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Nanoscale mechanisms for the reduction of heat transport in bismuth
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Hand-on routes to reduce lattice thermal conductivity (LTC) in bismuth have been explored by employing a
combination of Boltzmann’s transport equation and ab initio calculations of phonon-phonon interaction within
the density functional perturbation theory. We have first obtained the temperature dependence of the bulk LTC
in excellent agreement with available experiments. A very accurate microscopic description of heat transport
has been achieved and the electronic contribution to thermal conductivity has been determined. By controlling
the interplay between phonon-phonon interaction and phonon scattering by sample boundaries, we predict the
effect of size reduction for various temperatures and nanostructure shapes. The largest heat transport reduction
is obtained in polycrystals with grain sizes smaller than 100 nm.
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I. INTRODUCTION

Bismuth is an important semimetallic material for applica-
tions of the thermoelectric effect because of the low thermal
conductivity (TC) [1]. Indeed, the thermoelectric efficiency
ZT is inversely proportional to the thermal conductivity. It
is however also proportional to the power factor σS2, with σ

the electrical conductivity and S the Seebeck coefficient. The
Seebeck effect (S) is large in bismuth, but the presence of two
types of carriers, electrons and holes, at the same time and in
low concentrations, is not favorable [2] for σ .

Several experimental routes have been proposed to obtain
one single type of carrier in bismuth, like doping the bulk
material with a few percents of antimony to favor electron
conduction with respect to hole transport [3,4]; or applying
a magnetic field to promote field-induced hole Landau states
at the Fermi level [5]. Alternatively, nanostructuring on the
scale of a few tens of nanometers, with the aim of opening
a confinement-induced energy gap [6–8], allows one to break
the electron-hole symmetry around the Fermi level [2]. This
has led to an increase of S by several orders of magnitude in
nanowires [8,9]. The latter route is a very appealing concept
for a bismuth-based thermoelectric device because it enables
either n- or p-type doping, allowing one to use the same
material in the two legs of the thermocouple [10].

In contrast to Si [11–16] and SiGe alloys [12,17], sys-
tematic studies of the nanostructuring effect on the thermal
conductivity are scarce in bismuth. A quasisuppression of the
thermal conductivity has been found in bismuth nanowires,
but its origin is still debated [2]. Measurements made on
thin films [18–20] and nanowires [2,21–25], most of which
are semiconducting, have yielded widely scattered values,
preventing a deep understanding of the mechanisms at play
in nanostructures [2]. A theoretical determination of the
nanostructuring effect on the lattice thermal conductivity
(LTC) of bismuth has thus become mandatory.
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In bulk crystal, because of the uniaxial symmetry, the
transport is anisotropic and is completely determined only
by measuring the LTC in two directions, along the trigonal
axis and perpendicular to it—either the binary or the bisectrix
directions. Data are missing even in bulk bismuth: in the
trigonal direction, the lattice conductivity has not been
determined; in the binary direction, Uher et al. [26] were
able to measure both total and electron and hole contributions
solely up to the temperature T ≈150 K. Estimations of the
lattice part of the thermal conductivity given in experimental
works [26,27] do not agree with each other, nor with the
theoretical work of Ref. [28]. At ambient temperature, Gallo
et al. (indirectly) measured 1.7 and 0.9 W(K m)−1 in the binary
and trigonal directions, respectively [27], while the theoretical
values produced by recent ab initio calculations [28] were 4.4
and 3.9 W(K m)−1. Thus large uncertainties also exist on the
absolute value of the LTC in bulk Bi.

In this work, we show that ab initio calculations of the
phonon-phonon interaction [29] and of phonon scattering by
sample boundaries, combined to a transport equation for the
phonon system, namely the Boltzmann transport equation
(BTE) linearized to first order in the phonon distribution
[30] N , reliably predicts the LTC for bulk bismuth down to
temperatures as low as 30 K. In particular, ab initio calculations
allow a direct insight into the microscopic mechanisms
determining the transport, and the acoustic-optical phonon
interaction turns out to determine the magnitude of the lattice
thermal conductivity in bismuth, thus allowing us to explain
the discrepancies between previous theoretical work [28]
and experiments [26]. Moreover, we show that the available
experimental data for the LTC for polycrystalline thin films
are remarkably explained by our calculations, which enables
us to predict the effect of LTC size reduction for various
temperatures and nanostructure shapes and sizes.

