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a b s t r a c t 

Errors in multilevel flash memories and multilevel optical systems are asymmetric in na- 

ture because of the underlying device physics. These errors can be modeled using the m - 

ary asymmetric channel. In this work, a general m ( ≥ 2)-ary Asymmetric Varshamov (AV) 

channel for these systems is introduced. Also, a Divesting Combining Type-I Hybrid ARQ 

protocol using t -Asymmetric Error Correcting/All Asymmetric Error Detecting ( t -AEC/AAED) 

codes is presented and its throughput performance is studied. 

© 2019 Published by Elsevier Ltd. 

 

 

 

 

 

 

1. Introduction 

There are two main schemes used in overcoming errors in communication systems: Automatic Repeat Request (ARQ)

protocol and Forward Error Correction (FEC) [1–3] . In ARQ protocol, Error Detecting (ED) codes are used and upon receiving

a data word, the receiver checks for any error in it. If it detects some errors, then it requests the sender to retransmit the

same data. The transmitter then sends the same word again to the receiver. This process continues till no error is detected.

At that time, the receiver sends a Positive Acknowledge signal (ACK) to the transmitter. Then, the transmitter sends the next

word to the receiver [1–3] . 

In FEC, the transmitter continuously sends the data words encoded with some t -Error Correcting ( t -EC) code. If there are

t or fewer errors in the received word, the decoder at the receiver side corrects the errors [1,2] . 
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Fig. 1. Z and Z channels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A combination of ARQ and FEC is called Hybrid ARQ (H-ARQ). In Type-I Hybrid ARQ ( T 1 -H-ARQ), the system uses t -Error

Correcting and d -Error Detecting ( t -EC/ d -ED) code, d ≥ t , to encode the data word. Assume that the received word contains

t 1 errors. If t 1 ≤ t , the decoder corrects t 1 errors and recovers the data. On the other hand, if the receiver is not able to

correct the errors but detects those errors (i. e., t < t 1 ≤ d errors), then it sends a Negative Acknowledge signal (NAK) to the

sender requesting the retransmission of the same code word. The sender then resends this code word [1–3] . 

ARQ can also be classified as Plain ARQ (P-ARQ) and Diversity Combining ARQ (DC-ARQ) protocols [3,4] . In the P-ARQ

protocol, the receiver at the i th iteration, i = 1 , 2 , . . . , makes a decision to send NAK or ACK signal to the transmitter purely

based on the word it received in iteration number i . The words received in the previous iterations are discarded. But, in the

case of DC-ARQ protocol, the receiver makes a decision by combining all the words received so far. 

Errors in communication systems are of many types. In general, they are classified as symmetric, asymmetric, and uni-

directional [2,5] . In symmetric type, 1 → 0 and 0 → 1 errors can simultaneously occur in any data word. Binary Symmetric

Chanel (BSC) is used to model this type if the probabilities of 1 → 0 and 0 → 1 errors are equal. 

When only 1 → 0 errors are possible in the received code word, the errors are of asymmetric type. The Z-channel is

used to model these errors. Errors in many practical systems can be modeled using the Z−channel. For example, in optical

communication, photon may fade or decay, and cannot be produced during the transmissions. Such systems can use the

Z-channel model when representing 1 and 0 as the existence and non-existence of photons respectively [3,5,6] . Also, when

only 0 → 1 errors are possible in the received code word, the Z channel can model such errors. Fig. 1 shows the Z and Z

channels. 

In unidirectional errors, both of 1 → 0 and 0 → 1 errors can occur with two conditions, first, these errors cannot simulta-

neously occur in a code word and, second, the type of error may vary from one word to another word [5,7–9] . Some errors

that can occur in interconnection networks, ROM, RAM, etc., are of unidirectional type [3,5] . 

The Varshamov Error (VE) model is a generalization of the Z-channel for the m -ary alphabet 

Z Z m 

def = { 0 , 1 , . . . , m − 1 } , 
m ≥ 2. When A = a 1 a 2 . . . a n ∈ZZ 

n 
m 

is transmitted, the number of errors in the received word B = b 1 b 2 . . . b n ∈ IN 

n , can be mea-

sured using the L 1 (also called Manhattan) distance as: 

d L 1 (A, B ) 
def = 

n ∑ 

i =1 

| a i − b i |;

where | · | is the absolute value of a number and this represents the error magnitude [10–12] . 

