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Abstract 

The first-order and second-order inclusion probabilities are chosen by the statistician. They are 

subjective probabilities. We innovatively define univariate and bivariate random quantities whose 

logically possible values are samples of a given size in order to obtain the first-order and second-

order inclusion probabilities by means of their coherent previsions. We consider linear maps 

connected with univariate random quantities as well as bilinear maps connected with bivariate random 

quantities. The covariance of two univariate random quantities that are the components of a bivariate 

random quantity has been expressed by means of two bilinear maps. We show that a univariate 

random quantity denoted by S is complementary to the univariate Horvitz-Thompson estimator. We 

identify a quadratic and linear metric with regard to two univariate random quantities representing 

deviations that we innovatively define. We use the α-criterion of concordance introduced by Gini in 

order to identify it. It is a statistical criterion that we innovatively apply to probability. 
Keywords: tensor product, linear map, bilinear map, Horvitz-Thompson estimator, quadratic and linear 

metric, composition of functions 

1. Introduction  

Given a finite population having N elements, we are only interested in considering samples containing 

units of this population where no element of the population under consideration can be selected more 

than once in the same sample (Basu [1971]). We are not interested in considering ordered samples of 

a given size selected from a finite population (Basu [1958], Hájek [1981], Kish [1965]). On the other 

hand, when we consider not ordered samples where repetitions are not allowed we have no loss of 

information about a given parameter of the population under consideration (Conti and Marella [2015], 

Godambe and Joshi [1965]). All logically possible samples of a given size belong to a given set (Islam 

et al. [2017]). We suppose that we are always able to number all logically possible samples of a given 

size belonging to a given set. It is known that if the number of all logically possible samples of a 

given set is very large then it could be a very hard or impossible work to give to them a number. We 

simply disregard this thing. A sampling design is characterized by a pair of elements (Joshi [1971]). 

The first element of this pair represents the set of all logically possible samples selected from a finite 

population (Gladys [2014]). We will always consider sets whose elements are all logically possible 

samples having a given size selected from a finite population (Oksuz [2015]).  

The second element of this pair represents all probabilities assigned to the samples of the set of all 

logically possible samples of a given size. A probability is then assigned to each element of this set 

and this means that it is possible to consider a distribution of probability (Brewer and Hanif [1983], 

Hartley and Rao [1962]). Each element of the set of all logically possible samples of a given size can 

be viewed as a logically possible event of a finite partition of incompatible and exhaustive events 

(Kyburg jr. and Smokler [1964], Savage [1954]). It is then possible to assign a subjective probability 

to each logically possible event of this partition (Good [1962], Ramsey [1960]). A probability 

subjectively assigned to each logically possible event of a finite partition of events must be coherent. 

It is inadmissible only when it is not coherent (Koopman [1940], Jeffreys [1961]). A probability is 

subjectively assigned to each logically possible event of a finite partition of events even when it is an 

equal probability assigned to each of them. An equal probability assigned to each logically possible 

event of a finite partition of events is always a subjective judgment. It must therefore be coherent.  

We have to note a very important point: when we say that it is possible to assign a coherent probability 



2 
 

to every logically possible event of a given set of events we mean that the choice of any value in the 

interval from 0 to 1 is allowed. This implies that such an interval must include both endpoints. It is 

therefore possible to assign to every logically possible event of a given set of events a probability 

equal to 0. This choice is absolutely coherent. We will however introduce a restriction that is 

concerned with this point.  

We have to note another very important point: we methodologically distinguish what it is logically 

possible from what it is subjectively probable. 

What it is logically possible at a given instant it is not either certainly true or certainly false. One and 

only one element of the elements belonging to the set containing all logically possible elements at a 

given instant will be true a posteriori. A subjective probability is then assigned to each element of the 

set containing all logically possible elements before knowing this thing.  

 

2. The set of all logically possible samples of a given size embedded in a linear space provided 

with a metric on it 

We consider a finite set of objects denoted by S in the field R of real numbers (Lang [1966]). We 

number these elements. We consequently write  

𝑠1, …, 𝑠𝑁 

where it turns out to be 𝑠𝑖 ∈ S, i = 1, …, N. Each element of S is nothing but a letter with a subscript.  

We consider a linear space over R of all formal linear combinations of elements of S expressed in the 

form  

𝑐1𝑠1 + … + 𝑐𝑁𝑠𝑁  (1),                                                                                                                           

where every 𝑐𝑖, i = 1, …, N, is a real coefficient.  

For the moment, we do not describe the elements of this linear space because we are only interested 

in considering their addition given by (1). This thing is unusual but it can be done without problem. 

On the other hand, we speak about formal linear combinations for this reason. We observe that (1) is 

completely determined by the real coefficients 𝑐1, …, 𝑐𝑁. Each coefficient 𝑐𝑖 is associated with the 

element 𝑠𝑖 of the set S. It is known that an association is exactly a function.  

