
To NACK or not to NACK?
Negative Acknowledgments in Information-Centric Networking

Alberto Compagno
Sapienza University of Rome

compagno@di.uniroma1.it

Mauro Conti
University of Padua
conti@math.unipd.it

Cesar Ghali
University of California, Irvine

cghali@uci.edu

Gene Tsudik
University of California, Irvine

gts@ics.uci.edu

Abstract—Information-Centric Networking (ICN) is an inter-
networking paradigm that offers an alternative to the current
IP-based Internet architecture. ICN’s most distinguishing feature
is its emphasis on information (content) instead of communication
endpoints. One important open issue in ICN is whether negative
acknowledgments (NACKs) at the network layer are useful
for notifying downstream nodes about forwarding failures, or
requests for incorrect or non-existent information. In benign
settings, NACKs are beneficial for ICN architectures, such as
CCNx and NDN, since they flush state in routers and notify
consumers. In terms of security, NACKs seem useful as they
can help mitigating so-called Interest Flooding attacks. However,
as we show in this paper, network-layer NACKs also have
some unpleasant security implications. We consider several types
of NACKs and discuss their security design requirements and
implications. We also demonstrate that providing secure NACKs
triggers the threat of producer-bound flooding attacks. Although
we discuss some potential countermeasures to these attacks, the
main conclusion of this paper is that network-layer NACKs are
best avoided, at least for security reasons.

Keywords—information-centric networking, named-data net-
working, content-centric networking, negative acknowledgement,
NACK, security considerations.

I. INTRODUCTION

The original Internet design aimed to provide end-to-end
connectivity, allowing users (numbering in tens of thousands)
remote access to shared computing resources. The number of
Internet users has since grown tremendously, reaching over
three billion. They use a wide variety of applications: from
email to dynamic web, to content distribution. This great shift
in Internet usage highlighted design limitations of the IP-based
design and motivated research to explore new architectures.

Named-Data Networking (NDN) is one such new archi-
tecture [1]. It is one of the five Future Internet Architecture
projects funded by the U.S. National Science Foundations
(NSF) [2]. NDN is an instance of Information-Centric Net-
working (ICN) [3] that branched out of the Content-Centric
Networking project (CCNx) at the Xerox Palo Alto Research
Center (PARC) [4, 5]. Despite recent differences in features,
NDN and CCNx share the same basic ICN vision. Instead of
establishing communication between a source and a destination
(via packets, as in IP), in order to exchange data, NDN and
CCNx directly address content using unique human-readable
names. A consumer requests desired content by issuing an
interest carrying the content name. Then, the network is in
charge of finding and returning requested content. Moreover,
content follows (in reverse) the exact path of the preceding
interest(s) back to the consumer. In addition, routers keep state

information for all received interests in their Pending Interest
Tables (PITs), along with the corresponding interfaces on
which they are received. When a router receives content, it uses
information in a matching PIT entry to forward the content to
the correct downstream router, towards the consumer.

To facilitate efficient content distribution, NDN and CCNx
introduce in-network content caching. An entity (a router or a
host) can satisfy an incoming interest if a copy of requested
content is found in the local cache. Whenever an interest can
be neither satisfied locally nor forwarded, NDN and CCNx
adopt different behaviors depending on the release version.

Since NDN’s initial release, producers simply drop interests
they cannot satisfy, while router behavior in case of forwarding
failures is unclear. Even though [6] proposed network-layer
NACKs for notifying downstream routers about forwarding
failures, there is currently no support for this feature in NDN.
However, recent discussions [7] indicate that network-layer
NACKs might be adopted by NDN.

For its part, CCNx implemented network-layer NACKs
until version 0.8.2. However, in the latest release, CCNx
team announced that NACKs are considered a higher-layer
functionality and are no longer implemented at the network
layer [8]. We believe that all these oscillations (over time, and
in different but related projects) represent a strong motivation
for the analysis provided in this paper.

The use of NACKs, as an alternative to simply dropping
unsatisfiable interests, has some advantages. First, consumers
can rely on NACKs to quickly identify non-existing content,
instead of waiting for issued interests to time out. Second,
NACKs allow consumers to differentiate between cases of non-
existing content and packet (interest) loss. In the latter case,
consumers have to wait until an issued interest expires before
attempting retransmission. Third, the use of NACKs can help
mitigate the effects of Interest Flooding (IF) attacks [9]. In such
attacks, adversaries flood routers with non-sensical (unsatisfi-
able) interests in order to exhaust their PITs. Once the PIT of a
router gets full, it drops new incoming interests, resulting in a
denial-of-service for legitimate interests. Since, like content, a
NACK traverses, in reverse, the path a corresponding interest,
it causes routers to remove corresponding PIT entries and thus
release valuable resources. Finally, NACKs can be a useful tool
in notifying downstream routers that received interests cannot
be forwarded further. Routers can thus quickly react and pursue
alternative paths.

Despite aforementioned benefits, we show that network-
layer NACKs in CCNx and NDN have important and interest-



ing security implications. In doing so, we differentiate between
Forwarding-NACKs and Content-NACKs. To the best of our
knowledge, this paper represents the first attempt to address
security considerations for NACKs in the ICN context. The
intended contributions of this paper are:

• We assess benefits and identify scenarios justifying the
use of network-layer NACKs.

• We discuss security requirements for implementing
NACKs.

• We show that naı̈ve security for NACKs can facilitate
DoS attacks against producers.

• We describe experiments that demonstrate effects of
NACK-based DoS attacks.

