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Abstract: This work aims at exploring the potential contribution of the Italian residential sector in 
implementing load flexibility for Demand Response activities. In detail, by combining experimental 
and statistical approaches, a method to estimate the load profile of a dwelling cluster of 751 units 
has been presented. To do so, 14 dwelling archetypes have been defined and the algorithm to 
categorise the sample units has been built. Then, once the potential flexible loads for each archetype 
have been evaluated, a control strategy for applying load time shifting has been implemented. That 
strategy accounts for both the power demand profile and the hourly electricity price. Specifically, it 
has been assumed that end users access a pricing mechanism following the hourly trend of 
electricity economic value, which is traded day by day in the Italian spot market, instead of the 
current Time of Use (TOU) system. In such a way, it is possible to flatten the dwellings cluster 
profile, limiting undesired and unexpected results on the balancing market. In the end, monthly and 
yearly flexibility indexes have been defined along with the strategy effectiveness parameter. From 
calculations, it emerges that a dwelling cluster for the Italian residential sector is characterised by a 
flexibility index of 10.3% and by a strategy effectiveness equal to 34%. It is noteworthy that the 
highest values for flexibility purpose have been registered over the heating season (winter) for the 
weekends. 

Keywords: residential users; demand response; flexible loads; dwellings clustering 
 

1. Introduction 

The European Union established the ambitious net zero greenhouse gas emissions target by 
2050. Actions heading towards the energy systems decarbonisation can be implemented by the 
application of energy efficiency measures and by increasing Renewable Energy Sources (RES) 
penetration [1]. However, large-scale RES integration within electrical systems shows important 
technical and safety issues, due to the RES non-programmable nature. As a consequence, figuring 
out, effectively, the energy supply and demand matching will play a key role in the near future [2]. 
In order to stabilize the grid, several technical options are currently available. Among these, a 
growing level of system flexibility will become necessary to reduce the purchase cost of electricity in 
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the spot market. Adding new flexibility sources to the traditional regulation for the electricity offer 
will be feasible to perform that task. Basically, allowing end-users to actively participate to the 
electricity price formation mechanism by load time shifting leads to the implementation of so-called 
Demand Side Management (DSM) strategies [3,4]. 

DSM activities imply an energy consumption model modification and they can be mainly 
classified as "energy efficiency (EE)" and "demand response (DR)" [5]. The EE is for reducing the 
demand without dealing with the renewable energy fluctuations; conversely, DR proves to be more 
promising [6] since it is based on adapting the user demand profiles to the grid requirements by 
increasing, reducing, or moving the energy consumption. 

Several research activities were focused on the evaluation of technical and safety issues 
associated with a growing RES share in current energy systems. In reference [7], an accurate analysis 
on the technical feasibility of electrical systems characterised by 100% RES was reported. The authors 
highlighted the importance of flexible power plants, storage technologies and Demand Response 
activities. Zappa et al. [8] analysed several scenarios related to whole European energy system to 
explore the feasibility of 100% RES electrical system. The authors performed their simulations 
accounting for different operating conditions, including also a significant load shifting capacity. That 
capacity can be provided by either industrial sector or the tertiary one, as well as by the residential 
sector. The interest in DR activities implementation hails from the huge value of energy consumption 
related to the building sector. According to data for 2018 reported in [9], this value is equal to 26.1% 
of total primary energy need in the EU. In Italy, the residential sector share is higher than the average 
value in the EU and it is equal to 28.0% (i.e., Heating 68.6%; Electrical Appliances 13.1%; Water 
Heating 11.5%; Cooking 6.2%, Cooling 0.6%, referred to the national primary energy consumptions) 
[10]. 

Moreover, several investigations to identify the buildings’ potential of flexibility can be found 
in literature [11]. For instance, Rahmani-Andebili [12] built a predictive model to properly schedule 
the deferrable users and the energy resources. In addition, the use of buildings’ thermal mass can be 
considered as an effective storage medium [13,14]. Indeed, that mass, different for each building, is 
able to store heat by anticipating or postponing the heating systems (or cooling systems) switch-on, 
without affecting the indoor thermal comfort conditions [15]. Other available options to manage the 
load flexibility consist of applying the so-called Power-to-X or Power-to-What strategies [16–18]. This 
is the general terminology meant for the electricity conversion into other useful energy forms. As 
regards the building sector, Power-to-Heat, Power-to-Power and Power-to-Gas seems to be the most 
promising and suitable solutions [19–22]. Moreover, specific storage devices, such as Phase change 
Materials (PCMs), batteries, pressurised gas vessels, and electro-fuels injection into Natural Gas (NG) 
network must be properly integrated into the existing energy systems [23]. Lezama et al. [24] propose 
an evolutionary algorithm for the management of DR activities in residential homes equipped with 
photovoltaics (PV) and battery systems. Having said, the recent literature on that topic has strongly 
focused on the electric heat pumps use which serve the end-user for space heating and Domestic Hot 
Water (DHW) production [25]. 

A holistic approach must be taken to address the building load flexibility to better understand 
how the application of such strategy at small-scale can actually affect the whole energy system 
performance. 

Many studies focused on the analysis of a single dwelling instead of considering a wide group 
of them. Where this latter group was studied, the modelling was often oversimplified. Indeed, those 
models did not account for the several thermos-physical characteristics of buildings as well as the 
occupancy profiles [26]. Adhikari et al. [27] developed in their work an algorithm for the optimal 
management of an HVAC systems aggregate for residential users. Similarly, Cai et al. [28] analysed 
the role and implications of a commercial/residential users aggregate in the optimised management 
of a district heating network. Scaling down the level of analysis, D’hulst et al. [29] presented their 
estimation on the flexibility amount associated to a group of smart household appliances in the 
residential sector. 
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In this paper, the authors propose and describe their approach for simulating a generic dwellings 
aggregate based on real data extrapolation taking into account whole electricity consumptions. 

To the best of the authors’ knowledge, currently, there does not exist an available model 
characterised by high quality data for generating realistic profiles, to evaluate the potential of 
flexibility for the Italian residential sector. That high accuracy is required in order to properly build 
affordable low voltage grid models. Several studies dealing with the loads profiling activity can be 
found in literature for Italy and some southern Europe countries, but they are based either on 
benchmarks or simulations [30,31] referred to typical buildings [32]. Additionally, the most updated 
data, relative to the real electricity consumptions, date back to 2002 [33]. Therefore, one of the aims 
of this study consists of fulfilling that gap by proposing an empirical-probabilistic model of 
household electric loads. Such a model has been designed to generate demand side profiles based on 
a bottom-up approach, using also on field measurements, which have been recently registered. 

Indeed, those real data has been collected by an experimental campaign over a two-year period, 
2018–2019, on 14 selected dwellings [34]. That sample has been chosen as the most representative 
dwelling typologies of the Italian middle regions’ building stock. To do so, a combined approach 
based on simulations and real monthly power consumption data collection of 751 dwellings, 
determined from utility bills has been used. Thus, by post-processing all the outcomes, it has been 
possible to build the electric load profile of some typical Italian dwellings. 

The hourly electricity price on the Italian spot market has been recorded to plot its profile over 
the year. Thereafter, a decisional algorithm to shift the end-user loads has been implemented and 
discussed, identifying the potential opportunities the residential sector can offer to the whole Italian 
electric system. 

In the end, from literature review, it emerged how the most investigated sectors for DR 
application are the industrial and tertiary ones. For that reason, the authors believe that their 
contribution to the knowledge in this topic consists of: (i) providing the actual electric load profile 
along with the amount of flexibility potential for the most common Italian dwelling typologies; (ii) 
elaborating a simplified methodology to create a buildings’ cluster; (iii) evaluating the potential 
limitations related to the implementation of DR activities into a country with the lowest electrification 
degree of heating across the European Union; (iv) defining useful indicators in order to assess the 
loads shifting strategies effectiveness once they are applied. Indeed, the DR programs suitability was 
generally investigated paying mostly attention to the achievable results in terms of grid stability [35] 
and benefits for the end users [36,37]. Differently, quantifying the adopted strategies effectiveness 
and viability have not been widely addressed up to date.  

2. Materials and Methods 

This study is part of a research project aimed at characterizing residential users to assess the 
effectiveness of a Demand Response (DR) program application in the residential sector. 

In previous works by some of the authors, a wide data collection campaign was carried out to 
build a database consisting of 751 typical Italian dwellings. For that purpose, an on-line tool, based 
on an in-house code, was provided to “interview” several end-users. In detail, this code is able to 
collect all the actual dwelling consumptions allowing to compare the billing data with the estimated 
ones hailing from a simplified dynamic simulation. To do so, a collection of the dwelling’s 
characteristics has been carried out by means of an on-line survey dedicated to non-expert users (see 
Appendix A, Table A1). The typical dwelling technical parameters, such as U-value, heat capacity 
etc., have been assumed from the construction age, the climate zone, and the potential energy 
retrofitting measures. Furthermore, the solar gains have been assessed accounting for the walls and 
roofs colour (i.e., very light colour, light colour, medium colour, dark colour, very dark colour) as 
well as the shading degree in terms of time periods over the day [38]. 