For each 𝑠𝑖 ∈ S and c ∈ R we then consider  

c𝑠𝑖 

to be the function that associates c to 𝑠𝑖 and 0 to 𝑠𝑗, with j ≠ i.  

Given a ∈ R, we have  

a(c𝑠𝑖) = (ac)𝑠𝑖. 

Given 𝑐′ ∈ R, we have  

(c + 𝑐′) 𝑠𝑖 = c𝑠𝑖 + 𝑐′𝑠𝑖. 

Thus, it is possible to consider a linear space over R. It is the set of all functions of S in R. These 

functions can be written in the form given by (1).  

The functions  

1𝑠1, …, 1𝑠𝑁 

are linearly independent, so they represent a basis of the linear space under consideration (Handley 

[1961]).  

We have then to suppose that 𝑐1, …, 𝑐𝑁 are elements of R such that it is possible to obtain the zero 

function given by  

𝑐1𝑠1 + … + 𝑐𝑁𝑠𝑁 = 0. 

This means that we have 𝑐𝑖 = 0 for every 𝑐𝑖, i = 1, …, N. This thing consequently proves the linear 

independence under consideration. Moreover, it is always possible to write 𝑠𝑖 instead of 1𝑠𝑖. Having 

said that, we observe that our objects denoted by letters having numbers as subscripts are not generic 

objects any more but they coincide with N-dimensional vectors. A sample belonging to the set of all 

logically possible samples of a given size is then expressed by the vector  
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𝛿(𝑠′) = [

𝛿(1;  𝑠′)

𝛿(2;  𝑠′)
⋮

𝛿(𝑁;  𝑠′)

] 

having N components, where 𝑠′ is a sample of the set of all logically possible samples denoted by 𝑆′ 

(Cochran [1977], Särndal et al. [1992], Godambe [1955]).  

We will always consider vectors viewed as ordered lists of real numbers within this context. A sample 

can evidently be denoted by a letter having a number as a subscript as well as it can be expressed by 

the real coefficients of a linear combination of N-dimensional vectors by means of which another N-

dimensional vector is obtained.  

If a sample is identified with an N-dimensional vector then its components express the real 

coefficients of a linear combination of the elements of a basis of the linear space under consideration. 

This linear space is denoted by 𝑅𝑁. Its basis is denoted by S = {𝑒𝑗}, j = 1, …, N.  

We always consider orthonormal bases within this context. It follows that 𝑅𝑁 is also a metric space.  

We therefore write 

𝛿(1;  𝑠′) 𝑒1 + 𝛿(2;  𝑠′) 𝑒2 + … + 𝛿(𝑁;  𝑠′) 𝑒𝑁 = y,  

where we have y ∈ 𝑅𝑁.  

We consider as many linear combinations of the elements of S = {𝑒𝑗}, j = 1, …, N, as logically 

possible samples there are into the set of all logically possible samples of a given size denoted by 𝑆′. 

We note that the real coefficients of every linear combination of the elements of S = {𝑒𝑗}, j = 1, …, 

N, represent one of the logically possible samples of 𝑆′. 

We have evidently  

𝛿(𝑖;  𝑠′) = {
1
0

 

for every i = 1, …, N, where the elements of the population under consideration are N. If i ∈ 𝑠′ then  

we have 𝛿(𝑖;  𝑠′) = 1, while we obtain 0 otherwise. We consider all logically possible samples of 𝑆′ 

having the same size denoted by n. Since the population has N elements we observe that the number 

of n-combinations is equal to the binomial coefficient denoted by (𝑁
𝑛
). We observe that 𝑆′ is a subset 

of 𝑅𝑁. We say that 𝑆′ is embedded in 𝑅𝑁. 

 

3. Finite partitions of logically possible events 

Given N, all logically possible samples whose size is equal to n belong to the set denoted by 𝑆′. We 

have  

n = ∑ 𝛿(𝑖;  𝑠′)𝑁
𝑖=1  

for every 𝑠′ ∈ 𝑆′.  

This means that every sample of the set of all logically possible samples corresponds to a vertex 

denoted by 𝛿(𝑠′) of an N-dimensional unit hypercube denoted by [0, 1]𝑁 (G. Coletti and D. Petturiti 

and B. Vantaggi [2016b]). All logically possible samples of 𝑆′ can be viewed as possible and 

elementary events of a finite partition of incompatible and exhaustive events (de Finetti [1982b]).  

We are consequently able to define a univariate random quantity whose logically possible values are 

represented by all logically possible samples of 𝑆′ (de Finetti [2011]).  

The logically possible values of this univariate random quantity are not real numbers but they are N-

dimensional vectors of an N-dimensional linear space over R (Gilio and Sanfilippo [2014]).  

We consider sampling designs specifying a subjective probability for every logically possible sample 

of 𝑆′. Every logically possible sample belonging to 𝑆′ has a subjective probability of being selected. 

