ are the axes of the coordinate system under
consideration. A single random event denoted by E;, i = 1,...,m, is a particular random
quantity ((Gilio and Sanfilippo, 2014)). It admits a posteriori only two values coinciding
with two different numbers, 1 and 0 ((Coletti, Petturiti and Vantaggi, 2016b)).

3 A distribution of probability embedded in a linear space provided with
a metric on it

Probability is always defined inside of the domain of events ((de Finetti, 1982b)). We
have realized that all random events contained in X are embedded in E™ ((de Finetti,



1980)). Probability meant as a mass is then defined inside of a metric space. The prob-
ability of an event viewed as a well-determined proposition is conceptually contained
in the prevision or expected value or mathematical expectation of a random quantity
((de Finetti, 1981)). The notion of prevision of a random quantity is a unique notion
((Berti, Regazzini and Rigo, 2001)). It is called probability in the case of events. Hence,
the same symbol P is used in order to denote both the prevision of a random quan-
tity and the probability of an event ((Good, 1962)). Anyway, we deal with m masses
denoted by pi,p2,..., pm such that we write p; + p>+ ...+ p, = 1 ((Piccinato, 1986)).
They are located on m components denoted by x!',x%,...,x" of m vectors denoted by
)X @)% 5 ()X of E™. We consider a distribution of probability on R inside of E™ in this
way. This is because x',x?,...,x™ are real numbers. We have evidently {x!} € R, with
X =xle; € Efly, ..o {X"} €R, with  x =x"e,, € E[;, . After writing

WZX”E]‘C] +x2]E2]e2+...—|—x’"\Em]em, (31)
with w € E™, where {e;}, j=1,...,m, is an orthonormal basis of E™, it turns out to be
X =xME |+ X2 |Eo| + ... +X"|Enl, (3.2)

where we have
1, ifE;istrue
|Ei| = o (3.3)
0, if E;is false
for every i=1,...,m. We consider m elementary events of a finite partition of incompat-
ible and exhaustive events. They are denoted by Ey,E»,. .., E,,. We observe that X is an

identity function such that it is possible to write
idr: R— R, (3.4)

where R is a linear space over itself and it is of dimension 1. We say that X is a linear
operator whose canonical expression coincides with (3.2). We say that X is an isometry.
It follows that each single event could uniquely be identified with infinite numbers, so
we could also write {x' +a,x*>+a,...,x" +a}, where a € R is an arbitrary constant.
This means that we consider infinite translations in this way. We consider different
quantities from a geometric viewpoint. They are nevertheless the same quantity from
a randomness viewpoint because events and probabilities associated with them do not
change. On the other hand, if two or more than two propositions can express the same
event contained in X then two or more than two real numbers can identify it. Hence, we
consider a different closed structure in this way. Such a structure is not a o-algebra but



it is a linear subspace over R. We deal with m subspaces of dimension 1 because every
event contained in X belongs to one of them according to (3.1). On the other hand,
a univariate random quantity X = {x',x?,...,x"} viewed as an m-dimensional vector of
E™ is an element of a set of univariate random quantities denoted by (,,S. All these
quantities are viewed as m-dimensional vectors of E” from a geometric viewpoint. We
note that it turns out to be

1S CE™, (3.5)

where (1)5 is an m-dimensional linear space contained in E™. This is because the sum
of two vectors belonging to (1)5 must be a vector whose components are all different.
Thus, it belongs to (1)5 in this way. We say that it belongs to (1)5 if and only if its
components are all different. The same thing goes when we consider the multiplication
of a vector of (1)S by a real number that is different from zero. Hence, we say that
(1)S is closed with respect to the sum of two vectors of it and the multiplication of a
vector of it by a real number that is different from zero. We consider a closed structure
coinciding with an m-dimensional linear space contained in E™ in this way. We note that
E™ can also be viewed as an affine space over itself. Each element of E™ is firstly an
m-dimensional vector viewed as an ordered list of m real numbers. Nevertheless, each
element of E™ can also be viewed as a point of an affine space, where the zero vector
of E™ is the origin of it. Thus, the zero vector of E™ characterizes an affine frame of E”
when it is viewed as an affine space. An affine frame of E™ viewed as an affine space
consists of a point coinciding with the zero vector of E™ and an orthonormal basis of E™.
We are able to consider a point of an affine space having m coordinates or a vector of
a linear space having m components. We choose a contravariant notation with respect
to the components of x. It is consequently possible to write

