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A technique to reconstruct the displacement field throughout the structure from pointwise
measurements under different noise sources is proposed. The developed estimator is a
Proportional Observer (PO) that exploits a linear, frequency independent, relation between
the estimated state-space vector and the measurements. To improve its accuracy, the PO
concept is then extended to the definition of a sequence of proportional observers, each
one acting on a signal decomposition provided by wavelet multi-resolution analysis, or a
Multi-Resolution Proportional Observer (MR-PO). The considered numerical test case is a
straight, uniform beam with an unmodeled stiffness reduction provided by a notch, which
allows for characterizing analytically this model uncertainty. The input data is given by vir-
tual strain measurements collected on the top face of the beam, whereas the estimated
state variables are the time dependent coordinates of the modal expansion of the vertical
displacement along the beam elastic axis. An optimization solver, which minimizes the
estimation error, is employed to get the gain matrix of the proposed observers. The effect
of different noise sources, like process and measurement noise and unknown excitation, on
the estimation accuracy is taken into account with a sensitivity analysis. The obtained
results assess the effectiveness of the combination between the PO concept and wavelet
multi-resolution analysis as a tool for developing digital twin models based on experimen-
tal data.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The availability of high-performance computing at different scales makes nowadays the implementation of digital twins
of complex structural systems a not so far objective. Reproducing the behaviour of such systems requires high-fidelity mod-
els which need to be trained with the sensor data from the structure itself to increase the accuracy. In principle, a digital twin
can represent the system in an accurate way throughout its operational life with the desired time and spatial resolution, pro-
vided that environmental and loading conditions as well as ageing factors, are correctly described. For certain purposes, like
structural health monitoring, the full-field description of continuous systems can be also achieved with a virtual sensing
approach which brings the sensor data at the centre of the reconstruction technique. Indeed, virtual sensing aims at provid-
ing a reliable estimation of a physical variable that is not possible to measure directly. As there is no limitation in the number
of virtual sensors, virtual sensing seeks to reconstruct the entire field of the selected variables for continuous systems.
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Post-processing of data can be also embedded in the numerical process to get quantities that are unmeasurable by definition,
extending the capability of virtual sensors.

Typically, the problem of virtual sensing of structures has been addressed in different ways. In structural engineering, fol-
lowing the pioneer work carried out by Maniatty et al. [1], a more systematic approach to the problem of determining in real-
time the applied loads, stresses, and displacements motivated the development of the inverse finite element method (iFEM)
at NASA Langley [2], successively consolidated by Tessler et al. [3]. The use of sub-structuring techniques (see [4,5]) has been
also successively employed to obtain the reconstruction of the displacement field. More general approaches not necessarily
limited to identify structural variables, have been typically considered in control theory applications, for instance through
modal filters as in [6–8]. Restricting to recent years, Hwang et al. [9] proposed the use of Kalman filter to estimate the modal
elastic deflections. The unknown state-space vector was made up by modal coordinates and velocities relative to a numerical
model of a building; once estimated on the basis of virtual measurements, the modal coordinates allowed for providing the
correspondent wind loads. Similarly, Papadimitriou et al. [10] successfully predicted the fatigue-life reduction of metallic
structures by using the stress field obtained by means of Kalman filter. Lourens et al. [11] introduced the so-called aug-
mented Kalman filter, which adds the unknown external forces to the state-space vector to be estimated. From the dynamic
modelling point of view, these external forces, though unknown, were provided as the result of a random walk dynamics
with an associated process noise. Continuing the work of Gillins and De Moor [12], Lourens et al. [13] proposed a new tech-
nique to obtain a joint estimation of the state-space variables (made up by modal coordinates and velocities) as well as of the
input. The joint input-response estimation exploits an algorithm similar to Kalman filter that, besides the usual tasks of mea-
surement update and time update, considers a further step concerning the input estimation, recursively estimated by means
of an unbiased minimum-variance process. More recently, Naets et al. [14] proposed to exploit the augmented Kalman filter
to get an estimation of variation of system parameters along with system response and unknown external forces.

Despite of their ability to track unmeasured time-histories, all the methods that exploit Kalman filtering are not natural
for second-order structural systems as highlighted by Balas [15]; the time derivative of the estimated modal coordinate (e.g.,
relative to displacements) is not equal to the estimated velocity. This limit is magnified when unknown external forces are
dominant with respect to the process and measurement noises, and consequently Balas [15] proposed a first-order observer
aimed to reduce the gap, following previous attempts to adapt the Kalman filter formulation to second-order systems by
Hashemipour and Laub [16] and Belvin [17]. More recently, Demetriou [18] presented a natural second-order observer that
utilizes a parameter-dependent Lyapunov function to ensure the asymptotic convergence of the error on the state-space
variables. Demetriou [19] also adapted the observer formulation for second-order systems with an unknown input to detect
faults of mechanical systems. Among approaches based on second order observers, Hernandez [21–23] addressed the prob-
lem of finding the optimal observer gain by minimizing the estimation error in the frequency domain, although the obser-
vation process is naturally defined in time domain. The statistics of the noise and external loads are expressed by means of
power spectral densities instead of the covariance matrices typically used in Kalman filter. This enhances the capability of
observing linear (structural) systems that are intrinsically featured by their frequency domain behavior.

In this paper, in the perspective to introduce improvements in observer-based virtual sensing techniques for structural
problems, an observer exploiting a linear, frequency independent, relation between the estimated state-space vector and
the measurement vector is introduced, named in the following as Proportional Observer (PO). This approach is then gener-
alized to the definition of a sequence of proportional observers, each one acting on a signal decomposition provided by wave-
let multi-resolution analysis, named as Multi-Resolution Proportional Observer (MR-PO). The PO shares the same form with
modal filters, but unlike the latter it takes into account the model structural features as well as excitation and noise statistics
in building the error function; the availability of such analytical expression speeds up the error computation, and is a key
point for employing error minimization procedures when dealing with large systems.

As a second point, to increase the level of confidence in using these numerical tools before real-life applications (e.g., see
Ref. [24]), the reconstruction of the elastic deflection field is carried out on a simple and analytically modelled case study, i.e.,
a straight beam on spring foundations. The uniform beam is provided with a small stepwise variation of the cross section,
namely a notch, which introduces a modelling uncertainty in the mass and stiffness distributions. Virtual sensors are pro-
vided by strain gages applied on the beam from which the entire displacement field is reconstructed. Then, in order to keep
the number of state variables low, the modal coordinates associated to a limited number of beam modes have been consid-
ered, as typical in many virtual sensing approaches related to structural variables.

To compare the performance of these techniques against existing methods, the Modal Based Observer (MBO) proposed by
Hernandez [21] is also applied to the present case. Even if the PO, and consequently the MR-PO, can be developed apart from
MBO, in this paper we will show that, if modal displacements are the target of the reconstruction process and certain con-
ditions are satisfied, the MBO takes the form of the proposed observer. This feature, as well as other similarities in the ana-
lytical and numerical development, suggests denoting the proposed approaches as ’observers’.