It represents the degree of belief in the selection of a logically possible sample assigned by a given 

individual (the statistician) at a certain instant with a given set of information (de Finetti [1975], de 

Finetti [1972]). An evaluation of probability known over a set of possible events coinciding with all 

logically possible samples of 𝑆′ is admissible when it is coherent. Only coherence is really necessary 

(G. Coletti and R. Scozzafava [2002]).  
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This means that it must be  
∑ 𝑝(𝑠′∈ 𝑆′   𝑠′) = 1. 

It is essential to note a very important point: we have to introduce an unusual restriction with regard 

to the coherence because we exclude of choosing a subjective probability equal to 0 with respect to 

any possible event. 

This implies that any logically possible sample of 𝑆′ has always a probability greater than zero of 

being selected.  

We have consequently  

0 < p(𝑠′) ≤ 1 

for every 𝑠′ ∈ 𝑆′ (G. Coletti and D. Petturiti and B. Vantaggi [2016a]).  

Thus, conditions of coherence coincide with positivity of every probability of a random event and 

finite additivity of probabilities of incompatible and exhaustive events (de Finetti [1989]). We will 

also consider bivariate random quantities whose components are two univariate random quantities. If 

the logically possible values of these univariate random quantities are the same vectors of the same 

N-dimensional linear space over R then these random quantities have the same marginal distributions 

of probability (G. Coletti and R. Scozzafava and B. Vantaggi [2015]).  

They represent the same finite partition of incompatible and exhaustive events (G. Coletti and D. 

Petturiti and B. Vantaggi [2014]). Putting them into a two-way table we observe that it is always a 

table having the same number of rows and columns. 

 

4. First-order inclusion probabilities viewed as a coherent prevision of a univariate random 

quantity 

We innovatively define a univariate random quantity denoted by S whose logically possible values 

are vectors of 𝑹𝑁. They are all logically possible samples of the set 𝑆′. Given S = {𝑒𝑗}, j = 1, …, N, 

each sample of 𝑆′ coincides with the real coefficients of a linear combination of the vectors of S = 

{𝑒𝑗}, j = 1, …, N. Given N and n, the number of the logically possible values of S coincides with the 

binomial coefficient expressed by  

(𝑁
𝑛
) = k. 

The set of the logically possible values of S is then given by I(S) = {𝑠1
′ , …, 𝑠𝑘

′ }, with 𝑠𝑖
′ ∈ 𝑆′, i = 1, 

…, k. A nonzero probability is assigned to each sample of the set of all logically possible samples.  

Let p(𝑠1
′ ), …, p(𝑠𝑘

′ ) be these probabilities.  

It must therefore be  

∑ p(𝑠𝑖
′)𝑘

𝑖=1  = 1,  

 

with 0 < p(𝑠′) ≤ 1 for every I = 1, …, k. It is possible to obtain an N-dimensional vector  

after assigning a nonzero probability to each sample of 𝑆′. We denote it with 𝜋. It represents the first-

order inclusion probabilities of all units of the population under consideration.  

Thus, we write  

𝜋 = [

𝜋1

𝜋2

⋮
𝜋𝑁

] = p(𝑠1
′)   [

𝛿(1; 𝑠1
′)

𝛿(2; 𝑠1
′)

⋮
𝛿(𝑁; 𝑠1

′)

] + … + p(𝑠𝑘
′ )   [

𝛿(1; 𝑠𝑘
′ )

𝛿(2; 𝑠𝑘
′ )

⋮
𝛿(𝑁; 𝑠𝑘

′ )

]      (2),  

where we have 𝜋𝑖 > 0 for every i = 1, …, N.  

We have evidently written a convex combination of the vertices of the N-dimensional unit hypercube 

[0, 1]𝑁 corresponding to the samples of 𝑆′.  

Each vertex is a sample having a nonzero weight representing a subjective probability. 

It is essential to note that 𝜋 is a coherent prevision of S denoted by P(S). We therefore write  
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𝜋 = [

𝜋1

𝜋2

⋮
𝜋𝑁

] = P(S) = ∑ 𝛿(𝑘
𝑖=1 𝑠𝑖

′) p(𝑠𝑖
′) 

We observe that the logically possible values of S are represented by vectors having N components, 

so its coherent prevision must also be represented by a vector having N components. 

The logically possible values of S belong to the set denoted by I(S). Each element of this set contains 

first-order inclusion a posteriori probabilities. This implies that 𝜋 must contain first-order inclusion a 

priori probabilities based on the degree of belief in the selection of all logically possible samples 

attributed by the statistician at a certain instant with a given set of information.  

An a posteriori probability of a unit of the population of being included in a given sample is always 

predetermined. If a unit of the population is contained a posteriori  

in the sample that has been selected then its probability is equal to 1. If a unit of the population does 

not belong a posteriori to the sample that has been selected then its probability is equal to 0.  