We choose a covariant notation with respect to the components of p € E™. It is therefore
possible to write
P1
P2
p=|. | (3.7)

Pm



where p; represents a subjective probability assigned to x/, i = 1,...,m, by a given in-
dividual according to his degree of belief in the occurrence of x ((de Finetti, 1982a)).
To say what probability is does not matter when one establishes the axioms that prob-
ability follows. A o-algebra is therefore the field over which probability is defined. If
this happens then we speak about the axiomatic probability theory ((Berti, Pratelli and
Rigo, 2015)). We do not refer to it within this context. It is too much for what it is of our
interest. Our methodological approach is however faithful to axioms of probability. We
consequently note that it turns out to be ¥, p; = 1. We therefore consider a coherent
evaluation of the probabilities associated with every single event. It is finitely additive.
Different individuals whose state of knowledge is hypothetically identical may choose
different p; whose sum is equal to 1 ((Coletti, Petturiti and Vantaggi, 2016a)). Indeed,
each of them may subjectively give greater attention to certain circumstances than to
others ((Coletti, Petturiti and Vantaggi, 2014)). In any case, if we write

(x,p) CE™ (3.8)

then we identify a distribution of probability embedded in a linear space provided with
a metric on it ((Pompilj, 1957)). Such a distribution can always vary from individual to
individual ((de Finetti, 1964)). Moreover, it can also vary with respect to the state of
information of a given individual ((de Finetti, 1989)). We have to note a very important
point: we should exactly speak about components of x and p having upper and lower
indices because we deal with an orthonormal basis of E™. This means that the covariant
components of every m-dimensional vector of E™ coincide with the contravariant ones.
We use these terms because we distinguish what it is objective from what it is subjective
in this way.

4 A decomposition of the expected utility function

The expected utility function expressed by
PU)=U(x',.... X" = u(xp; = ulx"p1+ ...+ u(x™) pm (4.1)

is always characterized by pi,p»,...,pm ((Schoemaker, 1982)). After decomposing X
into m real numbers belonging to m straight lines of E” we note that it is possible to

assign a further real number to every element x’, i = 1,...,m, of X ((Wold, Shackle and
Savage, 1952)). It is denoted by u(x'), i = 1,...,m, where each x' is a consumption bun-
dle connected with E;, i = 1,...,m. Given x! < x> < ... < x™, we observe that it turns out

to be u(x') < u(x*) < ... < u(x™) because one assumes that more is better when there is



no satiation ((Maccheroni, Marinacci and Rustichini, 2006)). We are not speaking about
bads but we are speaking about goods ((Manzini and Mariotti, 2007)). All these num-
bers represent a way of describing subjective preferences for which changes of origin
(and unit of measurement) are inessential ((Gul and Pesendorfer, 2006)). Each u(x'),
i=1,...,m, is a point of the corresponding straight line of E™. It represents a distance
from the number 0. We consider the 1-norm distance between u(x’), i =1,...,m, and 0.
We say that is then a weighted average of distances. We consider the following

Proposition 4.1. Let X = {x',x?,...,x"} be a contingent consumption plan, where we
have x! < x* < ... <x™ without loss of generality. Letu(x')+a <u(x*)+a< ... <u(x"+a)
be a preference ordering, where a € R is an arbitrary constant. If{e;}, j=1,....m, is an
orthonormal basis of E™ then {[u(x') + a]p;}e; =y € E™ is a direct and orthogonal sum
of m vectors belonging to m one-dimensional subspaces of E™. O

