
1

A Scalable and Error-Tolerant Solution for Traffic
Matrix Assessment in Hybrid IP/SDN networks

Jaime Galán-Jiménez∗, Marco Polverini† and Antonio Cianfrani†
∗INTIA Research Institute, University of Extremadura, Cáceres, Spain
†DIET Department, University of Rome ”Sapienza”, Rome, Italy

Email: ∗jaime@unex.es †name.surname@uniroma1.it

Abstract—The advent of the Software Defined Networking
(SDN) paradigm represents a great opportunity for the definition
of new network management solutions. In this work, we focus
on the definition and implementation of a novel technique to
solve the Traffic Matrix Assessment (TMA) problem from the
perspective of an Internet Service Provider. Since the migration
from legacy IP networks to fully-deployed SDN ones needs to
be incremental due to budget and technical constraints, this
paper proposes a mixed measurement and estimation scalable
solution for hybrid IP/SDN networks to accurately solve the
TMA problem by exploiting the availability of flow rule counters
in SDN switches. The performance evaluation shows that our
error-tolerant solution is able to assess the TM with a negligible
estimation error by only measuring a small percentage of traffic
flows, overcoming other state-of-the-art algorithms proposed in
the literature. Moreover, the performance analysis of the pro-
posed implementation using the OpenDaylight controller over an
emulated network environment, shows that a trade-off between
the quality of the assessed TM and its impact on the network in
terms of control messages to be sent can be found by properly
tuning the number of measured flows.

Index Terms—Traffic Matrix Assessment, Software-Defined
Networks, Hybrid IP/SDN, OpenDaylight.

I. INTRODUCTION

THE centralization of the control plane functions achieved
by the introduction of the Software Defined Networking

(SDN) paradigm, led to the definition of novel Traffic Engin-
eering (TE) solutions able to improve the Quality of Service
(QoS) provided to end users. In this direction, a crucial point
for the effectiveness of TE strategies is the assessment of the
traffic relationships in the network, i.e., the so called Traffic
Matrix (TM).

The Ingress-Egress (IE) TM is a data structure reporting
the intensity of the traffic flows entering the network from an
Ingress node and leaving it through an Egress node. The Traffic
Matrix Assessment (TMA) problem is a well investigated, but
still open, research topic [1]. The advent of SDN allows the
definition of new traffic measurement techniques, thanks to the
availability of specific byte counters associated to the entries
of flow tables. As an example, in [2] the authors propose an
OpenFlow based framework to assess the TM of a network,
while in [3] an algorithm to aggregate/de-aggregate flow table
entries for measuring specific targeted flows is presented.

One of the main issues in the process of measuring the
TM using SDN rules counters is the limited size, in terms of
number of installed rules, of the Ternary Content Addressable

Memories (TCAMs) used to build the flow tables of SDN
switches [4], [5]. Taking this constraint into account, authors
of [6] define the flow spread parameter as a quantitative
indicator of the most attracting flows to be measured. The
idea is therefore to limit the number of flows to measure
and determine the rest of the TM using a specific estimation
algorithm.

However, among the solutions proposed in the literature to
estimate a TM, two open issues have to be considered. As
first, the measurement-based approaches for SDN assume that
a specific IE flow is measurable by means of a single flow
rule. Actually, inserting a rule able to match the Ingress node
and the Egress node of an incoming packet is not possible,
since this information is not present in the packet header; the
only available option is to search for a match in the Source
and Destination IP fields but, in this way, a specific Origin
Destination (OD) flow is measured. Moreover, the presence
of measurements errors, mainly due to synchronization issues
during the measurements collection phase, is not taken into
account and can lead to the not applicability of existing
estimation algorithms, such as the popular Tomogravity [7]
one.

In this work, we propose a mixed measurement-estimation
algorithm able to define IE flow measurement rules using
a scalable rule splitting method, and to overcome potential
measurement errors using the Fanout estimation algorithm
[8]. Our solution is also compatible with a hybrid IP/SDN
network, i.e., a network where legacy IP routers and novel
SDN switches coexist.

Finally, there is a lack of real implementations to validate
the effectiveness of existing solutions, as well as to evaluate
their impact on the network performance. For this reason,
we also provide an OpenFlow-based implementation for the
OpenDaylight controller [9]; we highlight the effectiveness of
our solution in the TMA and the limited impact on the network
functioning in terms of execution time and signalling traffic.

Therefore, the main contributions of the present paper can
be summarized as follows:
• the proposal of a mixed measurement/estimation-based

algorithm, namely CofFE-FAN, to assess the TM of a
hybrid IP/SDN network;

• the definition of a scalable method to obtain measure-
ments related to IE traffic flows;

• the implementation of the CofFE-FAN algorithm for the
OpenDaylight controller;

2

• the definition of an experimental methodology to evaluate
the performance of our CofFE-FAN implementation on
an emulated network environment.

The rest of the paper is organized as follows: Sec. II
overviews previous works on TM estimation and on the inter-
relation of that problem with SDN environments. The hybrid
IP/SDN TMA scenario considered in this work is described
in Sec. III. Sec. IV introduces the idea of rule splitting
during the process of TMA, which is exploited by the CofFE-
FAN algorithm described in Sec. V, a mixed measurement
and estimation-based technique proposed to solve the TMA
problem. In Section VI, an experimental methodology to
implement CofFE-FAN on an real SDN network is provided,
whilst in Section VII a performance evaluation is carried out
to show the effectiveness of the proposed solution. Finally,
some conclusions are drawn in Section VIII.

II. RELATED WORK

In the research area of traffic measurement and monit-
oring, SDN represents an opportunity for the definition of
new lightweight solutions. The availability of a byte counter
associated to each flow rule into the flow tables of the SDN
switches, represents the novel aspect with respect to classical
IP devices. Then, differently from classical measurement and
monitoring traffic tools, such as Netflow [10] and Sflow [11],
where extra operations (i.e., packet classification) with respect
to the normal data plane processing and dedicated hardware
are needed [12], traffic statistics can be collected without
increasing the computation load of switches by exploiting the
use of SDN counters.

The basic approach of SDN-based traffic measurement tools
relies i) on the installation of measurement-related rules, able
to measure selected traffic flows, and ii) on the collection of
rules statistics at the SDN controller.

Anyway, the definition of such techniques requires to over-
come two main limitations. The flow tables of the SDN
switches are realized by means of TCAMs, which are known
to have limited size [4], [5]. Moreover, the continuous polling
performed by the SDN controller to collect traffic statistics on
SDN switches, increases the signalling overhead and generates
measurement inaccuracy due to the latency in the gathering
phase [13], [14].

To cope with the two aforementioned problems, research
efforts have been spent in proposing mixed TMA solutions [2],
[6], [15]: the idea is to measure only a subset of flows, and
then assessing the remaining ones by means of an estimation
algorithm. In this way, it is possible to both reduce the
memory space required to install new monitoring rules and,
as a consequence, the duration and the signalling traffic of
the gathering phase. In this direction, it is crucial to have a
criterion to identify the most important flows to measure.

In [6], authors propose the flow spread parameter as a way to
drive the decision process: it represents the variability range of
a given traffic flow, calculated by solving a min/max problem
with respect to the size of the target flow, being constrained
by the routing and the links loads.