More precisely, we have first validated our formalism for
the calculation of bulk bismuth in the binary direction by
comparing with available experiments (Sec. III A). In a second
step, we have validated our theoretical values with available
experimental data for polycrystalline thin films (Sec. IV A).
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These validation steps have enabled us to predict in bulk
bismuth both the lattice and electronic contributions in the
trigonal direction. In the binary direction, they are predicted at
temperatures at which only total conductivity measurements
are available (Sec. III B). Then the heat transport reduction
factor is given for thin films, nanowires and spherical grains,
and in particular both for semiconducting and metallic films
(Sec. IV B). Finally, the nanoscale mechanisms for the heat
reduction in nanostructures have been analyzed in Sec. V.

II. CALCULATION METHODS

The effect of nanostructuring is studied by introducing a
scattering term—the Casimir scattering rate Sν—that enables
us to account for the presence of grain boundaries and sample
boundaries, by which phonons are scattered—in addition to
phonon-phonon scattering. These scattering processes modify
the out-of-equilibrium phonon distribution Nν that enters the
linearized Boltzmann transport equation [30–32].

A. Nanostructuring

The Casimir scattering rate for a phonon ν reads

Sν =
∣∣cb

ν

∣∣
LCasF

N0
ν

(
N0

ν + 1
)
, (1)

where LCas is the Casimir length and F characterizes the
sample roughness [32], taken to be 0.5 in all of our calculations
[30,31,33]. N0

ν is the temperature-dependent equilibrium
Bose-Einstein distribution of the phonon, |cb

ν | depends on the
phonon group velocity cν in the direction(s) in which the
phonon transport is limited by the sample boundaries, and,
thus, on the sample geometry. For instance, for spherical sam-

ples |cb
ν | = |cν |, for nanowires |cb

ν | =
√

(ccross,1
ν )2 + (ccross,2

ν )2,

where ccross,i
ν are the phonon group velocity components

perpendicular to the wire growth direction, and for thin
films |cb

ν | = |cperp
ν |, where cperp

ν is phonon group velocity
perpendicular to the thin-film plane (see also Appendix A
for details).

The validation of Eq. (1) for polycrystalline thin films has
been performed by taking into account the scattering by sample
boundaries and by spherical grains inside the sample as two
independent scattering rates:

Sν = Sgrain
ν + Sfilm

ν . (2)

Finally, the heat transport reduction factor has been pre-
dicted with LCas taken to be either the thickness of single-
crystalline thin films or the nanoscopic dimension of spherical
grains of polycrystalline samples.

B. Lattice thermal conductivity

The lattice thermal conductivity reads

κL = �
2

kBT 2V0

∑
ν

N0
ν

(
N0

ν + 1
)
cheat
ν ων�Nν, (3)

where the key ingredient, �Nν = Nν − N0
ν , is the deviation of

the phonon population with respect to N0
ν under the influence

of the phonon-phonon and phonon-boundary (Sν) scattering

terms. The quantity cheat
ν is the projection of the phonon group

velocity on the heat flux direction, the phonon frequency is ων ,
kB is the Boltzmann constant, and V0 is the unit-cell volume.