As mentioned earlier, NDN and CCNx are research projects
with the same goal of popularizing the ICN paradigm. Both
NDN and CCNx are candidates for the next-generation Inter-
net architecture. Even in the case they will never see wide
adoption, their designs are likely to influence the Internet of
the future. Therefore, we believe that this paper is both timely
and important, since it studies, from a security perspective, one
of the key ICN features.

This paper is organized as follows. In Section II we
present an overview of NDN and CCNx architectures. In
Section III, we identify two types of NACK messages usable
in ICN, cNACKs and fNACKs, and we discuss their design
requirements from a security perspective in Sections IV and V,
respectively. Section VI discusses some potential methods for
preventing producer flooding attacks imposed by introducing
secure NACKs. We present the related work in Section VII,
and we conclude in Section VIII.

II. OVERVIEW

This section overviews NDN and CCNx. It can be skipped
with no loss of continuity, given some familiarity with basic
ICN concepts and terminology.

A. NDN

Unlike IP, which emphasizes end-points of communi-
cation and their names/addresses, NDN [1, 4] focuses on
content and makes it named, addressable and routable at
the network layer. A content name is composed of one
or more variable-length components opaque to the network.
Component boundaries are explicitly delimited by “/” in
the usual path-like representation. For example, the name
of a WSJ’s news homepage content for May 1, 2015
might be: /ndn/wsj/news/05-01-2015/index.htm. Large con-
tent can be split into intuitively named segment, e.g.,
chapter 13 of Netflicks movie ”Argo” could be named:
/ndn/netflicks/movies/argo.mp4/ch13/.

NDN communication follows the general pull model,
whereby content is delivered to consumers only upon (prior)
explicit request, i.e., each content delivery is triggered by
a request for that content. There are two types of NDN
packets: interest and content. A consumer requests content
by issuing an interest packet. An entity that can “satisfy”
a given interest, i.e., has the requested content in its Con-
tent Store, returns it immediately. If content C with name
n is received by a router with no pending interest for

that name, it is dropped as being unsolicited. Name match-
ing in NDN is prefix-based. For example, an interest for
/ndn/youtube/alice/video-749.avi can be satisfied by con-
tent named /ndn/youtube/alice/video-749.avi/37.1 Note
that the term content object refers to a segment of a content,
while content denotes the entire content before segmentation
takes place.

NDN content objects include several fields. In this paper,
we are only interested in the following four:

• Name: A sequence of name components followed by
an implicit digest (hash) component of the content re-
computed at every hop. This effectively provides each
content with a unique name and guarantees a match when
provided in an interest.

• Signature: A public key signature, generated by the
content producer, covering the entire object, including all
explicit components of the name. The signature field also
includes a reference (by name) to the public key needed
to verify it.

• Freshness: A producer-recommended time for the
content objects to be cached.

• Type: It specifies the content type, e.g., DATA or KEY.

An NDN interest message includes the name of requested
content. In most cases, the last component of a name (hash) is
not present in interests, since NDN does not provide a means
for consumers to learn content hashes beforehand.

There are three types of NDN entities/roles:2

• Consumer – an entity that issues interest packets for
content packets.

• Producer – an entity that produces and publishes (as well
as signs) content.

• Router – an entity that routes interest packets and for-
wards corresponding content packets.

Each NDN entity (not just routers) maintains these three data
structures [10]:

• Content Store (CS) – cache used for content caching and
retrieval. From here on, we use the terms CS and cache
interchangeably. Recall that timeout of cached content is
specified in the freshness field.

• Forwarding Interest Base (FIB) – table of name prefixes
and corresponding outgoing interfaces. FIB is used to
route interests.

• Pending Interest Table (PIT) – table of outstanding
(“pending”) interests and corresponding sets of interfaces
from which interests arrive.

When a router receives an interest for a name n, and there
are no pending interests for the same name in its PIT, it
forwards the interest to the next hop(s), according to its FIB.
For each forwarded interest, a router stores some amount of
state information, including the name in the interest and the
interface on which it arrived. However, if an interest for n
arrives while there is already an entry for the same content
name in the PIT, the router collapses the present interest,

1However, the reverse does not hold, by design.
2A physical entity (a host, in today’s parlance) can be both consumer and

producer of content.

2



storing only the interface on which it was received. When
content is returned, the router forwards it out on all incoming-
interest interfaces, and flushes the corresponding PIT entry.
Since no additional information is needed to deliver content,
interests do not carry any source address.

A router’s cache size is determined by local resource
availability. Each router unilaterally determines what content
to cache and for how long. Upon receiving an interest, a router
first checks its cache to see if it can satisfy this interest locally.
Therefore, NDN lacks also any notion of destination address –
content can be served by any NDN entity. Producer-originated
content signatures allow consumers to authenticate received
content, regardless of the entity that serves this content.

B. CCNx

Both NDN and CCNx projects used to share the same
codebase originally implemented by PARC. In August 2013,
the two projects separated. Both codebases still sharing the
basic design features outlined above. However, in December
2013, PARC released the roadmap for the new codebase,
CCNx 1.0 [11], increasing the differences between NDN and
CCNx.

Until version 0.8.2, CCNx used to provide NACK support
by design. A NACK message is a content object containing
no data, but the name of the requested content, and a type
with value NACK. Following CCNx (and NDN) specifications,
all content objects must be signed [12]. Therefore, all CCNx
NACKs are signed by their producers. As mentioned above,
recent CCNx 1.0 specifications removed NACK generation at
the network layer. This is because they were (re)considered as
a higher-layer functionality.

For the rest of this paper, we use the terms NACKs,
NACK messages and NACK objects interchangeably to refer
to content objects with type NACK.