The observer synthesis, in all the considered methods, is then based on selecting the coefficients of a gain matrix via an
optimization procedure, which aims to minimize the power spectral density (or the covariance) of the estimation error,
defined as the difference between the estimated and the true state-space vector. The optimization process does not require
to compare, at each iteration, the new predicted time-histories with the true solution to evaluate the error function.
Throughout the paper, analytical expressions of the error function are derived and minimized by a proper choice of the
observer gain. These analytical expressions include the different noise sources affecting the system response and the mea-
surements, whose statistical modelling is required to fully characterize the error. In this way, the estimation sensitivity on
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the measurement and process noise is efficiently carried out, and the effectiveness of the optimization process can be easily
assessed under different conditions.

The paper is organized as follows. The dynamical model of the considered mechanical system is presented in Section 2
along with a generalized formulation of the MBO which allows for introducing the basic elements of the observation process.
Section 3 introduces the Proportional Observer and the Multi-Resolution Proportional Observer as well as the correspondent
analytical formulations of the estimation error. The simple structure to which the considered methods are applied is
described in Section 4 and the optimization procedure to calculate the observer gain is explained in Section 5. The numerical
results accounting for the capability of the methods to approximate the true solution based on virtual strain measurements
are finally discussed in Section 6.

2. Mechanical system modelling and its model-based observer

In the present paper, we shall limit our attention to linear mechanical systems which can be represented in time domain,
including suitable initial conditions as:
M€qþ D _qþ Kq ¼ f þ w ð1Þ

where q 2 RN is a vector of generalized coordinates (nodal displacements and rotations in finite element discretization or
modal amplitudes), M;D and K denote the mass, damping and stiffness N � N matrices, respectively, f 2 RN is the external
force vector and the vector w 2 RN accounts for modelling errors in terms of process noise. The system observations are
assumed to be of the form:
y ¼ Sqþ v ð2Þ

where the M � N matrix S relates linearly and instantaneously the measurement vector y 2 RM to the vector of generalized
coordinates q and v 2 RM is the measurement noise vector. More general forms of Eq. (2) have been proposed but we limit
ourselves to measurements expressed in terms of displacements like strain measurements. For linear systems, it is common
to consider the Fourier transform of Eqs. (1) and (2), i.e.,
�x2M~qþ ixD~qþ K~q ¼ ~f xð Þ þ ~w xð Þ ð3Þ
~y ¼ S~qþ ~v xð Þ ð4Þ
where ~ indicates the transformed variables and the dependence on frequency x is highlighted only in the case of external
input and noise. The frequency response function matrix H xð Þ for the mechanical system alone is given by:
H xð Þ ¼ �x2Mþ ixDþ K
� ��1 ð5Þ
relating the state-space vector to the inputs, i.e., ~q ¼ H xð Þ ~f xð Þ þ ~w xð Þ� �
.

2.1. Model-based observer

For the mechanical system defined by Eq. (1), suitable natural observers have been proposed in the past literature (see
Refs. [17–23]). Here, we specifically consider the Model-Based Observer introduced by Hernandez [21] as it is the starting
point for the proposed theoretical developments. Thus, the MBO theory is recalled and generalized in this paper which
allows us to introduce several definitions later included in the development of the proposed methods as well. The equations
of linear second-order observer concerning the system modelled by Eq. (1) can be generally expressed as follows:
M€̂qþ D _̂qþ Kq̂ ¼ L y� Sq̂ð Þ ð6Þ

where the symbol ^ indicates the estimated variable (in this case, the estimated state-space vector q̂) and L is the observer
M � N gain matrix. Eq. (6) represents the mathematical model of the feedback control system. By defining the estimation
error e 2 RN ,
e ¼ q� q̂ ð7Þ

and making use of Eqs. (1) and (6), one obtains the error dynamics as:
M€eþ D _eþ Keþ LSe ¼ f þ w� Lv ð8Þ

The Fourier transform of Eq. (8) yields:
�x2Mþ ixDþ Kþ LS
� �

~e xð Þ ¼ ~f xð Þ þ ~w xð Þ � L~v xð Þ ð9Þ

It is possible to introduce a transfer function He which expresses the dependence of the estimation error e on the inputs:
He xð Þ ¼ �x2Mþ ixDþ Kþ LS
� ��1

; ð10Þ
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and consequently Eq. (9) provides its frequency response as:
~e ¼ He xð Þ ~f þ ~w� L~v
� �

: ð11Þ

In the frequency domain, the closed-loop frequency response function HO of the observer, relating the estimated state ~̂q to

the reference ~y, can be generally expressed:
HO xð Þ ¼ H�1 þ LS
� ��1

L ð12Þ

such that:
~̂q ¼ HO xð Þ~y: ð13Þ

Moreover, recalling Eq. (4), one obtains:
~̂q ¼ HOS~qþ HO~v: ð14Þ

If the statistical features of the forcing terms in Eq. (11) as well as of the process and measurement noises are stochastic

and uncorrelated to each other, the stable error response to the stochastic inputs is obtained as follows:
Uee x; Lð Þ ¼ H�
e x; Lð Þ Uff xð Þ þUww xð Þ þ LUvv xð ÞLT

� �
HT

e x; Lð Þ ð15Þ

where Uee x; Lð Þ;Uff xð Þ;Uvv xð Þ and Uww xð Þ indicate the power spectral density matrices. For the sake of clarity, the depen-
dence on the gain L of the different terms is highlighted in the equation. Finally, Eq. (15) yields the covariances of the state
error e as:
r2
ee

� � ¼ Z þ1

�1
Uee x; Lð Þdx: ð16Þ
It is worth noting that the covariance matrix depends on the gain matrix L through Eq. (15). Thus, the aim is to minimize
the trace of covariance in Eq. (16) by searching for the optimal matrix L once the noise and force statistics are established.
This optimal gain can be analytically determined only for simple problems as done by Hernandez (Ref. [22]). In general cases,
we need to rely on numerical approaches like the optimization procedure introduced later in Section 5.

3. Proposed estimators based on Proportional Observer concept

Recalling Eq. (15), it emerges how the gain L plays a central role in minimizing the estimation error on the system state-
space vector q at two different levels: (i) adjusting the second-order observer to wipe out the disturbances and (ii) tuning the
balance between the unknown inputs and the measurement noise. This complex functional dependence of the error on the
gain matrix L is likely to provide optimal solutions that correspond only to local minima and consequently there is no guar-
antee that an absolute minimum is determined. To avoid this limitation, an alternate approach based on the Proportional
Observer concept is hereafter introduced.