That database was already used to perform the following tasks: (i) characterising the energy use 
of residential end-users and identifying the flexible loads [38]; (ii) assessing how the energy 
retrofitting interventions influence the energy performance [39]; (iii) estimating the potential benefits 
that arise from the installation of Building Automation Control systems [40]; and, simulating the 
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climate changes implications on dwellings energy needs [41]. Thus, simulations results match 
positively the real collected data [38], but they refer to a standard scheduling [42]. In addition, the 
assumed occupants’ number over the day is the declared one in the questionnaire (i.e., from 8:00 a.m. 
to 1:00 p.m.; from 1:00 p.m. to 7:00 p.m.; from 7:00 p.m. to 12:00 p.m.; from 12:00 p.m. to 8:00 a.m.). 
As demonstrated in literature, unfortunately, people have a weak perception of their own energy 
consumptions [43]. 

For those reasons, the authors believed to deepen the knowledge of residential users’ behaviour, 
in order to acquire a more realistic schedule. In such a way, better forecast values of electricity 
consumptions can be computed to implement the subsequent aggregation process. 

For that purpose, the 751 questionnaire respondents were asked to participate in an 
experimental campaign aiming at measuring the electricity consumption at their homes (Figure 1). 
Based on their feedback, 14 households were selected to become archetypes. In order to maximize 
the representativeness of the dwelling sample—the average floor surface, the number of occupants, 
the age, and the financial and educational conditions have been considered. In terms of geographic 
location, the 14 selected households are located in the Rome Municipality and in the neighbouring 
provinces. Notwithstanding, this is not a limit for the purpose of this study, since it refers only to the 
dwellings’ electricity consumption. Indeed, it has to be noted that in Italy, only 0.4% of heating 
consumptions are due to electric-driven devices [44]. Furthermore, the electricity consumptions for 
cooling purpose in the Italian residential sector are very low; even though the Italian territory is 
characterised by different climate zones, the electricity consumptions for the inner space cooling are 
not strongly affected by the geographical location. As reported in [41], the normalised yearly 
electricity consumptions for Milan, Rome, and Naples (i.e., northern, middle, and southern regions) 
are very similar and they are equal to 1.3 kWh/m2year, 1.8 kWh/m2year and 1.3 kWh/m2year, 
respectively. Since the scope of the article is to propose a method to create a residential cluster, it is 
possible to extrapolate data, referred to the Italian middle regions, to assess, in a first approximation, 
the whole Italian building stock. 

Thus, once the occupants’ consent was acquired, the selected 14 dwellings were equipped with 
sensors and probes for monitoring the electricity uptakes. Thereafter, data collection was carried out 
over two years. By processing all of those measurements, the electricity time scheduling has come 
out, identifying the average daily profile for each month, distinguishing also three different day types 
(i.e., weekdays, non-working days, and Saturdays). 

 

Figure 1. Flow chart related to the methodological approach. 

First, the sample households have been considered one by one and, then, the virtual aggregate 
of 751 units, which has been built on the 14 archetypes. Indeed, the building aggregate modelling 
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process combines statistical and measured data very often [45] for the estimation of hourly electricity 
consumption for a large group of residential buildings [46]. Moreover, the archetype-based approach 
is widely applied for taking into account building diversity, in terms of architectural shape, 
construction year, urban context, orientation and materials [47]. In so doing, the aggregate power 
demand as well as the energy demand (EDagg) can be easily calculated by multiplying each archetype 
demand (EDi) by the dwellings number (ni) belonging to that one [48]. 

𝐸𝐷௔௚௚ =  ෍ 𝐸𝐷௜ ∙ 𝑛௜ே
௜ୀଵ  (1)

The archetype categorization has been drawn up according to the following peculiarities [49]: 
• electricity consumptions (storable loads, shiftable loads, non shiftable loads); 
• electric-driven heating systems and/or Domestic Hot Water (DHW); 
• PV array installation; 
• dwelling size; 
• the occupancy modelling (occupant number, time scheduling). 

The reference archetype identification the sampled dwellings belong to has been done by means 
of a grade assignment according to the criteria reported in Table 1. Specifically, the grade calculation 
has been performed by comparing simultaneously the typifying aspects of a selected dwelling to the 
archetypes reference values. These latter will be presented extensively in the Section 3.2 and they 
have been outlined in Table 5. 

Table 1. Typifying Aspects and criteria outline for the Grade calculation. 

Typifying Aspects 
(A) 

Criterium Max Grade* 

(Gmax) 
Grade* 

Storable Loads Relative deviation 0.15 (A/Aref)* Gmax or (Aref/A)* Gmax 
Deferrable Loads Relative deviation 0.15 (A/Aref)* Gmax or (Aref/A)* Gmax 

Non-deferrable Loads Relative deviation 0.15 (A/Aref)* Gmax or (Aref/A)* Gmax 
Heating or DHW**  Energy carrier 0.05 Electricity = 0.05; NG** = 0 

PV** array Installation/lack 0.05 Installed = 0.05; Missing = 0.00 
Dwelling floor surface Relative deviation 0.10 (A/Aref)* Gmax or (Aref/A)* Gmax 

Occupants Number Relative deviation 0.10 (A/Aref)* Gmax or (Aref/A)* Gmax 
Occupancy in time span 8–13 presence/absence 0.10 Present = 0.10; Missing = 0.00 

Occupancy in time span 13–19 presence/absence 0.10 Present = 0.10; Missing = 0.00 
Occupancy in time span 19–0 presence/absence 0.025 Present = 0.025; Missing = 0.00 
Occupancy in time span 0–8 presence/absence 0.025 Present = 0.025; Missing = 0.00 

TOTAL  1.00  
* Gmax is the maximum assignable grade for the selected typifying aspect; A is the actual numerical 
value corresponding to the selected typifying aspect; Aref is the numerical value corresponding to the 
typifying aspect associated to the reference archetype, which is used for comparing each building.  

** DHW: Domestic Hot Water; NG: Natural Gas; PV: Photovoltaic. 

Subsequently, the electricity price trend has been analysed to identify the current cost criticalities 
of the Italian electricity system, using the open data provided by the Energy Market Manager (GME) 
[50]. Finally, the study has been completed superimposing the electricity price profile on the 
aggregate consumption curve to highlight the potential opportunities emerging from a different 
behaviour of residential sector. Indeed, rather than replicating the most common mechanism, where 
consumers optimise their purchase costs in accordance with the current tariff scheme [51,52], it has 
been assumed that the flexibility can be integrated in the market. In detail, by gathering the flexibility 
capacity of each dwelling to get the energy player scale, that energy amount can be effectively 
programmed for a flexible use matching the spot market profile as much as possible [53]. In this way, 
it is possible to create a Residential Cluster (RC), which is able to offer directly, in the day-ahead 
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market, packs of flexible energy characterised by a specific time scheduling. In so doing, the energy 
traders can choose the best profiles for maximising the social wellbeing. Nonetheless, that approach 
presume that utilities keep completely under control the flexible loads amount, to formulate the best 
offer sets matching the market outcomes. They can do it directly or by means of an intermediary 
subject, such as an aggregator able to gather homogeneous end users. 

For that purpose, a statistical approach has been applied also on the monthly National Unique 
Price trend (that price is commonly also known as the PUN Index by Italian Market operators). 
Specifically, the PUN Index is defined as the average of zonal prices in the day-ahead market, 
weighted by total purchases, net of purchases for pumped-storage units and of purchases by 
neighbouring countries’ zones [54]. Thereafter, all those periods where the residential sector could 
either reduce or increase its electricity uptakes have been defined. Figure 2 briefly depicts the logical 
pathway for the decision making. 

 
Figure 2. Flow chart related to the consumptions’ optimization process (PUN: National Unique Price). 

Database Description and Sample Users 

As stated previously, the present study refers to a database consisting of 751 households 
characterised by nonhomogeneous size, technical systems, and occupancy. The average floor surface 
is equal to 120.4 m2 (see Figure 3a) and it ranges between the minimum and maximum values of 22.5 
m2 and 648.0 m2, respectively. In regards to the occupant number, the lower and upper limits are 1 
and 9, respectively, while the average value is 3.4 (see Figure 3b). Thus, in terms of frequency, the 4-
people dwelling is the most common (41.8%), while the 3-people and 2-people ones have a share 
equal to 26.1% and 17.8%, respectively. All of the samples are equipped with a heating system (see 
Figure 4a), showing a clear prevalence of NG-based plants (98.5%), compared to the electrically 
powered ones (1.5%). Moreover, a DHW device is installed in all sample dwellings (see Figure 4b), 
consisting mainly of instantaneous boilers (77.5%), instead of other typologies, such as condensing 
boiler with integrated storage (7.7%), electric water heaters (12.5%), and heat pump water heaters 
(2.1%). 
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(b) 

Figure 3. Building subdivision. (a) Household size. (b) Family occupancy. 

  
(a) (b) 

Figure 4. Heating system typologies: (a) inner Space heating; (b) DHW. 