When the number of errors is measured according to the Hamming distance (i. e., D H ( A, B ) is the number of positions in

which A and B differ), this is referred to as the Hamming error model. Traditional coding methods, specially those based on

the Hamming error model, are not efficient to be applied for asymmetric errors [13] . So, some efficient codes were designed

to deal with asymmetric errors, mainly in flash memories [14–19,19] . 

The VE-model is applied particularly for m > 2, when the m -ary transmission channel has the error probability: 

P r( b is received | a is transmitted ) � c a,b · ε| a −b| (1) 

where ε∈ [0 , 1] ⊆ IR 

+ and c a,b : � → IN are random variables for all a, b∈ZZ m 

⊆ IR with a 	 = b [12] . In [11,20–22] , some more

theoretical concepts of L 1 distance EC codes are presented. In this paper, we focus on the case of c a,b = 0 in the last equation

(i. e., the asymmetric type) for a < b . Thus, the (t + = 0 , t − = t) -EC/ (d + = 0 , d − = + ∞ ) -ED codes presented in [11,20,23] for

the L 1 distance are applied to recover t asymmetric errors and detect all asymmetric errors. Hence, these codes are suited

to achieve error-free communication in the T 1 -H-ARQ scheme. 

Some practical systems, whose error behavior fits with this model, are multilevel optical systems [24] and Multilevel

Flash Memories (MLFM) [11,13,14] . In MLFM, each cell stores log 2 r bits since it is programmed into one of r voltage levels.

Errors can occur in these memories mostly in only one direction [14] . Noticeable examples of a Varshamov Z-channels are

those such that: 

c a,b = 

(
a 

b 

)
, for all symbols a, b∈ZZ m 

; (2) 
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Fig. 2. The m -ary Z-channel which fits the VE-model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 
(

n 
k 

)
= 0 , for all k 	∈ [0 , n ] . An example of these channels is shown in Fig. 2 and analyzed in Section 2 . 

The throughput, �, is mainly used to evaluate the performance of a communication system. It is computed as: 

� = 

k 

n R 

, (3)

where k / n represents the information rate of the code C and R defines the Average Number of Transmissions (ANT) required

for receiving a sent word correctly. 

If the system uses All Error Detecting (AED) codes, then the communication is error-free, and so � is the same as the

theoretical information rate of the proposed ARQ communication schemes. In [4] , the throughput for the Plain and DC T 1 -

H-ARQ using t -AEC/AAED codes based on the Hamming error model for Z-channel is analyzed. Here, we study the behavior

of the VE-model through evaluating the overall throughput by computing the Average Number of Transmission (ANT) for

both P-ARQ and DC T 1 -H-ARQ protocols using ( t -AEC/AAED) codes, for t ≥ 0, over the m -ary Varshamov Z-channel defined

by Eqs. (1) and (2) . 

Sections 3 and 4 analyze the P-ARQ and DC T 1 -H-ARQ schemes respectively while Section 5 gives some concluding

remarks. 

2. An Asymmetric Varshamov (AV) channel model 

In the VE-model defined on m -ary Z-channel, the error magnitude is taken into account and so Eq. (1) holds. Also, the

channel is asymmetric and so for all a 1 , a 2 ∈ZZ m 

, c a 1 ,a 2 = 0 if, and only if, a 1 < a 2 . A Varshamov Z-channel example is the

one represented in Fig. 2 whose channel transition probabilities are defined as: 

P r(a 2 | a 1 ) = 

(
a 1 
a 2 

)
εa 1 −a 2 (1 − ε) a 2 , for all a 1 , a 2 ∈ZZ m 

and a 1 ≥ a 2 . (4)

This channel (which we may call as the Asymmetric Binomial Channel (ABC)) can be taken as the representative of all the

Varshamov Z-channels satisfying Eq. (2) because for ε � 0, (
x 

y 

)
εx −y (1 − ε) y � 

(
x 

y 

)
εx −y , for all x, y ∈ ZZ m 

and x ≥ y . (5)

This channel could very well model simple physical communication systems in which the source is composed of (m − 1)

independent and equal bi-stable devices and if the symbol x ∈ ZZ m 

is transmitted, then x out of the (m − 1) devices are set

to on for sending a signal (the remaining (m − 1) − x devices are set to off for not sending any signal); the receiver has

the capability of only measuring how many bi-stable source devices have been set to on; and, each device signal cannot be

created from nothing. 

