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Beta-diversity has been repeatedly shown to decline with increasing elevation, but 
the causes of this pattern remain unclear, partly because they are confounded by 
coincident variation in alpha- and gamma-diversity. We used 8795 forest vegetation-
plot records from the Czech National Phytosociological Database to compare the 
observed patterns of beta diversity to null-model expectations (beta-deviation) con-
trolling for the effects of alpha- and gamma-diversity. We tested whether β-diversity 
patterns along a 1200 m elevation gradient exclusively depend on the effect of 
varying species pool size, or also on the variation of the magnitude of community 
assembly mechanisms determining the distribution of species across communities 
(e.g. environmental filtering, dispersal limitation). The null model we used is a novel 
extension of an existing null-model designed for presence/absence data and was spe-
cifically designed to disrupt the effect of community assembly mechanisms, while 
retaining some key features of observed communities such as average species rich-
ness and species abundance distribution. Analyses were replicated in ten subregions 
with comparable elevation ranges. Beta-diversity declined along the elevation gra-
dient due to a  decrease in gamma-diversity, which was steeper than the decrease 
in alpha-diversity. This pattern persisted after controlling for alpha- and gamma-
diversity variation, and the results were robust when different resampling schemes 
and diversity metrics were used. We conclude that in temperate forests the pattern 
of decreasing beta-diversity with elevation does not exclusively depend on variation 
in species pool size, as has been hypothesized, but also on variation in community 
assembly mechanisms. The results were consistent across resampling schemes and 
diversity measures, thus supporting the use of vegetation-plot databases for under-
standing patterns of beta-diversity at the regional scale. 
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Introduction

Species diversity is often decomposed in its alpha (α), beta (β) 
and gamma (γ) components (Whittaker 1972). These three 
aspects of diversity are influenced by several factors, including 
evolutionary history, climatic variation, habitat heterogene-
ity, dispersal limitation, species interactions and stochastic 
effects (Condit et al. 2002, Legendre et al. 2009, Chase 2010, 
Mori et al. 2015). The interplay of these factors creates strik-
ing biodiversity patterns that have long attracted the research-
ers’ attention (Nogues-Bravo et al. 2008). Whereas classical 
biogeographical studies have been mainly focused on latitu-
dinal and elevational patterns of α- and γ-diversity, interest 
in patterns of β-diversity is relatively new and the interpreta-
tion of these patterns is still subject to scientific debate (Qian 
and Ricklefs 2007, Lenoir et al. 2010, Kraft et al. 2011, De 
Cáceres et al. 2012, Myers et al. 2013, Ulrich et al. 2017).

Besides describing the scaling between α- and γ-diversity, 
β-diversity (site-to-site variation in species composition) 
is the result of assembly processes operating at a given 
geographic scale (Condit et al. 2002, Legendre et al. 2009). 
Empirical studies focusing on β-diversity are thus funda-
mental to provide insights into the processes that create and 
maintain the compositional variation of natural communities 
(Tuomisto et al. 2003, Chase 2010, Burrascano et al. 2013, 
Myers et al. 2013). Although β-diversity has been reported 
to generally decline with increasing latitude and elevation 
(Kraft et al. 2011, Mori et al. 2013, Tello et al. 2015), there 
is no general consensus about the causes of this decline. This 
uncertainty partly derives from the fact that comparisons 
of β-diversity among sites or regions are confounded by 
coincident variation in α- and γ-diversity (Tuomisto 2010, 
Chase et al. 2011). The relationship with γ-diversity is par-
ticularly important because it is related to evolutionary and 
historical processes operating at large spatio-temporal scales 
determining the size of the species pool, i.e. the habitat-spe-
cific set of species that can potentially inhabit a site because 
of suitable ecological conditions (Zobel 2016).

Using a null-model approach, Kraft  et  al. (2011) sug-
gested that latitudinal and elevational patterns of β-diversity 
are related to the concomitant variation in the species pool, 
concluding that there is no need to invoke differences in the 
mechanisms of local community assembly to explain these 
patterns. However, later studies reported a dominant effect 
of local community assembly mechanisms (Mori et al. 2013, 
Tello  et  al. 2015). Moreover, Qian  et  al. (2013) criticized 
the null-model used by Kraft et al. (2011), claiming that it 
retains the species abundance distributions (SADs) observed 
in real data, disregarding the fact that these are the result of 
mechanisms of local community assembly and in turn might 
generate β-diversity gradients (Qian et al. 2013, Mori et al. 
2015). This debate is complicated by the fact that the histori-
cal and evolutionary regional assembly processes related to 
the species pools and local assembly processes (e.g. environ-
mental filtering, competition or dispersal limitation), besides 
being intimately related, are by definition dominant at 
different spatial scales. Indeed, patterns of species occurrence 

and abundance depend on the geographic extent of the study 
system, as well as on grain and sampling schemes (Tang et al. 
2012, Tello  et  al. 2015). Furthermore, the relative impor-
tance of different assembly processes may change among 
biogeographical regions, either due to different evolutionary 
histories or different ecological conditions (Chase 2010, 
Kraft et al. 2011, De Cáceres et al. 2012, Myers et al. 2013, 
Qian et al. 2013, Myers et al. 2015). 