Proof. Given any one-dimensional subspace of E™, the collinear vectors related to
U(x!,...,x™) are two. We have

as well as
u((yx) = [u(x")]er (4.3)

with regard to the first one-dimensional subspace of E”. A same probability denoted
by p is associated with u(x') even when u(x!) varies. In general, a same probability
denoted by p, is associated with u(x') when we consider u(x') +a, where a € R is an
arbitrary constant. We note that u(x!) as well as u(x') +a are distances from the number
0. We identify different m-dimensional vectors on a same straight line in E™ in this way.
The direction of this straight line is established by e;. All these collinear vectors lying
on the straight line established by e; represent the same event from a randomness
viewpoint on condition that the starting inequalities given by u(x') < u(x?) < ... < u(x¥™),
where we have a = 0, continue to be valid in the form expressed by u(x') +a < u(x?) +
a<...<u(x™)+a, where we have a # 0. We evidently consider a positive monotonic
transformation in this way. This same event is then realized when the true value of X
to be verified a posteriori coincides with the lowest possible value of it. Conversely, we
write

e,=1-¢, (4.4)

as well as
u((m)x) = [u(x")]en (4.5)



with regard to the m-th one-dimensional subspace of E™. A same probability denoted
by p. is associated with u(x™) even when u(x™) varies. In general, a same probability
denoted by p,, is associated with u(x™) when we consider u(x")+ a, where a € R is
an arbitrary constant. We note that u(x™) as well as u(x")+ a are distances from the
number 0. We identify different m-dimensional vectors on a same straight line in E™
in this way. The direction of this straight line is established by e,,. All these collinear
vectors lying on the straight line established by e, represent the same event from a
randomness viewpoint on condition that the starting inequalities given by u(x') < u(x?) <
... < u(x¥™), where we have a = 0, continue to be valid in the form expressed by u(x') +
a<u(x*)4a<...<u(x)+a, where we have a # 0. We evidently consider a positive
monotonic transformation in this way. This same event is then realized when the true
value of X to be verified a posteriori coincides with the highest possible value of it.
The same thing evidently goes when we consider all other one-dimensional subspaces
of E™ ((Debreu, 1960)). Given any one-dimensional subspace of E™ established by a
straight line in E™, we are able to consider different scalars related to this straight line of
E™. They coincide with the contravariant components of m-dimensional collinear vectors
with respect to one of the basis vectors. If a varies in R then there are infinite possible
positive monotonic transformations that can theoretically be considered. We say that
there are infinite possible preference orderings that can theoretically be considered. It
is then possible to move along every straight line of E™ in order to consider them. We
write

where each u((l.)x) is an element of £}, i = 1,...,m, while u(x) is an element of E™. It
turns out to be
u(x) = u(x")ey +... +u(x)en, (4.7)
where we have
u(x")
u(x?)
u(x™)
as well as
(u(x),p) C E™. (4.9)

It follows that the expected utility function always coincides with the direct sum of m
vectors related to m incompatible and exhaustive events ((Tversky, 1975)). Such a direct
sum is also orthogonal. These m vectors belong to m one-dimensional subspaces of



E™. An m-dimensional vector belonging to E™ is uniquely obtained by means of a linear
combination of m basis vectors. We denote it by y. The contravariant components of
this m-dimensional vector are m scalars whose sum coincides with the expected utility
function. We write

{lu(x")+alpiyer+...+ {[u(x") +alpmten =y, (4.10)

where we have y € E™. Each of these m scalars is obtained by multiplying one of the
m probabilities related to m incompatible and exhaustive events by the contravariant
component of the corresponding m-dimensional collinear vector belonging to one of the
m one-dimensional subspaces of E™. O

The expected utility function has an additive structure ((Friedman and Savage, 1952)).
This means that the choices that a given individual makes when a random event occurs
are independent from the choices that he makes when another random event occurs,
where one and only one random event occurs ((Machina, 1982)). This independence
assumption is entirely caught by the linear independence of the basis vectors.