In the Largest Flow First algorithm (LFF), proposed in
[15], the most important flows to measure are the ones with

the highest intensity. Since this information is not known in
advance, LFF defines a method to roughly estimate what are
the most loaded flows and then, to install monitoring rules so
that to measure them.

In [2], Tootoonchian et al. present OpenTM, a flow monit-
oring tool developed for OpenFlow networks. OpenTM uses
built-in features of OpenFlow switches to directly and ac-
curately measure the TM with a low overhead. Addition-
ally, OpenTM uses the routing information learned from the
OpenFlow controller to intelligently choose the switches from
which to obtain flow statistics, thus reducing the load on
switching elements.

iSTAMP [16], in turn, proposes an intelligent sampling
algorithm to select the most informative traffic flows, using
information gathered throughout the measurement process.
More precisely, the flow table entries of the SDN switches are
dynamically partitioned into two parts: in the first part, flows
are aggregated so that to improve the accuracy of the traffic
estimation process, while the second portion is dedicated to
measure the most rewarding flows.

In [17], authors propose an inference framework which
utilizes Kalman filtering to create an accurate and timely TM.
In order to reduce the time needed to collect all the statistics
from the flow tables, a switch selection strategy is defined.
The aim is to minimize the entropy of the estimation process.

Elephant flow detection and TMA in a Data Center network
are the main targets of the algorithms described in [18]. The
proposed approaches combine the direct measurements offered
by SDN and inference techniques based on network tomo-
graphy to derive a mixed network monitoring scheme. This
mixed scheme aims at finding a balance between measurement
overhead and accuracy.

Finally, Tian et al. propose a framework to solve the TM
estimation problem in an SDN-based IP network [19]. In this
case, TCAM utilization is improved by guaranteeing that each
flow added to a flow table for traffic measurement cannot be
derived from other flows already installed in the flow tables
of the SDN nodes.

Even though a theoretical evidence of the efficiency of
SDN-based measurement solutions can be proven, three im-
portant aspects are still not covered when tackling the TMA
problem: i) it is assumed that an IE flow can be measured
by installing only one flow rule, which is an unrealistic as-
sumption; ii) potential errors collected during the measurement
phase are not considered; iii) no real implementations are
provided to quantify the effective impact of the proposed
solutions on the network functioning. For this reason, in
this paper we face these three aspects by proposing the
mixed measurement-estimation CofFE-FAN algorithm, and
an OpenFlow-based implementation using the well-known
OpenDaylight controller.

III. THE HYBRID IP/SDN TMA SCENARIO

As previously introduced, the main goal of this work is to
accurately assess the IE TM of an Internet Service Provider
(ISP) network. Since the migration of traditional IP networks
toward SDN-capable ones is devised to be incremental due to a

3

A

CofFE-FAN Algorithm

SDN
Controller

SDN Switch

Origin
Network 2

Origin
Network 3

Origin
Network 1

Destination
Network 2

Destination
Network 3

Destination
Network 1

Prefix P1

Prefix P2

Prefix P3

1
2 4

3

Legacy IP
Router

Port Ids

x

y

B

C

D
E

F
G

Figure 1: Hybrid IP/SDN TMA system description.

costly investment and the adaptation to a new technology [20],
we consider the TMA problem in a hybrid IP/SDN scenario
composed of a set of legacy IP routers and a set of upgraded
SDN switches [21].

A. The hybrid IP/SDN network scenario

Fig. 1 depicts a hybrid IP/SDN network composed of 2 IP
routers and 5 SDN switches. The border nodes, IP routers
and/or SDN switches, are able to reach a set of external
networks determined by the execution of the Border Gateway
Protocol (BGP). In order to set the interior routing, IP routers
execute an Interior Gateway Protocol (IGP) to find network
paths and fulfil the routing tables, whereas the forwarding
tables of SDN switches are directly configured by the SDN
controller according to specific policies defined by an al-
gorithm installed on top of it. An interaction between the
SDN controller managing the internal domain and the BGP
is required to notify the reachability of external networks.

Concerning the definition of traffic flows, we aim to distin-
guish between OD flows and IE flows. A traffic flow originated
by an origin network and destined to destination network is
referred to as OD flow. The aggregation of all the OD flows
entering the ISP network from the same ingress node and
exiting it through the same egress node is referred to as IE
flow. Considering Fig. 1, two IE flows are present: the one
from node A to node G, composed by two OD flows (i.e., the
flow from Origin Network 1 to Destination Network 1 and the
flow from Origin Network 2 to Destination Network 3), and
the one from node B to node G, composed by a single OD
flow (i.e., flow from Origin Network 3 to Destination Network
3).

A flow rule, to be installed in the flow table of an SDN
switch, associates a specific action to incoming packets on the
basis of its matching condition. In particular, flow rule r is
defined as the pair r = {Match,Action}, where Match can
be constructed considering different packet fields from several
layers, and Action translates the forwarding policies adopted
by the controller to this type of packet.

Regarding management tasks, the byte counters are avail-
able for each interface of the IP routers via Network Con-
figuration Protocol (NETCONF) measurements. These values
allow the network administrator to know the amount of traffic

traversing each IP router. For the case of SDN link load meas-
urements, the SDN controller is able to request information
to a particular SDN switch related to the volume of traffic
handled by its interfaces.

An important feature of SDN devices is that specific traffic
counters, named rule counters, are associated to the flow rules
installed in the flow tables of the SDN switches: each of these
counters measures the amount of traffic having a matching
with the related flow entry. As in the case of link loads, this
information can also be retrieved by the SDN controller by
means of OpenFlow messages.

B. Model of the TMA problem

Let G(N ,L) be the graph representing the network of an
ISP, where N is the set of N nodes and L is the set of L
directed links. The set of nodes is divided into IP routers (NIP)
and SDN switches (NSDN). The external networks reachable
by means of the node i are included in the set Ei. If Ei 6= ∅
then i is a border node, otherwise it is a transit router. The
composition of these sets is determined by the execution of
the BGP protocol.

Considering the i-th pair of nodes (si, di) of the set N×N ,
the quantity xi reports the intensity of the IE traffic demand
entering the network at node si and leaving it through the
node di. The intensities of all IE traffic flows are stored in the
vector x, which represents the IE TM.

The path followed by the i-th IE traffic demand is described
by the column vector ri, of length L, where each element ri(l)
reports the fraction of traffic demand i that is routed over the
link l. The routing matrix R is the collection of the vectors
ri for all possible couple of nodes in N × N . The classical
TMA problem is then described by the following equation:

y = R · x (1)

where y is the so called link count vector, in which the
element yl represents the amount of traffic carried by the link
l.

Generally, both y and R are known in advance, while x has
to be determined. Unfortunately, the linear system reported in
Eq. (1) is highly under-determined and then, it admits infinite
solutions. The TMA problem consists in selecting the most
suitable vector x that is both a solution of Eq. (1) and as close
as possible to the actual TM.

IV. THE RULE SPLITTING IDEA TO ASSESS THE TM

Starting from the TMA problem reported in Eq. (1), our aim
is to insert the information provided by the SDN rule counters
so that to reduce the under-determination of the linear system.
To do that, we perform two different operations:
• the rule counters aggregation;
• the rule counters splitting.
The rule counters aggregation operation is needed since

the rule counters are able to measure OD flows, while Eq.
(1) requires information about IE flows. In this way, the rule
counters aggregation operation allows to aggregate the rule
counters on the basis of the Egress nodes the flows are directed

4

Destination Prefix Next Hop Traffic Counter

P1 E r 2

P3 E r 1 destinations reached

through the same

egress node

(a)

Destination Prefix Next Hop Traffic Counter

P1 E r 2

P3 E r 1

Incoming Interface

P3 E r 1

1

2

-

(b)

Figure 2: Example of the SDN forwarding table of node ”D” before (a) and after (b) the rule splitting operation.

to. Further details about this operation will be provided in the
next section.