In 385 homes (51.3%), there is at least one fixed electric air conditioner and the average number 
of chilled rooms is equal to 2.9. The 751 dwellings energy characterisation has been performed by 
running the online simulation tool [38–41]. In that way, it has been possible to evaluate the 
peculiarities of each sample household in terms of management flexibility. Once the most common 
characteristics have been identified, 14 significative archetypes have been defined according to what 
is summarised in Table 2. 

From the data, it emerges how all the archetypes are equipped with a NG boiler (9 non-
condensing boilers and 5 condensing boilers); cooling appliances serve only a few rooms and they 
are installed only in 9 of the archetypes. Washing Machines (WM) are available in all archetypes with 
an average operating time equal to 4 cycles per week; only 11 archetypes are equipped with 
Dishwasher (DW), running 5 cycles per week and only 4 of them also have a Tumble Dryer (TD). 
Finally, the archetype lighting system is composed by 80% of fluorescent lamps or LED, and 20% by 
filament lamps and halogen. 
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Table 2. Archetypes appliances and characteristics. 

Archetype Floor Surface 
[m2] 

Heating 
and DHW* 

Cooling* PV 
Array 

WM** DW** TD** 

#1 49 NCB 2 HP  7; 5; A+ 6; 7; A  
#2 101 NCB 1 HP  10; 2.5; A   
#3 100 NCB 1 HP  7; 5; A+   
#4 50 NCB 1 HP  7; 1.5; A+  5; 0.5; A 
#5 100 CB + HP 4 HP  7; 4; A++ 5; 4; A 5; 4; A 
#6 65 CB 3 HP  7; 6; A 12; 3.5; A 7; 0.5; B 
#7 65 NCB 1 HP  7; 5; A+ 6; 7; A  
#8 60 CB   7; 2; A++ 12; 1.5; A+  
#9 95 NCB 2 HP  7; 5; A+++ 12; 8; A+  
#10 102 NCB 1 HP  7; 3; A+ 14; 5; A  
#11 67 CB   10; 5; B 6; 5; B  
#12 134 CB   7; 6; A 14; 7; A 6; 3; B 
#13 124 CB   5; 4; A 12; 7; A+  
#14 123 NCB + solar collectors  3.9 kW 5; 4; A 12; 7; A+  
* NCB: Non-Condensing Boiler; CB: Condensing Boiler; HP: Heat Pump 
** WM: Washing machine; DW: Dishwasher; TD: Tumble dryer; Capacity, cycles per week, Energy 
Class. 

Table 3 reports the Archetypes occupancy along with the family demographic composition. 

Table 3. Family composition of each Archetype. 

Archetype Occupants* Description 
#1 4; (1; 3; 4; 4) Family with two teenage children and one unemployed parent 
#2 2; (0; 0; 2; 2) Commuter Workers 
#3 4; (0; 3; 4; 4) Family with school-aged children, and one part-time working parent 
#4 1; (0; 0; 1; 1) Commuter Worker 
#5 4; (1; 3; 4; 4) Family with school-aged children, and one home parent 

#6 4; (1; 3; 4; 4) 
Family with school-aged children and babies, and one unemployed 

parent 
#7 3; (0; 0; 3; 3) Family with a baby and commuter parents 
#8 2; (1; 1; 2; 2) Commuter worker, awaiting employment 
#9 3; (1; 2; 3; 3) Family with a school-aged child, and one commuter worker 
#10 2; (0; 1; 2; 2) Family of commuter workers 
#11 3; (0; 2; 3; 3) Family with a school-aged child, and two commuter workers 
#12 4; (0; 1; 4; 4) Family with two adult children, two commuter parents 
#13 2; (0; 1; 2; 2) Family with a school-aged child, and two commuter workers 
#14 2; (2; 2; 2; 2) Two Pensioners 

* Number of occupants; (8 a.m. to 1 p.m.; 1 p.m. to 7 p.m.; 7 p.m. to 12 p.m.; 12 p.m. to 8 a.m.). 

Additionally, several wireless sensors and actuators have been installed in the selected 
households as archetypes for monitoring and keeping under control the global energy consumptions, 
as well as the single appliance uptakes and the indoor thermal comfort (see Figure 5). 
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Figure 5. Control kit layout. 

The number of sensors to be installed has been decided according to the dwelling shape and 
household appliances typology, as reported in Table 4. All sensors adopt the Z-Wave communication 
protocol for interacting with the Energy Box (EB). This latter has the function to manage the 
peripheral devices and it is able to exchange data with tertiary parts, such as the utilities, by the 
internet connection. The Electricity Meter is responsible for monitoring the user main meter, while 
the Smart Plugs supervise appliances such as refrigerators, washing machines and other electrical 
devices. Finally, Smart Switches control DHW preparation and, where they are installed, the electric 
heat pumps too, for air conditioning. Thus, the Energy Box sampling time for the electrical data 
collection is 5 seconds. Post-processing was performed to calculate average values over 15 minutes, 
according to the common meters provided by Distributors. Therefore, in the present analysis, the 
dwellings load profiles have been built by on field measurements, on the basis of a quarterly 
resolution. 

Table 4. Control kits configuration for the archetypes. 

Function Device 
Archetype 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 
Energy box Gateway 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Monitoring 

Electricity meters 1 1 1 1 2 1 1 1 1 1 1 1 1 2 
Multi-sensors (temperature, 

presence, brightness) 5 6 6 4 6 6 4 4 7 6 3 9 7 7 

Windows/doors 
opening and closing detectors 7 8 6 5 8 8 5 5 10 10 6 9 12 9 

Control 
Smart Valves 6 5 0 4 3 6 5 3 8 6 0 0 7 0 
Smart Plugs 4 3 4 4 3 4 4 3 3 4 3 5 3 6 

Smart Switches 1 0 0 0 1 1 1 1 1 1 0 1 0 0 

3. Results and Discussions 

3.1. Electric Consumption Time Scheduling of Selected Archetypes 

In this section, the results of real data processing associated to the archetype monitoring 
activities have been presented. By registering the actual power profile of each archetype over the 
years 2018 and 2019, the average daily trends have been deduced and plotted, categorising them into 
weekday, Saturday, and non-working day. 
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Figure 6 depicts clearly the average daily profile in the weekdays associated to each one of the 
14 archetypes, together with their average trend, which is plotted in red line. 

It can be noticed how all 14 archetypes show very similar profile trends, with a first slight peak 
occurrence in the early morning hours (between 6:00 a.m. and 8:00 a.m.), and a second one (much 
more prominent) close to the evening (between 7:00 p.m. and 10:00 p.m.). This trend can be correlated 
with all those periods of the day in which the occupant presence within the dwelling is the greatest. 
That generally occurs before and after the working time activities; for the archetypes characterized 
by permanent occupants inside (i.e., # 11; # 14), a third peak is observed close the central hours of the 
day (between 1:00 p.m. and 3:00 p.m.). 

 
Figure 6. Archetypes average daily profiles over the weekdays. 

Similarly, Figure 7 shows the average daily profile in the Saturdays for each archetype. In those 
days, due to a higher occupancy level, slightly different trends have been registered, compared to the 
observed ones for weekdays: (i) the morning peak is greater and it is moved forward by two hours, 
approximately; (ii) the peak in the central hours of the day is higher; (iii) the average power is 
generally increased owing to the greater activity inside the households (i.e., cleaning, washing, etc.); 
(iv) there are wider differences in the shape profiles associated to each archetype. 

 
Figure 7. Archetypes average daily profiles over the Saturdays. 

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Po
w

er
 [W

]

Time [h]

#1 #2 #3 #4
#5 #6 #7 #8
#9 #10 #11 #12
#13 #14 Average

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Po
w

er
 [W

]

Time [h]

#1 #2 #3 #4
#5 #6 #7 #8
#9 #10 #11 #12
#13 #14 Average



Energies 2020, 13, 3359 11 of 25 

 

In regards to the non-working days profile, from Figure 8 it emerges what follows: (i) on 
Saturdays, occupant activities in the morning are postponed (i.e., 8:00 to 10:00 a.m.); (ii) since the 
occupants stay at home longer, the average power remains almost constant from morning up to late 
afternoon; (iii) the evening peak intensity is greater than on the other days; (iv) there are wider 
deviations between the archetype profiles referring to the same hours. 

 
Figure 8. Archetypes average daily profiles over non-working days. 

3.2. Users Virtual Aggregation 

Once the archetype profiles are known, it is possible to build the consumption aggregate 
according to Equation (1). The next step is to identify by a selective procedure how many sample 
dwellings of the database can be considered belonging to each archetype, to compute the overall 
profile. To do so, the dwellings grade has been calculated following the criteria of Table 1 and 
compared to the archetype ones, which are based on values reported in Table 5. The best fitting values 
hailing from each comparison has been fixed equal to the maximum achievable grade. Therefore, the 
larger the grade value, the lower the sample dwelling deviation is, in comparison with the selected 
archetype. 

Table 5. Archetypes reference parameters. 

