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Abstract17

This paper furnishes a convenient theoretical framework for the analytical evaluation of the18

bistatic scattering coefficients, under the Kirchhoff approximation (KA) in electromagnetics.19

Starting from the KA, specific results under the geometrical optics and physical optics20

approximations are furnished, along with the backscattering geometry. The main aim is to21

provide closed-form expressions of the scattering matrix that are suited to scenarios where22

multiple-bounce scattering comes into play and/or surfaces with arbitrary unit normal are23

present. This is accomplished by addressing the following objectives: 1) to provide an24

explicit formulation of the scattering matrix under KA in terms of the incident and scattered25

unit wavevectors; 2) to provide a more generic derivation of the scattering matrix under the26

physical optics approximation by relaxing typical hypotheses regarding the geometry of the27

scattering problem; 3) to highlight some important symmetries of the scattering matrix28

under KA. It is shown that the scattering matrix under KA can conveniently be expressed29

in terms of few variables, thus greatly reducing the complexity of the theoretical derivation30

of the scattering matrix. Some benefits of the proposed formalism are illustrated in two31

application examples, where the problem is the analysis of the electromagnetic scattering32

from canonical composite targets. The canonical study cases demonstrate the evaluation33

of the scattering matrix in complex scenarios, such as maritime and urban environments,34

where multiple-bounce contributions and/or contributions from tilted surfaces come into35

play. Finally, comparisons with literature results allow for validating the proposed derivation36

and assessing its validity limits in practical applications.37

1 Introduction38

In remote sensing the information that can be retrieved from the processing of radar39

signals is consistently affected by the availability of accurate physical and mathematical40

models, which describe the interaction between the electromagnetic (EM) fields and the41

targets under investigation.42

With the spread of passive bistatic radar (PBR) systems [Griffiths, 2014; Cherniakov ,43

2008; Colone et al., 2009], as well as the use of reflectometry in global navigation satellite44

systems (GNSS-R) [Jin and Komjathy , 2010; Jin et al., 2011; Zuffada et al., 2015; Zavorotny45

et al., 2014], the accurate modeling of electromagnetic scattering is made difficult due to46

their generic bistatic configurations. Moreover, in these contexts, radar signals may interact47

with composite targets in different environments such as urban areas, maritime scenarios and48

vegetation regions, where the mathematical complexity of the scattering problem depends49

on the desired degree of accuracy.50

Most common remote sensing technologies operating at microwave frequencies com-51

prise scatterometers, synthetic aperture radar (SAR), GNSS-R and PBR. A rigorous and52

quantitative analysis of remote sensing data in such scenarios may be fruitfully supported53

by an accurate modeling of the relationship between the scene parameters of interest and54

the sensor observables. To this end, the modeling rationale can be decomposed into two55

main steps: 1) the acquisition process, i.e., the set of procedures applied to measurements56

to obtain the final observable, e.g., a SAR image, a scatterometric or a delay-Doppler map;57

2) the physical mechanisms that contribute to the measurement performed by the sensor.58

Concerning the first issue, accurate and well-established imaging models, which describe the59

data processing chain, have been developed in the literature, see [Zavorotny and Voronovich,60

2000; Franceschetti and Lanari , 2018; Clarizia et al., 2015; Di Martino et al., 2018]. Such61

models provide a relationship between the sensor observable and the radar cross section62

(RCS) of the illuminated scene. The second step is devoted to the derivation of a suitable63

scattering model, i.e., a proper description of the relationship between the scene parameters64

of interest and the RCS. The combination of the imaging and scattering models provides65

the final link between the scene and sensor parameters and the acquired data.66
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Here we focus on the scattering models, since the RCS is demonstrated to be propor-67

tional to the final observable [Clarizia et al., 2015; Di Martino et al., 2018]. Closed-form68

expressions of RCS may greatly ease the retrieval procedure in inversion algorithms and the69

automatic processing by computer programs. However, the complexity of the interactions70

between the electromagnetic radiation and the media prevents the derivation of an exact71

solution to the scattering problem in realistic scenarios.72

In this regard, scattering models have been suitably simplified in order to gain the73

mathematical treatability of the problem, while maintaining the required accuracy to cap-74

ture the underlying physics of the problem. A typical example is that of the Kirchhoff75

approximation (KA) [Hentschel and Zhu, 2016; Tsang et al., 1985; Tsang and Kong , 2001;76

Ulaby et al., 1982; Franceschetti , 2013; Franceschetti and Riccio, 2007], which requires the77

operating wavelength to be much smaller than the surface mean radius of curvature of78

the scatterer, but allows for a great simplification of the scattering problem. As a con-79

sequence, at microwave frequencies, the theoretical framework of KA can conveniently be80

used for the numerical analysis of electromagnetic scattering problems in complex scenarios81

where multipath and shadowing phenomena are relevant, e.g., urban and maritime domains82

[Franceschetti et al., 2002; Iervolino et al., 2016; Di Simone et al., 2017].83

In this context, several efforts have attempted to provide analytical electromagnetic84

models for the detection of buildings [Franceschetti et al., 2002] and ships [Iervolino et al.,85

2016] in backscattering configuration. Nevertheless, the rise of PBR and other multistatic86

systems, e.g., GNSS-R, demands the development of accurate electromagnetic models in87

bistatic configuration, rather than in backscattering. In both cases, the received signals88

depend on the bistatic radar cross section (BRCS) [Zavorotny et al., 2014], whose accurate89

estimation is a key aspect in many applications [Clarizia et al., 2015].90

Unfortunately, in the current literature there are few analytical models for the determi-91

nation of RCS of composite targets [Barrick , 1970; Tateiba et al., 2004; El-Ocla and Tateiba,92

2008], even under the Geometrical Optics (GO) and the Physical Optics (PO) approxima-93

tions. Several attempts have been made to find general and compact expressions for the94

bistatic scattering matrix starting from the more general framework of KA, but analytical95

formulas for the scattering coefficients are obtained only under the KA-GO approximation96

[Stogryn, 1967; Jin and Lax , 1990; Elfouhaily et al., 2004].97

In [Barrick , 1968; Bass and Fuks, 1979] the BRCS is evaluated under KA-GO, thus98

neglecting the non-coherent component of the scattering. In this regard, in [Pierdicca et al.,99

2014] a simulator has been proposed, which accounts for both the coherent and non-coherent100

scattering components. In all these models [Barrick , 1968; Bass and Fuks, 1979; Pierdicca101

et al., 2014], the BRCS is always expressed in terms of the scattering coefficients. However,102

these quantities have always to be calculated through the conventional theoretical frame-103

work outlined in classic books on microwave remote sensing (see, e.g., [Tsang et al., 1985;104

Tsang and Kong , 2001; Ulaby et al., 1982; Franceschetti , 2013; Franceschetti and Riccio,105

2007; Barrick , 1970]).The final expressions provided in such literature are not suited to106

the analytical derivation of the scattering matrix of composite targets [Franceschetti et al.,107

2002; Iervolino et al., 2016; Di Simone et al., 2017], nor they are sufficiently general. In par-108

ticular, restricting hypotheses about the acquisition and the scattering geometry are made109

in [Franceschetti et al., 2002] and [Barrick , 1970], respectively. As a consequence, they do110

not allow for a straightforward evaluation of the BRCS of such targets. Furthermore, in111

most of the available literarure [Tsang et al., 1985; Ulaby et al., 1982; Franceschetti , 2013;112

Franceschetti and Riccio, 2007; Barrick , 1970; Tsang and Kong , 2001], the scattering coef-113

ficients under KA are not expressed in terms of unit wavevectors and surface orientation; a114

feature that might be rather helpful for electromagnetic solvers.115

In this work, we present an alternative theoretical framework for the evaluation of the116

bistatic scattering coefficients under KA. The proposed formalism is particularly suited to117

the evaluation of the scattering matrix in scenarios where multiple-bounce scattering comes118

–3–



Confidential manuscript submitted to Radio Science

into play and/or surfaces with arbitrary unit normal are present. This is accomplished by119

addressing the following objectives: 1) to provide an explicit formulation of the scattering120

matrix under KA in terms of the incident and scattered unit wavevectors; 2) to provide121

generic expressions of the scattering matrix under the physical optics approximation by re-122

laxing typical hypotheses regarding the geometry of the scattering problem; 3) to highlight123

some important symmetries of the scattering matrix under KA which ease its analytical124

derivation. Remarkably, no assumptions are applied to either the scattering surface ori-125

entation nor the wavevectors. In addition, the proposed formalism highlights interesting126

symmetries which are used for a straightforward derivation of the scattering matrix under127

KA.128

Explicit analytical expressions under KA-GO, KA-PO, and the limiting backscattering129

(BS) case are derived to express the scattering coefficients in terms of the relative posi-130

tions between the transmitter, the receiver, and the scatterer. The obtained formulas are131

compared with the current literature, when available. Indeed, it is worth to stress here132

that analytical formulas for the scattering coefficients under the KA-PO approximation133

have never been reported so far. As a result, once the geometry of acquisition is known,134

the proposed formulas allow for a direct calculation of the scattering matrix to be used135

in theoretical and numerical approaches to scattering problems. This is demonstrated by136

applying the proposed simplified framework to a composite target consisting of a smooth137

parallelepiped laying on a rough surface. The rationale for the theoretical derivation of the138

scattering matrix associated to a double-bounce scattering contribution is here presented.139