3.1. Single-resolution PO

The simplest form of the Proportional Observer can be formulated as follows:
q̂ ¼ Qy; ð17Þ

where Q is a N �M matrix of constant coefficients. Substituting the previous definition (Eq. (17)) into the error definition (Eq.
(7)), one has:
e ¼ I� QSð Þq� Qv; ð18Þ

or, equivalently, ~e ¼ I�QSð Þ~q�Q~v in the frequency domain. Recalling that ~q ¼ H xð Þ ~f þ ~w

� �
, after substitution in the latter

expression, it yields:
~e ¼ I� QSð ÞH xð Þ ~f þ ~w
� �� Q~v; ð19Þ
According to Eq. (19), the error is given by two contributions, one depending on the unknown inputs ~f and ~w and the other
on the measurement noise ~v, via different frequency response functions, respectively. Thus, the power spectral density of the
error Uee xð Þ is related to the power spectral density of the inputs as:
Uee x;Qð Þ ¼ I� QSð ÞH� xð Þ Uff xð Þ þUww xð Þ½ �H xð ÞT I� QSð ÞT þ QUvv xð ÞQT ð20Þ

From Eq. (20), it is evident that the optimum choice of Q must be a trade-off between reducing the effect of the unknown

inputs, so implying a low gain, and the effect of the measurement noise, requiring a high gain instead. It is worth noting that
the first term on the r.h.s. of Eq. (20) contains implicitly the PSD of the state-space vector q. Thus, introducing the PSD of the
state-space vector, i.e.,
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Uqq xð Þ ¼ H� xð Þ Uff xð Þ þUww xð Þð ÞH xð ÞT; ð21Þ

Eq. (20) is rewritten as:
Uee x;Qð Þ ¼ I� QSð ÞUqq xð Þ I� QSð ÞT þ QUvv xð ÞQT: ð22Þ

From the previous equation, the error variance matrix r2

ee

� �
can be obtained as:
r2
ee

� � ¼ I� QSð Þ r2
qq

h i
I� QSð ÞT þ Q r2

vv

� �
QT ð23Þ
where r2
qq

h i
is the covariance associated to the modal coordinates that is defined as:
r2
qq

h i
¼

Z þ1

�1
Uqq xð Þdx

� �
ð24Þ
The dependence on the gain matrix Q is now quadratic allowing for a straightforward convergence to a global optimal
observer. It is worth noting that a matching between the observer introduced in Eq. (17) and the one defined by Eq. (13)
can be achieved. Indeed, the zero-order observer can be obtained as the limit of the second-order observer presented in
the previous section when the coefficients of L become large. Assuming that in a certain frequency range jjLSjj � jjH�1jj holds
(see Eq. (12)), it yields:
HO xð Þ ’ LSð Þ�1
L ð25Þ
which is no more dependent on the frequency x. Recalling Eq. (13) and taking into account Eq. (12), the proportional obser-

ver defined in Eq. (17) can be obtained as Q ¼ LSð Þ�1
L. This implies that QS ¼ LSð Þ�1

LS ¼ I and, thus, the error depends only
on the measurement noise, i.e.,
r2
ee

� � ¼ Q r2
vv

� �
QT: ð26Þ
What is interesting here is that assuming Q ¼ LSð Þ�1
L allows us to cancel the contribution of the unknown inputs to the

error and, consequently, a simple form of the error variance is obtained with Eq. (26). This may be an acceptable compromise
only if r2

vv

� �
is low, and this result is shared also by a second-order observer. Additionally, one has to pay attention to the

condition that the square matrix LSð Þ must not be singular. As it will be clarified later, the latter relationship is exploited
to assign the initial values for the optimization procedure aimed at obtaining the gain matrix L of the MBO.

3.2. Multi-Resolution Proportional Observer

The effectiveness of the presented PO technique can be improved by expressing the observer as a combination of propor-
tional observers each one optimized for a specific element of a suitable signal decomposition of both the measurement and
state-space vectors. Among the possible choice of signal decomposition, the wavelet multi-resolution analysis (WMRA) has
been adopted (refer to Appendix A for more details). Let us first consider the following decomposition of the measurement
vector into Ns functions spanning different time-scale ranges according to the WMRA:
y tð Þ ¼
XNs

n¼1

y nð Þ tð Þ; ð27Þ
where the dependence on time is here highlighted for sake of clarity. By extending the PO definition in Eq. (23) for each time-
scale function of the signal decomposition, one has:
q̂ nð Þ tð Þ ¼ Qny
nð Þ tð Þ: ð28Þ
Thus, Eqs. (27) and (28) provide the following estimation of the generalized coordinates (see Fig. 1):
q̂ ¼
XNs

n¼1

q̂ nð Þ ¼
XNs

n¼1

Qny
nð Þ ð29Þ
Therefore, defining q nð Þ as the n-th time-scale component of q obtained with the same signal decomposition (WMRA), it
yields for the estimation error:
e ¼ q� q̂ ¼
XNs

n¼1

q nð Þ �
XNs

n¼1

q̂ nð Þ ¼
XNs

n¼1

q nð Þ � q̂ nð Þ� � ¼XNs

n¼1

e nð Þ ð30Þ
In Eq. (30) the global error e depends on the errors at the different orders e nð Þ, which have the following expression (see Eq.
(18)):
e nð Þ ¼ I� QnSð Þq nð Þ � Qnv
nð Þ ð31Þ



Fig. 1. MR-PO plant.
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where the measurement noise is also decomposed into different contributions v nð Þ corresponding to the selected time scales.
Next, using the properties of variance (Var) and covariance (Cov), one has:
r2
ee

� � ¼ Var
XNs

n¼1

e nð Þ
 !

¼ Cov
XNs

n¼1

e nð Þ;
XNs

m¼1

e mð Þ
 !

¼
XNs

n¼1

XNs

m¼1

Cov e nð Þ; e mð Þ� � ð32Þ
which can be further recast as:
r2
ee

� � ¼XNs

n¼1

Var e nð Þ� �þ 2
XNs

n¼1

XNs

m¼nþ1

Cov e nð Þ; e mð Þ� �
: ð33Þ
In a more coincise form, setting r2
e;nm

h i
¼ Cov e nð Þ; e mð Þ� �

, the previous equation can be expressed as:
r2
ee

� � ¼XNs

n¼1

r2
e;mm

h i
þ 2

XNs

n¼1

XNs

m¼nþ1

r2
e;nm

h i
ð34Þ
where, recalling Eq. (31), each matrix r2
e;mm

h i
has the following expression:
r2
e;nm

h i
¼ I� QnSð Þ r2

q;nm

h i
I� QmSð ÞT þ Qn r2

v;nm

h i
QT

m ð35Þ
provided that the state-space vector q and the noise v are statistically independent, with r2
q;nm

h i
¼ Cov q nð Þ; q mð Þ� �

and

r2
v;nm

h i
¼ Cov v nð Þ; v mð Þ� �

. Though the covariance can be computed on the time-domain signals by definition, it is more efficient

to carry out its evaluation in the frequency domain due to the linearity of the observed system. Therefore, by introducing the
WMRA scalar transfer function ~c nð Þ xð Þ associated to the n-th scale (see Appendix A), the Fourier transforms of the signals q nð Þ

and v nð Þ can be obtained as:
~q nð Þ xð Þ ¼ ~c nð Þ xð Þ~q xð Þ ð36Þ
~v nð Þ xð Þ ¼ ~c nð Þ xð Þ~v xð Þ: ð37Þ
Indeed, once specific wavelet and scaling functions are assigned, the WMRA based on orthogonal wavelets provides the
related transfer functions ~c nð Þ. Therefore, the mixed-scale covariances associated to modal response and measurement noise,
respectively, are given by:
r2
q;nm

h i
¼
Z þ1

�1
Uqq;mn dx ¼

Z þ1

�1
~c nð Þ~c mð ÞUqq dx ð38Þ

r2
v;nm

h i
¼
Z þ1

�1
Uvv;mn dx ¼

Z þ1

�1
~c nð Þ~c mð ÞUvv dx ð39Þ
where Uqq;mn xð Þ and Uvv;mn xð Þ are the cross-spectral densities relative to the components m and n of the considered signals,
which are related to the PSD matrices Uqq xð Þ and Uvv xð Þ, previously introduced for the PO (see Eqs. (21) and (22)). Eq. (34),
along with Eq. (35) and the involved definitions by Eqs. (38) and (39), gives the objective function to be minimized for MR-
PO. Because of the larger number of gain matrices Qn with respect to the simpler PO approach, it is likely to improve the
search for the minimum. However, it is worth noting that MR-PO maintains a quadratic form of the error covariance (see
Eqs. (34) and (35)), despite involving a larger number of gain matrices.
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4. Reference analytic case study