Parameters 
Archetype 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 
Storable Loads [kWh] 191 106 111 165 950 213 112 49 181 110 46 92 122 81 

Deferrable Loads [kWh] 667 188 549 190 808 714 549 139 915 618 820 1274 835 556 
Non-deferrable Loads [kWh] 2648 1024 1085 879 1298 1000 1099 881 2384 1218 1049 1754 1439 959 

DHW 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
PV array [-] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Dwelling Floor Surface [m2] 49 101 66 50 100 50 66 60 94 102 67 134 137 110 
Occupants Number [-] 4 2 3 1 4 4 2 2 3 2 3 4 3 2 

Occupancy in time span 8–13 1 0 0 0 1 1 0 1 1 0 0 0 0 1 
Occupancy in time span 13–19 1 1 1 0 1 1 0 1 1 1 1 1 1 1 
Occupancy in time span 19–0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Occupancy in time span 0–8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Figure 9 shows the results related to the selective procedure, reporting the best fitting for each 
archetype. It is noteworthy that the best fitting entails, on the average, a grade value equal to 0.81. 
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Figure 9. Best fitting statistic distribution. 

Thereafter, in order to provide further details, a frequency analysis, along with the calculation 
of other cumulative indicators, have been performed. Indeed, Table 6 summarises the processing 
outcomes indicating the archetype representativeness in absolute and percentage terms related to the 
dwellings number, cumulative floor surface, occupants, electrical consumptions, and storable and 
shiftable loads as well. 

Table 6. Archetypes representativeness. 

Archetype 
Dwellings 
Number  

Cumulative 
Surface 

[m2] 
Occupants 

Electric 
Consumptions 

[kWh/year] 

Storable 
Loads 

[kWh/year] 

Shiftable 
Loads 

[kWh/year] 
#1 31 (4.1%) 4782 (5.2%) 130 (5.1%) 95,963 (6.7%) 5310 (1.6%) 18,081 (8.4%) 
#2 16 (2.1%) 1213 (1.3%) 36 (1.4%) 94,444 (6.6%) 5894 (1.8%) 17,602 (8.2%) 
#3 18 (2.3%) 1575 (1.7%) 54 (2.1%) 95,718 (6.7%) 10,267 (3.1%) 17,113 (8%) 
#4 14 (1.8%) 945 (1.0%) 18 (0.7%) 91,964 (6.4%) 7479 (2.2%) 16,595 (7.7%) 
#5 102 (13.5%) 12,419 (13.7%) 369 (14.5%) 262,070 (18.3%) 178,992 (54.8%) 16,305 (7.6%) 
#6 138 (18.3%) 18,056 (19.9%) 531 (20.9%) 110,935 (7.7%) 28,897 (8.8%) 16,048 (7.5%) 
#7 14 (1.8%) 1186 (1.3%) 31 (1.2%) 83,364 (5.8%) 2507 (0.7%) 15,830 (7.4%) 
#8 83 (11%) 5409 (5.9%) 194 (7.6%) 100,642 (7.0%) 21,062 (6.4%) 15,467 (7.2%) 
#9 165 (21.9%) 23,820 (26.3%) 630 (24.8%) 108,939 (7.6%) 32,710 (10%) 14,186 (6.6%) 

#10 16 (2.1%) 1631 (1.8%) 37 (1.4%) 77,844 (5.4%) 3320 (1.0%) 13,760 (6.4%) 
#11 22 (2.9%) 1822 (2%) 69 (2.7%) 71,965 (5%) 1142 (0.3%) 13,468 (6.3%) 
#12 33 (4.3%) 4592 (5%) 135 (5.3%) 73,460 (5.1%) 4563 (1.3%) 12,892 (6%) 
#13 32 (4.2%) 4975 (5.5%) 115 (4.5%) 76,550 (5.3%) 7890 (2.4%) 12,813 (6%) 
#14 67 (8.9%) 7923 (8.7%) 189 (7.4%) 84,345 (5.9%) 16,070 (4.9%) 12,686 (5.9%) 

Aggregate 751 (100%) 90,355 (100%) 2538 (100%) 1,428,203 (100%) 326,103 (100%) 212,846 (100%) 

Considering the archetype occurrences number, the aggregate load profiles have been built for 
the average weekdays, Saturdays, and non-working days for each month of the year. 

Those load profiles are shown in Figures 10, 11, and 12, where the numerical values are 
superimposed on an intuitive colouring code, indicating also the consumptions magnitude in a 
graphical way. To facilitate readers, the reported numerical values refer to the hourly average uptake, 
measured in Watt; it is calculated by dividing the aggregate values by the dwellings number (i.e., 
751). 

In regards to the weekdays (see Figure 9), it can be noticed how the aggregate profile matches 
partially the average trend line of archetypes, showing a slight morning peak close to 8:00 a.m. and a 
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higher distributed peak in the evening, starting from 8:00 p.m. up to 11:00 p.m. In the hot season (i.e., 
June, July, and August), higher values of the hourly average power have been registered, due to the 
air conditioners switching on. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 179 126 113 100 101 114 164 270 279 209 208 210 218 229 220 240 213 230 257 364 441 407 412 268 

February 201 162 133 140 139 153 298 330 273 208 246 241 225 228 221 308 254 259 307 387 446 454 434 311 
March 177 143 124 121 141 126 264 323 232 202 203 193 166 187 214 235 242 205 258 358 458 405 389 271 
April 217 169 137 131 142 136 214 268 258 233 228 212 208 224 249 265 249 277 268 373 505 455 427 281 
May 172 134 121 112 122 123 203 260 227 200 179 182 204 227 233 239 222 210 232 299 367 376 354 254 
June 208 164 138 123 132 131 155 221 203 214 204 210 211 234 286 287 264 234 257 297 382 377 346 288 
July 217 182 166 150 147 150 155 198 193 183 172 166 190 223 265 300 288 292 300 304 311 328 318 252 

August 257 234 194 187 182 180 189 195 219 216 217 226 254 298 333 347 346 327 312 306 325 330 318 286 
September 200 148 137 126 122 122 161 241 203 224 204 208 199 211 261 274 244 217 233 320 399 409 369 296 

October 180 150 145 130 134 133 199 309 254 243 219 214 222 210 223 269 271 233 230 310 384 351 332 276 
November 223 169 147 126 134 134 226 304 255 229 227 250 232 235 243 309 298 289 286 376 445 463 417 336 
December 207 149 134 128 132 121 211 269 255 259 258 234 244 244 261 325 293 332 340 413 479 454 388 317 

Figure 10. The aggregate profile of average power: weekdays. (Green: low; White: medium; Red: 
high). 

Figure 10 depicts the average load profile over the Saturdays. Here, greater fluctuations in the 
average hourly uptake have been registered, starting from the last morning hours until the end of the 
day. That is owing to occupant behaviour variability related to each archetype, as mentioned before. 
The afternoon and evening peaks occur at different time locations, varying also month by month. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 208 133 110 108 113 104 114 133 252 305 356 264 210 330 371 315 275 290 338 445 427 451 331 256 

February 205 158 125 111 104 104 107 156 215 351 347 233 306 404 433 479 490 329 389 335 441 462 390 302 
March 187 157 128 119 125 133 134 184 283 401 389 277 300 387 353 398 364 240 286 408 414 477 410 316 
April 188 139 110 104 100 96 125 138 207 400 366 246 268 279 303 423 256 196 214 360 474 372 322 330 
May 250 211 182 140 114 113 110 167 178 270 253 209 293 385 284 277 268 285 338 285 291 384 298 232 
June 197 160 134 122 115 113 150 194 201 262 239 231 251 303 294 274 295 275 313 323 382 399 303 234 
July 194 170 166 139 126 135 137 153 175 347 277 198 218 219 319 462 378 365 254 209 183 185 184 229 

August 230 208 190 181 154 140 148 154 183 211 228 231 212 269 330 377 306 273 216 233 271 249 286 245 
September 225 189 135 123 128 137 125 138 207 264 301 365 307 355 288 274 358 284 303 315 387 366 301 276 

October 243 166 135 141 134 119 113 169 258 266 236 238 262 256 280 234 350 270 248 346 300 314 291 250 
November 263 228 238 167 130 122 117 158 257 309 281 241 224 317 399 428 373 411 337 310 360 338 331 252 
December 215 223 172 144 126 123 142 205 260 321 371 264 239 295 392 437 444 403 345 474 527 469 382 315 

Figure 11. The aggregate profile of average power: Saturdays. (Green: low; White: medium; Red: 
high). 