5 Comparison between two contingent consumption plans inside of a
metric space

If we refer to the geometric property of collinearity then the expected utility function is
given by

P(U)=U®K!,... X" :X:iu(@x)pi, (5.1)
i=1

where we have 0 < p; =P(E;) <1,i=1,...,m, and Y7, p; = 1 because we consider a
coherent evaluation of the probabilities connected with the set of events expressed by
{E\,...,E,} ((Koopman, 1940)). We consider the same events contained in X. We con-
sider the same probabilities assigned to x!,x?,...,x™ ((Kip Viscusi, 1985)). We note that
all events contained in X are characterized by different numbers ((Marschak, 1959)).
They coincide with {u(x'),...,u(x™)}, where we have

u( (%) = [u(x')]e; (5.2)

for every i =1,...,m. We note that the Einstein summation convention does not hold
with regard to (5.2). We say that is an m-dimensional vector belonging to E™
whose contravariant components are all equal. We consider its distance from the zero
vector of E™. We note that the i-th contravariant component of x is given by

® = u(, '8 )pi, (5.3)



where we have i = 1,...,m. We observe that it turns out to be «(0) = 0. Each con-
travariant component of x is then obtained by means of a linear combination. This
linear combination is characterized by (5.3). We observe that the Einstein summation
convention holds with regard to (5.3). Each contravariant component of % is therefore
established by m groups of numbers where every group of numbers consists of m num-
bers that are added. When we consider the first contravariant component of x we note
that only the first element of the first group having m elements as summands is not
equal to 0. All other elements of the first group having m elements as summands are
equal to 0. When we consider the first contravariant component of x we note that only
the second element of the second group having m elements as summands is not equal
to 0. All other elements of the second group having m elements as summands are equal
to 0. When we consider the first contravariant component of x we note that only the m-th
element of the m-th group having m elements as summands is not equal to 0. All other
elements of the m-th group having m elements as summands are equal to 0. The same
thing goes when we consider all other contravariant components of x. We note that it
turns out to be

PX)=x= i (i)XPi> (5.4)

=

—_

where all components of x € E™ are equal. We consider its distance from the zero vector
of E™. We write
)?i = (i)xiSin,- (55)

for every i = 1,...,m. A univariate random quantity representing all possible values
of an investment denoted by A is expressed by X4. A univariate random quantity
representing all possible values of an investment denoted by B is expressed by Xj
((Markowitz, 1952)). We decompose X4 = {x},x%,...,x7}, with x} <x% < ... <7, and
Xp = {xh,x%,...,x0}, with x§ < x3 < ... < x%, inside of E™. We assign a number to ev-
ery consumption bundle given by xi, i = 1,...,m, and xj, i = 1,...,m. It is denoted
by u(xl), i=1,...,m, and u(xy), i =1,...,m. We associate a probability denoted by
P with every u(x}), i =1,...,m, where we have p{ + ...+ p4 = 1. These probabilities
are the same of the ones associated with x},x3,...,x7 because we deal with the same
events. We associate a probability denoted by p? with every u(x}), i = 1,...,m, where
we have p? +...+ pB = 1. These probabilities are the same of the ones associated with
x5,x%, ..., X" because we deal with the same events. It is therefore possible to calculate
P(Uy) = U(x},...,x%) = X4 as well as P(Ug) = U(x},...,x%) = xp. It is also possible to
calculate P(X,) = x4 as well as P(Xp) = x3. We always consider their distances from
the zero vector of E™. For instance, we observe that if the components of x4 and xz are



positive then we strictly prefer x4 when it is more distant from the origin than xz. We
mathematically write
[Rall > (1%, (5.6)

where [|X4|| is the norm of x4 while ||X|| is the norm of xz. The same thing goes when
we consider x4 and xg. In general, one establishes if it turns out to be

Uy, . X > Uy, ... x8) <= {xh,... .20 = {x},...,x5} (5.7)
or

U(xh, ..., Xy > U, ... 00 <= {xb,... 00 = {x},....x7} (5.8)
or

Uxy,.... X =U(xp,...,.x5) < {x},... .00}~ {x},...,.x5}. (5.9)