Under this ABC model, the analysis of both P-ARQ and DC-ARQ schemes is simplified considerably. In fact, if the com-

munication channel can be modeled as the channel in Fig. 2 (or, any other equivalent channel such that Relation (5) holds)

then we can regard any transmitted word X = x 1 x 2 . . . x n ∈ZZ 

n 
m 

as an n basket array of n items. In position i , for all i ∈ [1, n ],

there will be x marbles. So, the transmission process is equivalent to sending the x marbles in the sender’s i th basket to
i i 
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Fig. 3. The word X = x 1 x 2 x 3 x 4 x 5 x 6 = 120301 in the binomial asymmetric channel model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the receiver’s i th basket where the probability that one marble may not reach the destination is ε and it is independent

from the transmission of other marbles. For example, X = 120301 can be regarded as shown in Fig. 3 . Now, note that the

transmitted word X = x 1 x 2 . . . x n ∈ZZ 

n 
m 

is received error-free if, and only if, all the w L 1 
(X ) marbles of X reach the destination,

where w L 1 
(X ) is the L 1 weight of X defined as: 

w L 1 (X ) 
def = 

n ∑ 

i =1 

x i . 

In general, there has been exactly t Varshamov (or L 1 ) errors during the transmission of X if, and only if, w L 1 
(X ) − t marbles

(or t marbles) reach (or, do not reach, respectively) the destination, for any integer t ∈ [0 , w L 1 
(X )] . Recall that a marble

reaches the destination with probability 1 − ε and does not reach the destination with probability ε. 

3. Plain ARQ (P-ARQ) protocol analysis using t -AEC/AAED codes over AV-channels 

Suppose a system uses P-ARQ protocol using t -AEC/AAED code, C, over the L 1 distance. Assume that X and Y are the

transmitted and received words respectively. Furthermore, let P ac ( X ) ∈ [0, 1] be the probability of Y is accepted when X is

transmitted. Similarly, let P rej ( X ) ∈ [0, 1] be the probability of Y is rejected when X is transmitted. When Y is accepted, the

receiver sends the signal ACK to the transmitter, requesting it to send the next word. Similarly, when Y is rejected, the

receiver sends the signal NAK to the receiver to resend the same word, X . Note that P ac (X ) + P re j (X ) = 1 . 

Let NT (t) (X ) : � → IN − { 0 } be a random variable defined as the number of transmissions of X required by the transmitter

to be accepted by the receiver. Here, NT ( t ) ( X ) is geometrically distributed and so, 

IE 

[
NT (t) (X ) 

]
= 

+ ∞ ∑ 

k =1 

k [ P re j (X )] k −1 P ac (X ) = P ac (X ) 
+ ∞ ∑ 

k =1 

k [ P re j (X )] k −1 = 

P ac (X ) 

[1 − P re j (X )] 2 
= 

1 

P ac ( X ) 
; (6)

this is because, 
∑ + ∞ 

j=1 jx 
j−1 = 1 / (1 − x ) 2 . To find IE 

[
NT (t) (X ) 

]
, P ac ( X ) should be computed first. In the P-ARQ protocol using

t -AEC/AAED code, Y is accepted at the receiver, only when the number of Varshamov (or L 1 ) errors in Y is less than or equal

to t . So, 

P ac (X ) = 

t ∑ 

i =0 

P r( Y contains exactly i L 1 errors | X ) . (7) 

Since the communication channel is the ABC defined in Section 2 , it follows that: 

P r( Y contains exactly i L 1 errors | X ) = 

P r( exactly i marbles of X have not reached the receiver | X ) = 

(
w L 1 (X ) 

i 

)
ε i (1 − ε) w L 1 

(X ) −i , 

and so, from (7) , 

P ac (X ) = 

t ∑ 

i =0 

(
w L 1 (X ) 

i 

)
ε i (1 − ε) w L 1 

(X ) −i . (8) 

From Eqs. (6) and (8) it can be shown that in the case of P-ARQ protocol using t − AEC/ AAED code, the required number of

transmission of X depends only on X through its L 1 weight and is equal to 

NT (t) (X ) = 1 

/[ 

t ∑ 

i =0 

(
w L 1 (X ) 

i 

)
ε i (1 − ε) w L 1 

(X ) −i 

] 