The above theory is applied to a slender beam with a two-side notch as shown in Fig. 2. The notch represents a feature
that is not included in the equations of the observed system, i.e., in Eq. (1). The Euler–Bernoulli equation of a beam lying on a
spring layer is:
@2

@�x2
EI �xð Þ @2

@�x2
�wþ gb

@ �w
@�t

� 	" #
þ ks �wþ gs

@ �w
@�t

� 	
þ l �xð Þ @

2 �w
@�x2

¼ �p �xð Þ ð40Þ
where �x;�t and �w are the dimensional abscissa, time and vertical displacement, respectively, EI �xð Þ and l �xð Þ are the piecewise
constant sectional stiffness and mass, respectively, gb is the structural damping coefficient, ks and gs are the spring and
damping coefficients of the supporting elastic layer, respectively, and �p is the external load expressed as force per unit
length. The spring layer is added to represent a real structure on elastic foundations, floating condition or constrained for
modal testing. The notch is represented with a reduction �bd of the width �b of the rectangular section of the beam, while
the height �h is kept constant (see Fig. 2). Introducing a shape function rd �xð Þ, defined as rd ¼ �bd=

�b along the notch, and equal
to 1 elsewhere, width, sectional mass and stiffness ratio variations along the beam can be expressed in concise form.

It is convenient to recast Eq. (40) in non-dimensional form to generalize the considered case. By introducing a character-
istic time t�, a reference length l� equal to the beam length l, and the sectional mass l and stiffness EI of the uniform beam,
the following non-dimensional variables are defined:
x ¼ �x=l w ¼ �w=l t ¼ �t=t� jb ¼ EIt�2

�l l4
ð41Þ

js ¼ kst�
2

l
fb ¼ gb=t

� fs ¼ gs=t
� p ¼ �pt�2

�l l
ð42Þ
where t� is the oscillating period of the first elastic mode of the uniform free-free beam without spring layer (ks ¼ 0 and
rd �xð Þ ¼ 1, the latter implying EI �xð Þ ¼ EI and l �xð Þ ¼ �l in Eq. (40)). By substituting the above relationship into Eq. (40) and
recalling that EI �xð Þ=�EI ¼ l �xð Þ=�l ¼ rd �xð Þ, one has:
jb rd xð Þ wþ fb _wð Þ00� �00 þ js wþ fs _wð Þ þ rd xð Þ €w ¼ p xð Þ ð43Þ
where the spatial derivative with respect to x is indicated with 0 and the time derivative with respect to t with the dot _.
The Galerkin method is exploited to transform the partial differential equation above into a system of linear ordinary dif-

ferential equations by decomposing the displacement w x; tð Þ as a sum of modal contributions, i.e., w x; tð Þ �PNmodes
n¼1 qn tð Þwn xð Þ,

where the functions wn xð Þ are the analytical normal modes of the uniform undamped free-free beamwithout the spring layer
(rd �xð Þ ¼ 1 and js ¼ 0 in Eq. (43)), including the heave and pitch rigid-body modes (see Meirovitch, Ref. [25]). From the ‘true’

mass Md, (proportional) damping Dd and stiffness matrices Kd ¼ K
bð Þ
d þ K sð Þ, by setting rd �xð Þ ¼ 1 the mass M, damping D and

stiffness K matrices which define the structural model in Eq. (1) can be obtained. In this case, despite the presence of spring
layer, the mass and stiffness matrices remain diagonal, and the rigid-body natural frequencies of the undamped system are
analytically obtained as x1 ¼ x2 ¼ ffiffiffiffiffi

js
p

.

Fig. 2. Reference beam model.
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An analytical expression of the process noise can be obtained as a mathematical model is available. By subtracting the
equation of the beam with the notch from the equation of the uniform beam, one has:
Table 1
Optimiz

Obje

Desi
Cons

Inpu

Algo
Initi
nw x; tð Þ ¼ jb
@2

@x2
rd �xð Þ @2

@x2
wþ fb _wð Þ

" #
þ rd �xð Þ €w ð44Þ
where, by definition, nw x; tð Þ is the process noise accounting for the presence of the notch as feature not considered in Eq. (1).
By projection of Eq. (44) over the considered normal modes, one obtains the modal components wk tð Þ of the process noise
vector w ¼ w1;w2; . . . ;wNf gT . Due to the linearity of the system, the process noise is likely to be described in the frequency
domain. Setting ~w and ~f for the Fourier transformed modal components of process noise and load, one can obtain:
~w ¼ H�1Hd � I
� �

~f ð45Þ
where H and Hd are the FRF of the uniform and notched beams, respectively, with Hd xð Þ ¼ �x2Md þ ixDd þ Kd

� ��1.
5. Optimal gain computation

The numerical determination of the observer gain plays a central role in the estimation techniques presented in the pre-
vious sections. It implies finding the observer gain parameters depending on the considered technique (i.e., L matrix for the
MBO, Q matrix for the PO and several Qn matrices for the MR-PO) which minimize the error variance defined by Eqs. (15),
(23) and (33), respectively. Thus, the present section explains how the observer gain is numerically computed according to
the different observer formulations (see Section 2 and 3). In Section 5.1 the definition of the corresponding optimization
problems is discussed, and then in Section 5.2 the user inputs needed to start the optimization procedure are considered,
namely, the power spectral densities of process and measurement noises as well as of external loads.
5.1. Optimization problem definition

Suitable optimization procedures are then employed for searching the optimum gain matrix and, consequently, different
optimization problems are defined in terms of objective function, design variables and constraints, as resumed in Table 1.

All the optimization problems share the same objective function, which is the variance matrix r2
ee

� �
of the estimation

error on the state-space vector q. The optimization problems for PO and MR-PO techniques are also similarly defined with
differences related only to the presence of multiple terms related to the wavelet decomposition for the latter method, which
requires a larger number of design variables (several Qn instead of a single Q). The user input, as reported in Table 1, consists
essentially in a statistical description of disturbances and noises, i.e., the covariance matrix of the measurement noise and the
PSD of process noise and external excitation. For both PO and MR-PO, a simple gradient-based algorithm as available in
MATLAB� is employed for a full convergence to a global minimum since the objective function is quadratically dependent
on the design variables. The optimizations are initialized with zero initial Q and Qn matrices, such that at first step

r2
ee

� � ¼ r2
qq

h i
.