Finally, we show numerical results of the bistatic RCS of the considered target. Indeed, de-140

spite its essentially theoretical nature, this approach is sufficiently general to be applied in141

most of radar system simulators (e.g., [Zavorotny et al., 2014; Park et al., 2017; Giangregorio142

et al., 2016; Garrison, 2016; Arnold-Bos et al., 2007a,b]).143

The paper is organized as follows. In Section 2 the conventional scattering model is144

briefly reviewed under the Kirchhoff approximation; its GO and the PO approximations145

are then presented as special cases of KA. In Section 3, the scattering matrix is suitably146

recast under KA in order to derive a rigorous theoretical framework which is able to deal147

with bistatic configurations. In Sections 4 and 5 analytical formulas are derived under148

the KA-GO and the KA-PO approximations, respectively. In Section 6 the relevant case149

of backscattering is presented. In Section 7, some benefits of the proposed formalism are150

illustrated in two canonical study cases, where the derivation of the scattering matrix in151

composite scenarios is presented. In Section 8, the proposed framework is compared with152

literature results. Finally, conclusions are drawn in Section 9.153

2 Scattering Models under Kirchhoff Approximation154

In this Section, we introduce the KA, a well-known and well-established surface-155

scattering theory [Tsang et al., 1985; Ulaby et al., 1982; Franceschetti et al., 2002]. The156

KA requires that the scattering surface have gentle undulations with average horizontal di-157

mension large with respect to the incident wavelength, and that the local radius of curvature158

be sufficiently large so that the surface appears as locally smooth [Ulaby et al., 1982]. This159

hypothesis is expressed by the following conditions, which provides the domain of validity160

of KA for rough surfaces [Ulaby et al., 1982]:161

kρl> 6, (1a)162

ρl>
√

2.76σhλ, (1b)163
164

where k= 2π/λ is the free-space wavenumber (λ being the operating wavelength), whereas165

ρl and σh are the correlation length and the height standard deviation characterizing the166

statistical representation of the rough surface.167

Considering the geometry depicted in Fig. 1, the field Es scattered by a generic surface168

S at the interface between two different media can be expressed under the KA as (a time169
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Figure 1. Geometry of a generic bistatic scattering scenario. The labels ‘Tx’, ‘Rx’, and ‘S’

stand for transmitter, receiver, and scatterer, respectively. Dashed lines represent the projections

of the unit vectors onto the xy-plane.

188

189

190

dependence ejωt is understood):170

Es(r) =
jkejkr

4πr
E0(I− k̂sk̂s)

∫∫
S

F (k̂i,êi,n̂)ej(ki−ks)·r
′
dr′, (2)171

where r′ is the surface point, and r the observation point in the far-field region (thus172

r∼ |r−r′|); ki and ks are the incident and the scattered wavevectors, respectively, êi is the173

polarization unit vector of the incident electric field Ei =E0êie
jki·r

′
(which is assumed to174

be a plane wave due to the far-field hypothesis), E0 being an arbitrary amplitude factor,175

whereas n̂ is the normal unit vector of the surface S [throughout the paper, unit vectors are176

identified with a hat (̂·)]. The vector function F depends on the surface slopes and dielectric177

properties; its expression is given by [Franceschetti et al., 2002]:178

F (k̂i,êi,n̂) = −(êi · q̂i)(n̂ · k̂i)q̂i(1−R⊥)+(êi · p̂i)(n̂× q̂i)(1+R//)179

+(êi · q̂i)[k̂s×(n̂× q̂i)](1+R⊥)+(êi · p̂i)(n̂ · k̂i)(k̂s× q̂i)(1−R//), (3)180

where (p̂i, q̂i, k̂i) defines a local orthonormal system on the surface S with181

q̂i =
k̂i× n̂
|k̂i× n̂|

, p̂i = q̂i× k̂i, (4)182

183

whereas R// and R⊥ are the Fresnel coefficients for locally parallel p̂i and perpendicular q̂i184

polarizations, respectively, evaluated at the local incidence angle ψ= arccos(−k̂i · n̂s), thus185

ψ ∈ [0,π/2]. The dependence of R// and R⊥ on ψ is understood and omitted for clarity186

purposes.187

At this point, it is convenient to define the horizontal (identified with the subscript ‘h’)191

and vertical (identified with the subscript ‘v’) polarization states for both the incident Ei192

and the scattered Es electric fields193

êih =
k̂i× ẑ
|k̂i× ẑ|

, êiv = êih× k̂i, (5a)194

êsh =
k̂s× ẑ
|k̂s× ẑ|

, êsv = êsh× k̂s, (5b)195

196
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where ẑ is the vertical unit vector of the cartesian reference frame (x̂, ŷ, ẑ), as shown in197

Fig. 1. With these definitions at hand, we can suitably define a local scattering matrix S̃(r′)198

as199

S̃(r′) =

(
S̃hh(r′) S̃vh(r′)

S̃hv(r′) S̃vv(r′)

)
, (6)200

201

where the generic element of the S-matrix is202

S̃pq(r′) =
[
(I− k̂sk̂s)F (k̂i,êip,n̂(r′))

]
· êsq, (7)203

204

for p,q ∈{h,v}, so that the scattered electric field Es in (2) can be recast in terms of the205

horizontal (Esh) and the vertical (Esv) components in the following compact form:206 [
Esh

Esv

]
=
jkejkr

4πr

∫∫
S

ej(ki−ks)·r
′
S̃(r′)dr′

[
E0h

E0v

]
, (8)207

208

E0h and E0v being the amplitudes of the horizontal and vertical components of the incident209

electric field Ei, respectively. The scattered field as expressed in either (2) or (8) does210

not allow for analytical solutions, unless further approximations and/or hypotheses are211

introduced [Ulaby et al., 1982]. However, as long as the normal unit vector is fixed, i.e.,212

n̂(r′) = n̂ , the local scattering matrix S̃(r′) no longer depends on r′, thus allowing for the213

following simplification214 [
Esh

Esv

]
=
jkejkr

4πr
S

[
E0h

E0v

]
IS, (9)215

216

where217

IS =

∫∫
S

ej(ki−ks)·r′dr′, (10)218

is the scattering integral, whereas S is the global scattering matrix219

S=

(
Shh Svh

Shv Svv

)
, (11)220

221

with the generic element defined as:222

Spq =
[
(I− k̂sk̂s)F (k̂i,êip,n̂)

]
· êsq. (12)223

224

It is worth noting here that the local scattering matrix S̃(r′) accounts for the elementary225

contribution of the scattered field from any single facet (located at r′) constituting the226

overall surface. Conversely, the scattering matrix S accounts for the global contribution of227

the scattered field from the overall surface S. As is manifest by comparison of either (7)228

and (12), or (8) and (9), S and S̃(r′) coincide for n̂(r′) = n̂, being S̃ no longer dependent229

from r′. Note that, throughout the paper, the subscripts p,q are intended as labels for the230

possible polarization states (viz., ‘h’, and ‘v’, for the horizontal and vertical polarization,231

respectively).232

In this work, we thoroughly address the analytical evaluation of the local scattering233

matrix under KA. As specific cases of interest, we also propose simplified analytical ex-234

pressions under the GO and the PO approximations, and finally under the backscattering235

(BS) hypothesis. To this purpose, it is worth recalling here that both the KA-GO and the236

KA-PO approximations allow for considering a fixed surface orientation, i.e., n̂(r′) = n̂, thus237

the expressions of S̃(r′) coincide with those of S. It is worth recalling that the GO approx-238

imation is applicable also to rough surfaces with standard deviation of the surface heights239

large with respect to the wavelength, whereas the PO solution holds for surfaces with small240

slopes and height standard deviation much smaller than the wavelength [Ulaby et al., 1982].241

Such assumptions are introduced to evaluate the scattering integral in (10) in closed-forms242

but are not strictly required for the derivation of the scattering matrix which is the main243

focus of this work. In the next Subsections, the hypotheses underlying the KA-GO and the244

KA-PO approximations are briefly reviewed.245

–6–



Confidential manuscript submitted to Radio Science

2.1 Geometrical Optics (GO) Approximation246

As is known [Franceschetti et al., 2002; Ulaby et al., 1982], under the GO approxima-247

tion, the main contributions to the scattered fields arise from the stationary phase points.248

Consequently, k̂i, k̂s, and n̂ must obey the condition of specular reflection249

k̂s = k̂i−2(k̂i · n̂)n̂. (13)250

For random surfaces (e.g., rough surfaces, where the roughness is described by a random251

variable), (13) fixes n̂= n̂s with252

n̂s =
k̂s− k̂i√

2
√

1− k̂i · k̂s
. (14)253

Note that (14) has been found from (13) by exploiting the following useful relations:254

k̂s · n̂s =−k̂i · n̂s = cosψ, (15a)255

k̂i · k̂s = 1−2cos2ψ, (15b)256

cosψ=

√
(1− k̂i · k̂s)/2, (15c)257

n̂s = (k̂s− k̂i)/(2cosψ). (15d)258
259

As a result, whatever the surface elevation model, deterministic or stochastic, under the
KA-GO approximation the surface orientation is always fixed, and thus the local scattering
matrix coincides with the scattering matrix, i.e., S̃(r′) =S. It is worth mentioning here that
the domain of validity of KA-GO is determined by the following condition, in addition to
(1a) and (1b), [Ulaby et al., 1982]:

k2σ2
h|(k̂i− k̂s) · ẑ|2> 10. (16)