Analyses of β-diversity are often restricted to one or a few 
elevation transects, which may represent only a small fraction 
of the regional diversity (Tello et al. 2015). This lack of replica-
tion may result in inconsistencies among the outcomes of dif-
ferent studies. Ideally, inference on β-diversity patterns would 
be improved if well-replicated studies conducted within the 
same biogeographical context and following a standard meth-
odology were compared (Lessard et al. 2012). Furthermore, 
conducting studies at a regional scale (~103–105 km2) would 
substantially limit the potential confounding effects of differ-
ent species pools, evolutionary histories and ecological condi-
tions. Indeed, within the same region, community assembly 
processes relevant at the level of meta-communities (e.g. 
dispersal limitation and environmental filtering) have the 
clearest effect (Leibold et al. 2004, Cottenie, 2005, Jiménez-
Alfaro et al. 2015). Despite the numerous advantages of ana-
lyzing regional datasets such an approach was until recently 
hampered by the limited availability of large collections of 
fine-scale community data. Fortunately, such datasets have 
been recently made available for plant communities with the 
development of national and regional vegetation databases 
(Dengler et al. 2011, Chytrý et al. 2016). 

In this study, we used vascular plant species data from 
8795 forest vegetation plots in the Czech Republic to test 
the consistency of β-diversity patterns across a 1200 m ele-
vation gradient replicated in 10 subregions. Specifically, we 
tested the hypothesis that the variation in the species pool 
size is the sole factor responsible for variation in β-diversity 
patterns along the elevation gradient. If this hypothesis was 
true, then any relationships between β-diversity and elevation 
should disappear after controlling for the variation in species 
pool sizes (Kraft et al. 2011, Lessard et al. 2012, Mori et al. 
2015), i.e. the net effect of the main local assembly processes 
that determine the distribution of species across communi-
ties, such as environmental filtering, competition or dispersal 
limitation, should be constant along elevation gradients. In 
contrast, if the observed patterns in β-diversity persist after 
removing the effect of variation in the species pool size, the 
effect of the assembly processes should change with elevation 
(Tello et al. 2015). To distinguish between these two possi-
bilities, we tested whether the observed patterns of β-diversity 
differed from random expectations generated by sampling 
from a species pool that accounts for the influence of evo-
lutionary and historical processes (Lessard et al. 2012). We 
used a null-model that was specifically designed to disrupt 
the effect of those assembly mechanisms that determine the 
distribution of species across communities, while retaining 
some key features of observed communities such as average 
species richness and SADs. We tested the robustness of the 
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observed inference by comparing the results obtained when 
using the whole dataset vs three resampled datasets, and when 
using diversity metrics that give progressively less weight to 
rare species.

Material and methods

Study area and vegetation data

Czech Republic is a land-locked country of central Europe 
occupying an area of 78 867 km2 and an elevation range 
between 115 and 1603 m a.s.l. The climate is temperate 
oceanic to temperate continental (Rivas-Martínez  et  al. 
2004), with continentality increasing from west to east 
and from mountains to lowlands. Both temperature and 
precipitation peak in July. Lowlands are warm and dry, 
with a mean annual temperature of 8–9.5°C (January 
mean –2 to 0°C, July mean 18–20°C) and annual precipi-
tation of 400–600 mm (Tolasz  et  al. 2007). The highest 
areas in the mountains have a mean annual temperature  
of about 1–2°C (January mean about –7 to –6°C,  
July mean about 8–10°C) and annual precipitation of 
1200–1400 mm.

The Czech National Phytosociological Database con-
tains over 110 000 vegetation plots (relevés), with an esti-
mated density of more than 1000 plots/1000 km2 (Chytrý 
and Rafajová 2003, Dengler et al. 2011). We restricted the 
initial set of vegetation plots to include only forest vegeta-
tion, thus considering 19 133 plots taken by 354 authors 
between 1924 and 2012. Only data relative to vascular 
plants were used. Data contained in the Czech National 
Phytosociological Database are homogeneous with respect to 
taxonomic information. For controversial taxonomic groups, 
species or subspecies were transformed to species groups or 
aggregated species, to avoid confusion arising from the use 

of different taxonomic concepts from different authors and 
biases in the analyses (Chytrý and Rafajová 2003). To further 
assure the consistency of the dataset, we selected 12 781 veg-
etation plots 1) sampled after 1980; 2) with a cover of tree 
species collectively greater than 30%; 3) with plot size greater 
or equal to 100 m2. We replicated the analysis across 10 sub-
regions by aggregating neighbouring phytogeographical dis-
tricts (Kaplan 2012), as these are more suitable to explore 
diversity patterns than administrative units (Abbate  et  al. 
2015). Each subregion encompassed an average surface of 
5155 km2 (range 1666–10 862) and ranged from lowlands 
to mountaintops or to the alpine timberline at 1200–1400 m  
(Fig. 1, Table 1). The final number of vegetation plots 
included within the ten subregions was 8795, containing a 
total of 1250 species.