As it is well known, the amount of heat carried by
different phonons depends on the phonon mean free paths
which, in turn, depend on the phonon group velocities and
anharmonic phonon lifetimes. To calculate the latter, the two
main ingredients are the third-order anharmonic constants and
the joint density of states (JDOS). For an initial incoming
phonon |ν〉 = |q,λ〉 of wave vector q and mode index λ, JDOS
reads

Jqλ =
∑

q′λ′,q′′λ′′
δ(�ωqλ + �ωq′λ′ − �ωq′′λ′′ )

+ δ(�ωqλ − �ωq′λ′ − �ωq′′λ′′). (4)

Here, the first δ function corresponds to a coalescence process,
in which |q,λ〉 and |q′,λ′〉 phonons interact to create a final
|q′′,λ′′〉 phonon, and the second δ function describes the decay
of a |q,λ〉 phonon, accompanied by the creation of two phonons
|q′,λ′〉 and |q′′,λ′′〉. One can then introduce a JDOS which
depends on the frequency of the initial phonon, or ω-dependent
JDOS:

J (ω) =
∑
qλ

Jqλδ(ωqλ − ω). (5)

In our work, phonon frequencies and group velocities have
been computed within the density functional perturbation
theory (DFPT) [36] on a 6 × 6 × 6 q-point grid in the Brillouin
zone (BZ) centered [37] at 	. The frequency gap between
the highest acoustic branch and the lowest optical branch
turns out to be of crucial importance in the calculation of
the lattice conductivity (see Sec. III A), and an (upward) rigid
shift of 12.5 cm−1 has been imposed on the frequencies of
the optical phonon branches. State-of-the-art calculations of
the third-order anharmonic constants have been performed
on a 4 × 4 × 4 q-point grid in the BZ and interpolated on
denser grids [38]. In BTE, the LTC was accurately converged
on a 28 × 28 × 28 q-point grid in the BZ with a Gaussian
broadening of the detailed balance condition [30] taken
to be σ = 1 cm−1. Other technical details are reported in
Appendix B.

III. THERMAL TRANSPORT IN BULK BI

A. Lattice thermal conductivity

The magnitude of the LTC in bismuth [Fig. 1, panel (a)]
turns out to be controlled by the phonon joint density of states
[JDOS, Eq. (4) and Eq. (5)] available for the coalescence
of two acoustic phonons into an optical one (Fig. 2, arrow
in the right panel). In turn, the JDOS around 40 cm−1 is
extremely sensitive to the frequency of the lowest optical
phonon branch near zone center. When the latter corresponds
to the experimental one at 	, i.e., 73 cm−1 at 	 (Fig. 2, left
panel, solid line and green circles), the JDOS is much smaller
and, consequently, the calculated lattice thermal conductivity
is higher and agrees with the available experimental values
for the LTC [26] [Fig. 1, panel (a), solid line and green
symbols]. When the average optical frequency is lower with
respect to experiment as in the ab initio calculation (Fig. 2,
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FIG. 1. Bulk bismuth. Lattice [panels (a) and (b)] and electronic
[panels (c) and (d)] thermal conductivity (TC) as functions of
temperature. Left panels: binary direction. Right panels: trigonal
direction. Solid lines: calculation with experimentally observed
AOPI. Dashed lines: ab initio calculations. Green symbols: TC from
expt. of Refs. [1,26,34]. Red dash-dotted line: previous ab initio
calculation from Ref. [28]. Our electronic contribution was obtained
as a difference between the experimentally observed total TC of
Ref. [26] [panel (c)] or Ref. [35] [panel (d)] and our calculated LTC.

dashed line and green circles), the coalescence channel is
enlarged for heat-carrying acoustic phonons, by emission of
an optical phonon, and in this case our values of the LTC
are smaller [Fig. 1, panel (a), dashed line] and similar to the
values calculated in a previous ab initio calculation [28] (red
dash-dotted line).