The condition in (16) ensures the applicability of the stationary phase method to the eval-260

uation of the scattering integral in (10).261

2.2 Physical Optics (PO) Approximation262

As pointed out in [Franceschetti et al., 2002], the PO approximation commonly refers
to the KA, e.g. [Barrick , 1968]. Here, according to [Franceschetti et al., 2002], the PO
approximation is referred to the approximation of a random surface as the sum of a mean
plane with a normal unit vector n̂0 and a superimposed roughness. Under the hypothesis
of small roughness, F appearing in (2) can be expanded around n̂0, so that the zero-th
order PO solution of the scattered fleld Es can still be expressed by (9). Throughout the
paper, this will be referred to as the KA-PO approximation. Similar to KA-GO, the domain
of validity of KA-PO is further restricted with respect to the KA in order to express the
scattering integral in (10) in a closed form. Specifically, the series expansion of the integrand
calls for a scattering surface with gentle ondulations. Concerning the scattering from rough
surfaces, the following condition has to be satisfied in addition to (1a) and (1b) [Ulaby et al.,
1982]: √

2σh/ρl< 0.25. (17)

Evidently, for deterministic surfaces, KA consistently leads to the use of the simplified263

scattering model expressed by (9), whereas for random surfaces KA-PO is needed. Therefore,264

either if the surface is deterministic, or if it is random, under KA-PO approximation, the265

surface orientation is always fixed, and thus the local scattering matrix coincides with the266

scattering matrix, i.e., S̃(r′) =S.267

As a final comment, we should note that for KA-PO approximation we will present two268

relevant cases of n̂= ẑ and n̂ · ẑ= 0, representing, e.g., the case of a ground and that of a269
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wall, respectively. These two cases not only represent some of the most common scattering270

events, but also provide a complete description of all the possible cases. As a matter of271

fact, a suitable linear combination of these two cases is able to describe any possible surface272

orientation.273

3 Scattering Matrix under Kirchhoff Approximation (KA)274

In this Section, we aim at deriving a compact and general expression for the local275

scattering matrix under the framework of Kirchhoff approximation. We show that, after276

a suitable definition of variables and algebraic manipulations, it is possible to recast the277

expression of S̃ in a more convenient form. In particular — and differently from classical278

approaches [Tsang and Kong , 2001; Ulaby et al., 1982; Barrick , 1970] — we express the279

local scattering coefficients in terms of unit wavevectors and surface orientation. This for-280

malism will be exploited for evaluating the scattering coefficients S̃pq, under the KA-GO281

(see Section 4) and the KA-PO approximations (see Section 5), as well as under the BS282

configuration (see Section 6).283

3.1 Mathematical Derivation284

Starting from (7) with the definitions in (5a)–(5b), simple dyadic algebra yields the285

more compact expression for S̃pq286

S̃pq =F p · êsq, (18)287
288

where F p =F (k̂i,êip,n̂(r′)). Note that from now on the dependence of S̃pq on k̂i, k̂s, n̂,289

and r′ is understood, and omitted for clarity purposes. It is worth mentioning here that290

the use of (18) along with (3) leads to the same results reported in [Jin and Lax , 1990;291

Elfouhaily et al., 2004]. At this stage, since (18) reveals that the knowledge of S̃pq requires292

the evaluation of F p, it is useful to recast (3) as the sum of three terms293

F p =F 0
p +F⊥p +F//

p , (19)294
295

with296

F 0
p = +(êip · q̂i)[k̂s×(n̂× q̂i)−(n̂ · k̂i)q̂i]+(êip · p̂i)[n̂× q̂i +(n̂ · k̂i)(k̂s× q̂i)],297

F⊥p = +(êip · q̂i)[k̂s×(n̂× q̂i)+(n̂ · k̂i)q̂i]R⊥,298

F//
p = +(êip · p̂i)[n̂× q̂i−(n̂ · k̂i)(k̂s× q̂i)]R//, (20)299

300

being F 0
p independent from the Fresnel coefficients, whereas F⊥p and F//

p are related to the301

perpendicular and parallel Fresnel coefficients, respectively [Klein and Swift , 1977; Franco302

et al., 2017; Lee and Pottier , 2009; Harrington, 1961, 1993].303

At this point, it is convenient to define the following scalar quantities304

P i
p =(êip · p̂i), (21a)305

Qi
p =(êip · q̂i), (21b)306

307

and vector quantities308

ti =(n̂× q̂i),309

ts =k̂s×(n̂× q̂i),310

ui =(n̂ · k̂i)q̂i,311

us =(n̂ · k̂i)(k̂s× q̂i), (22)312
313
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so that (20) can be expressed in a more compact form314

F 0
p =Qi

p(ts−ui)+P i
p(ti +us),315

F⊥p =Qi
p(ts +ui)R⊥, (23)316

F//
p =P i

p(ti−us)R//.317
318

From the definitions in (18) and (19), it follows that even S̃pq can be expressed as the sum319

of three terms320

S̃pq = S̃0
pq + S̃⊥pq + S̃//

pq, (24)321

with S̃l
pq =F l

p · êsq for l∈{0,h,v}, so that S̃pq take the following form:322

S̃0
pq =Qi

p(ts−ui) · êsq +P i
p(ti−us) · êsq,323

S̃⊥pq =Qi
p(ts +ui) · êsqR⊥, (25)324

S̃//
pq =P i

p(ti−us) · êsqR//.325
326

3.2 Scattering Matrix Symmetries327

In spite of its compactness and generality, the expression of S̃pq provided in (25) does328

not allow for a straightforward calculation of the coefficients since it involves the calculation329

of different variables that depend on k̂i, k̂s, and n̂. However, we show here that, by means330

of suitable definitions, it is possible to highlight several interesting properties of symmetry,331

thus considerably reducing the computation of the S̃pq coefficients.332

As a first step, we note that from the definitions (4), (5a) and (21a)–(21b), it is manifest333

that334

P i
h =−Qi

v, (26a)335

Qi
h =P i

v. (26b)336
337

Therefore, there is no need to calculate all the four coefficients of S̃pq, since S̃vq can be338

retrieved from S̃hq (and vice versa) by exploiting the following relation339

p : h→ v⇒

{
P i
h→Qi

h

Qi
h→−P i

h

(27)340

341

thus halving the complexity of the theoretical derivation.342

Another interesting symmetry emerges, if one defines the following scalar quantities343

P s
q =êsq ·(n̂× q̂i), (28a)344

Qs
q =(êsq · q̂i)(n̂ · k̂i), (28b)345

346

which in turn allows for defining347

P s
±=(ti±us) · êsh =P s

h±Qs
v, (29a)348

Qs
±=(ts±ui) · êsh =P s

v±Qs
h. (29b)349

350

At this point, simple algebra shows that (recall that êsv = êsh× k̂s and note that ts = k̂s× ti351

and us = k̂s×ui)352

(ts±ui) · êsv =−P s
∓, (30a)353

(ti±us) · êsv =Qs
∓. (30b)354

355

Therefore, there is no need to calculate both coefficients of S̃ph and S̃pv since S̃pv can be356

retrieved from S̃ph (and vice versa) by exploiting the following relation357

q : h→ v⇒

{
P s
±→Qs

∓
Qs
±→−P s

∓
(31)358

359

thus halving once again the complexity of the theoretical derivation.360
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3.3 Analytical expressions361

Upon substitution of the definitions (21a)–(21b) and (30a)–(30b) in (25) and the use362

of symmetries (27) and (31), the scattering matrix S̃pq takes the following form:363

S̃hh =+Qi
hQ

s
−+P i

hP
s
+ +Qi

hQ
s
+R⊥+P i

hP
s
−R//,364

S̃vh =−P i
hQ

s
−+Qi

hP
s
+−P i

hQ
s
+R⊥+Qi

hP
s
−R//,365

S̃hv =−Qi
hP

s
+ +P i

hQ
s
−−Qi

hP
s
−R⊥+P i

hQ
s
+R//,366

S̃vv =+P i
hP

s
+ +Qi

hQ
s
−+P i

hP
s
−R⊥+Qi

hQ
s
+R//, (32)367

368

where the P i
h, Qi

h, P s
± and Qs

± can be made explicit in terms of the incident and scattered369

wavevectors, i.e., k̂i and k̂s, and the surface orientation n̂:370

P i
h =− ẑ ·(k̂i× n̂)

|k̂i× ẑ||k̂i× n̂|
,371

Qi
h =

(n̂ · ẑ)−(k̂i · n̂)(k̂i · ẑ)
|k̂i× ẑ||k̂i× n̂|

,372

P s
±=

ẑ ·(k̂i× n̂)[(k̂s · n̂)±(k̂i · n̂)]

|k̂s× ẑ||k̂i× n̂|
+
k̂i ·(k̂s× n̂)[(n̂ · ẑ)±(k̂i · n̂)(k̂s · ẑ)]

|k̂s× ẑ||k̂i× n̂|
,373

Qs
±=

[(k̂s · n̂)∓(k̂i · n̂)][(k̂i · ẑ)(k̂s · n̂)−(n̂ · ẑ)(k̂i · k̂s)]
|k̂s× ẑ||k̂i× n̂|