Resampling

Vegetation-plot databases may produce biased samples of 
community diversity due to uneven representation of veg-
etation types or geographical regions, or both (e.g. positive 
bias towards easily accessible areas or areas of special inter-
est), and non-random location of plots. To consider the 
potential effect of these biases, we prepared four datasets, one 
using all the available data, and three using different resam-
pling approaches. In order to control for random variability 
across realizations, each resampling approach was replicated 
100 times and the results averaged (Supplementary material 
Appendix 2 Fig. A1): 

1)	 No resampling (dataset WHOLE). All the vegetation 
plots belonging to the 10 subregions were retained. For 
each subregion, plots were sorted according to their 
elevation and divided into groups of 20. Groups encom-
passed uneven elevational ranges, especially at the tails of 
the distribution of elevations. We set a threshold of 200 m 

Figure  1. Subregions considered and distribution of the forest plots included in the analysis (black points) and those outside the 
subregions (grey).
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as the maximum elevational span accepted for each group, 
and discarded the plots located at the lower and upper tail 
of the distribution of elevations until this threshold was 
reached. 

2)	 Elevational resampling (ALTBIN). Each vegetation plot 
was assigned to a 100 m wide elevational belt, and the 
number of plots in each subregion 3 elevational belt was 
calculated. For each subregion, only elevational belts hav-
ing more than 40 plots were considered. If plots did not 
encompass the whole elevational range of a belt in a sub-
region (e.g. when the lowest or highest plot of a subregion 
occurred at an elevation respectively higher than 130 m or 
lower than 170 m within a 100–200 m elevational belt), 
that belt was excluded. In each replication, we randomly 
resampled a group of 20 plots for each valid belt subregion 
combination. 

3)	 Geographic resampling (GRID). Plots were resampled 
within a 1 3 1 km square grid. For each subregion, we 
randomly drew one plot for each cell of the grid con-
taining plots. Plots were then sorted according to their 
elevation, and divided into groups of 20 as in the dataset 
WHOLE. As above, we set a threshold of 200 m as the 
maximum elevational span accepted for each group.

4)	 Elevational and geographic resampling (BINGRID). A 
combination of resampling schemes 2 and 3, in which 
resampling was constrained using 100 m elevational 
belts, with an additional constraint that no more than 
one plot per elevational belt could be drawn for each  
1 km2 cell. Plots were then divided into groups of 20 as in 
the dataset ALTBIN.

The number of groups ranged from 52 (dataset BINGRID) 
to 439 (dataset WHOLE), and the groups were hetero-
geneously distributed across the subregions 3 resampling 
combinations, ranging from 0 to 76 groups per subregion 
(Supplementary material Appendix 2 Table A1).

Diversity calculations

In this work, we quantified β-diversity (sensu latu) using two 
complementary approaches. First we calculated β-diversity 
as the effective number of compositionally distinct sampling 

units (i.e. vegetation plots) in a group. This equals true 
β-diversity as defined by Tuomisto (2010) based on the foun-
dations laid by Hill (Hill 1973, Jost 2007). For each group of 
plots, we calculated species diversity as follows: 
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where pi is the proportional abundance of species i, S is the 
total number of species, and q is the order of the diversity. 
We calculated species diversity using q = [0,1,2]. When q = 0, 
species abundances are cancelled out from the equation, so 
0D obtains the same numeric value as species richness. For 
increasing q, abundant species are given progressively more 
weight than implied by their proportional abundances. Using 
different biodiversity metrics that give progressively less 
weight to rare species allows us to consider the potential effect 
of undersampling, which depends on sampling effort (e.g. 
number of observers and observation time) and completeness 
(i.e. the ratio between observed and actual richness) and is 
a common problem in vegetation databases. This approach 
assumes that rare species are more prone to undersampling 
than common species (Cardoso et al. 2009, Beck et al. 2013). 
For each group of plots, we followed Tuomisto (2010) and 
performed a multiplicative partitioning of the total species 
diversity observed: qDγ = qDα 3 qDβ. qDγ represents the overall 
diversity of the group of plots, qDα the average α-diversity, 
and qDβ their overall β-diversity, for a given order of diversity 
q. We decomposed diversity using the R script provided in 
Sabatini et al. (2014).

As a second approach, we followed Legendre and De 
Cáceres (2013) and summarized compositional heterogeneity 
as the variation of plot-to-plot dissimilarity matrices 
calculated for different levels of diversity q (qΔ), as:
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where h and i represent the position index in the subdiagonal 
of qΔ and n is the number of plots (not the number of dis-
tances). Although correlated to β-diversity (qDβ ), Var(qΔ) is 

Table 1. Brief description of the subregions considered in this study. T = temperature.