The acoustic-optical phonon interaction (AOPI) thus con-
trols the heat transport by acoustic phonons in bismuth, and the
AOPI turns out to itself be governed by the energy conservation
rule near zone center present in Eq. (4). A correct description

FIG. 2. Bulk bismuth. Left panel: phonon frequencies along some
directions of high symmetry in the BZ. Solid line: the theoretical
dispersion used in this work. Dashed line: optical phonon branches
obtained with the ab initio calculation. Right panel: joint density
of states (JDOS) available for the phonon-phonon interaction. The
JDOS for the acoustic-optical phonon interaction (AOPI) is marked
with an arrow. Green and blue circles: expt. from Refs. [39,40].

of the energy threshold at which the coalescence of two
acoustic phonons into an optical one occurs is obtained with
the rigid shift of the optical branches. Contrastingly, a precise
description of the optical branch over the whole BZ is less
important as the heat carried by optical phonons represents
only about 16.5% of the LTC at ambient temperature and
becomes negligible at lower temperatures, as we will show in
Sec. V of this work.

As can be seen in panels (a) and (b) of Fig. 1, the
experimental values for the LTC are available only in the binary
direction and in the restricted 30–150 K temperature range.
As already mentioned in the Introduction, in semimetallic
bulk bismuth electrons and phonons contribute to the TC
at the same time [1]. Experimentally, separating these two
contributions is quite a challenging task. Uher et al. [26]
were able to measure the contribution to TC due to the charge
carriers in the binary direction up to T ≈ 150 K by applying
a very strong magnetic field, the method being limited to
relatively low temperatures [26]. Alternatively, Gallo et al.
[27] evaluated the electronic part by applying Wiedmann-
Franz law and by using an analytical expression for the
electronic contribution to the TC, the latter method being
highly unreliable due to the limited precision of the models
used [28]. In both Refs. [26] and [27], the lattice contribution
has been found as the difference between the measured
total thermal conductivity and the obtained electronic thermal
conductivity.

At ambient temperature, an experimental data is no longer
available in the binary direction. We find κL = 5.9 W(K m)−1,
a value higher by 30% than the calculation of Lee et al. [28],
and widely different from the result of Ref. [27].

Then, turning to the trigonal direction, no reliable ex-
perimental data for the LTC as a function of temperature
are available, to the best of our knowledge, for the reasons
explained above. Our predicted LTC for the trigonal direction
as a function of temperature in shown in Fig. 1, panel (b).
At 300 K, our predicted LTC in the trigonal direction is
4.5 W(K m)−1, very close to the one of Ref. [28]. Thus we
confirm the inaccuracy of the estimation for the bulk LTC
made in Ref. [27], already pointed out in Ref. [28].

Our calculated LTC in the binary direction turns out to be
by about one-third larger than in the trigonal direction, and we
find the anisotropy ratio of the LTC κ⊥

κ‖
to be quasiconstant and

equal to 1.3 over a large temperature range, from 30 K to 500 K.
In conclusion, our calculations of the LTC in bulk bismuth

have been validated by comparison with available experimen-
tal data in the binary direction. The lattice thermal conductivity
has been predicted in bulk bismuth in the trigonal direction by
our calculations, and its anisotropy determined as a function
of the temperature. Our LTC calculation can then be used
to obtain the electronic contribution, as shown in the next
paragraph.

B. Electronic contribution

The total thermal conductivity (TTC) of semimetallic Bi
contains both lattice and electronic contributions. As already
explained above, experimental data for the lattice thermal
conductivity of Bi are quite scarce. On the contrary, exper-
imental data for the total thermal conductivity are available in
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a wealth of experimental works [1,26,27,34,35]. We can use
our calculated LTC to extract the electronic contribution from
the TTC measurements [26,35].

In panel (c) of Fig. 1, the available experimental data
for the electronic part of the TC of Bi are shown by green
symbols. In order to compare the results of our calculations
with the data shown in panel (c) of Fig. 1, we have used
the experimental data of Ref. [26] for the TC, from which
we have extracted our calculated LTC with experimentally
observed AOPI. As one can see, the agreement between our
results and available experimental data shown in panel (c) of
Fig. 1 is very good, as a constant value of 6 W(K m)−1 for
the electronic contribution to the TC is obtained in both theory
and experiment in the binary direction of Bi. Moreover, our
calculations predict that the electronic contribution will stay
constant and equal to 6.0 W(K m)−1 over the whole 30–300 K
temperature range. The constant behavior of the electronic
contribution to TC as a function of temperature has been
also observed experimentally; however, the reasons for this
behavior, discussed for example in Ref. [26], are not trivial.