The rule counters splitting operation represents one of the
main contribution of the paper: it allows to extract new in-
formation from rule counters performing simple modifications
to the SDN flow tables, i.e., inserting new rules extracted by
splitting the existing ones. The key idea is that the new rules
will provide traffic information with a higher granularity with
respect to link load information; at the same time, with respect
to existing solutions, our approach is highly scalable since
the granularity level of measurements is lower than the ones
provided by OD flow measurements, i.e., the insertion of rows
matching both IP Source and IP Destination addresses.

The core operation proposed is the de-aggregation of an
existing flow rule on the basis of the incoming interfaces:
this procedure is referred to as father-child splitting. Given
an existing rule, it is possible to increase the granularity
level of its counter by splitting the rule into two (or more)
rules, where the ”Incoming Interface” is used as a new
matching field. In this way two (or more) counters will be
available, providing different traffic related information: given
two counters obtained by a father-child splitting of an original
flow rule, the IE flows measured by a counter (child) will be
different than the ones measured by a different one (different
child).

To better explain the father-child splitting procedure let us
consider the network scenario of Fig. 1 and let us focus on
node D, whose (simplified) flow table is reported in Fig. 2a.
In the flow table (Fig. 2a), where the matching field is only
the IP Destination address, two different rules are reported:
one for the traffic directed to Destination Network 3 and one
for traffic directed to Destination Network 1. Let us focus
on the first rule: it allows to measure the aggregated traffic
information related to the green and the red OD flows of Fig.
1. These two OD flows belong to different IE flows: i) the
green one is a portion of the IE flow between nodes A and G,
while ii) the blue one is a sub flow of the IE traffic between
nodes B and G. To increase the IE granularity level of the
counter information, it is needed to split the (father) rule into
two different rules (children): one for the green flow and the
other one for the blue one.

Looking at Fig. 1, it is clear that the two OD flows
have different incoming interfaces for the switch D. In other
words, it is possible to de-aggregate the contribution of these

two flows by installing two new flow rules in the switch
D: each one of them will have exactly the same fields of
the father rule, with an extra matching field related to the
incoming interface. In Fig. 2b the new table after the splitting
procedure is reported. Clearly, these children rules must have
a higher priority with respect to the father one. It is worth
to mention that, generally, this modification does not lead to
the measurement of a single IE flow, but simply allows to
perform measurements with a thinner granularity with respect
to the initial rules.

V. COFFE-FAN ALGORITHM FOR TM ASSESSMENT

In this section we present the CofFE-FAN algorithm, a
mixed measurement and estimation based technique, whose
aim is the assessment of the IE TM in a hybrid IP/SDN net-
work. CofFE-FAN algorithm consists in the execution of three
main functional blocks: i) the flow rule counters aggregation,
ii) the de-aggregation selection, and iii) the estimation phase.
Next, we describe the details of each functional block.

A. Flow Rule Counters Aggregation

The main goal of this functional block is to aggregate, for
each SDN switch, the traffic related information available in
the flow table, according to the egress points. We point out
that this function does not modifies the rules installed in the
flow tables, nor installs new rules. It simply processes the
data stored in the flow tables of the SDN switches to extract
an aggregated measure.

In order to clarify this aspect, let us refer to the situation
depicted in Fig. 2a, reporting a portion of the flow table of the
switch D of Fig. 1. The first rule allows to measure the sum-
mation of the green and the red OD flows, while the second
one is intended to measure the blue OD flow. All these flow
rules measure traffic flows which leave the network from the
same egress node. Since the final objective is the assessment of
the IE TM, we need to aggregate the measurements performed
by different flow rules that are related to destinations reached
by means of the same egress node. Specifically, these rules
are all the ones such that the network destination prefix is
contained in the same set Ei.

We refer with the symbol Fi to the set of flow rules installed
at node i ∈ NSDN. Each rule is composed by the following

5

Algorithm 1 flow rule counters aggregation function

Require: G = (N ,L), {Fi}∀i∈NSDN , {Ei}∀i∈N , R
1: define RSDN = ∅ and ySDN = ∅
2: for all i ∈ NSDN do
3: for all n ∈ N do
4: tmp =aggregate counters(Fi, En)
5: ySDN.append(tmp)
6: rSDN =select flows(R,n)
7: RSDN.append(rSDN)
8: end for
9: end for

three information1: i) the destination network prefix, ii) the
next hop node, and iii) the flow rule traffic counter. The
pseudo code of the flow rule counters aggregation function
is reported in Algorithm 1.

The flow rule counters aggregation function takes as input
the network graph, the flow tables of the SDN switches and
the set of destinations reachable by means of each network
node. It produces as output, a matrix RSDN related to the IE
flows passing through the SDN switches and the vector ySDN

of the traffic measurements achieved by the initial installed
flow rules. In line 1, the matrix RSDN and the vector ySDN

are defined as empty. Then (line 2), at turn, the flow table
of each SDN switch i is considered. Egress nodes n are
analysed one at time (line 3), and for each of them the
function aggregate counters is applied. This function searches
the subset of rules installed in the flow table of node i having
as destination a network prefix reachable by means of the
egress node n. Then, the summation of the traffic counters
related to these rules is returned as output. The result of
the previous operation is stored in the ySDN vector (line 5).
Moreover, in line 6, by means of the function select flows, the
row vector rSDN is computed. Each component of this vector
represents the fraction of an IE flow steered through the SDN
switch i and leaving the network through egress node n. In
line 7, this vector is appended to the matrix RSDN.

The output of the flow rule counters aggregation function
can be used to extend the system in Eq. (1) as follows:[

R
RSDN

]
· x =

[
y

ySDN

]
(2)

In [22] it is shown the benefit achieved by this new
information on the resolution of the TMA problem.

B. De-aggregation Selection

Despite flow rule counters aggregation function execution
allows the reduction of the gap between the number of
unknowns and the rank of the matrix describing the TMA
problem, this last is still under-determined (this is true in
hybrid scenarios, as proven in [22]). Further measurements
can be performed by properly defining a set of new flow rules

1Flow rules are assumed to have this structure due to the considered
scenario, i.e., the one of a hybrid IP/SDN network.

to install on the flow tables of the SDN switches. In CofFE-
FAN algorithm, this is done by defining the de-aggregation
operation.

A de-aggregation operation consists in the application of the
father-child splitting strategy introduced in section III on the
set of rules installed on a given SDN switch that are related
to the same egress node. Specifically, considering an SDN
switch i, an egress node n, and a link l entering the node i,
then the 3-tuple (i, n, l) refers to the recursively application
of the father-child splitting on all the flow rules installed at
node i, such that the specified destination prefix is reached by
means of the egress node n. The children rules will have the
same fields of the father one, plus the specification of link l
as input port.