III. NACKS IN GENERAL

In communication protocols, there are usually two ways
to confirm whether a packet (message or segment) has been
received: acknowledgments (ACKs) or negative acknowledg-
ments (NACKs). In ACK-based protocols, a receiver informs
the sender about all successfully received packets. In NACK-
based protocols, a receiver informs the sender whenever it
believes that a received packet is unrecognized, non-sensical
or corrupted [13].

In the next sections, we consider network-layer NACKs
from a security perspective. In particular, we discuss two types
of NACK messages that might make sense in ICNs: Content-
NACKs (cNACKs) and Forwarding-NACKs (fNACKs). For
each type, we present its benefits for network entities (con-
sumers, producers and routers) and specify security require-
ments. Then, we show that – even with these requirements met
– introducing cNACKs has negative security implications for
producers and routers, while fNACKs are generally beneficial.

IV. CONTENT-NACKS

A cNACK is a packet generated by a producer at the
network layer: it indicates that a content – with the name
reflected in a received interest – does not exist, i.e., has not

been produced or published. A cNACK is realized as a special
kind of a content object, of type CNACK. One intuitive analogy
(though at a higher layer) is the well-known “HTTP 404 not
found” message [14].

A. Benefits

cNACKs offer several benefits. On the consumer side, they
help applications to: (1) distinguish between packet loss and
content not found, and (2) reduce waiting time for consumers,
i.e., inform consumers faster than interest timeouts. For routers
and producers, cNACKs can reduce the effects of Interest
Flooding (IF) attacks. Recall that a router creates a PIT entry
for each distinct interest that it forwards.3 A PIT entry is
not purged until content arrives (from upstream), gets cached
and forwarded downstream. However, if an interest requests
some non-existing content and the producer simply drops such
interest, corresponding PIT entries at all intervening routers
(and at the consumer) remain until they expire. A producer-
generated cNACK allows routers to purge PIT entries earlier
and thus free their resources early. Even though this strategy
does not fully mitigate the impact of IF attacks, it significantly
reduces their effects.

In both NDN and CCNx, a router that receives a new
interest (i.e., there is no PIT or cache hit) might determine –
based on its local FIB – that multiple outgoing interfaces are
possible for forwarding. If so, a router either: (1) forwards the
interest on multiple interfaces, or (2) forwards the interest on
one interface; in case of a time-out, it tries the next possible
interface, and so on.4 In the latter case (2), a router might
incur considerable delay by sequentially trying (and timing
out on) every viable interface. However, recall that cNACKs
are generated by the producer to indicate non-existing content.
Therefore, if a router receives a genuine cNACK, trying other
possible interfaces would be useless. This early detection
of non-existent content is another advantage of cNACKs.
Finally, since a cNACK is a type of content and is thus
cached, subsequent interests for the same name are satisfied
accordingly.

B. Security Issues

Despite aforementioned benefits, cNACKs’ security impli-
cations should be carefully examined. We believe that support
for insecure cNACKs opens the door for simple content-
focused DoS attacks. Assume that an adversary Adv controls
a network link and can inject cNACKs for interests traversing
that link. In this case, Adv can prevent consumers from
obtaining legitimate extant content. Even if there are multiple
paths to the producer, Adv only needs to inject cNACKs on
just one path to succeed in the attack. For example, this attack
can be trivially exploited to enforce censorship over content
considered subversive or simply undesirable.

More generally, an unsecured cNACK – being a special
type of content – can be abused to essentially poison router
caches. As described in [9], a content poisoning attack can
occur in either reactive or proactive mode. The former corre-
sponds to the adversarial scenario above. The latter involves

3Clearly, this excludes collapsed interests.
4Other forwarding strategies are possible. However, we are not considering

them here.

3



Adv that, anticipating demand for certain content, issues one or
more bogus interests (perhaps from strategically placed zombie
consumers), ahead of genuine interests being issued. Adv then
replies with fake content (from a set of compromised routers
or compromised producers, at or near genuine producers) thus
pre-poisoning the caches of all routers that forwarded bogus
interests.

One variation of proactive content poisoning attack is even
simpler. Again, predicting the name of content that has not
yet been produced, Adv issues an interest for such content
and receives a legitimate cNACK from the genuine producer.
Routers on the path cache this cNACK. Even if the actual
content is published soon thereafter, subsequent interests for
that content will be satisfied with a cached cNACK, thus
resulting in a DoS.

The above clearly motivates securing cNACKs, which
intuitively translates into two requirements: (1) authenticating
cNACK origin and integrity, i.e., detect fakes, and (2) checking
cNACK freshness, i.e., to detect replays. We discuss these in
the next section.

C. Securing cNACKs

Addressing authentication of cNACK origin and integrity is
easy: in fact, one of the basic tenets of both NDN and CCNx
is that all content must be signed by its producer. (Indeed,
creating a special type of content that is exempt from being
signed would violate this very tenet.) A router can elect to
verify content signatures before caching or forwarding content.
However, this process is not mandatory for several reasons
discussed in [15], hence triggering the aforementioned cNACK
poisoning attack.5 For this reason, the Interest Key Binding
(IKB) rule has been introduced in [15]. Enforcing the IKB
rule requires consumers and producers to collaborate in order
to provide routers with the trust context needed to verify only
one signature per content. In particular, consumers include the
digest of the producer’s public key in every interest. For their
part, a producer includes its public key in all content it serves.
A router that receives a content: (1) ensures that the digest of
the public key in that content header matches the one provided
in the matching interest, and (2) verifies the content signature
with the public key included in the content header.6 The IKB
rule would thus prevent cNACKs from being modified or
generated by entities other than legitimate producers.