+
[k̂i ·(k̂s× n̂)][ẑ ·(k̂s× n̂)]

|k̂s× ẑ||k̂i× n̂|
. (33)374

375

Equation (32) with definitions in (33) furnishes the sought compact and general formalism for376

evaluating the local scattering coefficients under KA as a function of the surface orientation377

and the incident and scattered wavevectors.378

Also, according to the coordinate reference frame depicted in Fig. 1, k̂i, k̂s, and n̂ can379

be expressed as:380

k̂i =x̂sinθicosφi + ŷsinθisinφi + ẑcosθi,381

k̂s =x̂sinθscosφs + ŷsinθssinφs + ẑcosθs, (34)382

n̂=x̂sinθncosφn + ŷsinθnsinφn + ẑcosθn,383
384

where θk ∈ [0,π] and φk ∈ [−π,π) for k∈{i,s,n}. Hence, (32), (33), and (34) completely385

describe the local scattering matrix, provided that the geometry of acquisition is known.386

It is worth mentioning here that, to the best of the authors’ knowledge, the general form387

of (32) and (33) has never been reported in the available literature, which only deals with388

certain specific cases [Jin and Lax , 1990; Elfouhaily et al., 2004], taking advantage of the389

KA-GO approximation.390

Interestingly, we should note from (32) that the local scattering coefficients satisfy the391

following symmetries with respect to the Fresnel coefficients392

S̃vv(R⊥,R//) =S̃hh(R//,R⊥),393

S̃hv(R⊥,R//) =−S̃vh(R//,R⊥), (35)394
395

as can be expected from duality and reciprocity principles [Elfouhaily et al., 2004; Harring-396

ton, 1961]. (Note that S̃0
vv = S̃0

hh and S̃0
hv =−S̃0

vh.) Furthermore, it is clearly seen that,397

as a consequence of symmetries (27) and (31), the scattering coefficients also possess the398

following symmetries with respect to the definitions of P i
h, Qi

h, P s
± and Qs

±399

S̃vh(P i
h,Q

i
h,P

s
±,Q

s
±) =S̃hh(Qi

h,−P i
h,P

s
±,Q

s
±),400

S̃hv(P i
h,Q

i
h,P

s
±,Q

s
±) =S̃hh(P i

h,Q
i
h,Q

s
∓,−P s

∓), (36)401

S̃vv(P i
h,Q

i
h,P

s
±,Q

s
±) =S̃hh(Qi

h,−P i
h,Q

s
∓,−P s

∓).402
403
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As a final remark, we should note that, although the calculation of a single scattering404

coefficient suffices for determining the remaining ones, their expressions will always be re-405

ported for the sake of completeness. Indeed, it should be stressed that the four scattering406

coefficients are independent of one another, hence one cannot generally retrieve the other407

coefficients from a single direct measurement. In this light, it is clear that once the Fresnel408

coefficients and the quantities in (33) are known, one can evaluate any of the scattering coef-409

ficients in (32), and easily retrieve the remaining three by means of (35) and (36). This will410

considerably simplify the analytical derivation of the scattering coefficients under KA-GO411

and KA-PO approximations, as we will see in the next Sections 4 and 5, respectively.412

4 Scattering Matrix under KA-GO Approximation413

As has been shown in Subsection 2.1, under KA-GO approximation the local scattering414

matrix S̃pq coincides with the scattering matrix Spq. Without loss of generality, analytical415

expressions are here reported for the scattering matrix.416

Using the relations (15a)–(15d), the scattering matrix can be considerably simplified.417

Indeed, it is easily seen that P s
+ = 0 and Qs

−= 0, thus418

Shh =+Qi
hQ

s
+R⊥+P i

hP
s
−R//,419

Svh =−P i
hQ

s
+R⊥+Qi

hP
s
−R//,420

Shv =−Qi
hP

s
−R⊥+P i

hQ
s
+R//,421

Svv =+P i
hP

s
−R⊥+Qi

hQ
s
+R//, (37)422

423

with424

P i
h =

−ẑ ·(k̂i× k̂s)
2(k̂s · n̂)|k̂i× ẑ||k̂i× n̂|

,425

Qi
h =

[(k̂s · ẑ)−(k̂i · ẑ)]+2(k̂i · ẑ)(k̂s · n̂)2

2(k̂s · n̂)|k̂i× ẑ||k̂i× n̂|
,426

P s
−=

ẑ ·(k̂i× k̂s)
|k̂s× ẑ||k̂i× n̂|

,427

Qs
+ =

2(k̂i · ẑ)(k̂s · n̂)2−(k̂s · k̂i)[(k̂s · ẑ)−(k̂i · ẑ)]
|k̂s× ẑ||k̂i× n̂|

. (38)428

429

We note here that by replacing the definitions of P i
p, Qi

p for p∈{h,v} and P s
±, Qs

± as in430

(21a)-(21b) and (29a)-(29b), respectively, in (37), it is possible (after suitable algebraic431

manipulations) to obtain the results reported in [Stogryn, 1967] (see Eqs. (52a)-(52d)), and432

in compact dyadic form in [Jin and Lax , 1990; Elfouhaily et al., 2004] (see Eqs. (10a)-(10b),433

and (E.10), respectively).434

Even more interestingly, these expressions can also be given in terms of angles through435

(34). Moreover, under KA-GO k̂i, k̂s, and n̂ are related through the specular point condition436

(13). Hence, the scattering matrix can be expressed in terms of the sole incident and437

scattered angles, i.e., θi, φi, and θs, φs, respectively. As a matter of fact, for deterministic438

surfaces k̂s is given by (13), and θs, φs can unambiguously be retrieved through the relations439

θs =arccos(k̂s · ẑ),440

φs =arctan2[(k̂s · ŷ),(k̂s · x̂)], (39)441
442
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where arctan2(·,·) is the multi-valued inverse tangent function. The final expressions for443

the scattering coefficients are therefore:444

Shh =+S0{+R⊥(ψ)[sinθicosθs−cosθisinθscos(φi−φs)][cosθisinθs−sinθicosθscos(φi−φs)]445

−R//(ψ)sinθisinθssin
2(φi−φs)},446

Svh =−S0{R⊥(ψ)[sinθssin(φi−φs)][cosθisinθs−sinθicosθscos(φi−φs)]447

+R//(ψ)[sinθisin(φi−φs)][sinθicosθs−cosθisinθscos(φi−φs)]},448

Shv =+S0{R⊥(ψ)[sinθisin(φi−φs)][sinθicosθs−cosθisinθscos(φi−φs)]449

+R//(ψ)[sinθssin(φi−φs)][cosθisinθs−sinθicosθscos(φi−φs)]},450

Svv =+S0{−R⊥(ψ)sinθisinθssin
2(φi−φs)451

+R//(ψ)[sinθicosθs−cosθisinθscos(φi−φs)][cosθisinθs−sinθicosθscos(φi−φs)]},
(40)

452

453

having defined S0 = 1/(2cosψsin2ψ) where ψ can also be expressed in terms of the incident454

and scattered angles as:455

ψ= arccos

√
1−sinθisinθscos(φi−φs)−cosθicosθs

2
. (41)456

457

Results are in agreement with those reported in [Ulaby et al., 1982]. Note that the depen-458

dence of the Fresnel coefficients on ψ has been explicited in (40), and this would be the case459

for all final expressions.460

5 Scattering Matrix under KA-PO Approximation461

As emphasized in the previous Section 3, KA and KA-PO coincides when considering462

scattering from a plane. The same result holds for rough surfaces, provided that the n̂0463

describes the normal unit vector of the mean plane. In these cases, as for KA-GO, the local464

scattering matrix S̃pq coincides with the scattering matrix Spq. As a result, expressions for465

the scattering matrix are still given by (32) and (33) upon the substitution n̂(r′) = n̂0.466

However, some further simplifications are possible when considering the relevant cases of467

n̂ · ẑ= 0 (Subsection 5.1) and n̂= ẑ (Subsection 5.2), corresponding to the cases of scattering468

from a wall and scattering from ground, respectively.469

5.1 Specific case: n̂ · ẑ = 0470

As is manifest from (33), the quantities Qi
h, P s

±, and Qs
± all contain terms that depend471

on n̂ · ẑ, thus the hypothesis n̂ · ẑ= 0 allows for simplifying their expressions as follows:472