Area 
(km2) 

Elevation 
(m)

Mean T Jan  
(°C)

Mean T Jul  
(°C)

Mean annual 
T (°C)

Annual  
precipitation (mm) No. of 

plots Subregion name min max min max min max min max min max

1. Krušné hory (Ore Mountains) 4088 154 1213 –4.5 –0.9 12.2 18.8 3.8 8.9 450 1123 430
2. Slavkovský les 3161 355 847 –4.0 –1.8 14.0 17.5 5.0 7.9 490 802 96
3. Šumava (Bohemian Forest) 5788 372 1366 –5.5 –1.9 11.8 18.0 2.7 8.3 534 1464 1267
4. Brdy 3544 187 860 –3.6 –0.2 14.7 19.2 5.6 9.8 489 813 1482
5. Krkonoše (Giant Mountains) 5012 202 1196 –5.8 –1.5 10.8 18.5 2.4 8.9 576 1445 761
6. Orlické hory (Eagle Mountains) 1666 239 1078 –5.4 –1.9 12.1 18.2 3.4 8.6 601 1350 276
7. Žďárské vrchy 4978 184 792 –4.1 –1.1 15.1 18.8 6.0 9.1 546 794 217
8. Jihlavské vrchy 10862 150 724 –3.8 –1.4 15.8 19.5 6.0 9.6 467 751 1530
9. Hrubý Jeseník 7664 204 1349 –6.4 –1.0 10.7 18.7 1.9 9.1 552 1162 1153

10. Moravskoslezské Beskydy 
(Moravian-Silesian Beskids)

4788 158 1285 –5.2 –1.3 12.6 19.4 3.9 9.6 499 1328 1483
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not trivially determined by matrix fill, i.e. the proportion of 
occupied cells in a species 3 sites matrix, which can be shown 
it is the inverse of 0Dβ (Ulrich et al. 2017), but depends also 
on the distribution of species across sites.

Null model approach for calculating β-deviation

We developed a null-model to cancel the dependency of 
β-diversity on α- and γ-richness, by removing the effects of 
those assembly mechanisms that determine the distribution 
of species across communities, but keeping local species rich-
ness and SADs as they are in the study system. For each group 
of plots, we generated a matrix of species composition, Yobs, 
which contained the cover values of the species observed in 
each plot. For each Yobs we generated 999 null data tables 
(Yperm.i) having the same dimensions as Yobs. This means in 
practices, that the species pool was defined as all the species 
that are found within a given subregion and elevation band, 
therefore accounting for the influence of regional scale evolu-
tionary and historical processes (Lessard et al. 2012). Species 
occurrences were permuted among plots in the group using 
the proportional-proportional (PP) algorithm described in 
Ulrich and Gotelli (2012), separately for each vegetation layer 
(i.e. overstorey vs herb-layer) (Appendix 1). The PP algorithm 
creates presence-absence permuted data table in which rows 
and columns vary randomly, but the average row and column 
totals match those of the observed community data. This 
4-step algorithm first assigns matrix row and column totals 
from a binomial distribution centered around the observed 
total for each species and site, adjusting the marginal totals 
to avoid small differences in row and column totals, if neces-
sary. Matrix cell occurrences are then placed step by step fol-
lowing a proportional-proportional null model, and multiple 
entries are reduced by the sum-of-squares algorithm (SSR) of 
Miklós and Podani (2004). In those relatively rare cases when 
the PP algorithm defines an impossible matrix state, and the 
SSR algorithm runs into a dead end, these irreducible mul-
tiple entries are placed into empty cells proportional to the 
predefined marginal totals (Ulrich and Gotelli 2012).

After permuting the species occurrences, the cover values 
of each species occurring in each site of a permuted matrix 
were sampled with replacement from the vector of observed 
abundances of the specific species within the group of plots. 
Permuted cover values of each site (i.e. row vectors) were 
finally scaled to match the overall sums of species cover values 
of observed community (i.e. row totals). This null model was 
designed to meet four constraints: 1) to retain the average 
number of species of each plot (i.e. average ‘α-richness’ or 
0Dα) and the overall number of species in the species pool 
(i.e. ‘γ-richness’ or 0Dγ) of each group of plots; 2) to keep 
the same proportion of total species richness (and cover) 
across the tree and understorey layers within each plot; 3) to 
hold constant the sum of the cover values observed at each 
plot (as a rough proxy for its overall productivity); and 4) to 
generate a permuted species abundance distribution (SAD) 
being centered on, but not identical to, the SAD of observed 
data (Supplementary material Appendix 2 Fig. A2). Here we 

defined SAD as the vector of abundances (i.e. cover values) 
of each species in a group of plots. Since no consensus has 
been achieved on whether SAD should be retained in null 
models when biodiversity patterns are explored (Mori et al. 
2015, Tello et al. 2015), we also ran the analysis (limited to 
the WHOLE dataset) using a slightly modified null model 
disrupting the SAD. In this case, the cover values of each 
species occurring in a site of a permuted matrix were sampled 
with replacement from the vector of cover values occurring in 
the corresponding site of the observed matrix. 