A complementary means of preventing content poisoning
is via Self-Certifying Names (SCNs) [15]. With SCNs, a
consumer specifies, in the interest packet, the hash of the
expected content. Using SCNs, routers only need to verify that
the hash of a received content matches the value specified in
the interest. A key advantage of this approach is that a content
that is matched in this manner does not need to be signed.
SCNs are particularly appropriate for static nested content, e.g.,
catalogs.

However, cNACKs cause a problem for routers when
consumers use SCNs. Suppose that a benign consumer requests
a content using SCN in an interest. Even though a consumer

5This is an attack similar to the content poisoning attack described in [16].
6This assumes that fast public key cryptographic operations will be sup-

ported in hardware in future routers.

might have pre-obtained the hash of currently requested con-
tent from a legitimate source (e.g., a catalog that it previously
obtained using IKB), the content in question could be no
longer available from its producer, for various reasons. In that
case, the producer would satisfy the interest with a cNACK.
However, the hash of the latter would certainly not match the
content hash reflected in the SCN from the interest. Therefore,
such a cNACK would be dropped by routers as an invalid
content. Fortunately, this problem can be solved by a minor
modification to network-layer trust rules proposed in [15]:
interests bearing SCNs should also (as a backup) adhere to
IKB, i.e., reflect the producer’s public key, in order to handle
(via signed cNACKs) expired or simply no-longer-available
content.

Although the motivation for producer-signed cNACKs is
not surprising, why this process should take place at run-
time might not be obvious. First and foremost, producers
cannot create and pre-sign cNACKs for all possible non-
existing content. The reason is because content names can have
arbitrary suffixes, resulting in an infinite number of possible
names. In other words, a producer responsible for a name
prefix /ndn/x/y/z, should be ready to respond to (in particular,
by generating a signed NACK) an interest requesting any
content name starting with that prefix.

To prevent replay attacks, signed cNACKs must include
a challenge by the consumer, and/or a timestamp set by
producers. However, both means have certain drawbacks:

• If each interest contains a unique consumer-selected chal-
lenge, then caching a signed cNACK that also includes
this challenge is useless for other consumers who issue
interests for the same content at, or near, the same time.
Caching such a cNACK is beneficial only in the case
of packet error or loss and retransmission. Moreover, PIT
interest collapsing becomes a problem, since each interest
to-be-collapsed would have a different challenge. Thus,
we conclude that consumer challenges are problematic in
the cNACK context.

• If, instead of challenges, each cNACK contains a
producer-set timestamp, a time window needs to be de-
fined to allow for transmission and caching delays. The
selection of this window poses a problem. If too large,
cNACK objects can be replayed for a longer time; else,
if the window is too small, the probability of successful
replay attacks decreases, while the probability of cNACKs
wrongly considered invalid increases. One viable alterna-
tive is to use producer-specified expirations for signed
and time-stamped cNACKs. This would address cNACK
replay attacks. Nonetheless, we note that timestamps
require a global synchronization protocols, e.g., a secure
version of NTP [17].

Based on the above discussion we summarize the requirements
for securing cNACKs:

1) Signature: a cNACK must be signed by its producer, just
like any other content.

2) Timestamps: a cNACK should be generated, not per
interest, but per time interval.

3) Expiration: a cNACK for plausible content (e.g., not yet
published) should include expiration time.

4



D. Secure cNACKs: a Blessing or a Curse?

Unfortunately, secure cNACKs that satisfy our three re-
quirements (which are themselves motivated in part by DoS
prevention) facilitate producer-focused DoS attacks. Such an
attack occurs when Adv sends a large number of closely-
spaced interests requesting non-existing (and possibly non-
sensical) content. A producer that receives a barrage of these
interests generates a cNACK for each one, which requires
generating a signature. The resultant computational load on the
producer could be overwhelming. Furthermore, large numbers
of useless cNACKs would pollute router caches.

Note that generating one cNACK for all interests arriving
within a certain time interval is not effective against this DoS
attack. This is because a smart Adv – instead of issuing
interests for the same (non-existent) name – would issue many
interests, each for a distinct name composed of a common
prefix (registered to the victim producer) and a random suffix,
e.g., /ndn/cnn/news/world/$&F(?%. One simple countermea-
sure is to allow producers to issue cNACKs for prefixes.
For example, a cNACK for /ndn/cnn/news/world/, once
cached in routers, would throttle all interests with that prefix,
including non-sensical ones. However, the very same cNACK
would result in DoS for legitimate interests, e.g., referring to
/ndn/cnn/news/world/china.

The discussion above leads us to a logical conclusion that
secure cNACKs should be implemented carefully. Specifically,
a producer must first decide whether an incoming interest
is plausible or non-sensical. An interest is plausible if the
producer believes that the referenced content name might have
existed in the past or might exist in the future. In contrast, an
interest is non-sensical if it refers to implausible (or unlikely
to ever exist) content name. We have no guaranteed way of
distinguishing between these two types of interests. This task
is perhaps best left up to individual applications. As far as
producer’s strategy, we believe that a producer should have
the option of replying with a secure cNACK in response to a
plausible interest. Otherwise, a producer should not reply at all
to a non-sensical interest. This prompts the addition of another
requirement for securing cNACKs:

4) Plausibility: a cNACK should be generated only for a
plausible interest.

E. Experimenting with Secure cNACKs

To assess the efficacy of producer-focused DoS attacks,
we performed several experiments, using ndnSIM [18, 19],
to demonstrate additional overhead imposed by generating a
network-layer cNACK per interest. Although, as discussed
above, secure cNACKs should be generated only for plausibly
named content, a smart Adv can still generate many names
that a producer application can consider to be plausible. This
can be caused by poorly implemented applications, or by the
difficulty of distinguishing plausible from non-sensical names.