In the end, for non-working days load profile (see Figure 11), the peak region over the evening 
hours is still the most significant. Additionally, in the hot season, as well as in February and March, 
the hourly average power gets high values even in the afternoon. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 199 189 171 138 125 123 110 131 200 297 313 302 361 340 323 291 356 345 321 448 575 514 478 287 

February 255 183 170 114 119 117 115 149 247 255 302 380 362 310 365 475 502 295 299 439 422 434 426 258 
March 299 213 157 125 118 122 118 132 244 404 356 253 212 217 303 370 462 223 237 382 382 350 353 273 
April 252 168 151 110 102 97 118 131 248 383 345 399 321 256 255 252 272 294 335 533 508 401 362 275 
May 166 145 124 106 113 114 119 130 177 236 267 259 277 285 315 291 308 256 228 289 406 376 373 266 
June 204 153 149 149 150 151 160 190 207 225 260 247 249 325 321 356 308 252 262 354 419 364 403 314 
July 226 200 156 131 133 134 137 149 203 223 185 192 179 240 279 289 300 320 261 203 266 225 219 195 

August 201 191 163 138 149 151 152 146 164 186 193 231 228 258 354 376 367 355 283 257 253 284 276 262 
September 230 179 150 127 126 132 136 153 214 276 258 253 313 333 369 377 337 288 372 383 463 379 280 226 

October 227 160 139 143 107 105 116 152 233 253 274 260 262 278 312 368 252 242 268 360 359 327 278 192 
November 256 195 171 177 178 172 188 200 255 346 368 358 353 400 387 398 394 368 422 480 617 520 464 375 
December 206 173 157 135 135 134 140 155 275 335 362 341 379 300 309 345 405 398 405 472 520 490 444 319 

Figure 12. The aggregate profile of average power: non-working days. (Green: low; White: medium; 
Red: high).  



Energies 2020, 13, 3359 14 of 25 

 

3.3. Electricity Price Trend on the Italian Spot Market 

In this section, the PUN Index trend related to 2018 and 2019 has been analysed in order to build 
the price profile, according to the time-step used for defining the aggregate one. Specifically, by 
processing data hailing from GME, the PUN Index numerical values in €/MWh (1 € = 1.12 $ based on 
2019 yearly average exchange rate [55]) has been calculated by averaging data referred to the 
aforementioned reference years. With it, the outcomes have been plotted adopting the same graphical 
approach by superimposing the numerical values onto the coloured cells. 

The weekday price profile is shown in Figure 13, where it is possible to find four different time 
spans. Among those ones, two low-price regions can be easily noticed, occurring over the nighttime 
from 12:00 p.m. up to 6 a.m. and over the afternoon from 1:00 p.m. to 2:00 p.m. The former is mainly 
caused by a reduced global energy demand, whereas the latter is due to the PVs production. Peak 
prices occur in the morning from 8:00 a.m. to 11:00 a.m., where all the working activities usually start; 
thus, a further peak-price region can be registered in the time span 6:00 p.m.–10:00 p.m., being also 
affected by the daylight saving time application. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 50.3 46.5 43.7 42.8 43.6 47.8 56.9 64.2 71.4 70.1 65.5 62.9 59.4 58.6 60.9 63.9 67.8 74.6 74.3 71.7 65.9 61.6 58.1 53.4 

February 50.4 48.1 45.9 45.4 45.8 49.3 59.3 65.4 72.2 68.1 62.0 59.2 55.2 54.2 57.6 59.7 64.5 70.5 77.4 75.5 67.4 62.2 58.1 53.4 
March 48.1 45.3 43.2 42.1 42.7 46.9 56.8 63.1 68.8 64.7 59.0 55.7 50.0 49.7 53.3 57.2 60.8 64.0 72.9 79.7 70.7 62.6 56.5 50.9 
April 48.6 44.3 41.9 41.1 41.5 46.1 54.2 62.4 70.4 65.1 59.4 55.9 49.2 47.8 51.4 53.9 55.9 55.3 57.7 65.7 70.7 61.7 55.0 49.8 
May 49.9 45.6 42.3 41.0 41.3 45.7 53.2 60.9 66.4 62.4 58.5 55.6 50.7 49.8 52.3 54.2 56.1 56.0 57.9 63.0 67.0 63.4 56.5 50.0 
June 52.7 49.8 46.1 44.4 44.1 44.6 52.8 58.1 65.1 62.1 58.8 57.0 52.4 52.0 55.5 57.1 59.5 59.8 60.9 65.2 66.0 64.3 58.6 52.0 
July 57.6 54.4 51.5 50.0 49.6 50.5 54.9 59.0 63.9 64.0 62.0 60.8 56.9 56.9 60.2 62.2 64.6 65.5 66.6 69.1 68.9 68.7 63.9 58.6 

August 60.3 56.0 53.1 51.8 51.4 52.9 55.9 58.2 61.7 61.3 59.0 58.2 56.3 56.2 58.0 59.6 62.4 66.0 69.2 72.3 74.2 70.9 65.6 60.6 
September 58.8 56.5 54.8 54.0 54.0 56.7 64.9 69.8 77.1 75.1 70.1 67.1 61.0 61.1 65.9 70.3 73.9 74.2 75.5 85.5 81.2 71.8 65.4 59.7 

October 54.9 52.8 50.9 50.4 50.7 54.3 65.6 73.8 78.6 76.0 70.4 67.8 61.5 61.3 65.2 69.0 72.5 73.6 79.0 84.9 75.7 68.3 62.8 56.9 
November 50.1 46.5 44.4 42.5 42.7 46.4 56.8 64.5 68.4 67.1 64.3 63.3 60.0 60.6 62.7 65.2 69.9 78.8 78.0 72.1 65.0 59.9 56.6 52.6 
December 48.8 44.9 42.6 40.9 41.3 45.7 54.8 61.4 65.4 64.8 61.8 60.4 57.7 57.5 59.9 63.5 67.8 74.0 69.5 66.8 62.7 58.8 55.7 50.9 

Figure 13. Average PUN Index trend over the reference months: weekdays. (Green: low; White: 
medium; Red: high). 

In regards to the Saturday profile, it shows a quite similar time distribution compared to the 
weekdays case. Notwithstanding, the low-price region over the nighttime is less wide, while it is 
larger in the afternoon (see Figure 14). Furthermore, referring to the profile plot, it can be noticed 
how the peak-price region over the nighttime is enlarged, since it ranges between 7:00 p.m.–1:00 a.m., 
especially in the hot season. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 55.3 52.0 49.2 47.8 46.8 47.1 53.3 59.5 63.5 63.7 59.7 56.5 54.5 52.1 52.2 55.5 60.0 69.5 72.7 72.0 66.8 63.1 58.3 53.5 

February 52.1 49.9 47.5 46.2 45.8 46.9 52.9 58.8 60.8 62.0 57.5 53.8 49.9 46.7 46.7 48.8 52.9 61.6 72.0 72.2 65.4 59.5 53.7 49.2 
March 54.9 49.1 46.3 44.9 44.1 46.4 50.4 53.7 55.2 54.8 51.7 47.1 42.9 39.3 38.9 42.4 46.2 53.2 64.2 71.4 65.3 57.7 53.2 47.3 
April 52.0 47.7 44.9 44.6 44.1 45.5 48.7 54.1 57.9 56.2 51.4 46.4 40.4 32.3 31.3 36.6 43.7 47.9 52.9 60.2 66.2 59.0 53.4 47.5 
May 55.5 50.4 46.4 45.0 44.5 45.7 45.9 52.8 56.1 56.1 55.0 51.6 46.7 41.8 41.1 43.7 48.3 48.4 51.0 57.9 63.1 60.0 53.4 47.3 
June 58.2 54.5 49.7 47.2 46.2 43.8 45.1 48.2 51.9 52.3 49.2 43.5 39.2 35.3 34.1 36.3 39.8 46.5 51.9 56.9 59.6 59.3 54.1 50.7 
July 61.3 58.2 54.4 53.6 52.2 50.6 50.0 53.0 55.2 54.8 52.1 49.6 47.8 46.2 45.2 46.4 48.9 53.4 58.1 62.4 63.6 63.8 59.2 54.5 

August 62.2 58.4 55.5 53.8 53.1 53.1 52.3 53.2 54.5 53.9 51.2 50.1 50.0 48.6 48.2 49.1 51.0 54.1 60.2 66.9 70.2 67.9 61.7 57.4 
September 63.2 62.1 58.5 56.1 55.7 56.2 60.5 62.3 61.8 61.1 57.1 54.1 51.3 48.7 47.9 49.4 52.5 58.2 63.4 73.2 72.4 64.7 60.7 55.6 

October 61.7 59.7 56.2 54.6 53.7 55.4 62.9 68.2 67.5 65.7 59.8 55.2 52.5 49.1 48.2 49.6 53.1 59.2 70.8 78.4 73.3 65.0 57.3 55.2 
November 53.3 49.4 46.8 45.0 43.6 46.8 51.3 54.7 56.7 57.4 56.9 56.5 54.3 52.3 51.6 53.9 57.6 64.8 66.2 66.0 60.6 56.1 53.5 51.0 
December 51.4 46.6 42.8 41.4 40.8 41.7 47.2 52.7 55.7 55.4 54.0 52.3 51.5 49.5 50.5 52.8 57.0 62.6 62.8 62.7 58.9 53.7 51.5 47.9 

Figure 14. Average PUN Index trend over the reference months: Saturdays. (Green: low; White: 
medium; Red: high) 

Finally, Figure 15 outlines what happens during the non-working days, highlighting that the 
peak-price region in the morning hours is basically eliminated. Regarding the peak-price region, it 
remains wide over the nighttime anyhow.  
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 52.6 48.9 46.1 42.6 41.2 39.8 43.8 48.0 49.2 51.0 53.2 53.7 53.8 50.6 50.6 53.8 57.6 63.3 65.4 65.9 63.7 60.7 55.4 50.2 