In the trigonal direction, the experimental results for the
electronic contribution to the TC are not available. Our
theoretical result shown in panel (d) of Fig. 1 has been obtained
from the result for TTC of Ref. [35] and our calculated LTC
with experimentally observed AOPI. As one can see, we
predict a value of 3.0 W(K m)−1 for the electronic contribution
to the TC in the trigonal direction of Bi.

For the sake of comparison, the electronic contributions ob-
tained from measured TTC [26,35] and ab initio LTC without
shift of optical phonon branches are also shown in panels (c)
and (d) of Fig. 1. For these results shown in dashed lines, not
only the predicted value for the electronic contribution to the
TC differs from the experiments in the binary direction, but,
much more importantly, the experimentally observed constant
behavior of the electronic contribution to the TC as a function
of temperature is not reproduced in the case of overestimated
AOPI.

In conclusion of this paragraph, our calculations predict
constant values of 6.0 W(K m)−1 and 3.0 W(K m)−1 for the
electronic contribution to the TC in Bi, in binary and trigonal
directions, in the 30–300 K temperature range. This prediction
is supported by the available experimental data, and thus can
be further used to supplement the lack of experimental data,
and to test future future approaches to compute the electronic
contribution. In the present work, we will use it to predict
the reduction in the total thermal conductivity in metallic
nanostructures (see Sec. IVC3).

IV. THERMAL TRANSPORT IN NANOSTRUCTURED BI

It is important to stress that the nanostructures whose
size is a few tens of nanometers are on the verge of the
confinement-induced semimetal-to-semiconductor transition
[41]. Data about this transition are still scarce and depend
on the nanostructure shape [42] and sample preparation
conditions. This is the reason why, in the following, we study
both poly- and monocrystalline nanostructures, as well as
semiconducting and conducting films.

Before discussing the nanostructures, we note that describ-
ing the sample boundaries though Casimir’s scattering rate, as

we have done here, yields very different results with respect
to the effect of size reduction on the LTC, compared to the
accumulated approach, which is a typical approach used in the
literature [43,44]. The comparison between the two approaches
is shown in Appendix C.

A. Polycrystalline samples

Turning to the comparison of our calculated LTC with
available experiments for Bi polycrystalline thin films [18],
we note that, in polycrystalline samples, the nanostructuring
effect is determined both by the film thickness, and by the
average grain size [18]. In the work of Ref. [18], the average
grain size was measured for every thin film investigated. While
for very thin films, the average grain size was found to be
larger than the film thickness, for films thicknesses larger
than 200 nm, the average grain size was inferior to the film
thickness (Fig. 3 in Ref. [18]). In our calculation, we took
into account both scattering processes through Eq. (2), using
the experimental grain sizes of Ref. [18] (Fig. 3, solid lines).
As one can see in Fig. 3, we find a remarkable agreement
with the results of Ref. [18] (red diamonds). The fact that the
theoretical LTCs are close to the experimental total thermal
conductivities is consistent with the marked semiconducting
temperature-dependent behavior seen in the film electrical
resistivity [18].

In Fig. 3, the available experimental data of Ref. [19] is also
shown (empty squares). In Ref. [19], the average grain size
was found to be approximately equal to the film thickness,
i.e., it was found to be larger than that of Ref. [18] for
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FIG. 3. Bi thin films. Lattice thermal conductivity in the binary
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direction for monocrystalline thin films as a function of the film
thickness. Dotted lines: LTC along the binary axis of monocrystalline
nanowires. Dashed lines: spherical grain.

most samples. Although our calculated LTC lies between the
two experimental data sets for 200 K and 300 K, the best
agreement is clearly found for the more recent work [18]. The
most probable cause of discrepancy between the results of
Refs. [18] and [19] is the effect of the film substrate in the
latter work, as pointed out in Ref. [18].