On the other hand, MBO provides an objective function nonlinearly dependent on the gain L. At each evaluation of the
objective function, it requires evaluating numerically the integral of Uee over the frequency spectrum by suitable (un-
bounded) domain truncation. Indeed, the PSDs Uff xð Þ;Uww xð Þ and Uvv xð Þ must be provided in place of their covariance
matrices as user inputs. A constraint on the real part of the poles of He xð Þ (that has to be negative) is employed to ensure
the stability of the observer. The nonlinear dependence on design variables (coefficients of the matrix L) makes the search of
an optimum gain a more complex task than in the case of the PO-based methods. In this framework, proper initial values and
a suitable optimization algorithm may positively affect the final values at the end of the optimization loop. In particular, in
this work, both Gradient and Pattern Search algorithms available in MATLAB� have been tested to this end. Concerning the
initial values for L, namely L0, it is obtained by considering the similarity of the PO and MBO formulations for high values of L.
ation statements for MBO, PO and MR-PO.

MBO PO MR-PO

ctive nonlinear r2
ee

� �
(see Eq. (15)) quadratic r2

ee

� �
(see Eq. (23)) quadratic r2

ee

� �
(see Eq. (33))

gn Variables elements of L elements of Q elements of Qn

traints stability of He xð Þ none none

ts Uff xð Þ;Uww xð Þ;Uvv xð Þ r2
qq

h i
; r2

vv

� �
r2
q;nm

h i
; r2

v;nm

h i
rithm Gradient/ Pattern Search Gradient Gradient
al values L0Sð Þ�1L0 � Q ¼ min

L0

0 0
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Once the observer gain Q of the PO is obtained, the initial values L0 of the MBO, are evaluated by solving the following min-
imization problem (see Eq. (25)):
Fig. 3.
bending
L0Sð Þ�1
L0 � Q ¼ min

L0
; ð46Þ
thus providing an error covariance evaluation at the first step in line with that expressed in Eq. (26). To ensure that at the end
of the optimization process the minimum is locally ‘strong’, the solution for L is randomly perturbed and used as new initial
condition for the optimization loop. If the new solution does not converge back to the initial condition, or the minimum for
the objective function (in some metrics) is larger than the previous one, the gain L is perturbed again until the computed
solution does not satisfy all the previous conditions.

5.2. Noise modeling

As mentioned above, the additional information required to evaluate the objective functions consist of some statistics on
the measurement and process noises, as well as on the external forces, either directly provided by the covariance matrices or
by the PSDs.

As far as it concerns the external forces, their PSD matrix Uff xð Þ is generally derived by means of suitable spectral load
models which depend on the statistical description of the environmental or operational excitation and on the transfer func-
tion from the excitation source (wind, waves, vibrations, etc) to the applied forces. In Section 6, PSDs of the external force are
simply assigned, from which, one possible time dependent load distribution is derived. It is worth remarking that the same
PSD assigned as input to build the observer is also used for modelling the response of mechanical system.

The measurement noise is modelled as white noise and featured by the signal-to-noise ratio (SNR) parameter, defined as
it follows:
SNR ¼
tr r2

yy

h i� �
tr r2

vv

� �� � ð47Þ
The level of noise is equal for each virtual sensor and the PSDmatrix is assumed diagonal, thus providing for a generic k-th
sensor:
Uvkvk
xð Þ ¼

tr r2
yy

h i� �
Mxmax SNR

�xmax=2 < x < xmax=2 ð48Þ
where M is the number of sensors (later, the number of strain gages) and xmax is the sampling frequency of the time
histories.

Regarding the process noise accounting for structural imperfections, it has been already shown that Eq. (45) allows us to
define it once the external forcing terms are assigned. This remark points out that the hypothesis of uncorrelated noises and
forces is only approximately correct from a general point of view. On the other hand, in real-life applications using basic
assumptions is mandatory. Apart from the aforementioned statistical independence, assumptions about structural uncer-
tainties in terms of geometry or material properties are needed to set upper thresholds to unmodeled features. Thus, in this
work, it is proposed to consider a ‘white’ process noise over the considered frequency range associated only to the diagonal
terms of r2

ww

� �
, such that:
Comparison between the modelled process noise and the one used to derive the observers. The blue line plots the process noise PSD for the first
mode. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Non-dim

rigid

f ¼ �f
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Uwkwk
xð Þ ¼

r2
wkwk

h i
xmax

�xmax=2 < x < xmax=2 ð49Þ
Figure 3 compares the constant PSD (white noise) provided as input in the calculations with the PSD of the diagonal ele-
ment corresponding to the first vibration mode (k ¼ 3), the latter provided by Eq. (45) once the PSD of the external forces has
been assigned (see Section 6). The criterion here assumed for choosing the noise level is based on the equivalence in terms of
signal power in the considered frequency range.

6. Numerical results

As stated in the previous sections, the present application aims at estimating the full field response based on pointwise
measurements provided by strain gages in presence of an unknown excitation. In Section 6.1, the beam test-case outlined in
Section 4 is further specified by assigning numerical values to the system parameters and the excitation function. In Sec-
tion 6.2, the quantities related to the virtual measurement set-up (sensors and noise sources) are then characterized and
the considered error metrics is defined as well. Finally, in Section 6.3 the analysis of the performance in estimating the sys-
tem response is dealt with for the considered methods.

6.1. System parameters

The system parameters referring to the beam equation in non-dimensional form (see Eq. (43)) are reported in Table 2.
With reference to Table 2, the non-dimensional modal frequencies of the uniform beam are computed and shown in Table 3,
where five bending modes (Nmodes ¼ 5) are considered.

The load per unit length p x; tð Þ is given by the sum of two terms, each one given by the product of a spatial shape function
kj xð Þ and a time dependent amplitude pkj

tð Þ, i.e.,
p x; tð Þ ¼ pk1
tð Þk1 xð Þ þ pk2

tð Þk2 xð Þ ð50Þ
where k1 xð Þ ¼ e�a1x and k2 xð Þ ¼ ea2 x�1ð Þ are considered in this case study in order to have a distributed load with non-null
projection over all the beam (bending) modes. The above functions kj xð Þ are plotted in Fig. 4 for the values a1 ¼ a2 ¼ 15 used
in the calculations. The modal forces can be obtained by projecting the function p x; tð Þ on the eigenfunctions wk xð Þ, thus
expressing pk ¼ Ck1pk1

tð Þ þ Ck2pk2
tð Þ, with the coefficients Ckn given as:
Ckn ¼
R 1
0 kn xð Þwk xð ÞdxR 1
0 jwk xð Þj2dx

ð51Þ
To excite uniformly the system over a finite frequency interval, the time functions pk1
tð Þ and pk2

tð Þ are stochastic func-

tions, whose power spectral densities Upj xð Þ (Fig. 5) follow a Gaussian distribution around a peak value x pð Þ
j , i.e.,
Upj xð Þ ¼ Aj

�rj

ffiffiffiffiffiffiffi
2p

p e
�

x�x pð Þ
j

� �2

�r2
j þ Aj

�rj

ffiffiffiffiffiffiffi
2p

p e
�

xþx pð Þ
j

� �2

�r2
j ð52Þ
with �rj the standard deviation of the Gaussian distribution and Aj ¼ r2
f j
the variance of the random force components, shown

in Table 4. A realization of the Gaussian process is shown in Fig. 6 where the load field along the beam is plotted with respect
to time, which in turn determines the vertical displacement response of the uniform beam plotted in Fig. 7.
Table 2
Beam non-dimensional structural parameters.