. (9) 

4. Diversity combining ARQ (DC-ARQ) protocol analysis using t -AEC/AAED codes over AV-channels 

Let 0 < 1 < 2 < . . . < m − 1 be the total order in ZZ m 

= { 0 , 1 , 2 , . . . , m − 1 } so that the max operation can be defined in

ZZ m 

as max (b, y ) = y if b < y and max (b, y ) = b if b ≥ y . Also, given B, Y ∈ZZ 

n 
m 

, B ∪ Y ∈ZZ 

n 
m 

indicates the word obtained from
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Fig. 4. A sequence of transmissions example for the word X = 201022212 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B and Y by applying the max operation given above over their corresponding digits. For example, when m = 5 , B = 113301

and Y = 101334 , then B ∪ Y = 113334 . 

Assume that X ∈C ⊆ ZZ 

n 
m 

is the transmitted word. Let Y r represent the received word after r − 1 times of NAKs. 

In DC- T 1 -H ARQ protocol, the word B r is either accepted or not accepted purely based on 

B r = 

r ⋃ 

k =1 

Y k , r ∈ IN and r ≥ 1 . 

In particular, when a t -AEC/AAED code is used, B r is accepted when the number of L 1 errors in B r , with respect to X is less

than or equal to t . For example, Fig. 4 shows a sequence of Y r and B r when transmitting the word X = 201022212 ∈ ZZ 

9 
3 
. In this

example, if the system uses AAED then the received would accepts B 4 , i. e. B 4 = 201022212 = X, the same transmitted word.

However, if 2-AEC/AAED is used then the received word, B 3 = 201022 0 12 , is accepted and corrected as 201022212 = X . Now,

in the marble representation of any word X ∈ZZ 

n 
m 

given in Section 2 , let NT i (X ) ∈ ZZ n − { 0 } be the number of transmissions

required for receiving the i th marble of X , for all i = 1 , 2 , . . . , w L 1 
(X ) ( = the L 1 weight of X ). Thus, the total number of

transmissions required to receive X without errors (i. e., the number of L 1 errors in B r ≤ t with respect to X ) using a t -

AED/AAED code is the random variable: 

N T (t) = N T (t) (X ) 
def = (t + 1) th largest element in the set { N T 1 , N T 2 , . . . , N T w L 1 

(X ) } ; 
where NT i is the number of transmissions required so that the i th marble reaches the destination. 

For the example presented in Fig. 4 , assume that the w = w L 1 
(X ) = 12 marbles of X are numbered as in the top part of

the figure. In the transmission 

(N T 1 , N T 2 ; N T 3 ; N T 4 , N T 5 ; N T 6 , N T 7 ; N T 8 , N T 9 ; N T 10 ; N T 11 , N T 12 ) = (1 , 1 ; 3 ; 1 , 2 ; 1 , 1 ; 4 , 4 ; 1 ; 1 , 2) . 

Thus, NT (0) = 4 retransmissions are required using AAED codes, NT (1) = 4 retransmissions are required using 1-AEC/AAED

codes, NT (2) = 3 retransmissions are required using 2-AEC/AAED codes, NT (3) = 2 retransmissions are required using 3-

AEC/AAED codes, NT (4) = 2 retransmissions are required using 4-AEC/AAED codes, and NT (5) = 1 retransmission is required

using 5-AEC/AAED codes. Hence, finding the ANT for the sent word, X , to be received correctly means finding the average of

NT ( t ) defined above. Note that the ABC model defined in Section II implies that for the sent word, X , all NT i ’s are independent

and equally distributed with common cumulative distribution function (cdf) given by 

F (r) = F NT i (r) = P r(NT i ≤ r| X ) = 

r ∑ 

ρ=1 

P r(NT i = ρ| X ) , 

where (recall that each of the w = w L 1 
(X ) marbles of X reaches the destination with probability 1 − ε and does not reach

the destination with probability ε) 

P r(NT i = ρ| X is being sent ) = P r(NT i = ρ| the i -th marble of X is being sent ) = ερ−1 ( 1 − ε) . 