P i
h =− ẑ ·(k̂i× n̂)

|k̂i× ẑ||k̂i× n̂|
,473

Qi
h =
−(k̂i · n̂)(k̂i · ẑ)
|k̂i× ẑ||k̂i× n̂|

,474

P s
±=

[(k̂s · n̂)±(k̂i · n̂)][ẑ ·(k̂i× n̂)]

|k̂s× ẑ||k̂i× n̂|
± [k̂i ·(k̂s× n̂)][(k̂i · n̂)(k̂s · ẑ)]

|k̂s× ẑ||k̂i× n̂|
,475

Qs
±=

[(k̂s · n̂)∓(k̂i · n̂)][(k̂i · ẑ)(k̂s · n̂)]

|k̂s× ẑ||k̂i× n̂|
+

[k̂i ·(k̂s× n̂)][ẑ ·(k̂s× n̂)]

|k̂s× ẑ||k̂i× n̂|
. (42)476

477

Hence, (32) with (42) constitute the simplified set of equations to be used under KA-PO478

approximation. As has already been done for KA-GO, it is also useful to provide explicit479

analytical expressions in terms of angles. However, different from the KA-GO approxima-480

tion, the surface aspect angle φn is needed (being θn =π/2). Thus, final expressions are481
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given in terms of the five angles, i.e., θi, φi, θs, φs, and φn. After lenghty calculations, the482

scattering coefficients are found to be equal to:483

Shh =+T0{[1−sin2θicos2(φi−φn)][sinθscos(φi−φn)+sinθicos(φs−φn)]484

+R⊥(ψ)[cos2θisinθscos(φi−φn)485

−cosθisinθicosθscos(φi−φn)sin(φi−φn)sin(φs−φn)486

−cos2θisinθicos2(φi−φn)cos(φs−φn)]487

+R//(ψ)[sinθisin
2(φi−φn)cos(φs−φn)488

−cosθisinθicosθscos(φi−φn)sin(φi−φn)sin(φs−φn)489

−sin2θisinθscos(φi−φn)sin2(φi−φn)]},490
491

492

Svh =+T0{[1−sin2θicos2(φi−φn)][cosθisinθssin(φi−φn)−sinθicosθssin(φs−φn)]493

+R⊥(ψ)[cosθisinθssin(φi−φn)494

−cosθisinθicos(φi−φn)sin(φi−φn)cos(φs−φn)495

−sinθicosθssin
2(φi−φn)sin(φs−φn)]496

+R//(ψ)[sin2θicosθisinθscos2(φi−φn)sin(φi−φn)497

−cosθisinθicos(φi−φn)sin(φi−φn)cos(φs−φn)498

+cos2θisinθicosθscos2(φi−φn)sin(φs−φn)]},499
500

501

Shv =−T0{[1−sin2θicos2(φi−φn)][cosθisinθssin(φi−φn)−sinθicosθssin(φs−φn)]502

+R⊥(ψ)[sin2θicosθisinθscos2(φi−φn)sin(φi−φn)503

−cosθisinθicos(φi−φn)sin(φi−φn)cos(φs−φn)504

+cos2θisinθicosθscos2(φi−φn)sin(φs−φn)]505

+R//(ψ)[cosθisinθssin(φi−φn)506

−cosθisinθicos(φi−φn)sin(φi−φn)cos(φs−φn)507

−sinθicosθssin
2(φi−φn)sin(φs−φn)]},508

509

510

Svv =+T0{[1−sin2θicos2(φi−φn)][sinθscos(φi−φn)+sinθicos(φs−φn)]511

+R⊥(ψ)[sinθisin
2(φi−φn)cos(φs−φn)512

−cosθisinθicosθscos(φi−φn)sin(φi−φn)sin(φs−φn)513

−sin2θisinθscos(φi−φn)sin2(φi−φn)]514

+R//(ψ)[cos2θisinθscos(φi−φn)515

−cosθisinθicosθscos(φi−φn)sin(φi−φn)sin(φs−φn)516

−cos2θisinθicos2(φi−φn)cos(φs−φn)]}, (43)517
518

having defined T0 =−1/sin2ψ, whereas ψ can also be expressed in terms of local angles as:519

ψ= arccos[−sinθicos(φi−φn)]. (44)520
521

We should note that the case n̂ · ẑ= 0 has never been reported in the available literature.522

As a final comment, it is worth noting that, as opposed to KA-GO, the expressions of523

the scattering coefficients for KA-PO under the case n̂ · ẑ= 0 possess the S0
pq term that is524

present even when the Fresnel coefficients are both zero. This term also appears under the525

hypothesis n̂= ẑ, as we will see in the next Subsection 5.2.526

5.2 Specific case: n̂= ẑ527

As is clear from the definitions of q̂i, p̂i, and êih, êiv [see (4), and (5a), respectively],528

under the hypothesis n̂= ẑ we have that q̂i = êih and p̂i = êiv, thus P i
h = 0 and Qi

h = 1, and529
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the scattering matrix takes the following simplified form:530

Shh =+Qs
−+Qs

+R⊥,531

Svh =+P s
+ +P s

−R//,532

Shv =−P s
−−P s

−R⊥,533

Svv =+Qs
−+Qs

+R//, (45)534
535

with536

P s
±=

[ẑ ·(k̂i× k̂s)][1±(k̂s · ẑ)(k̂i · ẑ)]
|k̂s× ẑ||k̂i× n̂|

,537

Qs
±=

[(k̂i · ẑ)(k̂s · ẑ)−(k̂s · k̂i)][(k̂s · ẑ)∓(k̂i · ẑ)]
|k̂s× ẑ||k̂i× n̂|

. (46)538

539

As for KA-GO approximation, the scattering coefficients no longer depend on the aspect540

angle φn, since the surface is oriented exactly along the vertical z-axis. Therefore, the541

analytical expressions of the scattering coefficients are given in terms of the incident and542

scattered angles only. After simple algebraic manipulations, the scattering coefficients are543

found to be equal to:544

Shh =cos(φs−φi)[R⊥(ψ)(cosθi−cosθs)−cosθi−cosθs],545

Svh =sin(φs−φi)[R//(ψ)(1−cosθicosθs)+1+cosθicosθs],546

Shv =−sin(φs−φi)[R⊥(ψ)(1−cosθicosθs)+1+cosθicosθs],547

Svv =cos(φs−φi)[R//(ψ)(cosθi−cosθs)−cosθi−cosθs], (47)548
549

where the local incidence angle is simply given by ψ=π−θi. Results are in agreement with550

those reported in [Tsang and Kong , 2001].551

6 Backscattering Case552

In the previous Sections 4 and 5, we have provided simplified sets of equations for evalu-553

ating the scattering matrix under the KA-GO and the KA-PO approximations, respectively.554

In this Section, we aim at furnishing simplified expressions under the backscattering hypoth-555

esis, i.e., k̂s =−k̂i. Our interest in analyzing the BS case is not only its extensive use in all556

monostatic scenarios, but in that it also provides a further method to validate the previous557

formulas. As a matter of fact, in [Franceschetti et al., 2002] analytical expressions for the558

scattering matrix under both the KA-GO and the KA-PO approximations were found under559

the BS case. In Subsection 6.1 we furnish simplified expressions in the backscattering limit,560

whereas in Subsection 6.2 we show that our general formulas coincide with those provided561

in [Franceschetti et al., 2002] in the BS case.562

6.1 Kirchhoff approximation563

In the most general case, under the BS hypothesis the surface orientation is not fixed,564

thus the local scattering matrix has to be used. However, under the BS case, (32) and (33)565

can be considerably simplified. Indeed, it is easily seen that by letting k̂s =−k̂i, it follows566

that P s
+ = 0 and Qs

−= 0, whereas P s
−= 2(k̂i · n̂)P i

h and Qs
+ =−2(k̂i · n̂)Qi

h, so that (32) reads:567

S̃hh =−2(k̂i · n̂)[(Qi
h)2R⊥−(P i

h)2R//],568

S̃vh =− S̃hv = +2(k̂i · n̂)P i
hQ

i
h[R⊥+R//], (48)569

S̃vv =+2(k̂i · n̂)[(P i
h)2R⊥−(Qi

h)2R//],570
571

with572

P i
h =− ẑ ·(k̂i× n̂)

|k̂i× ẑ||k̂i× n̂|
, Qi

h =
(n̂ · ẑ)−(k̂i · ẑ)(k̂i · n̂)

|k̂i× ẑ||k̂i× n̂|
. (49)573

574
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The analytical expressions are given in terms of the incident angles and the surface orienta-575

tion angles only, i.e., θi, φi, and θn, φn, being θs =π−θi, φs =φi +π in the BS case. Simple576

algebra leads us to the following expressions:577

S̃hh =
2cosψ

sin2ψ
{R⊥(ψ)[sinθicosθn−cosθisinθncos(φi−φn)]2−R//(ψ)sin2θnsin2(φi−φn)},578

S̃vh =− S̃hv =−2cosψ

sin2ψ
[R⊥(ψ)+R//(ψ)][sinθnsin(φi−φn)]579

[sinθicosθn−cosθisinθncos(φi−φn)], (50)580

S̃vv =
2cosψ

sin2ψ
{R//(ψ)[sinθicosθn−cosθisinθncos(φi−φn)]2−R⊥(ψ)sin2θnsin2(φi−φn)},581

582

where ψ can also be expressed as:583

ψ= arccos[−sinθisinθncos(φi−φn)−cosθicosθn]. (51)584
585

We should note that, in spite of the wide interest in the backscattering case, general expres-586

sions as those in (48), (49) and (50) have never been reported in the available literature.587

6.2 Validation of analytical formulas under KA588

Here, we aim at validating the scattering coefficients in (50) through the approach589

proposed in [Franceschetti et al., 2002]. Specifically, the cases of single-bounce contributions590

from the ground and from a wall under KA-GO and KA-PO approximations are analyzed.591