A convex combination coinciding with P(S) has conveniently been taken under consideration because 

the logically possible values of S are incompatible and exhaustive events of a finite partition of 

random events. In general, if we consider an event divided into  

two or more than two incompatible events then we obtain that its coherent probability is the sum of  

two or more than two coherent probabilities. This sum is a linear combination of probabilities (de 

Finetti [1980], de Finetti [1981], de Finetti [1982a]). We evidently consider a convex combination 

coinciding with P(S) within this context, where its weights or coefficients are a priori subjective 

probabilities connected with the samples of 𝑆′. This convex combination is characterized by k column 

vectors viewed as k matrices. Each row of every N × 1 matrix is a first-order inclusion a posteriori 

probability. We therefore consider a linear combination of probabilities. 

 

5. First-order inclusion probabilities obtained by means of linear maps 

We consider all logically possible samples belonging to the set 𝑆′. Given N and n, let k be the number 

of all elements of 𝑆′. We are consequently able to determine an N × k matrix in R.  

We denote it by B. It is therefore possible to define a linear map expressed by  

𝐿𝐵: 𝑹𝑘 → 𝑹𝑁. 

This linear map depends on B. Moreover, it also depends on the choice of bases for 𝑹𝑘 and 𝑹𝑁. 

We choose standard bases for 𝑹𝑘 and 𝑹𝑁. We consider all probabilities assigned to the logically 

possible samples of 𝑆′ whose size is equal to n. They can be viewed as a column vector. We denote 

it by Q. We have then  

Q = [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

]. 

Therefore, it turns out to be  

𝐿𝐵(Q) = BQ = 𝜋 = [

𝜋1

𝜋2

⋮
𝜋𝑁

]. 

We note that if k = N then we are able to define a linear map expressed by  

𝐿𝐵: 𝑹𝑁 → 𝑹𝑁. 

We observe that B is a square matrix. This linear map is an endomorphism. It is also an isomorphism. 

It is then an automorphism, so we write  

𝐵− 1𝜋 = [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

]. 
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Given B, each row of Q can subjectively vary because an evaluation of probability known over a set 

of logically possible events must only be coherent. This means that the sum of all probabilities of the 

samples of 𝑆′ must be equal to 1. We consequently observe that there are infinite ways of choosing 

all probabilities of the samples of 𝑆′. They are conveniently caught by 𝐿𝐵. Hence, it is possible to 

obtain 𝜋 as a multiplication of matrices according to a linear map depending on B and the standard 

bases of the linear spaces under consideration.  

Also, we always obtain  

∑ 𝜋𝑖
𝑁
𝑖=1  = n. 

 

6. First-order and second-order inclusion probabilities obtained by means of tensor products 

We define a bivariate random quantity denoted by 𝑆12 whose components are two univariate random 

quantities denoted by 1S and 2S. We therefore write 𝑆12 = {1S, 2S}. Given N and n, the logically 

possible values of each univariate random quantity coincide with k samples belonging to the set 𝑆′.  

They are all logically possible samples of 𝑆′ whose size is equal to n. Each sample of 𝑆′ is a vector 

of 𝑹𝑁. The logically possible values of 1S and 2S are the same N-dimensional vectors of the same N-

dimensional linear space over R. These univariate random quantities have then the same marginal 

distributions of probability. Putting them into a two-way table we observe that it is always a square 

table. We observe that all probabilities of the joint distribution of probability outside of the main 

diagonal of this table are always equal to 0. The nonzero probabilities of the joint distribution of 

probability coincide with 𝑝(𝑠1
′), …, 𝑝(𝑠𝑘

′ ). They are on the main diagonal of the table under 

consideration. A coherent prevision of 𝑆12 denoted by P(𝑆12) is obtained by means of the sum of k 

square matrices. The number of rows and columns of every square matrix of this sum is equal to N.  

Each square matrix of this sum results from a tensor product belonging to the same linear space 

denoted by 𝑹𝑁 ⨂ 𝑹𝑁. It is an 𝑁2-dimensional linear space over R. We always consider as many 

tensor products as joint probabilities are associated with the samples of 𝑆′.  

We have then  

𝑝(𝑠𝑖
′) (

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
,   

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
) ↦ 𝑝(𝑠𝑖

′) (

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
⨂

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
) 

for every i = 1, …, k. We note that it turns out to be  

𝑝(𝑠𝑖
′) (

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
⨂

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
) = 𝑝(𝑠𝑖

′) 

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
 [𝛿(1; 𝑠𝑖

′)  𝛿(2; 𝑠𝑖
′) … 𝛿(𝑁; 𝑠𝑖

′)]. 

When we consider a coherent prevision of 𝑆12 we deal with a bilinear map expressed by 𝑹𝑁 × 𝑹𝑁 → 

𝑀𝑁,𝑁  (R), where the linear space over R of the N × N matrices in R is denoted by 𝑀𝑁,𝑁  (R). This 

linear space is isomorphic to 𝑹𝑁2
. The matrix product resulting from this bilinear map is factorized 

by means of the tensor product of vectors of 𝑹𝑁. It is also factorized by means of a unique linear map 

whose domain coincides with 𝑹𝑁 ⨂ 𝑹𝑁. This is because we are able to know a basis of 𝑹𝑁 ⨂ 𝑹𝑁 as 

well as the value of the linear map under consideration on basis elements. We suppose that a basis of 

𝑹𝑁 ⨂ 𝑹𝑁 results from the standard basis of 𝑹𝑁, where 𝑹𝑁 is evidently considered two times.  