So, the NT i ’s are all geometrically distributed with parameter ε and 

F (r) = 

r ∑ 

k =1 

εk −1 (1 − ε) = 1 − εr . (10)

Now, when applying ordered statistics [25] , the cdf of NT ( t ) becomes 

F NT (t) (r) = P r(NT (t) ≤ r| X ) = 

t ∑ 

λ=0 

(
w 

λ

)
[ F (r)] w −λ[1 − F (r)] λ, 
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where w = w L (X ) . Thus, from (10) , 

P r 
(
NT (t) = r| X is being sent 

)
= F NT (t) (r) − F NT (t) (r − 1) 

= P r 
(
NT (t) ≤ r| X 

)
− P 

(
NT (t) ≤ r − 1 | X 

)
= 

t ∑ 

λ=0 

(
w 

λ

)[ 
( 1 − εr ) 

w −λελr −
(
1 − εr−1 

)w −λ
ελ(r−1) 

] 

= 

w ∑ 

k =1 

(
w 

0 

)(
w 

k 

)
(−1) k +1 

[
εk (r−1) − εkr 

]
+ 

t ∑ 

λ=1 

w −λ∑ 

k =0 

(
w 

λ

)(
w − λ

k 

)
( −1) k +1 

[
ε(λ+ k )(r−1) − ε(λ+ k ) r ]. 

The above relations imply 

IE 

[
NT (t) (X ) 

]
= 

+ ∞ ∑ 

r=1 

P r 
(
NT (t) = r| X 

)
r = S 1 + S 2 , (11) 

where, 

S 1 = 

w ∑ 

k =1 

(−1) k +1 

(
w 

k 

)
S(ε, k ) , (12) 

S 2 = 

t ∑ 

λ=1 

w −λ∑ 

k =0 

(−1) k +1 

(
w 

λ

)(
w − λ

k 

)
S( ε, λ + k ) (13) 

and, for all k = 1 , 2 , . . . , 

S(ε, k ) = 

+ ∞ ∑ 

r=1 

[
εk (r−1) − εkr 

]
r = 

+ ∞ ∑ 

r=0 

(
εk 

)r 
(r + 1) −

+ ∞ ∑ 

r=1 

(
εk 

)r 
r = 

+ ∞ ∑ 

r=0 

(
εk 

)r = 1 + 

εk 

1 − εk 
. 

Now, if ε � 0 then 

S(ε, k ) = 1 + 

εk 

1 − εk 
� 1 + εk ; (14) 

and so, a good approximating simple formula can be found for IE 

[
NT (t) (X ) 

]
. Eqs. (12) and (14) imply that 

S 1 � 

w ∑ 

k =1 

(−1) k +1 

(
w 

k 

)(
1 + εk 

)
= −

[ 

w ∑ 

k =1 

(
w 

k 

)
( −1) k + 

w ∑ 

k =1 

(
w 

k 

)
( −ε) 

k 

] 

= −
[ 

w ∑ 

k =0 

(
w 

k 

)
(−1) k − 1 + 

w ∑ 

k =0 

(
w 

k 

)
( −ε) 

k − 1 

] 

= 2 −
w ∑ 

k =0 

(
w 

k 

)
( −ε) 

k = 2 − (1 − ε) w . (15) 

On the other hand, from (13) and (14) , it similarly follows 

S 2 � 

t ∑ 

λ=1 

w −λ∑ 

k =0 

(−1) k +1 

(
w 

λ

)(
w − λ

k 

)(
1 + ελ+ k ) = −

t ∑ 

λ=1 

w −λ∑ 

k =0 

( −1) k 
(

w 

λ

)(
w − λ

k 

)
ελ+ k 

= −
t ∑ 

λ=1 

(
w 

λ

)
ελ

w −λ∑ 

k =0 

(
w − λ

k 

)
(−ε) k = −

t ∑ 

λ=1 

(
w 

λ

)
ελ(1 − ε) w −λ. (16) 

So, from (11), (15) and (16) , the average number of transmissions required for the word X in a DC t -AEC/AAED system over

m -ary Varshamov ABC given in Fig. 2 has the following simple approximating expression which is valid for ε � 0: 

IE 

[
NT (t) (X ) 

]
� 2 −

t ∑ 

λ=0 

(
w L 1 (X ) 

λ

)
ελ(1 − ε) w L 1 

(X ) −λ = 1 + P r(d L 1 (X, Y ) > t| X is sent and Y is received ) . 