6 A geometric and analytical condition of coherence based on the notion
of distance

After decomposing the expected utility function inside of E™ we say that an individual
coherently behaves in the face of risk when there exists an m-dimensional vector of E™
uniquely obtained by means of a linear combination of m basis vectors such that it turns
out to be

z=[u(x"piler+ ...+ [u(xX™) pnlem, (6.1)

with z € E™, where {e;}, j=1,...,m, is an orthonormal basis of E™. The sum of the
real coefficients of this linear combination coincides with the expected utility function
given by u(x')p; €R,i=1,...,m. We propose a geometric condition of coherence based
on the notion of distance because each u(x'), i = 1,...,m, represents a distance from
the number 0 inside of E™. We say that the right of getting x! associated with E;, x*
associated with E», ..., x™ associated with E,,, whose probabilities are expressed by
P1,D2,-- -, Pms IS €qual to the weighted average of distances given by u(x)p;, i=1,...,m.
This is because the underlying events are incompatible and exhaustive ((Mc Fadden,
1974)). We then say that z additively behaves and we sum its components for this
reason. We propose a more general condition of coherence because we consider a
preference ordering expressed by

u(x')y <u(x*) <...<u(xm). (6.2)

It is compatible with any analytical utility function denoted by u(x) which we have de-
composed inside of E™. It is a continuous and strictly increasing utility function. It



could indifferently be a concave or convex or linear utility function. Given (6.2), it is also
possible to consider infinite positive monotonic transformations for which we observe
the same preference ordering. On the other hand, it is appropriate to propose a more
general condition of coherence because the attitude in the face of risk of an individ-
ual could unexpectedly change. It depends on his temperament and his current mood.
Moreover, it is also influenced by the value of his estate denoted by F. It is a random
quantity. This means that if the true value of F is unexpectedly great or low then his
attitude in the face of risk may alter. In general, there are transactions for which an in-
dividual is usually neutral with respect to risk. Monetary value and utility consequently
coincide with respect to these transactions. If the true value of F is unexpectedly low
then the same individual could become risk averse. In all cases he will then prefer the
certain alternative to the uncertain one ((Nau, 2006)). Conversely, there are transac-
tions for which an individual is usually averse with respect to risk ((Slovic, Fischhoff
and Lichtenstein, 1977)). If the true value of F is unexpectedly great then he could
become risk neutral. In all these cases we note that if u(x) has wrongly been chosen
by a given individual then another utility function has coherently to be chosen by him
((Marschak, 1950)). Having said that, we say that the criteria of coherent decisions
under uncertainty are all those consisting of the consideration of infinite preference or-
derings compatible with any analytical utility function denoted by u(x). Also, they are all
those consisting of the choice of any coherent evaluation of the probabilities associated
with every single random case denoted by E|,E,,...,E,. One of these analytical utility
functions must coherently be chosen ((Johnson and Payne, 1985)). Moreover, the crite-
ria of coherent decisions under uncertainty are all those by means of which one fixes as
one’s goal the maximization of the prevision of the utility associated with a contingent
consumption plan ((MacCrimmon, 1968)). We have to note a very important point: we
get out of E™ in order to put back together u(x), where u(x) is a real-valued function hav-
ing a real variable. We consequently consider an ordered pair of perpendicular axes, a
single unit of length for both axes and an orientation for each axis. The point where they
meet coincides with the origin for both. Each axis is then nothing but a real number line,
where every point of it corresponds to a real number and every real number to a point.
We therefore consider x!,x?,...,x" together with their masses denoted by pi,p2,...,pm
onto the x-axis. We consider u(x'),u(x?),...,u(x™) together with their masses denoted
by pi,p2,...,pm Onto the y-axis. We note that our geometric condition of coherence is
compatible with

u(x) = u(x')p;, (6.3)