B. Monocrystalline samples

The effect of size reduction on the LTC for monocrystalline
samples of different geometries is shown in Fig. 4. For Bi
nanowires, our theory shows, in agreement with experiments, a
monotonical decrease of the LTC when the diameter decreases.
But in contrast to polycrystalline thin films, the experimental
data for Bi nanowires available in literature are extremely
scattered [2,21–25], suggesting the presence of unidentified
sample-dependent scattering mechanisms in Bi [2] as well as
in Si [14–16]. Available theoretical studies suggest a profound
modification of the nanowire atomic structure such as surface
oxidation, roughness, and core defects [14–16], which are
beyond the scope of this work.

C. Heat transport reduction

1. Semiconducting nanostructures

Having shown the predictive capability of our method for
polycrystalline films, we discuss the reduction of thermal
transport, which has been rationalized with the concept of

the reduction factor which we define as R(T ) = κbulk
L (T )

κnano
L (T ) for
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FIG. 5. Nanostructuring-reduced lattice thermal conductivity
(LTC). Abacus of the reduction factor as a function of the nanos-
tructure size and temperature, at 300 K (black), 200 K (red), 100 K
(green), 50 K (blue), and 20 K (violet). Solid lines: single-crystalline
thin films, LTC along the binary direction; dashed lines: spherical
grain geometry.

semiconducting nanostructures (Fig. 5). As already demon-
strated in Fig. 4, spherical shape (dashed line) turns out to yield
a calculated reduction factor higher than the geometry of a
single-crystalline film (solid lines) or a single-crystalline wire.
Spherical grains are most commonly found in polycrystalline
samples and here we assume, in constrast to Fig. 3, that the
sample size is significantly larger than the grain size. In fact,
in cases where only thermal properties matter and electronic
conductivity is not so important, the control of grain sizes in
polycrystalline films turns out to provide the best strategy for
the control of heat transport reduction in bismuth. For instance,
for a target reduction factor equal to two, the grain size should
be smaller than 62 nm at 300 K, 95 nm at 200 K, and 188 nm
at 100 K (dashed lines). Figure 5 thus provides an abacus for
the thermal management that can be employed to deduce the
reduction factor for a given nanostructure size or, alternatively,
to choose the nanostructure size to obtain a desired reduction
of the heat transport.

2. Semiconducting nanofilms

But in applications for thermoelectricity, it is important
to keep the electrical conductivity as high as possible. In
this case, the use of polycrystalline samples is precluded
because the electronic scattering by grain boundaries lowers
the electrical conductivity, for instance by a factor of five at
ambient temperature in polycrystalline thin films with respect
to monocrystalline ones [18]. Electrical contacts are also very
important, and the fabrication of contacts is facilitated in the
thin-film geometry. Therefore, we show the reduction factor for
single-crystalline thin films (Fig. 5, solid lines). The reduction
factor turns out to be lower than for spherical grains, which
can be compensated by decreasing the film thickness by about
a factor of three. For a target reduction factor of two, the film
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FIG. 6. Nanostructuring-reduced total thermal conductivity in
the binary direction of single-crystalline thin films. Solid lines:
semiconducting thin films (same as Fig. 5). Dash-dotted lines:
conducting thin films. Same color legend as in Fig. 5.

thickness should be smaller than 19 nm at 300 K, 27 nm at
200 K, and 60 nm at 100 K (solid lines).

3. Conducting nanofilms

Recently, fabrication of very high quality Bi films became
possible [41] in which the electrical conductivity is kept to
the semimetallic bulk value even for a thickness as small as
76 nm. The reduction factor of the total thermal conductivity
of semimetallic thin films has been estimated as a function
of nanostructure size and temperature (dashed dotted curves)
(Fig. 6). To this end, we have redefined the reduction factor

as R̂(T ) = κbulk
L +κbulk

E

κnano
L +κbulk

E

, and set the electronic contribution κE to

zero for a semiconducting nanostructure, while approximating
it in the semimetallic nanostructure by the value for the bulk
calculated in Sec. III B, κbulk

E = 6 W(K m)−1 in the binary
direction. This is reasonable for films in which the electrical
conductivity is close to the bulk one [41].