It is therefore possible to say that there exists a unique linear map given by 𝑹𝑁 ⨂ 𝑹𝑁 → 𝑀𝑁,𝑁  (R). It 

coincides with the product of a joint probability viewed as a scalar and a square matrix. We consider 

k products of a joint probability and a square matrix. We obtain k square matrices in this way. We 

consider the sum of these k square matrices in order to obtain a coherent prevision of 𝑆12. We observe 

that 𝑹𝑁 × 𝑹𝑁 → 𝑀𝑁,𝑁  (R) and 𝑹𝑁 ⨂ 𝑹𝑁 → 𝑀𝑁,𝑁  (R) have the same codomain. A factorization of 

𝑹𝑁 × 𝑹𝑁 → 𝑀𝑁,𝑁  (R) is then realized by means of a bilinear map given by 𝑹𝑁 × 𝑹𝑁 → 𝑹𝑁 ⨂ 𝑹𝑁 

and a linear map given by 𝑹𝑁 ⨂ 𝑹𝑁 → 𝑀𝑁,𝑁  (R). These two maps are connected, so we obtain a 
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composition of functions identified with 𝑹𝑁 × 𝑹𝑁 → 𝑀𝑁,𝑁  (R). A coherent prevision of  𝑆12 is then 

bilinear and homogeneous. It is given by  

 

P( 𝑆12) = Π = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋𝑁1 ⋯ 𝜋𝑁

] = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋1𝑁 ⋯ 𝜋𝑁

]. 

 

It coincides with the symmetric matrix of the first-order and second-order inclusion probabilities. It 

is isomorphic to a vector of 𝑹𝑁2
. The trace of this matrix is evidently equal to n. 

 

7. The covariance of two univariate random quantities obtained by considering two bilinear 

maps 

Given 𝑆12 = {1S, 2S}, the covariance of 1S and 2S is expressed by  

C(1S, 2S) = P(𝑆12) – P(1S)P(2S), 

where P(𝑆12) represents the prevision or mathematical expectation or expected value of 𝑆12 while 

P(1S) and P(2S) represent the prevision or mathematical expectation or expected value of 1S and 2S. 

We note that a coherent prevision of 𝑆12 results from a bilinear map because we have  

P( 𝑆12) = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋𝑁1 ⋯ 𝜋𝑁

] 

Moreover, since we have  

P(1S) = [

𝜋1

𝜋2

⋮
𝜋𝑁

] 

as well as  

P(2S) = [

𝜋1

𝜋2

⋮
𝜋𝑁

], 

we note that the product of these two linear maps is evidently bilinear. Such a product is expressed 

in the form  

[

𝜋1

𝜋2

⋮
𝜋𝑁

][𝜋1 𝜋2 … 𝜋𝑁] = [

𝜋1𝜋1 ⋯ 𝜋1𝜋𝑁

⋮ ⋱ ⋮
𝜋𝑁𝜋1 ⋯ 𝜋𝑁𝜋𝑁

]. 

It is then evident that the covariance of 1S and 2S results from two bilinear maps because we can write  

C(1S, 2S) = [

𝜋1 ⋯ 𝜋1𝑁

⋮ ⋱ ⋮
𝜋𝑁1 ⋯ 𝜋𝑁

] − [

𝜋1𝜋1 ⋯ 𝜋1𝜋𝑁

⋮ ⋱ ⋮
𝜋𝑁𝜋1 ⋯ 𝜋𝑁𝜋𝑁

]. 

 

By writing  

C(1S, 2S) = [
(𝜋1  − 𝜋1𝜋1) ⋯ (𝜋1𝑁  −  𝜋1𝜋𝑁)

⋮ ⋱ ⋮
(𝜋𝑁1  −  𝜋𝑁𝜋1) ⋯ (𝜋𝑁  − 𝜋𝑁𝜋𝑁)

] (3) 

we note that it is possible to consider as many random components as inclusion probabilities are 

studied. A unit of the population under consideration can be included, or not, in a given sample 

(Bondesson [2010], Hájek [1958]). This thing is uncertain until a given sample is selected.  

Two different units of the population under consideration can be included, or not, in the same sample 

(Deville and Tillé [1998]). This thing is uncertain until a given sample is selected.  