In our experiments, we consider the simple network topo-
logy illustrated in Figure 1. Also, we let benign and malicious
consumers issue a large number of interests to a single pro-
ducer at different rates: benign consumers send 10 interests per
second for existing content; while malicious consumers send
100 non-sensical interests per second. We implemented two
consumer modes:

Benign 
consumers

Malicious 
consumers

ProducerRouter

.

.

.

.

.

.

Fig. 1. Simulation Topology.

1) Basic: consumers request sequential content under a spe-
cific name space, e.g., /ndn/a/1, /ndn/a/2, etc.

2) Advanced: content requested by consumers adheres to
a Zipf distribution. This reflects practical applications
where some content is more popular than other.

Figure 2 shows the delay increment in serving existing
content, for both basic and advanced benign consumers. In
the base case all consumers are benign. The results show
the additional time required by the producer to serve existing
content, as compared to the base case, for different malicious
consumers population (MCP) rates (10%, 20%, and 30%).
As expected, increasing the number of malicious consumers,
increases the producer overhead when serving existing con-
tent. Moreover, this overhead increases when using advanced
consumers. This behavior is motivated as follows: collapsing
of interests requesting existing content reduces the number of
these interests on the link between the router and the producer.
In fact, reducing interests on this link allows the router to
forward more non-sensical interests to the producer. Therefore,
the latter is forced to generate and sign more cNACKs.

10% 20% 30%
Malicious Consumer Population Rate

0

2

4

6

8

10

12

Se
rv

in
g 

Ex
is

tin
g 

Co
nt

en
t D

el
ay

 In
cr

em
en

t (
%

)

Basic Consumers
Advanced Consumers

Fig. 2. Serving existing content delay increment compared to the base case
for varying malicious consumer population rates.

We also studied experimentally the delay in serving exist-
ing content, when the number of consumers increases. In par-
ticular, we started the simulation with 200 benign consumers,
and we considered two scenarios: (1) adding one benign con-
sumer per second; (2) adding a malicious consumer per second.

5



0 200 400 600 800 1000
Simulation Time (sec)

100

105

110

115

120

125
Se

rv
in

g 
Ex

is
tin

g 
Co

nt
en

t D
el

ay
 (µ

se
c)

Increasing Benign Consumers
Increasing Malicious Consumers

Fig. 3. Serving existing content delay for gradually increasing number of
consumers.

In both cases, we stop adding nodes after 500 seconds, and
measure the delay in serving content until the 1000-th second
of simulation. The result of this experiment is illustrated in
Figure 3. We note that increasing number of benign consumers
does not significantly affect the producer performance, while
increasing the number of malicious consumers does (e.g., after
500 seconds, the delay is some 10% more than the case with
only benign nodes).

V. FORWARDING-NACKS

A fNACK is a packet generated by a router at the network
layer. Its purpose is to inform downstream routers that an
interest cannot be forwarded due to congestion or unknown
next hop [6]. Since edge routers are usually configured with a
default route to an upstream router, fNACKs generated due to
unknown next hop are most likely to occur at the network core.
A good analogy to fNACKs is ICMP destination unreachable
message [20].

Recall that, in both NDN and CCNx, a router’s FIB
might specify multiple interfaces on which an interest with
a particular name (prefix) can be forwarded. In such cases, a
router has two forwarding choices:

1) Parallel: Forward the interest on all specified interfaces
at the same time and set either the same or various time-
outs for each interface. The PIT entry is flushed if all
interfaces time out.

2) Sequential: Forward the interest on one interface and wait;
in the event of a time-out, try another interface, and so
on. Once the last possible outgoing interface times out,
the PIT entry is flushed.

We distinguish the cases of a router generating and forwarding
fNACKs. There are two reasons for a router to generate an
fNACK: (1) FIB lookup failure, i.e., an entry indicating the
next-hop of the received interest does not exist, or (2) all
FIB-specified outgoing interfaces are congested. A router that
generates an fNACK, sends it out on each interest incoming
interface listed in the appropriate PIT entry. It then flushes the
PIT entry.

A router must forward fNACKs on all downstream in-
terfaces (on which interests were received) if it receives an
fNACK on every upstream interface specified in the FIB,
regardless of whether parallel or in sequential forwarding is
used. Conversely, if an fNACK is not received on at least
one upstream interface (i.e., at least one time-out occurs) a
router must not forward fNACKs downstream. This is because
a time-out does not imply producer unreachability. A producer
might have actually received the interest and decided to drop
or ignore it. Figure 4 shows two state diagrams (one for
parallel and the other – for sequential case) for generating
and forwarding fNACKs.

A. Securing fNACKs

Similar to cNACKs, insecure fNACKs trigger content-
focused DoS attacks. Adv controlling a link can inject fake
fNACKs in response to interests on that link. This would
prevent consumers from obtaining requested content.

Securing fNACKs seems similar to doing the same for
cNACKs, i.e., ideally we would need origin authentication
and replay prevention. However, we cannot use the methods
from Section IV. If we require each fNACK to be signed,
Adv can easily generate many spurious interests that cannot be
forwarded by a particular router. That victim router would then
be forced to sign one fNACK for each spurious interest. Since
signing is often appreciably more expensive than verification
(e.g., in RSA), computational overhead for the victim router
would easily translate into a full-blown DoS attack.7

Furthermore, fNACK signing would trigger the need for a
routing PKI since verifying fNACK signatures cannot be done
mechanically: public key certificates must be fetched, verified
and revocation-checked. This represents another challenge for
supporting signed fNACKs.