Clearly, the cost of a de-aggregation operation is evident:
a set of new rules must be installed in the flow table of an
SDN switch. More precisely, the number of new flow rules
produced by a de-aggregation operation (i, n, l) is O(|En|).
Since the TCAMs used to build the flow tables are limited
in size [4], [5], a strategy to select the most suitable de-
aggregation operations needs to be defined. To be convenient,
a de-aggregation operation must lead to a consistent reduction
of the uncertainty in the TMA problem.

For this reason, we define a score function to decide whether
a de-aggregation operation is convenient or not. The score
exploits the idea of flow spread defined in [6], a parameter that
provides an indication of the width of the variability range of
the intensity of a flow in the TMA problem. Considering the
de-aggregation operation (i, n, l), its score S(i,n,l) is defined as
the summation of the flow spread of all the IE flows entering
the switch i by means of link l and leaving the network through
the egress node n.

Once the scores of all possible de-aggregation operations
have been calculated, the flow rule de-aggregation function,
whose pseudo code is reported in Algorithm 2, is executed.

The flow rule de-aggregation function takes as input the
routing matrix, the matrix RSDN of the routing involving only
the SDN switches, the set of all de-aggregation operations, the
available space of the TCAMs of the SDN switches (αi), the
set of external networks reachable through border nodes and
the flow tables of the SDN switches. It returns as output: i)
the matrix R∗ that specifies the relation between each selected
de-aggregation operation and the IE traffic flows, and ii) the
set M of selected new measurement rules.

As first (line 1), the data structure that will contain the
output is defined as empty. The extended routing matrix Rext,
given by the union of the matrices R and RSDN, is defined at
line 2. Then, SDN switches are considered one at time (line 3).
For each of them, an ordered list of de-aggregation operations
is created by using the sort function. The criterion is to order
the items of the set {(i, n, l)}i from highest score to lowest.
After that, the list is inspected (line 5). If the TCAM of the
considered SDN switch still has room to host new flow rules
(line 6), then the algorithm analyses the impact of the current
de-aggregation operation on the extended system. To do that,
as first we need to define the equation that can be written
by performing the operation under test. This is done (line 7)
by means of the select flows function, which returns a row

6

Algorithm 2 flow rule de-aggregation function

Require: {(i, n, l)}∀i∈NSDN , {αi}∀i∈NSDN , {En}∀n∈N , R,
RSDN, {Fi}∀i∈NSDN

1: define R∗ = ∅, M = ∅
2: Rext =

[
R

RSDN

]
3: for all i ∈ NSDN do
4: list =sort({(i, n, l)}i, {S(i,n,l)}i)
5: for all (i, n, l) ∈ list do
6: if αi ≥ |En| then
7: r∗ =select flows(R,n, l)

8: if rank(

[
Rext

r∗

]
) > rank(Rext) then

9: Rext.append(r∗)
10: R∗.append(r∗)
11: new rules =de aggregate(Fi, (i, n, l), En)
12: M.insert(new rules)
13: αi− = |new rules|
14: end if
15: end if
16: end for
17: end for

vector whose j-th element is the percentage of the IE flow j
that enters the node i by means of the link l, and leaves the
network through the egress node n. Next (line 8), the impact of
the de-aggregation operation under test on the extended system
is evaluated. If the insertion of the row vector r∗ on the matrix
Rext produces an increase of the rank, then the de-aggregation
(i, n, l) is considered and the algorithm status is updated (lines
9-13). In particular, the de aggregate function (line 11), finds
the fathers rules, i.e., all the flow rules in the TCAM of the
considered switch i that are related to destinations reached
through the egress node n. Then, children rules are generated
by adding an additional field to the father rules specifying
the link l as input port, and a higher level of priority. In
case the current de-aggregation operation does not allow to
reduce the uncertainty of the TMA problem, the algorithm
starts analysing the next item in the list.

Once the flow rule de-aggregation function is performed,
the controller starts to install the new measurement rules
contained in M.

C. TM Estimation

Once the new flow rules have been installed, it is possible
to obtain the related measurements. Let us refer to this set
of new measurements as y∗2. The TMA problem can now be
formalized as follows: R

RSDN

R∗

 x =

 y
ySDN

y∗

 (3)

Depending on the availability of free space in the TCAMs of
the SDN switches, the number of new flow rules that the ISP

2note that the i-th element of this vector is given by the summation of the
rule counters associated to flow rules related to the i-th selected de-aggregation
operation.

Network Controller

5

Link Counters Collection

CofFE Execution

Rules Counters Collection

 = ( ,),R

y



y
∗

TM

Fanout Estimation

New rules installation
4

3
2

1

Figure 3: Overview of the CofFE-bundle block diagram.

operator wants to install, and other factors, the linear system
of Eq. (3) can or cannot have full rank. In case it has, then the
TM can be easily calculated by inverting Eq. (3); otherwise,
an estimation algorithm is needed to complete the assessment
procedure.

In the CofFE-FAN algorithm we use the Fanout estimator
[8]. This choice is motivated by the following reasons: i) it
has low computational complexity; ii) it allows to enforce the
estimation by using a temporal sequence of measurements;
and iii) it produces an estimation also by using measurements
affected by errors.

VI. COFFE-FAN ON OPENDAYLIGHT

In this section, an experimental methodology to implement
the CofFE-FAN algorithm described in Section V on an SDN
network is provided. More in detail, the different phases of
the process, from the collection of links and rules information
on SDN switches to the computation of the estimated TM
are described. The considered SDN controller is OpenDaylight
[9] with OpenFlow version 1.5.0 [23]. A java-based bundle,
namely CofFE-bundle, is implemented to be therefore integ-
rated into the OpenDaylight controller. The main procedures
of CofFE-bundle are reported in Fig. 3:

1) the Link Counters Collection procedure takes the net-
work topology G = (N ,L) as input to assess the link
count vector y after measuring the link loads for each
link l ∈ L.

2) the CofFE Execution procedure finds a subset of new
flow rules M to be installed in order to get new traffic
measurements.

3) the Rules Counters Collection procedure assesses the
byte count vector y∗ after measuring the byte counters
of the rules reported by the CofFE Execution procedure.

4) the Fanout Estimation procedure finally executes the
Fanout estimator [8].

In the following subsections, each of the aforementioned
procedures is described in detail.

Link Counters Collection: An important feature in order
to accurately estimate a TM is to have a reliable and effective

7

monitoring tool [24] providing updated information about the
network state.

For this purpose, OpenFlow protocol provides a good
support reporting the required information through
OFPT STATS REQUEST and OFPT STATS REPLY
messages. The OFPT STATS REQUEST message is used
by the controller to request statistics for a specific switch.
The corresponding switch creates an OFPT STATS REPLY
message reporting values related to different types of statistics,
such as OFPST PORT (port statistics), OFPST FLOW (flows
statistics), or OFPST TABLE (table statistics), among others.

The particular function used by the OpenDaylight controller
to request the link load (in terms of number of bytes) on
l ∈ L is l.getTransmitByteCount(), which returns the total
transmitted byte counter for the specified port. In order to
obtain the load on links connecting IP routers, we rely on the
information provided by the NETCONF protocol.

When the Link Counters Collection process ends, the link
count vector y is ready to be passed as input for the next
procedure, i.e., the execution of the CofFE-FAN algorithm.

CofFE Execution: Taking as input the link count vector y
reported by the Link Counters Collection procedure and the
routing matrix R, CofFE-FAN returns a set of flow rules to
be installed on a subset of nodes, as described in Section
V. Moreover, CofFE-FAN is also responsible for notifying
the controller to send the corresponding OFPT FLOW MOD
messages to the nodes.