Beam non-dimensional stiffness jb 0.079

Spring non-dimensional stiffness js 1.579
Beam damping coefficient fb 0.002
Spring damping coefficient fs 0.2
Beam thickness h 0.001

ensional bending natural frequency of the uniform beam (d ¼ 0).

heave pitch bending modes 2-nodes 3-nodes 4-nodes 5-nodes 6-nodes

t� 0.20 0.20 1.02 2.77 5.41 8.94 13.35



Fig. 5. Load spectra of the random functions p1 tð Þ and p2 tð Þ.

Table 4
Gaussian spectrum parameters.

Upj fð Þ Aj ¼ r2
f j x pð Þ

j f pð Þ
j

�rj

Up1 0.002 18.84 3.00 3.00
Up2 0.002 94.20 15.00 3.00

Fig. 4. Load shape functions k1 xð Þ and k2 xð Þ.
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The analyses are carried out by using MATLAB �. The simulations have a non-dimensional sampling frequency equal to
60. The wavelet multi-resolution analysis is performed within the embedded wavelet toolbox using Daubechies dB12
orthogonal wavelets (Ref. [26]). Specifically, Ns ¼ 4 time scales are considered for the present analyses. The corresponding
WMRA scalar transfer functions ck xð Þ are illustrated in Fig. 8 highlighting their frequency content.

6.2. Displacement field estimation

In the present application, the measurement set consists of noisy data relative to the strains on the top face of the beam at
equidistant positions. The reconstruction of the elastic displacement field is done via the estimation of the modal coordinates
q̂j according to the following decomposition of the response:
ŵ x; tð Þ ¼
XNmodes

k¼3

q̂k tð Þwk xð Þ; ð53Þ
with wk xð Þ the vertical bending modes of the uniform structure, since the rigid-body modes (heave and pitch) do not gen-
erate strain response. For the sake of clarity, in the following we will refer only to the bending modes by renumbering



Fig. 7. Displacement response of the beam under load history depicted in Fig. 6.

Fig. 8. WMRA scalar transfer functions for the considered test case.

Fig. 6. Time-history of the load distribution along the beam.
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the bending modes or the corresponding modal coordinates from n ¼ 1 to n ¼ 5. To assess the accuracy of each technique,
different estimations of the modal coordinate q̂j tð Þ are compared to each other and to the true solution qj tð Þ. In the following,
this comparison is carried out mainly in terms of a frequency representation of the error relative to the estimation of the
modal coordinates as provided by their analytical form in Eq. (15). As the predictions are affected by modelling and measure-
ment uncertainties as well as by the number M ¼ Nsg of experimental dofs at sensor locations, the corresponding values are
set in Table 5 where a reference case is defined. In the considered reference case, the number of strain sensors Nsg is equal to
4. Since M ¼ Nsg – Nmodes ¼ N, most of the involved matrices are rectangular as it is likely to occur in real-life applications.



Table 5
Baseline non-dimensional parameters.

Number of strain gages Nsg 4
Signal-to-Noise Ratio SNR 20
Position of damage x� 0.7
Length of notch 2d 0.1
Percentage reduction of transverse section rd 95%
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Moreover, setting Nsg < Nmodes makes the estimation process more challenging than assuming Nsg > Nmodes. Each strain-gage

is supposed to be glued on the top side of the beam at the generic position x sgð Þ
k providing the virtual measurement of the

strain exx along the x direction. The strain of the k-th sensor will be referred as ek for the sake of conciseness. Thus, the
Nsg elements yk of the measurement output are provided by strains as:
yk tð Þ ¼ ek þ vk tð Þ; ð54Þ

where the functions vk tð Þ indicating the measurement noise differ only for the phase but not for their statistical content.
Considering the relation between the strain and the vertical beam displacement in the linear case (small displacements),
it follows:
yk tð Þ ¼ h
2
@2w x; tð Þ

@x2







x¼x sgð Þ

k

þ vk tð Þ; ð55Þ
being h=2 the distance between the strain sensor and the neutral axis.
The sensitivity analysis of the estimations will concern the variation of one or two of these parameters at the same time as

it will be clear later. Corresponding to the reference case in Table 5, the variance matrices of the measurement and process
noises used in the error evaluation are reported below:
r2
vv

� � ¼ diag 0:375 0:375 0:375 0:375½ �ð Þ
r2

ww

� � ¼ 10�7diag 0:911 0:321 0:021 0:040 0:081½ �ð Þ

These matrices, whose dimensions depend on the number of sensors (Nsg ¼ 4) and on the number of modes involved

(Nmodes ¼ 5), respectively, will change as long as noise levels are varied. The effect of the notch depth on the beam response
accounted by rd can be quantitatively evaluated by considering the modal displacement response with respect to the load
input p x; tð Þ ¼ pk1

tð Þk1 xð Þ with zero initial conditions. For this purpose, the following ratios are defined for each component
of the state-space vector:
Rk xð Þ ¼ ~qk xð Þ
~pk1 xð Þ ; ð56Þ
where the functions Rk xð Þ are computed and plotted in Fig. 9 for k ¼ 1; . . . ;4. It is worth noting that the modulus of the fre-
quency response for the generic p mode is altered at the resonant frequencies corresponding to the k < p modes.

The fidelity level of the observation process is addressed by means of the so called Time Response Assurance Criterium
(TRAC) (see Ref. [4]). By taking into account the generalized coordinate vector q tð Þ and its estimation q̂ tð Þ, the TRAC is defined
as below:
TRAC tð Þ ¼ kq tð ÞTq̂ tð Þk2

q tð ÞTq tð Þ
� �

q̂ tð ÞTq̂ tð Þ
� � : ð57Þ
The function above represents the similarity of the signals vectors q and q̂ in time domain and can assume values between
0 (when orthogonal) and 1 (when parallel). This property makes the TRAC a good candidate for being considered as a quality
indicator of the estimation process. Its time-averaged value TRAC is therefore assumed as a global indicator for the quality of
the estimation.

6.3. Results

The first analysis considers an ideal case, i.e., the beam without the notch with negligible noise on the measurements
(SNR ¼ 100), virtually equipped with as many strain-gages as the number of modes, i.e., Nsg ¼ Nmodes. This case considers
no modelling errors and faultless measurements for displacement field reconstruction and, consequently, the order of mag-
nitude of the error keeps globally rather small as shown via TRAC in Fig. 10(f) (orange bars). The PO (yellow line) and MBO
(blue line) show very close results for the low-order modes (see Figs. 10(b)). For n P 3, the PO is less accurate around the
natural frequency of the considered mode (recall that the first bending mode now corresponds to n ¼ 1 and so on). However,
it tends to perform better than the MBO elsewhere. The MR-PO gives in general better results than PO and MBO in all the



Fig. 9. Absolute value of frequency response functions Rk xð Þ to load 1 for different value of notch depth.
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frequency range, making errors to reduce further far from the mode natural frequency thanks to the signal decomposition.
The ability of finding an optimal gain matrix affects all the results but becomes critical for the MBO technique, where iter-
ations may stop once a local minimum is identified. In Figs. 10(e) a curve representing the error done at first iteration by
MBO using the initial guess of the gain matrix according to Eq. (46) is shown as a red line labelled as MBO-i (MBO single
iteration). At first iteration, a sharp error peak appears at low frequency for most modes corresponding to the excitation fre-
quency spectrum. This peak is then strongly reduced as the optimization iterations proceed up to the final value, indicating
that the optimization procedure is effective. Also in terms of global error, the red bar in Fig. 10(f) indicates that the TRAC at
first iteration gives poor results with respect to the full-developed MBO computation.