A component associated with one or two different units of the population under consideration is 

evidently random for this reason (Connor [1966]). This means that each random component is 
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characterized by a subjective probability. It is an a priori probability. It is also characterized by two 

logically possible values, 0 and 1. Only one of these two logically possible values will be true a 

posteriori. On the other hand, it is known that the notion of probability basically deals with an aspect 

that is included between two extreme aspects. The first extreme aspect deals with situations of non-

knowledge or ignorance or uncertainty determining the set of all logically possible samples of a given 

size. They must evidently be viewed as all logically possible alternatives that can be considered. The 

second extreme aspect deals with definitive certainty expressed in the form of what it is certainly true 

or certainly false. Thus, every logically possible sample of a given size definitively becomes true or 

false. Probability is subjectively distributed by the statistician as a mass over the domain of all 

logically possible samples of a given size before knowing which is the true sample to be selected a 

posteriori. Having said that, the variance of every random component as well as the covariance of 

two random components are dealt with by means of the first-order and second-order inclusion 

probabilities. The variance of each random component is represented by every element on the main 

diagonal of the symmetric matrix given by (3). The covariance of two random components is 

represented by every element outside of the main diagonal of the square matrix given by (3).  

 

8. Univariate and bivariate random quantities representing deviations 

We define another univariate random quantity. We denote it by D. We note that D is based on S. 

Given N and n, the number of the logically possible values of S is equal to the binomial coefficient 

given by (𝑁
𝑛
) = k. We have I(S) = {𝑠1

′ , …, 𝑠𝑘
′ }, with 𝑠𝑖

′ ∈ 𝑆′, i = 1, …, k. A nonzero probability denoted 

by 𝑝(𝑠𝑖
′), I = 1, …, k, is assigned to each sample of 𝑆′. We obtain 𝜋. We note that the number of the 

logically possible values of D is equal to k. It is the same of the one of S. The set of the logically 

possible values of D is given by I(D) = {𝑑1
′ , …, 𝑑𝑘

′ }, with  

𝑑𝑖
′ = 

[
 
 
 
𝛿(1; 𝑠𝑖

′)

𝛿(2; 𝑠𝑖
′)

⋮
𝛿(𝑁; 𝑠𝑖

′)]
 
 
 
− [

𝜋1

𝜋2

⋮
𝜋𝑁

] 

where we have i = 1, …, k.  

It follows that we have  

𝑝(𝑠1
′)𝑑1

′  + … + 𝑝(𝑠𝑘
′ )𝑑𝑘

′  = [

0
0
⋮
0

] 

This means that P(S) is an N-dimensional vector such that all deviations from it multiplied by the 

corresponding probabilities represent N-dimensional vectors whose sum coincides with the zero 

vector of 𝑹𝑁. We are able to calculate the variance of S by using D. We use 𝐷12 = {1D, 2D}, where 

𝐷12 is a bivariate random quantity representing deviations whose components are two univariate 

random quantities representing deviations which are the same. We denote them by 1D and 2D.  

We refer to the 𝛼-criterion of concordance introduced by Gini. It is a statistical criterion that we 

innovatively apply to probability. An absolute maximum of concordance is then realized when each 

𝑑𝑖
′, i = 1, …, k, is multiplied by itself. If each 𝑑𝑖

′, i = 1, …, k, is multiplied by itself then we obtain k 

square matrices. Every multiplication that we consider is a tensor product of two vectors of 𝑹𝑁. These 

two vectors represent two deviations which are the same. The components of these two vectors are 

then the same. Hence, the variance of S coincides with the sum of k traces. Each trace of the square 

matrix under consideration is an inner product viewed as an 𝛼-product. An 𝛼-product is a bilinear 

form. We consider each 𝑝(𝑠𝑖
′), i = 1, …, k, as a scalar. Each 𝑝(𝑠𝑖

′), i = 1, …, k, is firstly a subjective 

probability. Thus, it always characterizes a random quantity. It is nevertheless viewed as a scalar 

within this context. We can therefore multiply all components of 𝑑𝑖
′ by 𝑝(𝑠𝑖

′), i = 1, …, k.  

We write  

𝜎𝑆
2 = tr (𝑑1

′𝑇(𝑝(𝑠1
′) 𝑑1

′ )) + … + tr (𝑑𝑘
′𝑇(𝑝(𝑠𝑘

′ ) 𝑑𝑘
′ )). 
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We have evidently introduced a quadratic and linear metric in this way. We therefore note that 𝜎𝑆
2 is 

the sum of the squares of k 𝛼-norms. It is possible to verify that every trace of a square matrix is an 

𝛼-product which is an 𝛼-commutative product, an 𝛼-associative product, an 𝛼-distributive product 

and an 𝛼-orthogonal product. 

 

9. Metric aspects of an estimate of the population mean  

We wonder what happens from a metric viewpoint when we study one attribute with respect to every 

element of the population under consideration (Hassanein and Elmelegy [2014]).  