Rules Counters Collection: In this step, the controller
sends a message of type OFPT STATS REQUEST to the
nodes where the new flow rules have been installed, and ana-
lyses the information related to flow statistics (OFPST FLOW)
from the OFPT STATS REPLY received messages. The func-
tion provided by OpenDaylight to get the number of bytes
that matched a particular flow entry r installed on a node
n ∈ NSDN is n.getByteCount(r). Statistic values for flow
counters are assessed after ∆t seconds, in the same way as for
link counters collection. Next, the measurements provided by
flow rules related to the same de-aggregation operation need
to be aggregated, in order to obtain the byte count vector y∗.

Fanout Estimation: Finally, the Fanout estimator [8] is
applied to assess the resulting TM, which is reported as output.

VII. PERFORMANCE EVALUATION

In this section, a performance evaluation is carried out to
show the effectiveness of the CofFE-FAN algorithm. As first,
we compare the CofFE-FAN algorithm performance with the
ones achieved by two TMA solutions available in the literature:
the Flow Spread Based Algorithm (FSBA) described in [6],
and the Largest Flow First (LFF) algorithm presented in [15].
Next, we consider an emulated environment in order to show
the performance of the proposed implementation of CofFE-
FAN on the OpenDaylight controller. For this purpose, several
tests have been conducted on two emulated networks by means
of the Mininet emulation tool [25]. In particular, two analysis
have been performed: i) the first analysis is a comparison
among the performance obtained using simulations (i.e., theor-
etically) with the ones obtained through emulation; and ii) the

second analysis aims at showing the set of events that occur
when CofFE-FAN algorithm runs to accurately estimate a TM.

A. Dataset for Simulation

For our experiments we selected real network topologies
from the SNDLib database [26], where real traffic matrices
are also available. We select four different networks: Abilene
(N = 12, L = 30), Nobel (N = 17, L = 52), Geant (N = 22,
L = 72) and Germany (N = 50, L = 176).

The following strategy is used to generate a hybrid IP/SDN
scenario: i) as first, the percentage of SDN switches in the
network is chosen, then ii) the nodes are sorted according to
their betweenness centrality [27], and finally iii) the first nodes
of the list are selected to be SDN switches (the remaining ones
are IP routers). Each SDN switch has a TCAM able to host up
to 4000 rules (as suggested in [4]). A number K of external
networks is reachable by means of each network node.

The IGP routing is determined by means of the Dijkstra
algorithm, i.e., by following a shortest path and destination
based rule, while for the external networks a hot potato policy
is applied. The routing tables of the IP routers, as well as
the flow tables of the SDN switches are fulfilled accordingly.
A flow rule specifies the next hop node and the destination
network. Initially, each SDN switch has K×N installed rules.

Two existing algorithms, named FSBA and LFF, are used
as benchmark for the CofFE-FAN algorithm. Both of them are
mixed measurement and estimation based approaches, thought
to work in a hybrid IP/SDN environment. Differently from
CofFE-FAN algorithm, which exploits the concept of rule
de-aggregation, the selected approaches aim at measuring IE
traffic flows by installing specific flow rules. While both FSBA
and LFF use the Tomogravity model [7] in the estimation
phase, they differ in the method used to select the set of IE
flows to measure: i) FSBA uses the flow spread parameter to
drive the selection process, while ii) LFF tries to measure the
largest flows.

Finally, we choose the Relative Root Mean Squared Error
(RRMSE) [28] as parameter to quantify the quality of the
assessed TM.

B. Performance Analysis in a Simulated Environment

In the considered hybrid IP/SDN network, the percentage
of SDN switches highly affects the performance of the TMA
procedure. In fact, as first the number of SDN switches poses
an upper limit to the number of flow rules that can be installed
for traffic measurement purposes. Moreover, some of the IE
flows might not be measurable, due to the fact that they do
not traverse any SDN switch.

For this reason, the first analysis we propose aims at evaluat-
ing the estimation error as a function of the percentage of SDN
switches in the considered hybrid network. The results of this
study are reported in Fig. 4. As expected, the estimation error
obtained by the three considered approaches decreases as the
percentage of SDN switches in the network increases. When
the percentage of SDN switches in the network is below 20%,
CofFE-FAN algorithm gets better results than both FSBA and
LFF. There are two main motivations for this situation: i) as

8

10 20 30 40

% of SDN nodes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
s
ti
m

a
ti
o
n
 E

rr
o
r

CofFE-FAN

LFF, K=10

LFF, K=20

FSBA, K=10

FSBA, K=20

(a) Nobel

10 20 30 40

% of SDN nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
s
ti
m

a
ti
o
n
 E

rr
o
r

CofFE-FAN

LFF, K=10

LFF, K=20

FSBA, K=10

FSBA, K=20

(b) Geant

10 20 30 40

% of SDN nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
s
ti
m

a
ti
o
n
 E

rr
o
r

CofFE-FAN

LFF, K=10

LFF, K=20

FSBA, K=10

FSBA, K=20

(c) Germany

Figure 4: Estimation Error as a function of the percentage of SDN switches.

10 20 30 40

of external networks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
s
ti
m

a
ti
o
n
 E

rr
o
r

CofFE-FAN

FSBA

LFF

(a) Nobel

10 20 30 40

of external networks

0

0.1

0.2

0.3

0.4

0.5

E
s
ti
m

a
ti
o
n
 E

rr
o
r

CofFE-FAN

FSBA

LFF

(b) Geant

5 10 15 20 25 30 35 40

of external networks

0

0.02

0.04

0.06

0.08

0.1

E
s
ti
m

a
ti
o
n
 E

rr
o
r

CofFE-FAN

FSBA

LFF

(c) Germany

Figure 5: Estimation Error as a function of the number of external networks.

10 20 30 40

of external networks

0

5

10

15

20

25

30

35

#
 o

f
in

s
ta

lle
d
 f
lo

w
 e

n
tr

ie
s
 (

K
)

CofFE-FAN

FSBA

LFF

(a) Nobel

10 20 30 40

of external networks

0

5

10

15

20

25

30

35

40

45

#
 o

f
in

s
ta

lle
d
 f
lo

w
 e

n
tr

ie
s
 (

K
)

CofFE-FAN

FSBA

LFF

(b) Geant

10 20 30 40

of external networks

0

20

40

60

80

100

#
 o

f
in

s
ta

lle
d

 f
lo

w
 e

n
tr

ie
s
 (

K
)

CofFE-FAN

FSBA

LFF

(c) Germany

Figure 6: Number of installed flow rules as a function of the number of external networks.

9

first, in these conditions, the FSBA and LFF algorithms suffer,
since the IE flows that are more appealing with respect to
the considered criterion, might be not measurable, due to the
fact that they do not find any SDN switch along their path;
ii) secondly, the Fanout estimator provides better estimation
than the Tomogravity one. Another outcome of the analysis
reported in Fig. 4 is that, for K = 20, CofFE-FAN algorithm
always overcomes the other two algorithms. To explain this
behaviour, we point out that the main advantage of the de-
aggregation strategy used by CofFE-FAN algorithm is that,
the number of installed flow rules due to a de-aggregation
operation grows linearly with K. On the contrary, considering
FSBA and LFF, the measurement of an IE traffic flow requires
the installation of a number of rules that grows with the square
of K. This is due to the fact that an IE flow consists of the
aggregation of the OD flows between all the source networks
reachable by means of the ingress node, and all the destination
networks that can be reached through the considered egress
node.