If the signal-to-noise ratio is decreased to 20 (see Fig. 11), errors grow for all the considered techniques (see TRAC in
Fig. 11(f)). Some differences among the involved techniques, already present in the case of low-noise, are amplified, like
the error increase around resonances for the PO technique as shown in Figs. 10(e). Nonetheless, for n P 3 MBO seems to suf-
fer more the higher measurement noise. It is worth noting that MR-PO keeps the modal error at the same level of the case
with SNR ¼ 100 far from the natural frequencies of each mode.

Next, the number of sensors is decreased to 4 and the corresponding results are shown in Fig. 12 and 13. Whatsoever the
value of the SNR, errors again decrease as the mode order is increased. At SNR ¼ 100, the various techniques perform in a
similar way to the case with Nsg ¼ 5 at least for n ¼ 1;2;4, keeping approximately the same accuracy. For the odd modes
(n ¼ 3;5) the error distribution in frequency, especially for the MBO, exhibits greater variations with an overall significant
decrease in its accuracy. Similar considerations about the comparison between using 4 or 5 sensors apply also if SNR is
set to 20 as shown in Fig. 13.



Fig. 10. Power spectral density amplitude for all the modal coordinates (a-e) and TRAC (f) for the case Nsg ¼ Nmodes ¼ 5; SNR ¼ 100, uniform beam (no
notch).
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Fig. 11. Power spectral density amplitude for all the modal coordinates (a-e) and TRAC (f) for the case Nsg ¼ Nmodes ¼ 5; SNR ¼ 20, uniform beam (no notch).
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Fig. 12. Power spectral density amplitude for all the modal coordinates (a-e) and TRAC (f) for the case Nsg ¼ 4; SNR ¼ 100, uniform beam (no notch).
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Fig. 13. Power spectral density amplitude for all the modal coordinates (a-e) and TRAC (f) for the case Nsg ¼ 4; SNR ¼ 20, uniform beam (no notch).
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Fig. 14. Power spectral density amplitude for all the modal coordinates (a-e) and TRAC (f) for the case with baseline parameters (see Table 5).
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Fig. 15. Modal response (a-e) and reconstructed vertical displacement in x ¼ 0:7 (f) for the reference case (see Table 5).
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Fig. 16. Sensitivity of the trace of the error covariance matrix and TRAC with respect signal-to-noise ratio, nothc depth and number of strain gauges.
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In the following, the so-called reference case of Table 5 is analyzed; the beam geometry is modified by adding a stiffness
reduction (refer to Fig. 2) representing a structural detail that is not a priori known due to its relatively small extension. In
this case, the error distribution among all the techniques and modes remains substantially the same (see Fig. 14) For this
baseline configuration, the estimation of structural responses in time domain is shown in Figs. 15(a) and 15(e) in terms
of modal response and vertical displacement of the point coinciding with the notch position (centred around x ¼ 0:7) in
Fig. 15(f), each compared with the true solution. It is noted that the estimate of MR-PO is substantially close to the true solu-
tion and is less sensitive to the presence of noise as compared to MBO and PO.

However, though less reasonable in real applications, it is interesting to understand in which way the notch dimensions
will affect the accuracy of results. A sensitivity analysis with respect to the relative width reduction as described by the
parameter b� bdð Þ=b ¼ 1� rd is first carried out. Later, the sensitivity analysis is extended to cope also with the measure-
ment noise, given by the signal-to-noise ratio SNR, and the number of strain gages Nsg . The parameters are then varied start-

ing from the reference case (Table 5). The trace of the error covariance matrix Tr r2
qq

h i
and the TRAC indexes are assumed as

key performance indicators for the comparison. For the sake of completeness, also the results relative to the Kalman filter
(KF) and Modal filter (MF) (see Meirovitch (1985), Ref. [6]) have been added. It is worth highlighting that KF benefits from
requiring, as input, the time-dependent loads acting on the beam. On the other hand MF is performed by projecting the
vibration modes over deflection field obtained by integrating piece-wise linear function of w00 between sensors and beam
edges (equivalent to natural spline approximation). The error (left) and the accuracy (right) sensitivity to different values
of the SNR are plotted in Figs. 16(a) and 16(b), respectively. For all the techniques, there is a general monotonic increase
of the error as the SNR grows. As expected, less information. i.e., a smaller number of sensors, affects the quality of the
results. It is also worth to note that for Nsg ¼ 2 the PO makes an error larger than MBO. Indeed, it is likely to occur that
the MBO takes advantage of using more knowledge about the system model than the PO in the definition of the observer.
Anyway, the MR-PO still provides the best results among all the considered techniques. Varying the notch depth, i.e., the pro-
cess noise, the nonlinearity of the optimization search of the best gain becomes evident for the MBO technique. For PO and
MR-PO the sensitivity with respect to the process noise is less evident; this is related to the fact that these techniques rely to
a minor extent on the knowledge of the system model.

7. Conclusions

In this paper, the problem of reconstructing the vertical displacement field over a beam using point-wise measurements
has been addressed as a specific but meaningful example of virtual sensing for building a digital twin based on experimental
data. The so-called Multi-Resolution Proportional Observer has been proposed as a generalization of the Proportional Obser-
ver, introduced in the paper as well, to follow closely the different components of the tracked signals according to the signal
decomposition given by wavelet multi-resolution analysis. A detailed mathematical derivation of both the techniques (PO
and MR-PO) highlights similarity and differences with the MBO approach which shares the same objective to be a ‘natural’
observer. The displacement field reconstruction is then based on a modal superposition, where the mode shapes are obtained
from the numerical model of the mechanical system (mass, damping and stiffness matrices) and the time coordinates are
estimated by the observer.

Though the final goal is developing numerical techniques for processing real experimental data, i.e., sensor signals, in the
present paper the focus has been on providing a comprehensive error analysis with reference to a ‘virtual’ experiment, which
allows for achieving a deeper insight into the performances of the proposed methods. Thus, all the noise sources like mea-
surement noise, unknown excitation, and process noise, have been taken into account by their statistical behavior (power
spectral densities), properly specified for the considered application. The capability of accurately reconstructing the whole
displacement field relies on choosing the global observer gain, in the form of a set of gain matrices, which minimizes the
variance matrix of the error between the true and the estimated state-space vector. This minimization process is carried
out directly on the analytic expression of the error variance matrix which depends on the observer parameters. From a gen-
eral point of view, it would be possible to avoid the evaluation analytical expressions of the error variance matrix as provided
in the paper. Indeed, in real cases one may divide the set of sensors into measurement and control sensors, the latter not
providing any information as input but just the reference values which the predicted values are compared with. Though
recalling that the error estimation based on its analytic expression depends on the model uncertainties as well, the present
procedure has some advantages: (i) it highlights clearly the type of error dependence from the observer gain matrix, that is
found to be quadratic for the PO observers at the considered time-scales so facilitating the search for an absolute minimum,
and (ii) it is numerically more efficient in terms of the error computation at each iteration of the optimization process.