However, if we assume that trust relationships can be es-
tablished between neighboring routers, fNACK authentication
can be easily achieved. In this case, fNACKs can be sent
downstream over a sequence of pair-wise secure channels
between neighboring routers. We can safely assume that such
long-term channels are maintained between every pair of
adjacent NDN or CCNx routers. One trivial way of securing
fNACKs hop-by-hop is by using a keyed hash, HMAC [21].
Replay prevention can be achieved via timestamps, especially
considering that adjacent routers are likely to maintain closely
synchronized clocks.

B. Experimenting with Secure fNACKs

We ran several experiments using ndnSIM 2.0 to demon-
strate the negligible impact of secure fNACKs. We used the
same topology as in Figure 1. Benign consumers request 10
contents per second, while malicious consumers send 100
interests per second; these interests cannot be forwarded by the
router. Our evaluation metric is processing time for the router
to forward an interest towards the producer. All consumers
(benign and malicious) implement the basic mode.

7Note that some digital signature techniques flip this balance, e.g., in DSA,
verification is more expensive than signing. However, the DoS attack would
then be even worse, since multiple routers would verify fNACK signatures.

6



(a) fNACK parallel interest forwarding strategy. (b) fNACK sequential interest forwarding strategy.

Fig. 4. fNACK generation and forwarding state diagrams (red/upper case: events, green/lower case: actions.)

0 200 400 600 800 1000
Simulation Time (sec)

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

Ro
ut

er
 F

or
w

ar
di

ng
 D

el
ay

 (µ
se

c)

MCP = 0%
MCP = 10%
MCP = 20%
MCP = 30%

Fig. 5. Router forwarding performance for different MCP rates.

We implemented two scenarios. In the first, we compared
router forwarding performance for different rates of MCP (0%,
10%, 20% and 30%). The total number of consumers in this
scenario is 200. Figure 5 shows that even with 30% MCP
rate, router forwarding performance is not affected. In the
second scenario, the number of consumers increases gradually.
Initially, there are 200 benign consumers. We then either: (1)
increase the number of benign consumers (one every second)
until reaching 700, or (2) introduce 500 malicious consumers
(one every second). Figure 6 illustrates the results: for up to
300 malicious consumers, router performance is similar to the
case where the network contains only benign consumers. Even
if the number of malicious consumers exceeds 300, router
performance decreases only by an average of 4%.

VI. MITIGATING PRODUCER-FOCUSED DOS ATTACKS

As discussed earlier, securing cNACKs comes at a price
of possible DoS attacks on content producers. We now discuss
some ways to mitigate the impact of such attacks.

One approach is to separate content-serving and cNACK-
generation activities. Producers can set up special-purpose
gateways that distinguish between interests requesting existing
and non-existing content. The former are forwarded to the

0 200 400 600 800 1000
Simulation Time (sec)

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

27.5

Ro
ut

er
 F

or
w

ar
di

ng
 D

el
ay

 (µ
se

c)

Increasing Benign Consumers
Increasing Malicious Consumers

Fig. 6. Router forwarding delay for gradually increasing number of
consumers.

actual content repository that serves requested content, while
the latter are forwarded to a special server that generates and
signs cNACKs. However, this only works for static content
because producers need to keep gateways updated with all
published content, which cannot be achieved for (dynamic)
content generated upon request.

By redirecting the attack towards the cNACK generation
server, producers can still continuously serve content. How-
ever, the network still needs to deal with the attack traffic,
which might consume a lot of bandwidth. Moreover, routers
would have to create PIT entries for all interests since they
cannot differentiate between interests requesting existing and
non-existing content. If routers were capable of such differ-
entiation, DoS attacks would be preventable closer to their
sources.

One way of achieving this, is by allowing a producer to
relay the list of all its published content names to routers. A
producer can use these names to construct a Bloom filter [22]
and disseminate it to routers processing interests for this pro-
ducer. The dissemination of such filters depends on producer’s
policies. For instance, a producer can fall back on Bloom filters
when its load of generating and signing cNACKs reaches a
certain threshold.

7



0 200 400 600 800 1000
Number of elements (n)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
r[

fa
ls

e
 p

o
si

ti
v
e
]

m = 2KB, k = 1
m = 2KB, k = 2
m = 2KB, k = 3
m = 3KB, k = 1
m = 3KB, k = 2
m = 3KB, k = 3
m = 4KB, k = 1
m = 4KB, k = 2
m = 4KB, k = 3

(a) Variable filter size, number of elements in the set S, and number of hash
functions used.

200 300 400 500 600 700 800 900 1000
Number of elements (n)

10-35

10-32

10-29

10-26

10-23

10-20

10-17

10-14

10-11

10-8

10-5

P
r[

fa
ls

e
 p

o
si

ti
v
e
]

m = 2KB
m = 3KB
m = 4KB

(b) Variable filter size and number of elements in the set S, and optimized
number of hash functions used.

Fig. 7. Bloom filter false positive probability.

Bloom filters are created by producers periodically, or
whenever new content objects are published. These filters can
be implemented as content objects with a specific type, e.g.,
BLM-FLTR. Therefore, they will be cached by routers and
used to satisfy pending interests, thus clearing corresponding
PIT entries. The only difference is that Bloom filters, if cached,
will not be used to satisfy future interests. Moreover, the
caching duration of these filters depends on the Freshness
value included in their headers. Producers need to carefully set
this value to be compatible with the frequency at which new
content is being published. For instance,

Freshness =
1

avg(f)|τ
, (1)

where the denominator represents the average value of content
publishing frequency over a specific period of time τ .