In order to better investigate the potential advantage
achieved by the use of CofFE-FAN algorithm, we propose
an analysis of the estimation error as a function of the K
parameter. The results of this study, reported in Fig. 5, refer
to the case of a percentage of SDN switches equal to 50%.
A first remarkable outcome of this analysis is that the quality
of the TM assessed by means of CofFE-FAN algorithm is
independent from K. Moreover, the achieved error is generally
negligible. This is a further evidence of the high level of
scalability reached by the proposed approach. On the contrary,
the performances of both FSBA and LFF algorithms, are
highly affected by the number of external networks. More pre-
cisely, for low values of the K parameter, the two benchmark
solutions achieve better results than CofFE-FAN algorithm.
Anyway, as soon as the number of external networks overcome
a given threshold, the estimation error of the TM produced
by FSBA and LFF considerably increases. It is interesting
to notice that the threshold value depends on the size of the
network. This is due to the fact that, in bigger networks, the
overall number of measurement rules that can be installed is
higher, and consequently, the scalability issues are experienced
for higher values of K.

The previous analysis have highlighted that CofFE-FAN
algorithm outperforms the other considered solutions. The
lower estimation error is not the only advantage of CofFE-
FAN algorithm. In fact, the high efficiency of the proposed
rule de-aggregation technique is also reflected in the number
of flow rules that have to be installed with the only purpose
of measuring traffic. In order to show this further aspect,
we report in Fig. 6 the number of flow rules installed by
the considered algorithms, as a function of the K parameter.
Before commenting the results, we clarify the main benefits
of reducing the number of flow rules to install:
• it increases the efficiency in the use of the TCAMs;
• it reduces the time needed to install the rules, making the

process of TMA faster;
• it decreases the overhead due to the signalling messages

sent by the controller to install the rules and to collect
the traffic counters;

• it reduces the time needed to collect the traffic counters,
improving the overall execution time, and reducing the
problems related to the synchronization of the measure-
ments (one of the main sources of measurement errors).

First of all, looking at Fig. 6 it is evident the huge reduction
of the number of measurement rules achieved by CofFE-FAN
algorithm with respect to the other considered solutions. Fur-
thermore, considering CofFE-FAN algorithm, it is interesting
to notice that the number of installed flow rules increases
linearly with respect of to the K parameter. On the opposite,
both FSBA and LFF require the installation of a very high
number of flow rules. For them, two different regions can be
identified: i) for values of K below a threshold, the number
of installed flow rules grows with a law that is approximately
2×K2; ii) when K reaches higher values, then this relation
changes. This behaviour is justified by the fact that, in the first
region, both the number of measured flows and the number
of rules needed to measure a flow increases, while, when the
TCAMs of the SDN switches reach the saturation level, then
the number of measured flows decreases with K, while the
number of rules needed to measure a flow still increases.

C. Dataset for Emulation

Due to scalability issues, for the emulation experiments we
consider a subset of the networks used in the simulation case:
Abilene and Nobel. The setting of the emulated scenario is
realized in the following way:
• an SDN switch is associated to each network node;
• a dedicated host is connected to each node in order to

serve as source/destination of traffic;
• traffic flows among each source-destination pair are es-

tablished using the iPerf tool [29].
We use OpenDaylight to implement the SDN controller [9],

openvswitch to implement the set of SDN nodes and OpenFlow
1.5.0 [23] for the southbound communication among the
controller and the nodes. Tests are performed on a dual-core
Intel-based machine (3.1 GHz) with 16 GB of RAM.

Experiments are executed as follows. As first, the SDN con-
troller is started and the java-based CofFE-bundle is installed
on top of it. The network topology is loaded by Mininet, and
the routing paths are configured by installing proper rules at
the SDN switches by means of specific OpenFlow messages.
Without loss of generality, we consider destination based
and shortest path routing, computed executing the Dijkstra
algorithm. In this way, at each SDN node there are as many
entries as the total number of destination hosts. The OpenFlow
message sent by the controller to install a new rule on a node
is the flow table modification message OFPT FLOW MOD,
with OFPFC ADD command.

After installing the set of initial flow rules, the traffic
demands retrieved from the TM taken as input are sent during
a time period of ∆t = 60 seconds using iPerf [29]. In order to
do this, UDP traffic is generated between the hosts connected
to SDN switches. Link counters values are then retrieved for
all links after a specific time interval, δt. In the experiments,
we set δt = 5 seconds in order to allow the system to be
stable after topology load, rules installation and the beginning

10

of traffic delivery. Once the set of new flow rules is obtained
(as a result of the execution of CofFE-FAN), the controller
sends the corresponding OpenFlow messages to install them
in the selected nodes. Finally, after ∆t = 60 seconds, rules
counters are obtained.

In the emulated environment, we need to introduce some
modifications on the normal work flow of the considered
algorithms (CofFE-FAN and FSBA in this second set of
analyses). As first, due to limited hardware resources, only
one host is connected to each SDN switch. In this conditions,
an initial rule can potentially measure a single IE flow, hiding
the benefits of running CofFE-FAN algorithm. Then, in the
emulation environment we do not consider the measurements
associated to the initial rules. In order to compensate this loss
of information, we decide to consider a full SDN network.
Additionally, since we cannot generate enough OD flows to
stress the TCAMs of the SDN switches, we change the way
in which the considered algorithms select the measurement
rules. More in detail, we provide as input parameter to the
algorithms the maximum number of new rules that can be
installed (instead of the size of the TCAMs).

D. Performance Analysis in a Emulated Environment

The first analysis we propose aims at verifying whether, un-
der the new changes, CofFE-FAN algorithm still outperforms
the FSBA solution. For this reason, we evaluate the estimation
error obtained by the two algorithms, as a function of the
maximum number of new flow rules that can be installed. The
results reported in Fig. 7 are obtained through simulation, but
considering the modifications introduced in the behaviour of
the two algorithms. As it can be seen, CofFE-FAN algorithm
still outperform FSBA.This is mainly due to the use of Fanout
estimator, which increases the quality of the estimation with
respect to the simple Tomogravity algorithm. This advantage
is more evident looking at Fig. 7 when no one new flow
rule is installed. In this case, the estimation is carried out by
considering only the links loads. As it can be seen, in case
of Abilene, the estimation error of CofFE-FAN algorithm is
about 0.1, while FSBA obtains a value of 0.4.

The next analysis we propose aims at comparing CofFE-
FAN algorithm and FSBA, when real measurements are con-
sidered. In fact, differently from the previous comparison,
where simulated data are considered, in the results reported
in Fig. 8 the measurements are taken from the emulated
environment. The main difference is that, these measurements
are affected by potential errors due to several factors, such as
packet loss, synchronization among measurements, etc. The
most important outcome of the analysis reported in Fig. 8
is that, while FSBA can fail in assessing the TM, CofFE-
FAN algorithm always produces a result. This is due to the
use of the Fanout estimator, that is tolerant to errors and to
incoherence between measurements. In particular, until the
number of considered measurements is relatively small, both
algorithms provide a result, even though it is evident that
CofFE-FAN algorithm produces a more accurate estimation.
Then, when the number of measurements increases, then
Tomogravity fails in producing an output. This is one of the

20 40 60 80 100 120

of installed flow entries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
s
ti
m

a
ti
o

n
 E

rr
o

r

CofFE-FAN

FSBA

(a) Abilene

50 100 150 200 250

of installed flow entries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
s
ti
m

a
ti
o

n
 E

rr
o

r

CofFE-FAN

FSBA

(b) Nobel

Figure 7: Estimation error achieved by CofFE-FAN algorithm
and FSBA as a function of the number of installed flow entries.

main advantages of CofFE-FAN, i.e., its ability in coping with
possible errors in the obtained measurements. This allows to
use it in real environments.