Let X be the variable concerning this attribute. If we study only one attribute of each element of the 

population under consideration then we estimate the population mean by using the univariate Horvitz-

Thompson estimator. It is defined by  

𝑡𝐻𝑇
(𝑥)

 = 
1

𝑁
 ∑

1

𝜋𝑖

𝑁
𝑖=1  𝛿(𝑖;  𝑠′)𝑥𝑖,  

where we have 𝑠′ ∈ 𝑆′. It is linear and homogeneous (Horvitz and Thompson [1952]). We note that 

𝑠′ is one of the logically possible samples of 𝑆′. Also, the weight of the generic unit i of the population 

under consideration never depends on 𝑠′. It is obtained beginning from (2). We have conversely 

considered all logically possible samples of 𝑆′ when we have defined S. We did not consider only 

one of them. We say that S is complementary to the univariate Horvitz-Thompson estimator for this 

reason. We have taken P(S) = 𝜋 into account after defining S. We observe that a coherent prevision 

of S is itself linear and homogeneous. The expected value of the univariate Horvitz-Thompson 

estimator is given by  

E[𝑡𝐻𝑇
(𝑥)

] = 𝜇𝑥. 

It is equal to the population mean denoted by 𝜇𝑥 for any vector (𝑥1 𝑥2 … 𝑥𝑁)T ∈ 𝑹𝑁. We have  

𝜇𝑥 = 
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1  

The variance of the univariate Horvitz-Thompson estimator is given by  

V(𝑡𝐻𝑇
(𝑥)

) = 
1

𝑁2 ∑
𝑥𝑖

𝜋𝑖

𝑁
𝑖=1  ∑

𝑥𝑗

𝜋𝑗

𝑁
𝑗=1  ∆𝑖𝑗, 

where we have ∆𝑖𝑗 = 𝜋𝑖𝑗  −  𝜋𝑖𝜋𝑗, with i, j = 1, …, N. We note that ∆𝑖𝑗, i, j = 1, …, N, is obtained 

through (3). Since we consider all logically possible samples whose size is equal to n we can also 

write  

V(𝑡𝐻𝑇
(𝑥)

) = 
1

2𝑁2 ∑ ∑ (
𝑥𝑖

𝜋𝑖

𝑁
𝑗=1

𝑁
𝑖=1  −  

𝑥𝑗

𝜋𝑗
)2 ∆𝑖𝑗 (4),  

where we have again ∆𝑖𝑗 = 𝜋𝑖𝑗  −  𝜋𝑖𝜋𝑗, with i, j = 1, …, N (Yates and Grundy [1953]).  

This variance is estimated by the univariate Yates-Grundy estimator given by  

𝑉̂YG (𝑡𝐻𝑇
(𝑥)

) = 
1

2𝑁2 ∑ ∑ (
𝑥𝑖

𝜋𝑖
 −  

𝑥𝑗

𝜋𝑗
) 𝑗 ∈ 𝑠′𝑖 ∈ 𝑠′

2     𝜋𝑖 𝜋𝑗− 𝜋𝑖𝑗

𝜋𝑖𝑗

 , 

where we have 𝜋𝑖𝑗 > 0 because we assume that the sampling design is measurable and 𝜋𝑖𝑗 ≤ 𝜋𝑖𝜋𝑗, 

with i, j = 1, …, N. We have to note a very important point: the variance of S denoted by 𝜎𝑆
2 coincides 

with the variance of the univariate Horvitz-Thompson estimator given by (4) when the absolute values 

of each deviation of 𝑥𝑖 from 𝑥𝑗, with i ≠ j = 1, …, N, are multiples of N. In addition to this thing, the 

variance of S coincides with the variance of the univariate Horvitz-Thompson estimator given by (4) 

when the entropy H of the sampling design with fixed sample size is maximum (Tillé and Wilhelm 

[2017]), where we have  

H = − ∑ 𝑝(𝑠′
𝑠′ ∈ 𝑆′    )log 𝑝(𝑠′) (5). 

We note that H is maximum when we have  

𝑝(𝑠1
′) = 𝑝(𝑠2

′ ) = … = 𝑝(𝑠𝑘
′ ), 

with ∑ 𝑝(𝑠𝑖
′)𝑘

𝑖=𝑖  = 1.  

It does not turn out to be p(𝑠′) = 0 within this context. However, if we observe p(𝑠′) = 0 with regard 

to (5) then it turns out to be [0log 0] = 0 by convention. We therefore say that the weights of the 

univariate Horvitz-Thompson estimator are based on a coherent prevision of a particular random 
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quantity that we have innovatively defined. We have denoted it by S. On the other hand, we have 

obtained a linear and quadratic metric by considering two univariate random quantities denoted by 

1D and 2D. They are based on S. We have obtained the variance of S by using this metric. 