Furthermore, the size of a Bloom filter depends on the
number of elements (content names) loaded into it. Recall that
large content objects can be divided into smaller segments,
each having a unique name. We claim that the size of each
Bloom filter should be upper bounded by the maximum size
of a content segment. This avoids the case where a Bloom filter
is split into multiple segments, thus requiring multiple interests
to request the whole filter. Since producers disseminate Bloom
filters as a reply to a single interest, they should fit in a single
content segment.

On the other hand, Bloom filter’s false positive probability
(illustrated in Figure 7) depends on its size m (in bits), the
number of elements n in the set S, which are loaded into
the filter8, and the number of used hash functions k. This
false positive probability increases as n and k increase, and
decreases as m increases. Assuming that the hash functions
used (h1, . . . , hk) map each element of S into a random
value uniformly distributed over the range [1, . . . ,m], the false

8In this case, S is the set of published content names.

positive probability can be expressed as in Equation 2 [23].

Pr [false positive] =

(
1−

(
1− 1

m

)kn)k
≈
(
1− e−

kn
m

)k
(2)

Figure 7(a) illustrates the Bloom filter’s false positive
probability when varying m, n, and k. However, for a given
m and n, the number of hash functions k can be optimized. In
this case, the false positive probability can be calculated using
Equation 3 [23].

Pr [false positive] = (0.6185)
m
n (3)

In practice, producers can optimizes the number of hash
function in order to achieve lower false positive probability.
However, an upper bound of k can be set to limit the hashing
overhead required by routers. Figure 7(b) demonstrates the
Bloom filter’s false positive probability when varying m and
n, and optimizing k.

Based on the plots in Figure 7, loading all published
content names into a single Bloom filter (which size is upper
bounded by the maximum size of a single content fragment),
might not lead to a desired false positive probability. In
this case, producers can create a separate Bloom filter for
each namespace (or sub-namespace) they publish. Therefore,
achieving the desired false positive probability might entail an
upper bound on the number of content published under each
namespace. It might also require redesigning the namespace
hierarchy of producers implementing the aforementioned coun-
termeasure. However, we will not discuss this optimization
problem any further since we believe it is out of the scope
of this paper. Moreover, the number of interests requesting
non-existing content that forwarded to producers due to the
probabilistic nature of Bloom filters, can be dramatically
minimized with proper configuration of filters parameters.

8



Although Bloom filters are content objects that follow the
same path, in reverse, of their corresponding interests, it is
worth mentioning that they should not be delivered to con-
sumers. The reason is because malicious consumers gain attack
advantages when possessing these filters. For instance, Adv
can pre-compute a list of content names that pass verification
and use it to launch a distributed DoS attack against the target
producer.9 Moreover, such attacks can be circumvented if edge
ISPs do not forward Bloom filters towards their customers, or
filters are re-created periodically with different parameters.

VII. RELATED WORK

In the current Internet, negative acknowledgments are pro-
posed as a form of error notifications in error control methods.
For instance, at transport layers, Automatic-Repeat-Request
(ARQ) implements error control method in Go-Back-N and
Selective Repeat [24]. In Go-Back-N, receivers detecting a
packet loss send a NACK packet to the sender indicating
the missing packet. In this case, the latter will restart the
transmission from the lost packet. On the other hand, in
Selective Repeat, receivers still use a NACK to notify a
packet loss and the sender only resend that specific packet.
Compared to Go-Back-N, Selective Repeat reduces the number
of retransmissions.

In broadcast (one-to-many) communications, NACKs are
preferred over ACKs to reduce network congestion and packets
collision [25]. The reason is because using selective NACKs
allows reducing the number of packets sent by receivers, hence
reducing the probability of packet collision. However, NACK
based mechanisms are prone to NACK implosion. In case
of packet loss, the sender receives many NACKs from all
receivers. Stran et al. [26] propose a time-based mechanism
to reduce NACK implosion. Every receiver detecting a packet
loss initiates a random timer. The receiver having the shortest
random interval unicasts a NACK to the sender, which imme-
diately multicasts the NACK to the other receivers. All other
receivers having the same missing packet thereupon suppress
their own NACKs. In [27], Yamamoto et al. demonstrate that
the delay incurred by a NACK-suppression mechanism does
not affect the performance of NACK multicast control flow.

In 802.11 networks, selective NACKs can be used for the
RTS/CTS handshake mechanism in order to reduces network
congestion and packets collision. The result is a considerable
throughput improvement and delay reduction [28, 29]. In [30],
NACKs at data-link layer are combined with NACKs at trans-
port layer in order to improve video streaming performance
over 3G cellular networks. In case of frame loss, a mobile
device sends a selective data-link NACK to the base station. If
the list frame has not been recovered after several successive
NACKs, a transport-layer NACK is sent requesting resending
the entire packet.

At transport layer, NACKs are used to provide reliable
communications [31–34]. [31, 32] provide NACK-Oriented
Reliable Multicast (NORM) Transport Protocol. NORM forms
a reliable transport protocol between one or more senders
to a group of receivers over an IP multicast network. In
NORM, receivers use a selective NACK to notify senders

9We do not consider the case where malicious routers deliver Bloom filters
to malicious consumers using side channels.

about packets loss. A similar approach is used in [33], where
NACKs are used as a packet loss detection mechanism in
satellite communication. In this case, a NACK is generated
by sending a signal. Senders detect NACK by monitoring the
total electrical power in the frequency band used for uplink
from the receiver. This kind of NACK enables several receivers
to share a low-speed uplink circuit simultaneously preventing
NACKs collision. In [34], Obraczka surveys multicast transport
protocols summarizing NACK-based protocols, ACK-based
protocols and some other hybrid approaches.