In general, from 

S(ε, k ) = 

+ ∞ ∑ 

r=0 

(
εk 

)r 
, 

the exact formula 
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Fig. 5. Average Number of transmissions (ANT) for a constant weight w L 1 = 128 with P-ARQ and DC-ARQ schemes using t -AEC/AAED code, where t = 

0 , 1 , 2 , 3 , 4 , 8 , 16 , 32 and 64, over an m -ary Asymmetric Varshamov channel. 

 

 

 

 

IE 

[
NT (t) (X ) 

]
= 1 + 

+ ∞ ∑ 

r=1 

[ 

1 −
t ∑ 

λ=0 

(
w L 1 (X ) 

λ

)
( εr ) 

λ
( 1 − εr ) 

w L 1 
(X ) −λ

] 

. (17)

can be derived. 

Now, if all code words in C have equal chance of being transmitted, then the ANT is: 

IE 

[
NT (t) (C) 

]
= 

1 

|C| 
∑ 

X∈C 
IE 

[
NT (t) (X ) 

]
. 

From relations (9) and (17) , for both P-ARQ and DC-ARQ schemes, IE 

[
NT (t) (X ) 

]
is computed based on X through its L 1

weight; that is, 

IE 

[
NT (t) (X ) 

]
= NT 

(t) 
(w L 1 (X )) . 

And so, 

NT 
(t) 

(C) 
def = IE 

[
NT (t) (C) 

]
= 

1 

|C| 
∑ 

w ∈ IN 
A w 

NT 
(t) 

(w ) , 

where 

A w 

= |{ X ∈C : w L 1 (X ) = w }| , w∈ IN , 

represents the L 1 weight distribution of C. So, for P-ARQ over the m -ary AV channel given in (2) , the ANT of C is (see (9) ), 

NT 
(t) 

P−ARQ (C ) = 

1 

|C | 
n ∑ 

w =0 

A w ∑ t 
j=0 

(
w 

j 

)
ε j (1 − ε) w − j 

= 1 + 

1 

|C | 
n ∑ 

w =0 

A w 

+ ∞ ∑ 

r=1 

[ 

1 −
t ∑ 

j=0 

(
w 

j 

)
ε j (1 − ε) w − j 

] r 

. (18)

If C is a constant L 1 weight w code, then 

NT 
(t) 

P−ARQ (C) = 

1 ∑ t 
j=0 

(
w 

j 

)
ε j (1 − ε) w − j 

= 1 + 

+ ∞ ∑ 

r=1 

[ 

1 −
t ∑ 

j=0 

(
w 

j 

)
ε j (1 − ε) w − j 

] r 

. (19)
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For the DC-ARQ (see (17) and [4] ), 

NT 
(t) 

DC−ARQ (C) = 1 + 

1 

|C| 
n ∑ 

w =0 

A w 

+ ∞ ∑ 

r=1 

[ 

1 −
t ∑ 

λ=0 

(
w 

λ

)
( εr ) 

λ
( 1 − εr ) 

w −λ

] 

. (20) 

If C is a constant L 1 weight w code then 

R 

(t) 

DC−ARQ (C) = 1 + 

+ ∞ ∑ 

r=1 

[ 

1 −
t ∑ 

λ=0 

(
w 

λ

)
( εr ) 

λ
( 1 − εr ) 

w −λ

] 

. (21) 

To summarize, the above analytical expressions (18) –(21) of the ANT for VE model are the same expressions given

in (30), (31), (32) and (33) of [4] respectively obtained for the Hamming error model with the Hamming weight re-

placed by the L 1 weight. In [4] , bounds, simple approximating formulae and plots are given to analyze the functions

in (18) –(21) . In particular, Fig. 5 shows that the plain ARQ scheme is inferior with respect to the diversity combin-

ing scheme, especially when ε is large and t is small. However, when ε is small or t is large, their performance is

essentially similar. 

5. Concluding remarks 

This paper has presented a Divesting Combining Type-I Hybrid ARQ (DC-ARQ) system using t -Asymmetric Error Correct-

ing/All Asymmetric Error Detecting ( t -AEC/AAED) codes for the m -ary, m ≥ 2, Asymmetric Varshamov (AV) channel model.

We have also analyzed the Average Number of Transmissions (ANT) of a transmitted word X . We have demonstrated that the

performance, in terms of the average number of transmissions, of the diversity combining ARQ protocol system is superior

to that of the plain ARQ protocol system. 
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