For each Yobs and each of the 999 permutations of Yperm.i, 
we built a dissimilarity matrix for each order of diversity 
q (respectively qΔobs and qΔexp.i). Dissimilarities between 
pairs of sites were calculated using the complement of the 
generalization of the Jaccard index for quantitative data (Jost 
2007, Tuomisto 2010). This index of species turnover is a 
monotonic transformation of true β-diversity between two 
sites as shown below (eq. 2):

q
qC
Dβ

β

= −2
1 	  (2)

We summarized the compositional heterogeneity of each 
observed and permuted group of vegetation plots calculating 
the variation of qΔobs and qΔexp as described above (Legendre 
and De Cáceres 2013). To estimate the influence of the 
species pool, we calculated the deviation of the observed 
compositional heterogeneity – Var(qΔobs) – from its expected 
value under the null model as a standardized effect size, i.e. 
βdev (hereafter β-deviation) was defined as Var(qΔobs) minus 
the average Var(qΔexp), divided by the standard deviation of 
Var(qΔexp) across the 999 permutations (Kraft  et  al. 2011, 
Mori et al. 2013, Tello et al. 2015). The advantage of using 
Var(qΔ) is that, when matrix fill is held constant as in the 
case of our null model, Var(qΔ) can still vary and its devia-
tion from expected accounts for the amount of compositional 
heterogeneity not depending on matrix fill.

Modelling the relationship between β-diversity and 
β-deviation and elevation 

In total we considered 12 datasets, i.e. the combination 
between four resampling schemes and three diversity metrics. 
For the WHOLE dataset, as well as for each of the 100 repli-
cations of each resampled dataset, we modelled the relation-
ship between, respectively, Var(qΔobs), Var(qΔexp), and βdev and 
the mean elevation of the groups of plots. For Var(qΔobs) and 
Var(qΔexp) we used generalized linear mixed models (GLMMs) 
with a logarithmic link function and assuming a gamma dis-
tribution of errors. The response of βdev to elevation, instead, 
was modelled assuming a normal distribution of errors and 
an identity link function, i.e. using linear mixed-effect mod-
els. Subregions were treated as a random effect (random 
intercept). We also tested whether modelling mean elevation 
as a random effect (i.e. using either a random intercept and 
slope model) improved the fit of the model to the data. Since 
the uneven distribution of vegetation plots across the study 
region could have led to subregions including groups of plots 
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being closer or more environmentally similar than in other 
subregions, we also included some covariates related to cli-
matic and topographical variability, and to the geographical 
spread of plots within each group. Fixed effects included four 
sets of descriptors: set 1) mean elevation – i.e. the average 
elevation of the plots included in each group; set 2) topo-
graphical variability – proxied by the standard deviation of 
the above-canopy annual potential solar irradiation (calcu-
lated as a function of latitude, aspect and slope) calculated 
across the plots of each group (McCune and Keon 2002); 
set 3) climatic variability – the standard deviation of mean 
annual temperature (3a) and the standard deviation of total 
annual precipitation (3b) of the plots in each group; set 4) 
geographical spread of the plots within each group – calcu-
lated either as (4a) the average between-plot geographical dis-
tances calculated for the 20 plots in each group; or proxied 
by the elevational range (4b) between the lowest and highest 
plot of a group; or by the geographical extent encompassed 
by an elevational belt (4c), i.e. the surface area included in the 
elevational range of a given subregion, calculated on a 20-m 
resolution digital terrain model; or by the actual forest area 
(4d) included in the elevational range of a given subregion. 
Each explanatory variable was standardized to zero mean 
and unit standard deviation. Variables 3a and 4c were highly 
correlated to variables 3b and 4d, respectively (Spearman’s 
ρ = 0.65 and ρ = 0.80, respectively; p  0.001 for both), and 
were therefore excluded from subsequent analysis. 

For each dataset, we first fitted two global models includ-
ing all the fixed effects and either a random intercept or a 
random intercept and slope. We then used the ‘dredge’ func-
tion in the ‘MuMIn’ (ver. 1.15.6) R package to fit all the 
possible combinations of models nested in the global models. 
Model selection was performed using an information-theory 
approach (Burnham and Anderson 2002), based on Akaike 
information criterion values corrected for small sample size 
(AICc). For the WHOLE dataset, the 95% best fitting model 
set (i.e. the models encompassing 95% of the Akaike weights) 
was used for multimodel inference and model averaging of 
parameter estimates. For the resampled datasets we used a 
slightly different procedure. For each replication we fitted 
and ranked the global model and the submodels as above but 
only the top ranking model was retained. Parameter estimates 
were averaged across the 100 replications and the confidence 
intervals were calculated as the average  1.96 SE, with the 
standard error also calculated across the 100 replications. 
Regression parameters were averaged using the zero-method 
(‘shrinkage towards zero’); a parameter estimate of zero was 
substituted into those models where a given variable was 
absent (Burnham and Anderson 2002, Grueber et al. 2011).