VIII. CONCLUSIONS

NDN and CCNx are two prominent ICN instances de-
signed to address limitations of the current IP-based Internet.
Network-layer NACKs are an important feature, adoption of
which has been debated for both CCNx and NDN. As we
showed in this paper, NACKs can be beneficial in mitigating
the impact of Interest Flooding attacks. Despite their benefits,
we also showed that NACKs have certain challenging security
implications. We identified two types of NACKs (fNACKs and
cNACKs) and explored their security requirements. We then
discussed how secure cNACKs can trigger producer-focused
flooding attacks and discussed some potential methods for
mitigating these attacks.

REFERENCES

[1] “Named Data Networking project (NDN),” http://named-data.org.
[2] “National science foundation of future Internet architecture (FIA)

program,” http://www.nets-fia.net/.
[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,

“A survey of information-centric networking,” Communications Maga-
zine, IEEE, vol. 50, no. 7, pp. 26–36, 2012.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of
CoNEXT, 2009, pp. 1–12.

[5] “Content centric networking (CCNx) project,” http://www.ccnx.org.
[6] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive

forwarding in named data networking,” ACM CCR, vol. 42, no. 3, pp.
62–67, 2012.

[7] “NACKs in ndnSIM2.0?” http://www.lists.cs.ucla.edu/pipermail/
ndnsim/2015-February/thread.html, accessed: 2015-02-15.

[8] M. Mosko, “CCNx messages in TLV format draft-mosko-icnrg-
ccnxmessages-00,” 2015.

[9] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in named
data networking,” in Proceedings of ICCCN, 2013, pp. 1–7.

[10] “CCNx node model,” http://www.ccnx.org/releases/latest/doc/technical/
CCNxProtocol.html.

[11] “CCNx 1.0 protocol specications roadmap,” http://www.ietf.org/
mail-archive/web/icnrg/current/pdfZyEQRE5tFS.pdf.

[12] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named data networking (NDN) project,” Technical Report NDN-0001,
Xerox Palo Alto Research Center-PARC, 2010.

[13] A. Tanenbaum and W. David, “Computer networks, 5th edition,” 2010.
[14] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC 2616: Hypertext transfer protocol–HTTP/1.1,”
1999.

[15] C. Ghali, G. Tsudik, and E. Uzun, “Network-layer trust in named-data
networking,” ACM CCR, vol. 44, no. 5, pp. 12–19, 2014.

[16] C. Ghali, G. Tsudik, and E. Uzun, “Needle in a haystack: Mitigating
content poisoning in named-data networking,” in Proceedings of SENT
Workshop, 2014.

[17] D. Mills, J. Martin, J. Burbank, and W. Kasch, “RFC 5905: Network
time protocol version 4: Protocol and algorithms specification,” 2010.

9



[18] A. Afanasyev, I. Moiseenko, L. Zhang et al., “ndnSIM: NDN simulator
for NS-3,” University of California, Los Angeles, Technical Report,
2012.

[19] “Overall ndnSIM 2.0 documentation,” http://ndnsim.net/2.0/.
[20] J. Postel et al., “RFC 792: Internet control message protocol,” 1981.
[21] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for

message authentication,” in Proceedings of CRYPTO. Springer, 1996,
pp. 1–15.

[22] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[23] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[24] S. Lin, D. Costello, and M. Miller, “Automatic-repeat-request error-
control schemes,” Communications Magazine, IEEE, vol. 22, no. 12,
pp. 5–17, 1984.

[25] S. Pingali, D. Towsley, and J. F. Kurose, “A comparison of sender-
initiated and receiver-initiated reliable multicast protocols,” in ACM
SIGMETRICS, vol. 22, no. 1, 1994, pp. 221–230.

[26] J. Satran, G. Gershinsky, and B. Rochwerger, “Nack suppression for
multicast protocols in mostly one-way networks,” Oct. 19 2004, US

Patent 6,807,578.
[27] K. Yamamoto, Y. Sawa, M. Yamamoto, and H. Ikeda, “Performance

evaluation of ack-based and nak-based flow control schemes for reliable
multicast,” in Proceedings of TENCON, vol. 1, 2000, pp. 341–345.

[28] M. Impett, M. S. Corson, and V. Park, “A receiver-oriented approach
to reliable broadcast in ad hoc networks,” in Proceedings of WCNC,
vol. 1, 2000, pp. 117–122.

[29] N. M. Sabah and A. Hocanin, “The use of negative acknowledgement
control packets (nacks) to improve throughput and delay in ieee 802.11
networks,” in Proceedings of ICCTD, 2010, pp. 136–140.

[30] H. Liu, W. Zhang, S. Yu, and J. Cai, “A client-driven scalable cross-
layer retransmission scheme for 3g video streaming,” in Proceedings of
ICME, 2005, pp. 4–pp.

[31] B. Adamson, C. Bormann, M. Handley, and J. Macker, “RFC 5740:
NACK-oriented reliable multicast (norm) transport protocol,” 2009.

[32] B. Adamson and C. Bormann, “RFC 5401: Multicast negative-
acknowledgment (NACK) building blocks,” 2008.

[33] E. Ichihara, K. Kikuchi, T. Tsuchida, K. Kawazoe, and H. Kazama,
“Reliable ip-multicast protocol,” April 2003.

[34] K. Obraczka, “Multicast transport protocols: a survey and taxonomy,”
Communications Magazine, IEEE, vol. 36, no. 1, pp. 94–102, 1998.

10

View publication statsView publication stats

https://www.researchgate.net/publication/281626429