In order to quantify the loss of performance experienced by
CofFE-FAN algorithm when using measurements affected by
errors, in the next analysis we compare the estimation error
as a function of the number of installed rules, when taking as
input simulated data or measurements obtained in the emulated
environment. The results of this study are reported in Fig. 9.
As first, we notice that the gap among the results obtained
in the simulation environment and in the emulated one grows
with the number of installed rules. This is due to the fact that in
the emulated environment the measurements are affected by
errors, which make the estimator to deviate from the actual
TM. Moreover, a further negative effect is that, the final result
converges to a higher value of estimation error. Despite this,
the overall quality of the estimation is sufficiently high.

After comparing the results obtained by simulations with the
ones retrieved from emulations, the purpose of next analysis
is to characterize the impact of our proposal on the network
performance in terms of: i) time required by the different tasks

11

20 40 60 80 100 120

of installed flow entries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
s
ti
m

a
ti
o

n
 E

rr
o

r

CofFE-FAN

FSBA

(a) Abilene

50 100 150 200 250

of installed flow entries

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
s
ti
m

a
ti
o

n
 E

rr
o

r

CofFE-FAN

FSBA

(b) Nobel

Figure 8: Estimation error achieved by CofFE-FAN algorithm
and FSBA as a function of the number of installed flow entries
in an emulated environment.

Table I: CofFE-FAN execution time.

% of flow rules New rules Rule Counters
5% 0.02 s (σ = 0.04) 0.52 s (σ = 0.11)
25% 0.99 s (σ = 0.12) 1.05 s (σ = 0.13)
50% 1.51 s (σ = 0.09) 2.27 s (σ = 0.14)
100% 3.28 s (σ = 0.11) 3.35 s (σ = 0.21)

of CofFE-FAN algorithm; and ii) number of OpenFlow control
messages that must be sent to accomplish such tasks.

For this analysis, we consider the Abilene topology and four
different percentages of new flow rules to install: 5%, 25%,
50%, and 100% of the overall de-aggregation operations. For
each of the considered scenarios, there is a different number
of nodes the controller must interact with for rule counters
collection: 3 nodes in the case of 5%, 8 nodes for 25%, 10
nodes for 50%, and 12 nodes for the full set of flow rules
(100%).

Table I shows the CofFE-FAN algorithm execution time
as a function of the percentage of installed flow rules for

20 40 60 80 100 120

of installed flow entries

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
s
ti
m

a
ti
o

n
 E

rr
o

r

emulation

simulated

(a) Abilene

50 100 150 200 250

of installed flow entries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
s
ti
m

a
ti
o

n
 E

rr
o

r

emulation

simulation

(b) Nobel

Figure 9: Comparison among the estimation error as a function
of the number of installed flow entries achieved by CofFE-
FAN algorithm in a simulated environment and in an emulated
one.

Abilene topology. Due to the fact that the time required
by emulation on Mininet depends on several factors such
as topology size, number of flows to be sent using iPerf,
processes running on the machine, percentage of RAM usage,
etc., tests are repeated 10 times to assess values for the
standard deviation (σ). The results highlight that increasing
the number of installed flow rules leads to higher CofFE-FAN
execution time. As in the case of initial rules installation and
link counters collection (information not shown in Table I due
to a low variability), values reported are small: 3.28 seconds to
install the rules assessed by CofFE-FAN when the full set flow
rules is considered, and 3.35 seconds to collect their statistics.
Remarkably, this last process is the one which requires more
time compared with the rest of processes that compose CofFE-
FAN.

Fig. 10a shows the number of OpenFlow messages per
second that are sent during the execution of CofFE-FAN
on Abilene network. As first, the installation of the ini-
tial rules is carried out on second 5, requiring a total of

12

0 20 40 60 80

Time (s)

0

100

200

300

400

500

600

700

800

900

1000
#
 o

f
O

p
e
n
F

lo
w

 m
e
s
s
a
g
e
s

5% of installed rules

25% of installed rules

50% of installed rules

100% of installed rules

(a) Full procedure

12 14 16 18 20

Time (s)

0

20

40

60

80

100

120

140

160

180

200

#
 o

f
O

p
e

n
F

lo
w

 m
e

s
s
a

g
e

s

5% of installed rules

25% of installed rules

50% of installed rules

100% of installed rules

(b) Link load collection and new rules installation

72 74 76 78 80

Time (s)

0

2

4

6

8

10

12

14

16

#
 o

f
O

p
e

n
F

lo
w

 m
e

s
s
a

g
e

s

5% of installed rules

25% of installed rules

50% of installed rules

100% of installed rules

(c) Rule counters collection

Figure 10: OpenFlow messages per second versus time in Abilene topology.

990 OpenFlow messages. Since 330 rules must be installed
according to Dijkstra and 3 different OpenFlow messages
are required to install a single rule (OFPT FLOW MOD,
OFPT BARRIER REQUEST and OFPT BARRIER REPLY),
990 messages are sent during the first task of CofFE-FAN.

Five seconds after installing the initial rules, the traffic is
sent among every source-destination pair. At second 15, two
actions are performed in sequence: i) link load collection;
and ii) CofFE-FAN execution with new rules installation. The
OpenFlow messages sent by the controller to a specific node
for link load statistics are of type OFPT STATS REQUEST,
with the option OFPST PORT. After the message recep-
tion, the node returns the requested information inside an
OFPT STATS REPLY message. Since link load statistics for
30 unidirectional links (30 ports) must be collected, a total
of 60 OpenFlow messages are required and sent at second 15
(zoom in Fig. 10b).

Upon collecting the statistics related to link loads, CofFE-
FAN is executed to assess the new set of rules to be installed.
These new rules are created by the controller and sent to the
corresponding nodes. Again, the same type of messages as
in the case of initial rules are involved (OFPT FLOW MOD,
OFPT BARRIER REQUEST and OFPT BARRIER REPLY).
As we can see in Fig. 10b, and more precisely in Fig. 11
(where the fixed number of 60 messages at second 15 for link
load collection is removed), the time required to install the
new rules, highly depends from the percentage of flow rules
that is allowed to install (see Table I). Indeed, the difference
in time between installing all the flow rules or only the 5% of
them is around 3 seconds (black and blue lines).

After the new rules installation, a waiting time ∆t = 60
seconds is introduced to collect the rule counters. Looking at
Fig. 10c, we can see that the controller starts collecting rule
counters at second 75 by sending OFPT STATS REQUEST
messages with option OFPST FLOW to the corresponding
nodes. It is highlighted that the time required to collect rule
counters grows with the percentage of installed flow rules,
being 3 times bigger for the case of 100% with respect to the
case of 5%. Finally, Fig. 12 shows the aggregated number of
OpenFlow messages as a function of time. First, the whole

12 14 16 18 20

Time (s)

0

50

100

150

#
 o

f
O

F
P

T
_

F
L

O
W

_
M

O
D

 m
e

s
s
a

g
e

s

5% of installed rules

25% of installed rules

50% of installed rules

100% of installed rules

Figure 11: OFPT FLOW MOD messages per second during
the process of installing the new rules.