 

10. Why it is meaningful what we have shown 

We consider an auxiliary variable denoted by 𝑋′ related to X when the values of X given by 𝑥𝑖, i = 

1, …, N, are unknown. The known values of 𝑋′ are given by 𝑥𝑖
′, i = 1, …, N. We write  

𝜇𝑥′ = 
1

𝑁
 ∑ 𝑥𝑖

′𝑁
𝑖=1  

If X and 𝑋′ are approximately proportional then it turns out to be  
𝑥𝑖

𝑥𝑖
′ ≈ constant, 

where we have i = 1, …, N. The first-order inclusion probabilities chosen by the statistician are then 

given by  

𝜋𝑖 = 
𝑛𝑥𝑖

′

𝑁𝜇𝑥′
  (6),  

where we have i = 1, …, N. If there exists a direct linear relationship between 𝑋′ and X then the 

statistician chooses high inclusion probabilities denoted by 𝜋𝑖 with respect to the units of the 

population under consideration having high attributes of 𝑋′ denoted by 𝑥𝑖
′, i = 1, …, N. This is because 

they are likely associated with high attributes of X denoted by 𝑥𝑖, i = 1, …, N. If X and 𝑋′ are 

approximately proportional then the first-order inclusion probabilities chosen by the statistician are 

given by (6). It is also possible to write  

𝜋𝑖 = 
𝑛𝑥𝑖

′

∑ 𝑥𝑗
′𝑁

𝑗=1

 , 

where we have i = 1, …, N. If it turns out to be 𝜋𝑖 > 1 for some unit of the population under 

consideration then we have 𝜋𝑖 = 1 for all units of the population under consideration having i as a 

label and such that it turns out to be 𝑛𝑥𝑖
′ ≥ ∑ 𝑥𝑗

′𝑁
𝑗=1  because 𝑥𝑖

′ is high.  

We consider n > 1 within this context.  

The statistician consequently chooses  

𝜋𝑖 = (n − 𝑛𝐴) 
𝑥𝑖

′

∑ 𝑥𝑗
′𝑁

𝑗=1

 , 

where we have j ∉ A, i = 1, …, N, i ∉ A, concerning the remaining units of the population under 

consideration. The set of the units of the population under consideration such that it turns out to be  

𝑛𝑥𝑖
′ ≥ ∑ 𝑥𝑗

′𝑁
𝑗=1  is denoted by A while their number is denoted by 𝑛𝐴. Having said that, we evidently 

establish a linear relationship between 𝑝(𝑠𝑖
′), i = 1, …, k, and 𝜋𝑖, i = 1, …, N.  

If the statistician chooses 𝑝(𝑠𝑖
′), i = 1, …, k, with ∑ 𝑝(𝑠𝑖

′)𝑘
𝑖=𝑖  = 1, then it is possible to get 𝜋𝑖, i = 1, 

…, N, with ∑ 𝜋𝑖
𝑁
𝑖=1  = n. We write  

[

𝜋1

𝜋2

⋮
𝜋𝑁

] = ∑ 𝛿(𝑘
𝑖=1 𝑠𝑖

′) p(𝑠𝑖
′) 

He is consequently able to obtain 𝜋𝑖 > 0 for every i = 1, …, N. He methodologically distinguishes 

what it is logically possible from what it is subjectively probable. All samples belonging to 𝑆′ are 

logically possible because they are not either certainly true or certainly false. Conversely, if the 

statistician chooses 𝜋𝑖, i = 1, …, N, then it is possible to get 𝑝(𝑠𝑖
′), i = 1, …, k. We observe that 𝛼-

products and 𝛼-norms use 𝑝(𝑠𝑖
′), i = 1, …, k, as scalars. We obtain different metric relationships by 

using 𝛼-norms whose scalars are 𝑝(𝑠𝑖
′), i = 1, …, k.  

We note that 𝜋1, …, 𝜋𝑁 are used into 
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𝐵− 1𝐏(𝑆) = [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

] 

in order to obtain 𝑝(𝑠𝑖
′), i = 1, …, k, when we have k = N. We note that B is a square matrix while 

𝐵− 1 is its inverse. If we have k ≠ N then we consider a system of N linear equations with k unknowns, 

where 𝜋1, …, 𝜋𝑁 are constant terms. We evidently refer to  

𝐿𝐵(Q) = B [

𝑝(𝑠1
′)

𝑝(𝑠2
′ )

⋮
𝑝(𝑠𝑘

′ )

] = [

𝜋1

𝜋2

⋮
𝜋𝑁

] = P(S).  

It is known that if the statistician chooses appropriate inclusion probabilities then he is able to obtain 

a more efficient estimator of the population mean. 

 

11. Conclusions 

We have defined univariate and bivariate random quantities whose logically possible values are all 

logically possible samples of a given size belonging to a given set. Every logically possible sample 

belonging to a given set has a subjective probability of being selected. We have obtained the first-

order inclusion probabilities by means of a coherent prevision of a univariate random quantity 

denoted by S whose logically possible values are all logically possible samples of a given size 

belonging to a given set. We have defined a bivariate random quantity denoted by 𝑆12 whose 

components are two univariate random quantities having all logically possible samples of a given size 

as their logically possible values. We have shown that S is complementary to the univariate Horvitz-

Thompson estimator. This estimator is linear and homogeneous like a coherent prevision of S. We 

have identified a quadratic and linear metric with regard to two univariate random quantities 

representing deviations that we have innovatively defined. We have used the 𝛼-criterion of 

concordance introduced by Gini in order to identify it. It is a statistical criterion that we have 

innovatively applied to probability. 
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