Remaining on the field of highlighting the applicability of these methods to real cases, theoretical or empirical statistical
models for the unknown load and noise sources are required. For instance, if environmental loads due to stochastic gust on
wing airplanes, or random waves on ship hulls are considered, the parameters characterizing the correspondent spectral
models can be identified by means of local forecast or inferred from on-board measurement. Then, a linear transfer function
from the excitation source (e.g., flow velocity for wings or wave elevation for ships) to the applied forces is needed as well as
to obtain the final input load spectra. A similar user expertise applies to the modelling of structural uncertainties. If
structural damage or degradation is the reason of an unmodeled feature, it is reasonable to assume that the severity of
the stiffness reduction should be below a certain detection threshold, depending on the considered problem. It is reasonable
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indeed to assume that evident structural modifications would be included by the user when addressing the virtual sensing
problem.

The error sensitivity has been carried out with respect to increasing levels of both the measurement and process noise, as
well as with respect to the number of virtual strain-gages so highlighting the best performances in all the conditions for the
MR-PO. This is in general true considering both the global error, evaluated with the average of TRAC function, or its fre-
quency spectrum. The displacement error, evaluated in specific points along the beam, is then the results of the error in esti-
mating the modal time coordinates, the error in computing the mode shapes, and the interpolation error directly related to
the modal truncation. The results appear rather encouraging on extending this method to the case of experimental measure-
ments on more complex structures for which the development of these approaches finds its ultimate motivation.
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Appendix A. Wavelet multi-resolution analysis

The aim of this appendix is to provide the basic elements to understand the wavelet multi-resolution analysis as applied
to the definition of the proposed observer (for further details, the reader is addressed to Ref. [26,27]). The wavelet multi-
resolution analysis (WMRA) expresses a signal s tð Þ into different contributions, each one related to different time scales,
by performing a cascade of dicothomic decompostions, which at the generic n-level generate a detail dn tð Þ and an approx-
imation signal an tð Þ. While the detail dn tð Þ is kept as a component of the signal s tð Þ, the approximation an tð Þ is further decom-
posed at the nþ 1ð Þ-level into a new approximation anþ1 tð Þ and a new detail dnþ1 tð Þ. After N decompositions, this cascade
process yields:
s tð Þ ¼ aN tð Þ þ
XN
n¼1

dn tð Þ; ðA:1Þ
where aN tð Þ is the (residual) approximation at N-th level and the summation includes N details dn tð Þ. In the framework of
WMRA, the approximation an tð Þ can be generally expressed as:
an tð Þ ¼
X1
k¼�1

an;k/ 2�nt � k
� � ðA:2Þ
where / 2�nt � k
� �

is the so called k-th scaling function, with k 2 Z, forming a set of orthogonal functions spanning the sub-
space V�n. The scaling function satisfies the following relationship (the so-called refinement equation):
/ 2�n�1t
� �

¼
X1
k¼�1

h kð Þ/ 2�nt � k
� � ðA:3Þ
which guarantees that the subspace V�n�1 is completely spanned by the basis functions / 2�nt � k
� �

of V�n, implying
. . .V�n�1 � V�n � V�nþ1 . . .. Consequently, a proper subspaceW can be introduced to represent the difference between con-
secutive spaces, e.g., V�n�1 and V�n:
V�n�1 ¼ V�n 	W�n: ðA:4Þ

In the same way, recalling Eq. (A.2), the approximation function an 2 V�n�1 can be expressed in terms of the approximation
at higher order anþ1 2 V�n plus a correction term lying in the subspace W�n, i.e.,
an tð Þ ¼ anþ1 tð Þ þ
X1
k¼�1

bnþ1;kw 2�n�1t � k
� �

ðA:5Þ
where w tð Þ is the so called mother wavelet function that in the wavelet multi-resolution framework satisfies an equation
similar to that one which holds for the scaling equation (cfr. Eq. (A.3)):
w 2�n�1t
� �

¼
X1
k¼�1

g kð Þ/ 2�nt � k
� �

: ðA:6Þ
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The discrete wavelet transform (DTW) coefficients an;k and bn;k are then defined as the components of the signal s tð Þ over the
scaling and mother wavelet functions, respectively:
an;k ¼
Z 1

0
s tð Þ/ � 2�nt � k

� �
dt; bn;k ¼

Z 1

0
s tð Þw � 2�nt � k

� �
dt; ðA:7Þ
where � denotes complex conjugate. The coefficients h kð Þ and g kð Þ represent a conjugate pair of a mirror filter based on the
scaling and mother wavelet functions:
h kð Þ ¼
Z 1

0
/ tð Þ/� 2t � kð Þdt; g kð Þ ¼

Z 1

0
w tð Þ/� 2t � kð Þdt ðA:8Þ
which implies g kð Þ ¼ �1ð Þkh �kþ 1þ 2nð Þ. The decomposition in Eq. (A.1) is computationally achieved by means of the Mal-
lat algorithm that employs the conjugate filter pair defined in Eq. (A.8) (Ref. [27]) alternate with the down-sampling of the
coefficients in Eq. (A.7). Fig. A.17(a) illustrates graphically a decomposition tree over 3 levels. The sampled signal s tkð Þ is first
decomposed by means of the digital filter pair in the approximation a1 tð Þ and detail d1 tð Þ functions (first level), and then
down-sampled (with decimation factor equal to 2). This procedure is recursively applied to the approximations until the
desired N-level is reached, thus providing a cost-effective strategy to compute the discrete wavelet coefficients. The obtained
DTW coefficients are then used to compute the approximation aN and details dn as represented in Fig. A.17(b). The bottom
side of the figure highlights the frequency-range overlapping of each detail and approximation components.

In the development of the multi-resolution proportional observer (MR-PO) the previous definitions and analysis tools are
employed using problem-oriented notations. Given the number of scales Ns for the WMRA in Section 3.2, the generic com-

ponent qn tð Þ of the state-space vector is decomposed into a set of functions q 1ð Þ
1 . . . q Ns�1ð Þ

1 , which represent the details func-

tion, and the function q Nsð Þ
1 that is the ‘approximation’. This applies for all the other variables as well. Several transfer

functions ~c nð Þ xð Þ relating the decomposition sub-signals ~s nð Þ tð Þ to the target signal ~s tð Þ in frequency domain are also intro-
duced. These transfer functions ~c nð Þ xð Þ are obtained a posteriori with respect to the wavelet analysis and depend on the kind
of orthogonal wavelet used for the decomposition. In this work, the use of these functions represent an effective method for
the evaluation of the cross time-scales covariances employed to compute the optimal Qn (see Eq. (38)).
Fig. A.17. 3-level WMRA decomposition and reconstruction diagrams.
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