We chose the same coordinate reference frame as defined in [Franceschetti et al., 2002],592

therefore the former case implies n̂= ẑ, whereas the latter case implies n̂ · ẑ= 0. In addition,593

it is useful to recover the definitions of the angles θ, φ as in [Franceschetti et al., 2002]594

through the following substitutions:595

θi =π−θ,596

φi =−π/2,597

φn =π/2−φ, (52)598
599

whereas the relations with the scattered angles follow from the BS hypothesis600

θs =π−θi,601

φs =φi +π. (53)602
603

It is worth mentioning that (52) reveals that (50) generalizes the backscattering formulas604

found in [Franceschetti et al., 2002] to the case of incidence over an arbitrary azimuthal plane605

(i.e., any φi) which could be extremely useful for directly evaluating the (back)scattering606

matrix when multiple-bounce contributions are considered.607

6.2.1 KA-GO608

Under KA-GO and BS approximation, we have n̂=−k̂i, thus609

θn =θs,610

φn =φs. (54)611
612

We should comment that, for n̂=−k̂i, the local orthonormal system [viz., (p̂i, q̂i, k̂i)] is no613

longer well-defined (leading to an indeterminate form), and the resulting formulas have to614

be understood in the asymptotic limit of n̂∼−k̂i. As a result, backscattering from the wall615

is always zero except for the limiting case of θ=π/2 and φ= 0, as is seen from either (50)616

or (40) evaluated at θn =π/2, thus confirming the results in [Franceschetti et al., 2002].617
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With regard to the backscattering from ground, Spq is given either by (50) for θn = 0,618

or by (40) for θn = 0 upon subsitution of (53). Thus, it is easily found that619

Shh =2R⊥(0),620

Svh =−Shv = 0, (55)621

Svv =2R//(0),622
623

which confirms the results found in [Franceschetti et al., 2002] [see (4.6a-4.6c)] apart for a624

sign change in Shh and Shv, due to the different conventions used for the evaluation of the625

scattering matrix [Lee and Pottier , 2009]. As expected from the KA-GO approximation,626

the cross-polarized backscattered coefficients are zero [Franco et al., 2017].627

6.2.2 KA-PO628

Under the KA-PO approximation, the backscattering from wall is given either by (50)629

for θn =π/2, or by (43) for θn =π/2 upon substitution of (53). It then results630

Shh =U0[R⊥(ψ)cos2θicos2(φi−φn)−R//(ψ)sin2(φi−φn)],631

Svh =− S̃hv =U0sin(φi−φn)[R⊥(ψ)+R//(ψ)], (56)632

Svv =U0[R⊥(ψ)sin2(φi−φn)−R//(ψ)cos2θicos2(φi−φn)],633
634

with U0 = 2sinθicos(φi−φn)/[1−sin2θicos2(φi−φn)]. Equation (56) confirms the results635

found in [Franceschetti et al., 2002] [see (4.2a)–(4.2.c)] according to the definitions in (52)636

and apart for the sign change in Shh and Shv (for the same motivations as above). As637

opposed to KA-GO, KA-PO does not generally lead to zero cross-polarized backscattered638

power, as recently shown in [Franco et al., 2017].639

With regard to the backscattering from ground, Spq is given either by (50) for θn = 0,640

or by (47) for θn = 0 upon subsitution of (53). Thus, it is easily found that641

Shh =−2R⊥(π−θi)cosθi,642

Svh =−Shv = 0, (57)643

Svv =−2R//(π−θi)cosθi,644
645

which again confirms the results found in [Franceschetti et al., 2002] [see (4.9a-4.9c)] accord-646

ing to the definitions in (52) and apart for the abovementioned sign change.647

As a final comment, we note that the S0
pq term appearing under the KA-PO approxi-648

mation vanishes under the BS hypothesis.649

7 Canonical Study Cases650

In this Section, the developed theoretical framework for the evaluation of the scattering654

matrix under KA is exploited to clarify the benefits of the proposed formalism for the study655

of electromagnetic problems of practical interests. In particular, we show that the formulas656

provided in the previous sections can greatly simplify the theoretical derivation of the scat-657

tering matrix in scenarios with composite targets, where multiple-bounce contributions arise658

due to multiple reflections. Two canonical study cases are presented here: the backscatter-659

ing from a smooth parallelepiped target lying on a rough surface (Subsection 7.1) and the660

backscattering from a rough square pyramid on a horizontal rough surface (Subsection 7.2).661

662

7.1 Parallelepiped Target663

Here we analyze the canonical problem depicted in Fig. 2, consisting of a smooth664

parallelepiped target lying on a rough surface. Such a study case has been analyzed in665
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Figure 2. Canonical problem of a composite target consisting of a smooth parallelepiped lying on

a rough surface. Single-bounce (yellow), double-bounce (blue), and triple-bounce (green) scattering

contributions. The geometry of the double-bounce contribution is shown in the inset.

651

652

653

both urban and maritime environments to derive the analytical expression of the RCS of666

an isolated building and vessel in a backscattering configuration under KA-GO and KA-667

PO [Franceschetti et al., 2002; Iervolino et al., 2016]. For the theoretical evaluation of668

the electromagnetic field scattered from such a target, it is convenient to decompose the669

scattered field in the different contributions arising from multiple reflections between the670

target and the surface. Such terms can then be evaluated by means of KA-GO and KA-PO671

as demonstrated in [Franceschetti et al., 2002]. In the considered problem, the following672

contributions are present (see Fig. 2):673

• Single-bounce scattering from rough surface and target (yellow lines).674

• Double-bounce scattering from target-surface and vice versa (blue lines).675

• Triple-bounce scattering from target-surface-target (green lines).676

Single-bounce contributions can be easily evaluated by means of well-known theory677

of scattering from rough surfaces [Tsang and Kong , 2001; Barrick , 1970; Bass and Fuks,678

1979]. However, once the acquisition geometry is known, the single-bounce contributions679

can easily be evaluated through the application of i) (32)-(34) along with symmetries in680

(35), for KA, ii) (40) and (41) for KA-GO, and iii) (47) for KA-PO. Therefore, we here681

focus on the target-surface double-bounce contribution and illustrate the rationale to derive682

the analytical expression of the scattering matrix under KA-GO. A similar procedure can683

be applied to evaluate the scattering matrix of the surface-target and target-surface-target684

scattering terms under either KA-GO or KA-PO. Assuming the geometry shown in Fig. 2,685

the incident field Ei can be modeled as a plane wave with amplitude E0, polarization êi and686

propagating in the k̂i direction [Franceschetti et al., 2002]. It is here assumed that k̂i lays687

in the yz plane, therefore:688

k̂i =−sinθŷ−cosθẑ, (58)689

where θ is the radar look angle.690

From (12), with the definitions in (5a) and (5b), it is evident that the scattering matrix691

is a function of the propagation and observation directions, and unit vector normal to the692

surface, i.e., S=S(k̂i,k̂s,n̂). Under KA-GO, the electric field scattered from the target is693

still a plane wave propagating along the direction [Franceschetti et al., 2002]694

k̂sp = sinθsin2φx̂+sinθcos2φŷ−cosθẑ (59)695

Therefore, the scattering matrix associated to the first bounce is696
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S
T

=S(k̂i,k̂sp,n̂T) (60)697

where n̂T = sinφx̂+cosφŷ, and (37), (38) can be directly applied. In order to provide an698

analytical expression of the scattering matrix in terms of the incident and scattering angles,699

(39) provides the formal changes to be applied to (40) and (41):700

θi =π−θ,701

φi =−π/2,702

θs =π−θ,703

φs =π/2−2φ. (61)704
705

The scattering matrix for the bounce from the surface is:706

S
S

=S(k̂sp,k̂s,n̂S) (62)707

since the incident plane wave is now propagating along the k̂sp direction. The unit vector708

n̂S is determined by (14). Similarly, the analytical expression of S
S

in terms of angles can709

be derived from the following formal changes:710

θi =π−θ,711

φi =π/2−2φ,712

θs =θs,713

φs =φs, (63)714
715

Finally, the overall scattering matrix of the double-bounce target-surface contribution716

S
TS

can be obtained as:717

S
TS

=S
S
S
T
. (64)718

We note that (64) can suitably be generalized for N -th order multiple-bounce contribu-719

tions: if S(i)

U
for i= 1,2, ...N is the single-bounce scattering matrix of the i-th bounce,720

the overall scattering matrix relevant to the N -th order contribution S
C

is given by the721

non-commutative product:722

S
C

=

N∏
i=1

S(N+1−i)
U

. (65)723

Even more interestingly we note that the scattering matrix of a composite target inherits724

the duality and reciprocity symmetries of the single-bounce scattering matrix (see (35)), as725

rigorously shown in the Appendix.726

With these considerations at hand, we show numerical results of the bistatic RCS of727

the double-bounce target-surface contribution arising in the canonical problem presented728

in Fig. 2. We note here that under KA-GO and KA-PO approximations, the scattered729

fields and in turn the RCS are given by (9). Therefore, once the scattering matrix of the730

composite target is calculated as shown in (65), only the surface integrals IS have to be731

computed to obtain the bistatic RCS. While analytical expressions of IS can be found under732

specific hypotheseis, their calculation is here performed through numerical techniques. The733

scattering integral IS over the sea surface has been evaluated by means of a Monte Carlo734

simulation with 106 trials .735

The simulated scenario is a maritime environment where a 100×30×10 m3 ship tar-740

get lays on the sea surface described via a 2-D Gaussian stochastic process with standard741
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Figure 3. Backscattering RCS of the ship target at 3 GHz for (a) φ= 0◦, (b) φ= 15◦, (c) φ= 30◦,

(d) φ= 45◦. Only the double-bounce ship-sea is modeled.