The reduction of the total thermal conductivity is smaller
in the case of metallic thin films (dashed dotted curves) than
in the case of semiconducting ones (solid lines). Nonetheless,
for a thickness of 76 nm, the reduction factor amounts to 1.2
at 300 K, 1.3 at 200 K, and 1.6 at 100 K. Thus an experimental
investigation of ZT in semimetallic single-crystalline thin
films would be of some interest for thermoelectric applications.

V. ANALYSIS OF HEAT TRANSPORT MECHANISMS

In this section, we analyze the contributions to the LTC
of bulk and nanostructured bismuth from different phonon
modes, as well as the distribution over the Brillouin zone.

A. Roles of different phonons

In Fig. 7 we show relative contributions to the vibrational
part of the thermal conductivity of bulk bismuth (thin lines),
due to different acoustic phonon modes, as well as the one
from the optical modes, as functions of temperature.
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FIG. 7. Bulk (thin lines) and nanostructured (thick lines) Bi:
relative contributions of different phonon modes to the lattice thermal
conductivity in the binary direction. Nanostructured Bi with 100 nm
grain geometry. Solid lines: TAs phonons. Dashed lines: TAf phonons.
Dash-dotted lines: LA phonons. Dotted lines: optical phonons. We
define TAf phonons, where “f” stands for fast, as those having a
larger sound velocity than the one of TAs phonons, where “s” stands
for slow.

As one can see in Fig. 7, at ambient temperature, the major
contributions to the LTC come from energetic longitudinal
acoustic (LA) and fast transverse acoustic (TAf) phonons.
While the relative importance of the highest acoustic modes
stays almost unchanged in the 30–300 K temperature range,
the contribution of optical modes, which represents 16.5%
at ambient temperature, decreases rapidly with temperature
and becomes zero at 20 K. The decrease of the role of
optical phonons is accompanied by the increase of the role
of the lowest acoustic (TAs) mode. As the temperature
becomes lower than 30 K, the relative contribution of the most
energetic acoustic modes starts to decrease also, due to the
decreasing population of phonon states, while the role of TAs
increases even faster. At low temperatures, the two lowest
acoustic branches carry about 90% of heat, and the dominant
contribution comes from the lowest transverse acoustic branch
TAs (55%). The behavior of the relative contributions of the
acoustic phonons in the trigonal direction as a function of
temperature (not shown) was found very similar to that in the
binary direction.

Turning to the relative roles of different phonons in the
LTC of nanostructured Bi (results for 100 nm spherical grains
shown in Fig. 7 in thick lines), the most significant effect with
respect to bulk is the reduction of the role of LA phonon in
nanostructures (dash-dotted lines). This is not surprising, as
LA phonons have the highest group velocities and the longest
mean free paths, which are expected to be the most affected
by the nanostructure boundaries.

B. Distribution over the Brillouin zone

In Fig. 8, we have analyzed our calculated LTC κL of Eq. (3)
as a function of the modulus of the wave vector of the initial
phonon |q|, for bulk Bi and several nanostructure sizes in
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FIG. 8. Bulk (thick line) and nanostructured bismuth (thin lines):
Brillouin zone distribution of the LTC as a function of |q| of the
initial phonon, in the binary direction and at 300 K. Nanostructured
bismuth in the grain geometry of diameter 100 nm (dashed line),
50 nm (dash-dotted line), and 10 nm (dotted line). Inset panel: the
density of q-phonon states.

the grain geometry, at 300 K. We introduce κL(|q|), which is
defined by the following relation: κL = ∫

κL(|q|)d|q|. Only
the LTC in the binary direction is presented in Fig. 8, while a
detailed analysis is reported in Appendix C.