Results

Patterns of β-diversity across resampling schemes and 
diversity metrics

Diversity decreased with mean elevation, showing a consis-
tent trend across different orders of diversity q (Fig. 2 for 

the WHOLE dataset) and resampling schemes (Supple-
mentary material Appendix 2 Table A2, Fig. A3–A5). 
Because γ-diversity had a steeper decline with elevation than 
α-diversity (Fig. 2, top row), β-diversity (qDβ) declined with 
elevation as well (Fig. 2, bottom row). 

After averaging across the top-performing GLMMs, the 
data supported the hypothesis of a declining pattern of 
observed compositional heterogeneity – Var(qΔobs) – with 
increasing elevation across all datasets (Fig. 3, top row for 
the WHOLE dataset). Other covariates were also comprised 
in the final, averaged models for the different resampling 
schemes (Fig. 4; Supplementary material Appendix 2 
Table A2–A3). For the WHOLE dataset, observed com-
positional heterogeneity increased with increasing average 
between-plot geographical distance and when groups of 
plots spanned across a wider elevational range (Fig. 4, top 
row). For the ALTBIN dataset, the top performing models 
included, besides mean elevation, also forest area, i.e. the 
extent of forest occurring within the elevational range of a 
given group of plots in a given subregion. Nevertheless, the 
confidence intervals of the latter regression coefficient were 
significantly different from zero only for q = 0. With minor 
differences, results for the datasets GRID and BINGRID 
were qualitatively similar to those of the datasets WHOLE 
and ALTBIN, respectively and therefore these results are 
reported in the supplementary material (Supplementary 
material Appendix 2 Table A2–A5, Fig. A6–A7).

Observed versus expected β-diversity

Similarly to observed compositional heterogeneity, expected 
compositional heterogeneity - Var(qΔexp) – also decreased 
with increasing elevation (Fig. 3). The best-fitting models 
describing the relationship between observed and expected 
compositional heterogeneity, and the explanatory variables 
were very similar for each q (results not shown for Var(qΔexp)).  
However, observed compositional heterogeneity decreased 
more steeply than expected, and as a result, β-deviation also 
decreased with increasing elevation (Fig. 3, bottom row). 

In the WHOLE dataset, β-deviation decreased with 
increasing altitude for all orders of diversity q. β-deviation 
also increased with increasing average between-plot 
geographical distance. It also decreased with increasing 
topographical variability (proxied by the standard devia-
tion of the above-canopy annual potential solar irradiation,  
Fig. 5, Supplementary material Appendix 2 Table A5), when 
q = [1,2], and increasing variability in precipitation (when 
q = 0). None of these covariates, however, had a regression 
coefficient different from zero in the ALTBIN dataset, for 
which the top performing models only included mean ele-
vation as fixed effects (Supplementary material Appendix 
2 Table A4). Interestingly, across all the datasets, the 
magnitude of the relationship between β-deviation and ele-
vation progressively decreased when increasing the order of 
diversity q, i.e. when calculating diversity indices assigning 
less weight to rare, as compared to abundant species. 

Both in the case of observed compositional heterogene-
ity – Var(qΔobs) – and β-deviation, random intercept and 
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slope models were better supported than random inter-
cept models, especially for the WHOLE dataset, indicat-
ing that the relationship between β-deviation and elevation 
was not constant across the 10 subregions considered 
(Supplementary material Appendix 2 Table A4). Finally, 
the results obtained when using a null model that dis-
rupted SAD were qualitatively similar to those obtained 
when retaining SAD (Supplementary material Appendix 2  
Fig. A8).

Discussion

The influence of assembly processes on elevational 
gradients in plant β-diversity 

We found that both β-diversity and observed compositional 
heterogeneity – Var(qΔobs) – declined with increasing eleva-
tion. As expected, observed compositional heterogeneity also 
increased with geographical spread of vegetation plots and 
with their elevational range, indicating that the farther apart, 
or the more environmentally different the plots in a given 
group are, the higher is their compositional dissimilarity. A 
declining pattern of β-diversity with increasing elevation has 
been observed in several tree communities from different 
biomes (Kraft et al. 2011, Mori et al. 2013, Tello et al. 2015), 
and here we showed that a similar pattern occurs when extend-
ing the analysis from the tree-layer alone, to whole vascular 

plant assemblages. Although this result is in agreement with 
the notion that β-diversity is higher in areas with higher pro-
ductivity (Chase 2010), exceptions have also been reported, 
suggesting that the mechanisms causing β-diversity patterns 
may differ across scales (Tang  et  al. 2012) or geographical 
regions (De Cáceres et al. 2012, Qian et al. 2013).