February 48.2 45.5 42.4 39.7 39.3 39.7 43.8 46.1 47.4 48.8 48.3 46.6 45.7 41.9 42.4 44.8 50.1 56.3 64.8 68.3 66.1 62.0 56.3 50.0 
March 49.0 45.2 41.2 40.0 41.5 43.8 45.2 44.6 45.6 48.3 51.4 52.0 50.5 41.9 39.6 44.8 50.7 55.2 67.5 69.2 64.9 59.1 52.1 46.8 
April 48.8 43.2 40.3 38.5 40.1 44.6 44.5 45.0 45.5 44.9 43.2 38.2 34.9 27.0 24.2 27.6 33.1 40.9 49.8 58.9 69.1 65.1 57.7 51.0 
May 49.7 46.2 40.1 36.6 39.7 43.7 40.5 42.6 43.8 43.2 44.1 41.3 37.6 31.1 29.0 33.8 38.7 42.6 49.4 56.4 62.8 62.8 58.1 50.7 
June 50.0 47.5 43.8 41.0 41.5 40.8 39.2 39.4 39.3 42.4 44.5 41.1 38.9 32.9 31.9 36.4 44.0 44.7 50.3 56.4 63.1 65.7 62.0 53.7 
July 55.8 52.3 49.6 47.9 46.6 44.7 41.9 42.5 41.3 42.6 44.0 42.9 41.4 39.2 37.8 39.4 43.7 47.4 51.6 56.9 61.6 63.4 60.9 55.5 

August 57.5 55.7 53.6 52.0 50.8 52.9 50.3 48.5 47.1 47.2 48.3 47.8 47.3 44.5 44.3 46.8 49.9 52.1 55.5 63.1 70.4 69.7 64.7 59.6 
September 58.5 54.8 53.2 52.4 52.1 52.3 54.7 53.4 52.2 54.4 54.6 53.5 52.0 48.4 48.1 50.3 52.9 55.5 59.8 68.9 71.0 65.3 62.2 56.0 

October 54.5 51.6 49.9 48.9 47.6 48.0 49.5 51.2 51.8 52.6 52.5 51.7 50.3 46.5 46.3 48.8 53.0 55.7 61.9 72.4 71.1 65.5 58.6 53.5 
November 48.1 44.8 39.8 38.7 38.0 40.2 42.7 45.5 46.5 49.0 50.5 50.4 51.4 49.8 50.0 52.0 53.8 59.3 61.3 61.5 58.7 54.6 52.4 48.3 
December 46.5 40.0 37.1 33.2 32.2 35.2 40.2 45.0 45.8 47.5 48.5 47.2 47.4 44.3 45.7 50.1 54.9 60.2 60.3 61.0 59.1 56.2 51.7 45.7 

Figure 15. Average PUN Index trend over the reference months: non-working days. (Green: low; 
White: medium; Red: high). 

3.4. Loads Time-Shifting Strategy Identification 

In this section, the implications associated to such a load time-shifting strategy implementation 
has been addressed and discussed. It is important to point out that the shifting command is delivered 
to end-users once both threshold conditions on price and power (i.e., on PUN Index value and on 
average uptake value) are verified. Those thresholds conditions can change dynamically, since their 
values are calculated in terms of percentiles, according to the Equation (2), and they are strongly 
dependent on the database content. Indeed, the generic index Ik associated to the desired percentile 
(e.g., fixing 35th percentile it entails Ik equal to I35) has been calculated as follows: 𝐼௞ = ൤0.5 + ൬𝑛 ∙ 𝑘100൰൨ (2)

where n indicates the number of ordinated sample data. 
Having said, the boundary conditions to perform these simulations are summarised in a 

systemic overview in Appendix B.  
Therefore, the Load Shifting Command Function (𝐿𝑆𝐶𝐹 = 𝑓(𝑃𝑈𝑁, 𝑃)) reads as: 

If   (𝑃𝑈𝑁 > 𝐿𝑖𝑚𝑖𝑡 1)  ∧ (𝑃 > 𝐿𝑖𝑚𝑖𝑡 1) then 𝐿𝑆𝐶𝐹 = −2 
Else If   (𝑃𝑈𝑁 > 𝐿𝑖𝑚𝑖𝑡 2)  ∧ (𝑃 > 𝐿𝑖𝑚𝑖𝑡 2) then 𝐿𝑆𝐶𝐹 = −1 
 Else If   (𝑃𝑈𝑁 < 𝐿𝑖𝑚𝑖𝑡 4)  ∧ (𝑃 < 𝐿𝑖𝑚𝑖𝑡 4) then 𝐿𝑆𝐶𝐹 = 2 

 Else If   (𝑃𝑈𝑁 < 𝐿𝑖𝑚𝑖𝑡 3)  ∧ (𝑃 < 𝐿𝑖𝑚𝑖𝑡 3) then 𝐿𝑆𝐶𝐹 = 1 
          Else 𝐿𝑆𝐶𝐹 = 0 
  End If 

End If 
End If 

End If 

(3)

Numerical indicators ranging between −2 and 2 have been used to encode the load shifting 
commands when the limit thresholds are overcome, according to Equation (3). In detail, once PUN 
Index and Power are higher than the Limit 1, together with the other conditions, the command 
function provides −2 as output, suggesting the strong load reduction; when the Limit 2 is overcome, 
the output value is equal to −1, entailing a weak load reduction. On the contrary, weak load increase 
and strong load increase are suggested for all those values lower than the Limit 3 and laying in the 
band between Limit 3 and Limit 4, corresponding to 1 and 2, respectively. Finally, according to the 
flow chart reported in Figure 2 the last used value is 0, corresponding to no-load variation. As a 
consequence, the load shifting commands distribution have been plotted in Figures 16, 17, and 18. 
Applying that methodology it emerges that in the weekdays loads shifting from the evening hours 
(in the time span 8:00 p.m.–10:00 p.m.) towards the night hours (between 2:00 a.m. and 6:00 a.m.) as 
well as from the morning hours (8:00 a.m.–9:00 a.m.) towards the afternoon (1:00 p.m.–2:00 p.m.), are 
recommended (see Figure 16).  



Energies 2020, 13, 3359 16 of 25 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 1 2 2 2 2 2 1 -1 -2 0 0 0 1 0 0 -1 0 -1 -1 -2 -1 -1 0 0 

February 2 2 2 2 2 2 -1 -1 -1 0 0 1 1 1 1 -1 -1 -1 -1 -2 -2 -1 0 0 
March 1 2 2 2 2 2 -1 -1 -1 0 0 1 1 1 0 -1 -1 0 -1 -2 -2 -1 0 0 
April 1 2 2 2 2 2 1 -1 -1 0 0 0 1 1 0 0 -1 -1 -1 -2 -2 -2 -1 0 
May 1 2 2 2 2 2 1 -2 -1 0 0 0 1 0 0 0 -1 0 -1 -2 -2 -2 -1 0 
June 1 2 2 2 2 2 1 -1 0 0 0 1 1 0 0 -1 -1 -1 -1 -2 -2 -2 -1 0 
July 0 1 2 2 2 2 2 1 0 0 0 0 1 0 0 -1 -1 -1 -2 -2 -2 -2 -1 0 

August -1 1 2 2 2 2 2 1 0 0 1 1 1 0 0 -1 -1 -2 -1 -1 -2 -2 -1 -1 
September 1 2 2 2 2 2 1 -1 0 -1 0 0 1 1 0 -1 -1 -1 -1 -2 -2 -1 0 0 

October 2 2 2 2 2 2 1 -1 -1 -1 0 0 1 1 1 -1 -1 -1 -1 -2 -2 -1 0 0 
November 2 2 2 2 2 2 1 -1 -1 0 0 -1 1 1 0 -1 -1 -1 -1 -2 -1 0 0 0 
December 2 2 2 2 2 2 1 -1 0 -1 0 0 1 1 -1 -1 -1 -2 -2 -2 -1 0 0 0 

Figure 16. Strategy to optimise the load shifting: weekdays; (−2, Green) Strong Load reduction; (−1, 
Light Green) Weak Load reduction; (0, White) No Load variation; (1, Light Red) Weak Load increase; 
(2, Red) Strong Load increase. 