736

737

deviation 0.1 m. The Klein-Swift model in [Klein and Swift , 1977] is used to evaluate the742

sea dielectric constant. To this end, sea salinity and temperature are set to 35 ppm and 19◦,743

respectively. The operating frequency is set to 3 GHz, and radar look angle to 30◦, unless744

otherwise stated.745

Figures 3(a)-(d) show the RCS in the backscattering configuration as a function of746

the radar look angle θ for linear co-pol HH, VV, and cross-pol HV polarizations and for747

φ= 0◦ (long side of ship facing the transmitter), φ= 15◦, φ= 30◦, and φ= 45◦. It is worth748

noting that similar results are expected with larger values of the aspect angle φ due to the749

symmetry of the target. For low aspect angles, the cross-pol channel exhibits the lowest750

RCS values, whereas the highest RCS values are achieved for large aspect angles. Co-pol751

channels give similar results in the considered scenario. Figures 4(a)-(d) show the bistatic752

RCS as a function of φs for φ= 0◦, φ= 15◦, φ= 30◦, and φ= 45◦. The double-bounce753

contributions from the different ship sides appear as local peaks of the RCS, with angular754

position dictated by the ship orientation. Finally, it is demonstrated that, for a large range755

of ship orientations, the backscattering acquisition geometry represents the most favorable756

configuration for ship detection applications in bistatic systems, such as GNSS-R.757

7.2 Pyramidal Target760

As a further canonical study case, we analyze the composite scenario depicted in Fig.761

5(a). It consists of a square right pyramid with rough sides lying on a rough horizontal762

surface. Such a study case is not only important per se, but allows us for considering a more763

generic scenario with respect to the parallelepiped target considered in the previous section.764

Actually, in this case we consider tilted facets, thus paving the way for the electromagnetic765
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Figure 4. RCS of the ship target at 3 GHz and θ= 30◦ as a function of φs for (a) φ= 0◦, (b)

φ= 15◦, (c) φ= 30◦, (d) φ= 45◦. Only the double-bounce ship-sea is modeled.

738

739

(a) (b)

Figure 5. (a) Composite scenario consisting in a square right pyramid with rough sides lying

on a rough horizontal surface. (b) Geometry of the problem.

758

759

modeling of targets which significantly differ from parallelepiped, e.g., small ships, gable-766

roofed buildings. Here we show how the scattering matrix relevant to the single-scattering767

contribution from the slant face of the pyramid can be derived by using the proposed formu-768

las. In particular, we consider a monostatic radar system illuminating the whole composite769

surface and analyze the scattering problem in the framework of the KA-PO approach. The770

unit vector normal to the slant face can then be expressed as:771
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and radar look angle are β= 50◦ and θ= 30◦, respectively.

791

792

793

n̂T = sinβsinφx̂+sinβcosφŷ+cosβẑ (66)772

where φ is the clockwise angle between the x-axis and pyramid line base and β is the slant773

angle, i.e., the angle between the slant face and the base, see Fig. 5(b). The scattering774

matrix relevant to the single-scattering contribution from the slant face can be derived by775

using (50) and (51) with the same substitutions and angle definitions in (52) and θn =β. It776

results that:777

Shh =
2cosψ

sin2ψ
[+R⊥(ψ)(sinθcosβ−cosθsinβcosφ)

2−R//(ψ)sin2βsin2φ],778

Svh =−Shv =
2cosψ

sin2ψ
[R⊥(ψ)+R//(ψ)]sinβsinφ(sinθcosβ−cosθsinβcosφ), (67)779

Svv =
2cosψ

sin2ψ
[−R⊥(ψ)sin2βsin2φ+R//(ψ)(sinθcosβ−cosθsinβcosφ)

2
],780

781

where ψ can be expressed as:782

ψ= arccos(sinθsinβcosφ+cosθcosβ). (68)783

In the limiting case β= θ and φ= 0, ψ= 0 and (67) can be rewritten as:784

Shh = 2R⊥,785

Svh =−Shv = 0, (69)786

Svv = 2R//.787
788

It is worth mentioning that such results generalize the scattering matrix reported in789

[[Franceschetti et al., 2002], Table I] to tilted walls.790

Numerical results showing the scattering matrix in (67) relevant to the single-scattering794

contribution from the pyramid target are here presented and discussed. The simulated target795

exhibits a dielectric constant equal to 5; the pyramid slant angle and the radar look angle796

are β= 50◦ and θ= 30◦, respectively, unless otherwise stated.797

Fig. 6 shows the scattering matrix elements as a function of the pyramid aspect angle798

φ for the different co-pol and cross-pol channels. Due to the symmetry of the target,799

only aspect angles in the range 0◦<φ< 90◦ have been considered. In this way, all the800

possible orientations are represented. At low aspect angles, Shh exhibits the largest values,801
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Figure 7. Spq relevant to the single-scattering contribution from a pyramid as a function of the

pyramid slant angle β for φ= 0◦ (red line), φ= 20◦ (green line), and φ= 45◦ (blue line). (a) Shh,

(b) Svh. The radar look angle is θ= 30◦.
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Figure 8. Spq relevant to the single-scattering contribution from pyramid as a function of the

radar look angle θ for φ= 0◦ (red line), φ= 20◦ (green line), and φ= 45◦ (blue line). (a) Shh, (b)

Svh. Pyramid slant angle is β= 50◦.

818

819

820

whereas at intermediate and large aspect angles Svv dominates. The cross-pol channels802

give the lowest values, regardless of the target orientation, and present nulls for φ= 0◦ and803

φ= arccos(tanθcotβ), which corresponds to about 60◦ in the considered scenario. The role804

of the pyramid slant angle β is investigated in Fig. 7, which shows Shh and Svh as a function805

of β for different aspect angles. Results analogous to Shh (Svh) have been obtained for Svv806

(Shv) and, therefore, are omitted here. It is obvious that, for null slant angle, the scattering807

matrix no longer depends upon the pyramid aspect angle β, as is confirmed in Fig. 7.808

Indeed, Shh is a decreasing function of β and its sensitivity to the slant angle β increases809

with increasing aspect angle φ. Regardless of the slant angle, the cross-pol channels are810

null for target in broadside configuration, i.e., φ= 0, as mentioned before. Further nulls are811

for β= 0◦ and β= arctan(tanθ/cosφ), corresponding to about 31◦ and 39◦ for φ= 20◦ and812

φ= 45◦, respectively. Shv increases stepping away from such values, reaching largest values813

for large aspect angle φ.814

Finally, we analyze the role of the radar look angle θ. Results are presented in Fig. 8,821

where Shh and Svh are shown as a function of θ for different aspect angles φ. It is demon-822
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strated that Shh is weakly influenced by the radar look angle θ at any target orientation,823

and largest values are achieved with broadside targets. Similar comments to Fig. 7(b) can824

be applied to Fig. 8(b) concerning Svh. However, a unique null in θ= arctan(tanβcosφ) is825

found in terms of θ.826

As a last remark, it is worth commenting here that the presence of nulls in the cross-pol827

channels can easily be predicted from (67). This aspect further corroborates the advantages828

in having analytic closed-form expressions for the scattering matrix coefficients in terms of829

angles.830

8 Comparison with Results from the Literature831

In this Section, the proposed framework is validated against literature results. First, we840

compare the proposed method with the one presented in [Arnold-Bos et al., 2007a] in order841

to assess the consistency of our analytical derivation. Second, we compare our analytical842

results with those obtained with the facet-based approach (FBA) presented in [Chen et al.,843

2012].
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Figure 9. (a) Normalized RCS vs. φs, of a rough sea surface for f0 = 10 GHz, wind speed

equal to 4.53 m/s, θ= 20◦, θs = 30◦, φi = 0◦. Our results are in solid and dashed lines, while results

taken from [Arnold-Bos et al., 2007a] are in circles. (b) Monostatic RCS vs. θi for the composite

scattering of a ship (see [Chen et al., 2012] for the ship model) lying on a rough sea surface at f = 8

GHz and HH polarization. The sea surface is characterized by a JONSWAP spectrum [Hasselmann

et al., 1980] assuming a wind speed of 4 m/s. Our results are in black solid line, while the FBA

results taken from [Chen et al., 2012] are in black circles. Note that we modeled the ship as an

equivalent parallelepiped of dimensions 120×20×25 m3.
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844

8.1 Validation of the Analytical Derivation845

In order to prove the consistency of the proposed analytical derivation, it is important846

to compare our results with those obtained by means of different methods but still under the847

same approximation. In this regard, the numerical results obtained in [Arnold-Bos et al.,848

2007a] for the normalized radar cross section (NRCS) of a rough sea surface are reported in849

Fig. 9(a) where those results are compared with ours under the same approximation (i.e.,850