Interestingly, the elevational gradients in compositional 
heterogeneity persisted after controlling for the size of the 
species pools, as indicated by the systematic variation in 
β-deviation with elevation. This result implies that the over-
all magnitude of those assembly processes that determine the 
distribution of species across communities, such as environ-
mental filtering, competition or dispersal limitation, varied 
along the ~1200 m elevational gradient existing in the study 
area, and influenced the elevational pattern of β-diversity. 
Although we found that β-deviation consistently decreased 
with elevation, our data showed that the slope of this gra-
dient varied across subregions, supporting the conclusion 
of Qian  et  al. (2013) that analyses of biodiversity patterns 
should be conducted separately for different geographic areas. 

The deviation from expected β-diversity is usually attrib-
uted to multiple ecological processes, including either spa-
tial (e.g. dispersal limitation), environmental (e.g. species 
sorting), or stochastic (e.g. ecological drift or priority effect) 
(Mori et al. 2015, Tello et al. 2015) effects. Observed com-
munities were more diverse than expected at low elevation, 
and less diverse than expected at high elevation. This may 
imply that the assembly processes determining species turn-

Figure 2. Elevational patterns of α-, γ- (top row) and β-diversity (bottom row) across all the subregions for the WHOLE dataset. Each point 
represents a group of 20 plots from the same subregion and elevational belt. The trend lines were fitted using a LOWESS smoother.
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Figure 3. Patterns of observed (top row, black triangles) and expected compositional heterogeneity (top row, grey triangles), and β-deviation 
(bottom row), along the elevational gradient when considering the WHOLE dataset across 10 elevational subregions in the Czech Republic. 
Columns represent different orders of diversity q. Each symbol represents a group of 20 plots. Regression lines were model-averaged across 
the 95% best fitting GLMMs.

Figure 4. Regression coefficients and confidence intervals of the GLMM (Poisson error distribution, log link function) of the response of 
observed compositional heterogeneity as a function of elevation, the geographical distribution and the topographical and climatic variabil-
ity within the groups of forest vegetation plots. Confidence intervals were calculated as the average  1.96 SE (with SE estimated across 
100 replications for the resampled datasets). Rows represent different resampling schemes. Explanatory variables – mean.elevation: Mean 
elevation – i.e. the average elevation of the plots included in each group; range.elevation: elevational range encompassed by a group of plots; 
mean.geo.dist: geographical spread of the plots within each group of plots calculated as the average between-plot geographical distance; sd.
solar: standard deviation of the above-canopy annual potential solar irradiation; sd.prec.yr: standard deviation of total annual precipitation; 
forest.ha: actual forest area included in the elevational range of a given group of plots.
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over in forest communities are stronger at lower than at 
higher elevations. At low elevation, for instance, communi-
ties may be more strongly shaped by environmental filter-
ing and dispersal limitation than at high elevation, because 
of higher habitat heterogeneity or wider geographical area. 
The higher than expected β-diversity may also be the results 
of other mechanisms being stronger in productive, species 
rich communities at lower elevation, including competition 
or priority effect (Chase 2010), or depend on a more wide-
spread and heterogeneous effect of human disturbance and 
forest management. Alternatively, the higher than expected 
β-diversity at low elevation may depend on the species eco-
logical ranges of plant assemblages occurring at low vs high 
elevations. The classical Rapoport-Rescue hypothesis, for 
instance, suggests that the greater diversity that occurs at low 
latitudes (e.g. in the tropics) depends on the fact that species 
have narrower ecological ranges at lower latitudes (Stevens 
1989, Willig et al. 2003, Qian and Ricklefs 2007). Whether 
a similar argument could be advanced when considering 
lowland vs mountain communities is, however, controver-
sial. If high elevation species had, on average, wider ecologi-
cal ranges than low elevation species, communities should 
be compositionally more homogeneous at high elevation 
than in the lowlands just as a result of chance. The fact that 
when less weight is assigned to rare species (i.e. for high q), 
β-deviation decreased less steeply with elevation, may pro-
vide some indirect support to this hypothesis, given that 
specialist species have usually more restricted geographical 
and ecological ranges than common species. Although fur-
ther research is undoubtedly needed, we believe that vegeta-
tion-plot databases may represent powerful instruments for 
testing such a hypothesis.

The role of null models for exploring β-diversity patterns

The null-model approach we developed is a novel extension of 
the proportional-proportional algorithm (Ulrich and Gotelli 
2012), here used for the first time in the context of exploring 
β-diversity patterns, not only of woody species but of whole 
vascular plant assemblages. Plant cover (rather than number of 
individuals) is the most commonly used abundance measure 
for non-tree plants in vegetation surveys, and consequently, 
it is also common in vegetation-plot databases. Developing 
a null model for these data was needed given the increasing 
potential of the use of these databases for the exploration of 
diversity gradients (Mori et al. 2015). Furthermore, our novel 
approach overcomes concerns regarding the use of null models 
in the context of exploring biodiversity patterns. Traditional 
null modeling approaches, indeed, are prone to the so-called 
‘Narcissus effect’, i.e. an artificially high similarity between 
the observed and expected species distribution that can poten-
tially lead to inflated rejection rates for focal patterns (Les-
sard  et  al. 2012, Ulrich  et  al. 2017). The advantage of the 
PP algorithm is that it relaxes the usual constraint of many 
fixed-fixed null models (e.g. the ‘trial-swap’ algorithm, Miklós 
and Podani 2004) that create permuted matrices having row 
and column totals identical to those of the original matrix. 
The PP model, instead, retains the desired levels of average 
local species richness (mean α-richness) and the desired spe-
cies pool sizes, but without inflating the similarity between 
observed and permuted species distribution. By coupling this 
approach with a metric of compositional heterogeneity not 
trivially related to matrix fill, we were able to model how com-
positional heterogeneity varied along an elevational gradient, 
for a given species pool size and average species richness.