0 20 40 60 80

Time (s)

0

200

400

600

800

1000

1200

1400

1600

A
g
g
re

g
a
te

d
 #

 o
f
O

p
e
n
F

lo
w

 m
e
s
s
a
g
e
s

5% of installed rules

25% of installed rules

50% of installed rules

100% of installed rules

Figure 12: Aggregated number of OpenFlow messages versus
time in Abilene topology.

13

process has a different duration depending on the percentage
of installed flow rules. Second, the first two operations of the
CofFE-FAN process, i.e., initial rules installation at second
5 and link load collection at second 15, require the same
number of OpenFlow messages regardless of the percentage of
installed flow rules. Third, the difference in terms of number
of messages that must be sent between the controller and the
nodes when considering 5% and 100% of installed flow rules,
is less than 400 messages. Note that this number is expected to
be bigger in large networks. In the same way, an increase in the
number of nodes would lead to experience a bigger difference
in the time needed to complete the full CofFE-FAN process.

The conducted analysis suggest that a trade off between the
duration of the assessment phase, as well as the number of
signalling messages, and the final quality of the obtained TM,
can be found by properly setting the maximum number of new
flow rules to install.

VIII. CONCLUSIONS

This paper proposes a mixed measurement and estimation
scalable solution to accurately solve the TMA problem on
hybrid IP/SDN networks by exploiting the availability of flow
rule counters in SDN switches. In particular, the proposed
algorithm overcomes other state-of-the-art solutions by i)
avoiding the assumption that an IE flow can be measured by
installing only one flow rule; ii) considering potential errors
collected during the measurement phase; and iii) providing
a real implementation on the OpenDaylight controller, which
gives information about its effective impact on the network
functioning. The performance evaluation shows that our error-
tolerant solution is able to assess the TM with a negligible
estimation error by only measuring a small percentage of
traffic flows. Indeed, the performance analysis of the proposed
implementation using the OpenDaylight controller over an
emulated network environment, shows that a trade-off between
the quality of the assessed TM and its impact on the network in
terms of control messages to be sent can be found by properly
tuning the number of measured flows.

REFERENCES

[1] P. Tune and M. Roughan, “Internet Traffic Matrices: A Primer,” in
Recent Advances in Networking, Volume 1, H. Haddadi and O. Bonaven-
ture, Eds. ACM SIGCOMM eBook, 2013.

[2] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix
estimator for openflow networks,” in International Conference on Pass-
ive and Active Network Measurement. Springer, 2010, pp. 201–210.

[3] M. Malboubi, L. Wang, C. nee Chuah, and P. Sharma, “Intelligent SDN
based traffic (de)Aggregation and Measurement Paradigm (iSTAMP),”
in INFOCOM, 2014 Proceedings IEEE, April 2014, pp. 934–942.

[4] E. Norige, A. X. Liu, and E. Torng, “A ternary unification framework
for optimizing tcam-based packet classification systems,” IEEE/ACM
Transactions on Networking, vol. 26, no. 2, pp. 657–670, April 2018.

[5] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one
big switch abstraction in software-defined networks,” in Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies. ACM, 2013, pp. 13–24.

[6] M. Polverini, A. Baiocchi, A. Cianfrani, A. Iacovazzi, and M. Listanti,
“The power of sdn to improve the estimation of the isp traffic matrix
through the flow spread concept,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 6, pp. 1904–1913, June 2016.

[7] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast Accurate
Computation of Large-scale IP Traffic Matrices from Link Loads,”
SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 206–217, June
2003.

[8] A. Gunnar, M. Johansson, and T. Telkamp, “Traffic Matrix Estimation
on a Large IP Backbone: A Comparison on Real Data,” in Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement, ser.
IMC ’04. New York, NY, USA: ACM, 2004, pp. 149–160.

[9] “OpenDaylight,” https://www.opendaylight.org/, accessed: 2018-12-04.
[10] B. Claise, “Cisco systems netflow services export version 9,” 2004.
[11] P. Phaal, “sflow version 5, jul. 2004,” ieeexplore. ieee. org/xpls/abs all.

jsp.
[12] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a Better

NetFlow,” SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 245–
256, Aug. 2004.

[13] H. Tahaei, R. Salleh, S. Khan, R. Izard, K.-K. R. Choo, and N. B.
Anuar, “A multi-objective software defined network traffic measure-
ment,” Measurement, vol. 95, pp. 317–327, 2017.

[14] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample:
A low-latency, sampling-based measurement platform for commodity
sdn,” in Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on. IEEE, 2014, pp. 228–237.

[15] Y. Gong, X. Wang, M. Malboubi, S. Wang, S. Xu, and C.-N. Chuah,
“Towards accurate online traffic matrix estimation in software-defined
networks,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM, 2015, p. 26.

[16] M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma, “Intelligent sdn
based traffic (de)aggregation and measurement paradigm (istamp),” in
IEEE INFOCOM 2014 - IEEE Conference on Computer Communica-
tions, April 2014, pp. 934–942.

[17] A. K. Bozkurt, G. Cantali, and G. Gür, “Traffic estimation via kalman
filtering under partial information in software-defined networks,” in
Proceedings of the Asian Internet Engineering Conference, ser. AINTEC
’17. New York, NY, USA: ACM, 2017, pp. 46–53.

[18] Z. Hu and J. Luo, “Cracking network monitoring in dcns with sdn,”
in Computer Communications (INFOCOM), 2015 IEEE Conference on.
IEEE, 2015, pp. 199–207.

[19] Y. Tian, W. Chen, and C. Lea, “An sdn-based traffic matrix estimation
framework,” IEEE Transactions on Network and Service Management,
pp. 1–1, 2018.

[20] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 2, pp. 70–75, Apr. 2014.

[21] J. Galán-Jiménez, “Legacy ip-upgraded sdn nodes tradeoff in energy-
efficient hybrid ip/sdn networks,” Computer Communications, vol. 114,
pp. 106 – 123, 2017.

[22] M. Polverini, A. Iacovazzi, A. Cianfrani, A. Baiocchi, and M. Listanti,
“Traffic matrix estimation enhanced by sdns nodes in real network
topology,” in 2015 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), April 2015, pp. 300–305.

[23] “OpenFlow Switch Specification. Version 1.5.0,”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf,
accessed: 2018-12-04.

[24] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon:
Network monitoring in openflow software-defined networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS), May
2014, pp. 1–8.

[25] “Mininet: An Instant Virtual Network on your Laptop (or other PC),”
http://mininet.org/, accessed: 2018-12-04.

[26] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib
1.0–Survivable Network Design Library,” in Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa,
Belgium, April 2007.

[27] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[28] A. Soule, K. Salamatian, A. Nucci, and N. Taft, “Traffic Matrix Tracking
Using Kalman Filters,” SIGMETRICS Perform. Eval. Rev., vol. 33, no. 3,
pp. 24–31, Dec. 2005.

[29] “iPerf - The TCP, UDP and SCTP network bandwidth measurement
tool,” https://iperf.fr/, accessed: 2018-12-04.