KA-GO) and operating conditions (parameters in the caption of Fig. 9(a)). As expected, our851

KA-GO formulation leads to the same results of [Arnold-Bos et al., 2007a] (the negligible852

differences between the two figures are due to slightly different statistical characterization853

–23–



Confidential manuscript submitted to Radio Science

of the sea surface roughness), but with the difference that our results are obtained by means854

of fully analytical explicit expressions (see (40)). As extensively discussed in [Arnold-Bos855

et al., 2007a], we should mention that the KA-GO approximation provides accurate results856

in the specular region (i.e., φs ∈ [0◦,20◦]∪ [340◦,360◦] ), while it generally underrates diffuse857

scattering (i.e., φs> 20◦).858

8.2 Validation with Numerical Models859

At this stage, it is important to compare the accuracy of our results with other numerical860

techniques. In this regard, the KA-GO framework proposed here for the evaluation of the861

RCS is compared with the FBA method presented in [Chen et al., 2012]. The FBA is862

a reliable method in the family of facet-based algorithms (see, e.g., [Chen et al., 2009,863

2012; Zhang et al., 2017, 2011]), the latter being semi-analytical hybrid schemes recently864

introduced to improve the efficiency of computationally expensive full-wave techniques, such865

as the multilevel fast multipole method (MLFMM) (see e.g., [Sertel and Volakis, 2004]). In866

particular, in [Chen et al., 2012] a hybrid method which combines the GO-PO solution with867

the method of equivalent currents (MEC), is proposed as a convenient numerical tool for868

evaluating the RCS of an isolated target lying over a rough surface.869

Here, we compare our results with those obtained in [Chen et al., 2012] for evaluating870

the monostatic RCS (i.e., backscattering configuration) of a ship lying over a moderately871

rough sea (parameters in the caption of Fig. 9(b)). As shown in Fig. 9(b), our KA-GO so-872

lution (black solid line) exhibits a good agreement with the numerical results (black circles)873

reported in [Chen et al., 2012]. We limited our analysis to 0◦<θi< 30◦, as the KA-GO874

approximation is not expected to give accurate results for larger incidence angles. Inciden-875

tally, we stress here that this variability range is in accordance with typical viewing angles876

adopted in remote sensing technologies, such as SAR, scatterometers, and GNSS-R, which877

typically exhibit a viewing angle up to few tens of degrees. As a final remark, we should878

emphasize that our analytical KA-GO framework, although modeling the ship as a simple879

parallelepiped, is still able of providing a good estimate of the main scattering mechanisms880

at very low computational cost compared with numerical techniques. Indeed, FBA methods881

always require the discretization of the entire scenario (i.e., the rough sea surface as well as882

the ship) in a multitude of facets, thus demanding high memory and time resources when883

dealing with surfaces much larger than facets, as those reported here.884

9 Conclusion885

In this work we have presented an alternative theoretical derivation of the scattering886

matrix under the Kirchhoff approximation (KA), where no simplifying assumptions have887

been made about the scattering geometry. Special emphasis is devoted to the backscat-888

tering case because of its relevance to remote sensing. The proposed formalism highlights889

interesting symmetries of the scattering matrix under KA, and enables a straightforward890

derivation of analytical expressions under the geometrical optics (KA-GO) and the physi-891

cal optics (KA-PO) approximations. In addition, these formulas are explicitly expressed in892

terms of either the unit wavevectors and surface orientation, or the relative positions between893

the transmitter, the scatterer, and the receiver. The proposed theoretical framework paves894

the way for a direct evaluation of the electromagnetic field scattered from composite targets,895

simplifying the theoretical derivation of the scattering matrix. This has been demonstrated896

in two canonical examples of practical interest, where the problem of the EM scattering from897

composite targets has been analyzed. In the first canonical study case, consisting of a par-898

allelepiped target lying over a rough surface, the rationale for evaluating the overall bistatic899

scattering matrix associated to a double-bounce term has been formulated under KA-GO.900

In the second application example, the monostatic scattering matrix associated to a single-901

bounce from tilted facets has been derived under KA-PO. The presented formulas allow us902

to evaluate the role of the target geometry on the scattering matrix. By accounting for903
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such scattering contributions, numerical results have been presented and discussed. Finally,904

the proposed analytical framework has been validated against both analytical models and905

simulation tools available in the literature in order to validate the whole analytical deriva-906

tion, and to test its accuracy and validity limits as opposed to numerical techniques. The907

comparisons have highlighted both the consistency of the proposed analytical framework908

and its accuracy in realistic scenarios for low to intermediate viewing angles.909

A: Duality and Symmetry Properties of the Scattering Matrix from910

Multiple Bounces911

We want to prove that (35) holds also for the scattering matrix of the N -th order912

multiple-bounce contributions, i.e.,913

SC,vv(R⊥,R//) =SC,hh(R//,R⊥),914

SC,hv(R⊥,R//) =−SC,vh(R//,R⊥), (A.1)915
916

where SC,pq, for p,q ∈{h,v} is the pq-component of S
C

in (65) for N bounces, whereas917

R// = [R//,1,R//,2,...,R//,N ], R⊥= [R⊥,1,R⊥,2,...,R⊥,N ], represent the N -tuples of Fresnel co-918

efficients, with R//,i and R⊥,i for i= 1,2,...,N their Fresnel coefficients of the i-th bounce,919

for locally parallel and perpendicular polarizations, respectively.920

Mathematical induction can profitably be used to prove (A.1). Indeed, the basis of921

induction is already proven, as we know that equation (35) holds for the single-scattering922

event (i.e., for N = 1). Hence, only the inductive step remains to prove. First, we define923

S(n)

C
, and R

(n)
// , and R

(n)
⊥ , the composite scattering matrix and the tuples of parallel and924

perpendicular Fresnel coefficients, respectively, for n∈N∗ bounces. By induction hypothesis,925

we then assume that (A.1) holds for S(n)

C
. From (65) we have that S(n+1)

C
=S(n+1)

U
S(n)

C
, with926

S(n+1)

U
the single-bounce scattering matrix of the n+1-th bounce. Therefore,927

S
(n+1)
C,hh =S

(n+1)
U,hh S

(n)
C,hh +S

(n+1)
U,vh S

(n)
C,hv,928

S
(n+1)
C,vh =S

(n+1)
U,hh S

(n)
C,vh +S

(n+1)
U,vh S

(n)
C,vv,929

S
(n+1)
C,hv =S

(n+1)
U,hv S

(n)
C,hh +S

(n+1)
U,vv S

(n)
C,hv,930

S
(n+1)
C,vv =S

(n+1)
U,hv S

(n)
C,vh +S

(n+1)
U,vv S

(n)
C,vv, (A.2)931

932

where the dependence of S(n+1)

U
from R//,n+1 and R⊥,n+1, and that of S(n)

C
from R

(n)
// and933

R
(n)
⊥ , have been tacitly suppressed for clarity purposes. Since S(n+1)

C
depends on both R

(n)
// ,934

R
(n)
⊥ , and R//,n+1, R⊥,n+1, it is convenient to define the n+1-tuples of Fresnel coefficients as935

R
(n+1)
//(⊥) = [R

(n)
//(⊥),R//(⊥),n+1]. With this definition at hand, and by exploiting the induction936

hypothesis on S(n)

C
and (A.1) on S(n+1)

U
, it is straightforward to show that:937

S
(n+1)
U,hh (R//,n+1,R⊥,n+1)S

(n)
C,hh(R

(n)
// ,R

(n)
⊥ )+S

(n+1)
U,vh (R//,n+1,R⊥,n+1)S

(n)
C,hv(R

(n)
// ,R

(n)
⊥ ) =938

S
(n+1)
U,vv (R⊥,n+1,R//,n+1)S

(n)
C,vv(R

(n)
⊥ ,R

(n)
// )S

(n+1)
U,hv (R⊥,n+1,R//,n+1)S

(n)
C,vh(R

(n)
⊥ ,R

(n)
// ), (A.3)939

940

and941

S
(n+1)
U,hh (R//,n+1,R⊥,n+1)S

(n)
C,vh(R

(n)
// ,R

(n)
⊥ )+S

(n+1)
U,vh (R//,n+1,R⊥,n+1)S

(n)
C,vv(R

(n)
// ,R

(n)
⊥ ) =942

−S(n+1)
U,vv (R⊥,n+1,R//,n+1)S

(n)
C,hv(R

(n)
⊥ ,R

(n)
// )−S(n+1)

U,hv (R⊥,n+1,R//,n+1)S
(n)
C,hh(R

(n)
⊥ ,R

(n)
// ),

(A.4)

943

944

so that:945

S
(n+1)
C,vv

(
R

(n+1)
⊥ ,R

(n+1)
//

)
=S

(n+1)
C,hh

(
R

(n+1)
// ,R

(n+1)
⊥

)
,946

S
(n+1)
C,hv

(
R

(n+1)
⊥ ,R

(n+1)
//

)
=−S(n+1)

C,vh

(
R

(n+1)
// ,R

(n+1)
⊥

)
. (A.5)947

948
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By mathematical induction (A.5) holds for any finite n∈N∗, and this concludes the proof.949

Hence, the symmetry properties of the scattering matrix for a single-bounce contribution950

can be straightforwardly extended to a composite target through (A.1).951
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