Figure 5. Regression coefficients and confidence intervals of the linear mixed effect model (normal error distribution, identity link function) 
of the response of the β-deviation as a function of elevation, the geographical distribution and the topographical and climatic variability 
within the groups of forest vegetation plots. See Fig. 4 for detailed explanations and abbreviations.
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Null models should be constructed to deliberately 
exclude the mechanisms that generate the pattern under 
investigation (Gotelli 2001, Qian et al. 2013). Similarly, to 
Kraft et al. (2011), our randomization algorithm was specifi-
cally designed for disrupting the mechanisms causing species 
co-occurrence, while controlling for SAD, and for plot- and 
species pool richness. Whether SAD is driven by the same 
mechanisms of local community assembly that generate 
β-diversity gradients and whether it can exert a control on 
the degree of deviation from the expected β-diversity is a con-
troversial issue (Qian et al. 2013, Mori et al. 2015, Xu et al. 
2015). Here, we generated randomized communities that 
had a similar, but not identical, pattern of the observed SAD. 
This is a desirable property of a null model, since creating 
randomized communities where rare species are unrealisti-
cally dominant, and dominant species rare, may not return 
ecologically meaningful results (Mori et al. 2015). Although 
we acknowledge that the desirability of retaining SAD in null 
models requires more research, our results did not depend 
heavily on the effect of the SAD. Our findings were robust 
both when considering different orders of diversity q (indeed, 
when q = 0, only species occurrences are considered and 
SAD is simply disregarded), and when using a null model 
that disrupts SAD. Altogether, this suggests that SAD plays 
only a minor role in β-deviation patterns in central European 
forests.

Resampling vegetation databases to infer regional 
patterns of β-diversity 

Studies of β-diversity patterns have been frequently limited 
by the lack of a sufficient number of replicates of elevation 
transects (Tello  et  al. 2015). Vegetation-plot databases are 
becoming more available and accessible to ecologists, and in 
the coming years they will help overcome data limitations 
and allow studies at unprecedented spatial scales (Den-
gler et al. 2011, Chytrý et al. 2016). By using different resam-
pling schemes, we took into account possible sources of bias 
that may be associated with such databases, such as uneven 
geographical distribution of sampling units and preferential 
sampling. In general, the results concerning the elevation gra-
dients in β-diversity and β-deviation were qualitatively similar 
between the WHOLE and the resampled datasets, indicating 
that the database we used is sufficiently robust to these biases. 
This indicates that the potential sources of bias in vegetation-
plot databases have only a minor confounding effect on the 
outcome of empirical studies aimed at exploring geographi-
cal biodiversity patterns, as long as fairly strong ecological 
gradients are investigated. Interestingly, performing analy-
ses on data resampled without regards to elevation (i.e. the 
GRID dataset) produced results more similar to those from 
the unresampled, WHOLE dataset than when performing 
the same analysis on datasets that were explicitly resampled 
to account for the vertical distribution of vegetation plots 
(i.e. datasets ALTBIN and BINGRID). Furthermore, when 
modeling elevational patterns of β-diversity and β-deviation, 
the latter resampling schemes returned regression coefficients 

having a confidence interval overlapping zero for most of 
the covariates. This indicates that these resampling schemes 
successfully controlled for the bias deriving from the uneven 
distribution of vegetation plots in the geographic or environ-
mental space, and confirms the need of adopting schemes 
specifically designed in function of the objective of the analy-
sis (Knollová et al. 2005). 

Conclusions

We analyzed a comprehensive vegetation-plot database 
of forest plant communities from central Europe to show 
that observed β-diversity declined with elevation due to 
a decrease in γ-diversity, which was steeper than the decrease 
in α-diversity. This elevation gradient persisted even after 
using a null model that controlled for the confounding varia-
tion in species pool size and that disrupted the mechanisms 
causing species co-occurrence at the local scale. The devia-
tion of observed β-diversity from its expected values under 
the null model suggests that the magnitude of different local 
community assembly mechanisms changes along the eleva-
tion gradient considered, and that the gradient of β-diversity 
was not caused exclusively by the decline in species pool size 
with increasing elevation. This means that the relative impor-
tance of those assembly processes that lead to species turnover 
in forest communities are stronger at lower than at higher 
elevations, possibly as a result of a stronger effect of envi-
ronmental filtering, dispersal limitation or priority effects at 
lower elevation.
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