In the Saturdays case, the applied strategy recommends loads shifting from the evening hours 
(from 8:00 p.m. to 10:00 p.m.) towards the night hours (from 3:00 a.m. to 6:00 a.m.) and from the 
morning hours (10:00 a.m.–11:00 a.m.) towards the central hours of the day (12:00 a.m.–1:00 p.m.). 
Compared to the weekdays, a greater uncertainty in defining the strategy has been identified. 
Furthermore, a non-homogeneous commands’ distribution between cold and hot season, can be 
noticed according to Figure 17. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 1 2 2 2 2 2 1 0 0 -1 -1 0 1 0 0 0 -1 -1 -2 -2 -2 -1 -1 1 

February 1 1 2 2 2 2 1 0 0 -1 -1 0 1 0 0 0 -1 -1 -1 -1 -2 -1 -1 1 
March 0 1 1 2 2 1 0 0 0 -1 -1 1 0 0 0 0 0 0 0 -2 -2 -2 -1 0 
April 0 1 1 1 2 1 0 0 0 -2 -1 1 0 0 0 0 0 0 0 -2 -2 -2 -1 0 
May 0 0 1 2 2 2 1 0 0 -1 0 0 0 0 0 0 0 0 -1 -1 -2 -2 -1 1 
June 0 0 0 1 1 1 1 1 0 -1 0 1 0 0 0 0 0 0 -1 -2 -2 -2 -2 0 
July 0 0 0 0 1 1 1 1 0 -1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 -1 

August -1 0 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 -1 0 -1 -2 -1 -2 -1 
September 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 -1 -1 -2 -2 -2 -1 1 

October 0 0 1 1 2 1 0 0 -1 -1 0 1 0 0 0 1 0 -1 0 -2 -2 -1 0 0 
November 1 1 1 2 2 2 1 0 0 -1 -1 0 0 0 0 0 -2 -2 -1 -1 -2 -1 0 1 
December 1 1 2 2 2 2 2 0 0 -1 -1 0 1 1 0 -1 -2 -2 -1 -2 -2 -1 0 0 

Figure 17. Strategy to optimise the load shifting: Saturdays. (−2, Green) Strong Load reduction; (−1, 
Light Green) Weak Load reduction; (0, White) No Load variation; (1, Light Red) Weak Load increase; 
(2, Red) Strong Load increase. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
January 0 1 2 2 2 2 2 2 1 1 -1 -1 -1 0 0 0 -2 -1 -1 -2 -2 -2 -1 1 

February 0 1 2 2 2 2 1 1 0 0 -1 0 0 0 0 0 -1 0 -1 -2 -2 -2 -2 0 
March -1 1 2 2 2 2 1 1 1 -1 -1 -1 0 1 0 0 -1 0 0 -2 -2 -1 -1 0 
April 0 1 1 1 1 0 0 0 0 -1 0 0 0 1 1 1 0 0 -1 -2 -2 -2 -2 -1 
May 0 0 1 2 1 0 1 1 0 0 -1 0 0 0 0 0 0 1 0 -1 -2 -2 -2 -1 
June 0 0 0 1 1 1 2 1 1 1 -1 1 1 0 0 0 -1 -1 -1 -2 -2 -2 -2 -1 
July -1 0 0 0 0 1 2 1 1 0 1 1 1 0 0 0 0 -1 -1 -1 -2 -1 -1 0 

August 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 -1 -1 -1 -1 -2 -1 -1 
September 0 0 1 2 2 2 0 1 1 -1 0 1 0 0 0 0 0 -1 -2 -2 -2 -2 -1 0 

October 0 1 1 2 2 2 1 1 0 -1 -1 0 0 0 0 0 0 0 -1 -2 -2 -2 -1 0 
November 1 2 2 2 2 2 2 1 1 1 -1 0 0 0 -1 -1 -1 -1 -2 -2 -2 -2 -1 0 
December 1 1 2 2 2 2 2 1 1 -1 -1 -1 -1 1 1 -1 -2 -1 -2 -2 -2 -2 -1 1 

Figure 18. Strategy to optimise the load shifting: non-working days. (−2, Green) Strong Load 
reduction; (−1, Light Green) Weak Load reduction; (0, White) No Load variation; (1, Light Red) Weak 
Load increase; (2, Red) Strong Load increase. 

Finally, in the non-working days case, the electric loads occurring in the evening hours (from 
7:00 p.m. to 11:00 p.m.) can be moved forward in the night-time (from 3:00 a.m. to 7:00 a.m.). 
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Compared to the previous cases, the load shifting from the morning hours towards the afternoon it 
is not always required (see Figure 18). 

3.5. Flexibility Indicators Calculation 

In order to verify the load shifting strategy suitability, several monthly and yearly indicators 
have been calculated in this section.  

Firstly, the average shiftable loads amount for the Residential Cluster (RC) emerging from the 
applied flexibility strategy has been evaluated. 

Referring to each day typology, the suggested loads to move backward or forward have been 
calculated by the Equation (4), considering only the positive differences in the round brackets. 

𝐿𝑆 = ෍(𝑃௜ − 𝑃ത) ∙ 𝜏ଶସ
௜ୀଵ  (4)

Here, Pi represents the required power at the i-th hour, while the second term corresponds to the 
average power of RC profile, and τ is the time span (in this case equal to 1 h). 

Secondly, the amount of potential available loads has been deduced from simulations results 
reported in Table 6. Thus, having supposed in a first approximation that these loads are evenly 
distributed over the day, the average amount related to each component constituting the RC, is equal 
to 1966 Wh/day. That value has been, substantially, deduced by dividing the whole flexibility 
potential of dwelling cluster (i.e., storable loads and shiftable loads) by its sample units (i.e., 751). 

The comparison between the flexibility strategy suggestions and the available flexible loads is 
shown in Figure 19. It can be noticed that the calculated flexible loads are always lower than the 
available ones. As a consequence, the implemented strategy is suitable in any cases, showing the 
greater potential in the winter season over the non-working days. 

 

Figure 19. Daily load shifting deriving from the strategy application by month and day typologies. 
The dot line represents the available daily shiftable loads to participate at the flexibility mechanism. 

Finally, once the Load Shifting (LS) function is calculated, it is possible to evaluate which is the 
Flexibility Index (FIm) referred to the average day trend of each month. That parameter can be 
evaluated according to the Equation (5), where ENm is the energy need over 24 h related the m-th 
month. 𝐹𝐼௠ = 𝐿𝑆௠𝐸𝑁௠ (5)

Using the same definition, the Flexibility Index (FIy) over the whole year is computable as a 
weighted average of Flexibility Index by month, in accordance with the Equation (6). 
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𝐹𝐼௬ = ∑ 𝐿𝑆௠ଵଶ௠ୀଵ∑ 𝐸𝑁௠ଵଶ௠ୀଵ =  ෍ 𝐹𝐼௠ ∙ 𝑤௠ଵଶ
௠ୀଵ  (6)

𝑤௠ = 𝐸𝑁௠∑ 𝐸𝑁௠ଵଶ௠ୀଵ  (7)

Additionally, since the Available Shiftable Loads (ASL) is known, it is possible to define the 
Available Flexibility Index by month and by year as follows: 𝐴𝐹𝐼௠ =  𝐴𝑆𝐿௠𝐸𝑁௠  (8)

𝐴𝐹𝐼௬ =  𝐴𝑆𝐿௧௢௧∑ 𝐸𝑁௠ଵଶ௠ୀଵ  (9)

This latter parameter has been computed for the present RC and it is equal to 37.7%. Then, in 
order to evaluate the effectiveness of the adopted strategy, the Flexibility Index and the Available 
Flexibility Index can be correlated by Equations (10) and (11). 𝜀௠ =  𝐹𝐼௠𝐴𝐹𝐼௠ (10)

𝜀௬ =  𝐹𝐼௬𝐴𝐹𝐼௬ (11)

Figure 20 depicts the strategy effectiveness values 𝜀௠, sorting the results by month and day 
typologies as usual. Thereafter, all those performance values can be outlined by calculating the 
effectiveness over the year 𝜀௬, which is equal to 0.34 for this case. 

 
Figure 20. Strategy effectiveness sorted by month and day typologies. 

However, once the actual hourly distribution of the available shiftable loads is known, it is 
possible to assess also the intraday strategy effectiveness. It is important to point out that the results 
of these comparisons are evidently dependent on the specific choice of threshold limits in the strategy 
definition. In this case, their values have been deduced from the statistical analysis carried out on 
both the cluster load and PUN Index, assuming also an identical definition for the variables. 

Since it has been assumed Limit 2 = Limit 3 = 50th percentile, it implies that, in all those cases 
where those thresholds are overcome, a load reduction is recommended; on the contrary, beneath the 
limits the load increase is required. More generally, this is a conservative strategy, given that any 
other choice would lead to higher differences between the available and the effective shiftable loads, 
penalising the strategy effectiveness. 
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However, it is necessary to verify the precise hourly distribution of the available flexible loads, 
instead of considering them equally distributed over the 24 h. Furthermore, it is important to take 
into account where the household appliances operational constraints occur to limit the lowering of 
flexible loads amount. Indeed, the adoption of a flexibility strategy should not negatively affect the 
end user’s wellbeing, and it must consider the correlations between appliance operation and the 
occupant presence (i.e., vacuum cleaner, iron, etc.). Those issues have not been extensively addressed 
in this work, but they will be deeply discussed in the further development of the research project. 
Anyway, it is noteworthy that accounting for additional operating constraints on household 
appliances will reduce the flexibility indexes as well as the strategy effectiveness. 

4. Conclusions 

The DR activities application to the residential sector represents a viable option to get a higher 
cost effectiveness for both utilities and end-users. By creating a dwelling cluster, it is possible to 
gather huge amounts of flexible loads to be shifted over the daytime, in order to participate actively 
to the market outcomes.  