where we have i = 1,...,m. We observe that means that the right of getting x' as-
sociated with E;, x*> associated with E», ..., X" associated with E,,, whose probabilities
are expressed by p1, ps, ..., pm, is equal to the right of getting the certainty equivalent ex-
pressed by x. We say that is an analytical condition of coherence. There evidently
exists an analytical utility function denoted by u(x) which additively behaves according
to (6.3). Its increments (onto the y-axis) between A and x as well as between x and B
are equal for a given individual when and only when he is indifferent (onto the x-axis)
between the choice of x, which is the certainty equivalent, and the choice of purchas-
ing a lottery ticket connected with two random events. They are A = “the ticket is not
drawn” and B = “the ticket is drawn”, where A and B have equal probabilities. We have
P(A+B) =P(A)+P(B) =1 because A and B are incompatible and exhaustive events.
This means that it turns out to be P(4) = P(B) = 1. We have to note another very impor-
tant point: we refer to a scale of measurable utilities based on the notion of distance.
By considering the inverse u~!(y) of u(x) we obtain

x=u {u(x)pi}. (6.4)

If x is less than the prevision or mathematical expectation of X given by P(X) = x'p; +
...+x"p, then we deal with a risk-averse individual whose utility function denoted by
u(x) is a concave function. We do not consider degenerate cases. We observe equal
levels of utility (equal distances meant as 1-norm distances) onto the y-axis in passing
from A to x and from x to B onto the x-axis. When we pass from A to x and from x to
B we observe 1-norm distances between different points onto the x-axis. If x is greater
than the prevision or mathematical expectation of X given by P(X) = x'p; +... +x"p,
then we deal with a risk-loving individual whose utility function denoted by u(x) is a
convex function. We do not consider degenerate cases. We observe equal levels of
utility (equal distances meant as 1-norm distances) onto the y-axis in passing from A to
x and from x to B onto the x-axis. When we pass from A to x and from x to B we observe
1-norm distances between different points onto the x-axis. If x is equal to the prevision
or mathematical expectation of X given by P(X) = x!'p; +... +x"p,, then we deal with
a risk-neutral individual whose utility function denoted by u(x) is a linear function. We
observe equal levels of utility (equal distances meant as 1-norm distances) onto the
y-axis in passing from A to x and from x to B onto the x-axis. When we pass from A to x
and from x to B we observe 1-norm distances between different points onto the x-axis.
We always divide a more or less spacious interval into two indifferent increments. They
are 1-norm distances onto the x-axis. It is unimportant the finite number of possible
values of X contained in it. We always observe equal levels of utility (equal distances



meant as 1-norm distances) onto the y-axis.

7 Conclusions

We have decomposed the expected utility function inside of E™. We have considered
a geometric and unified approach to an integrated formulation of decision theory in its
two subjective components: utility and probability. A univariate random quantity repre-
senting a contingent consumption plan has been studied inside of E™ because utility
and probability are both subjective. We have considered distributions of probability
embedded in a metric space. We have replaced a closed structure with another one:
we have replaced a o-algebra with a linear space over R. We have studied coherent
decisions under uncertainty having as their goal the maximization of the prevision of
the utility associated with a contingent consumption plan. We have studied the crite-
rion of the mathematical expectation when it is applied to utility and monetary values.
When it is applied to monetary values we have observed that among decisions under
uncertainty leading to different random gains an individual chooses that random gain
having the highest prevision or mathematical expectation. When it is applied to the no-
tion of utility we have considered the independence assumption as an implicit condition
of coherence. This assumption is entirely caught by the linear independence of the
vectors of an orthonormal basis of E™. In any case, we have considered distances of
m-dimensional vectors from the zero vector of E™ in order to study the criterion of the
mathematical expectation applied to monetary values and utility. Each individual coher-
ently chooses an analytical utility function denoted by u(x) with respect to his attitude in
the face of risk as well as he coherently chooses his probabilities associated with every
single random case. He does not choose what it is necessary in order to be coher-
ent. This thing cannot arbitrarily be chosen. We have therefore proposed a geometric
condition of coherence compatible with all possible attitudes in the face of risk of an in-
dividual because we have measured utility inside of E™ by using the notion of distance
of u(x!),...,u(x¥™) from the number 0. We have consequently decomposed u(x) inside
of E™ in this way. We have proved that if we use an analytical utility function denoted
by u(x) in order to measure utility then we continue to refer to the notion of distance. A
decomposition of the expected utility function inside of E™ is therefore well-founded.
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