In this work, a procedure to build a dwelling cluster load profile has been presented and 
discussed, on the basis of a combined approach: the experimental measurements have been coupled 
with the statistical analysis. Referring to the Italian context, that approach could represent a good 
opportunity, on one hand to update available data, on the other hand to develop new models for the 
low voltage grid management. 

Finally, a flexibility strategy has been implemented along with the definition of several 
performance indicators. Using the Italian residential sector as a reference case, and the Italian 
electricity price trend over 2018 and 2019, it has been possible to evaluate the dwellings contribution 
to a more flexible system. The most remarkable findings can be listed as follows: 
• 14 dwelling archetypes have been defined by the use of a numerical approach based on a grade 

scale ranging between 0 and 1; each sample household (i.e., 751) has been compared to the 
archetypes in order to identify its category; this method leads to a good fitting since, on average, 
the best grade is equal to 0.81; 

• the most representative archetypes, in terms of the highest number of dwellings belonging to 
them, are the #9, #6, and #5 corresponding to 165, 138, and 102 sample households, respectively; 

• from data collected by a survey, the available potential of flexibility related to the dwellings 
cluster has been calculated and it is equal to 538.95 MWh/year; therefore, the average daily value 
of flexible loads per dwelling is equal to 1966 Wh/d; 

• by simulating a flexible strategy on an RC of Italian residential sector, which is based on the 
hourly pricing mechanism following the day-ahead market outcomes, and on limitations of 
power uptakes, monthly and annual indicators have been defined; so doing, the flexible strategy 
effectiveness can be computed to assess its actual suitability; 

• the highest monthly effectiveness values have been registered in the cold season over the non-
working days ranging between 0.49 and 0.53. Conversely, in the hot season, the maximum 
effectiveness values are generally lower compared to the winter ones (i.e., 0.3–0.4) and they occur 
over the weekdays. In the end, all those results can be outlined by means of a single indicator 
(annual effectiveness), which, in this case, is 0.34. 
The calculated values relative to the management effectiveness indicate (at the outset) that the 

proposed management strategy for the Italian residential sector can be applied. Further 
developments of present work will be focused on identifying the realistic time distribution of the 
available flexible loads, and matching the user wellbeing and the appliances technical constraints, 
due to their contemporary use. In so doing, it will be possible to evaluate more precisely the flexible 
loads magnitude (which is expected to be lower than the one in the present case study) and to 
recalculate strategy effectiveness for evaluating actual suitability. 

Moreover, the algorithm to identify the electricity peak price variation deriving from the DR 
strategies adoption has to be implemented. Similarly, a workflow definition associated to the 
Information and Communication Technologies (ICT) infrastructure has to be built in order to identify 
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and select how many users can effectively apply the load time shifting commands. Finally, evolutive 
scenarios involving the heating system and DHW electrification, by means of heat pump wide 
deployment in the Italian residential sector, will be performed and analysed. 
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Appendix A 

Table A1. Questionnaire structure. 
Building location 

• Province; Municipality 
Number of occupants in the dwelling over the day 

• From 8 a.m. to 1 p.m.; from 1 p.m. to 7 p.m.; 
from 7 p.m. to 12 p.m.; from 12 p.m. to 8 a.m. 

Architectural characteristics 
• Building Construction year 
• Apartment dimensions and boundary surfaces 

Vertical Walls and roof external colour  
• Shading 
• Refurbishment actions on building (Walls; Roof; 

Ground; Windows) 
Heating system 

• Centralised; autonomous 
• Heat source type 

(non-condensing boiler, condensing boiler, heat 
pump) 

• Control 
(on/of, climatic thermoregulation, chrono-
thermostat) 

• Emission system 
(radiators, fan-coils, radiant floor) 

Cooling system 
• Electric air conditioner 

(Energy Class; Number of served rooms) 
• Fans; Dehumidifiers  

(number of hours switched-on) 
Domestic Hot Water (DHW) plant 

• Non-condensing boiler; condensing boiler; heat 
pump water heater; electric water heater; storage 
device (yes/no) 

Solar collectors 
• Flat solar collectors/Vacuum solar collectors 

(Number of modules; Slope; Orientation) 
PV array 

• Plant peak power 
(Slope; Orientation; Self-consumption) 
Energy Bills 

• Natural Gas; Electricity 
(Monthly consumption; Annual costs) 

Kitchen 
• Cooking plane; Oven; Microwaves oven 

(type, minutes per day switched-on) 
• Grill; Steak grill pan/electric stove; Toaster 

Electric coffee maker for espresso; Electric coffee 
maker mocha; Blender; Food processor (minutes 
per day switched-on) 

Refrigeration 
• Refrigerator 

(type, capacity, energy class) 
Washing 

• Washing machine; Tumble dryer; Dishwasher 
(capacity, weekly cycles, energy class) 

Cleaning and ironing 
• Vacuum cleaner; Electric broom  

(minutes per day switched-on) 
• Iron without water boiler; Iron with built-in 

water boiler (minutes per day switched-on) 
Lighting 

• Filament Lamps; Halogen Lamps; Fluorescent 
Lamps; LED Lamps 
(number) 

Audio/Video 
• TV, monitor 

(size, quantity, energy class, hours per day 
switched-on) 

• Decoder; Videorecorder; DVD reader; Radio, 
stereo; Hi-fi/home theatre 
(quantity, daily use in hours) 

• Computer/Internet 
• Desktop PC; Notebook; Modem 

(quantity, daily use in hours) 
• Inkjet printer; Laser printer 

(quantity, copies per day) 
Personal Care 

• Hairdryer; Hair straightener 
(daily use in hours) 

Other equipment 
• Other equipment  

(quantity, electric power, daily use in minutes) 
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Appendix B 

Table B1. PUN Index thresholds limit for calculations over the weekdays. 

Limit Percentile PUN [€/MWh] 
Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec 

1 75th 66.4 65.9 63.3 60.0 59.1 60.1 64.2 63.2 73.9 73.7 65.7 63.8 
2 50th 61.2 59.3 56.6 54.6 54.9 57.0 60.5 59.3 66.5 66.7 61.7 59.4 
3 50th 61.2 59.3 56.6 54.6 54.9 57.0 60.5 59.3 66.5 66.7 61.7 59.4 
4 25th 52.6 52.6 49.3 48.4 49.8 52.0 56.4 56.1 59.5 56.4 52.0 50.4 

Table B2. PUN Index thresholds limit for calculations over the Saturdays. 

Limit Percentile 
PUN [€/MWh] 

Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec 
1 75th 63.2 59.8 54.8 53.6 55.1 52.7 58.1 58.8 62.2 65.2 57.0 55.5 
2 50th 56.0 52.9 49.8 47.8 49.4 48.7 53.5 53.8 58.4 58.3 54.1 51.9 
3 50th 56.0 52.9 49.8 47.8 49.4 48.7 53.5 53.8 58.4 58.3 54.1 51.9 
4 25th 52.2 48.4 45.8 44.5 45.8 43.8 49.9 51.1 55.2 54.4 51.3 47.7 

Table B3. PUN Index thresholds limit for calculations over the non-working days. 

Limit Percentile PUN [€/MWh] 
Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec 

1 75th 55.9 51.7 52.0 49.1 49.5 50.0 53.1 56.2 56.7 54.8 52.7 52.5 
2 50th 51.8 47.0 47.5 43.9 42.9 43.1 45.6 51.4 54.0 51.8 49.9 46.9 
3 50th 51.8 47.0 47.5 43.9 42.9 43.1 45.6 51.4 54.0 51.8 49.9 46.9 
4 25th 48.7 43.4 44.4 38.4 39.5 39.4 42.3 47.7 52.3 49.4 45.3 43.3 

Table B4. Power thresholds limit for calculations over the weekdays. 

Limit Percentile 
POWER [W] 

Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec 
1 75th 268 309 266 271 243 286 294 320 265 272 305 327 
2 50th 219 252 212 245 219 220 202 254 216 228 248 259 
3 50th 219 252 212 245 219 220 202 254 216 228 248 259 
4 25th 175 223 190 213 191 204 169 206 201 212 228 239 

Table B5. Power thresholds limit for calculations over the Saturdays. 

Limit Percentile POWER [W] 
Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec 

1 75th 333 393 391 338 287 297 260 269 309 272 337 395 
2 50th 269 323 297 253 265 248 197 229 282 249 276 310 
3 50th 269 323 297 253 265 248 197 229 282 249 276 310 
4 25th 133 186 212 167 180 198 171 187 173 201 231 222 

Table B6. Power thresholds limit for calculations over the non-working days. 

Limit Percentile 
POWER [W] 

Jan Feb Mar Apr May June Jul Aug Sept Oct Nov Dec 
1 75th 348 391 354 349 290 322 245 278 345 278 399 400 
2 50th 300 298 246 268 258 251 203 230 272 253 365 331 
3 50th 300 298 246 268 258 251 203 230 272 253 365 331 
4 25th 185 209 184 200 153 198 167 164 183 172 227 216 
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