As can be seen in Fig. 8, at 300 K, the magnitude of the
LTC both in bulk and nanostructures is due to phonons with |q|
vectors all over the Brillouin zone, and not only to zone-center
phonons. In the case of the bulk material (thick solid line), this
is somewhat surprising, as one expects the main contribution
to the LTC to come from the zone center, as the region around
the 	 point of the BZ corresponds to the smallest broadenings
and to the highest group velocities and thus to the highest
phonon mean free paths. One can indeed see in Fig. 8 a peak
in the bulk LTC around |q| = 0.2 2π/a0, corresponding to LA
phonons with large mean free paths (see Appendix C), but this
peak does not represent the dominant contribution to the LTC.

This relatively uniform behavior of the contributions of
phonons with different |q| vectors can be understood, if one
remembers that the quantity κL contains, implicitly, the density
of states of the initial phonon. It must be noted that the phonon
DOS, calculated as a function of |q|, depends only on the form
of the BZ, and, in the case of Bi, shows parabolic dependence
on |q| except at the zone boundaries. Indeed, away from the
boundaries, the BZ of Bi is almost “spherical.” Thus we expect
to find most of the phonon states at large |q| close to BZ
boundaries. The phonon DOS is shown in the inset of Fig. 8.
Indeed, at smallest q vectors, the density of phonon states
is very small. Thus the region around 	 where the group
velocities are large and broadenings are small, resulting in large
phonon mean free paths, gives a relatively small contribution
to the thermal conductivity.

Turning to nanostructures (thin lines) one can see that
the peak contribution of the LA phonons with large mean
free paths is rapidly killed by boundary scattering (already at
100 nm), while other contributions over the BZ are almost
uniformly reduced with the reduced nanostructure size.

VI. CONCLUSION

In conclusion, in this work, we have calculated the lattice
thermal conductivity of bismuth in a large temperature range
for bulk and for nanostructures, finding results in excel-
lent agreement with available experiments. Acoustic-optical
phonon interaction turns out to have a preeminent role in
the magnitude of the LTC. Finally, we predict the effect of
size reduction for various temperatures and nanostructure
shapes, and show that the largest heat transport reduction
is obtained in polycrystals with grain sizes smaller than
100 nm. The reduction factor is also predicted for semimetallic
single-crystalline thin films. We analyze the contribution from
the different heat-carrying phonons and their distribution in the
Brillouin zone, as a function of the temperature, showing that
the contribution of LA phonons to LTC is the most affected by
temperature and size reduction.
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APPENDIX A: SAMPLE GEOMETRY DESCRIPTION

In bulk bismuth, because of the uniaxial symmetry, the
transport properties are determined by measuring LTC along
the trigonal axis (trigonal direction denoted ‖) and perpendic-
ular to it (binary direction denoted ⊥). The third axis which
defines the plane perpendicular to the trigonal axis, additional
to the binary direction, is called the bisectrix direction. In
bulk bismuth, the binary and bisectrix directions are equivalent
by symmetry, and the LTC values are the same in these two
directions.

For the samples of finite size, the different sample ge-
ometries can be thin films, wires, and spherical nanoparticles
(Fig. 9). For the sake of generality, in Fig. 9, we use Cartesian
coordinates, and the heat flux is measured in the y direction. If,
for example, the heat flux is measured in the binary direction,
then the z axis will be the one which corresponds to the trigonal
direction, and x axis will denote the bisectrix direction.

In Eq. (1) of the main text, |cb
ν | is the phonon group velocity

cν in the direction in which the phonon transport is limited by
the sample boundaries. It is thus different for different sample
geometries and depends on the sample orientation in space
with respect to the direction in which heat flux is measured.

For instance, in the case of configurations shown in
Fig. 9, we have |cb

ν | = |cz
ν | for the thin film geometry,

|cb
ν | = √

(cx
ν )2 + (cz

ν)2 for the nanowire geometry, and |cb
ν | =√

(cx
ν )2 + (cy

ν )2 + (cz
ν)2) for the spherical-grain geometry.

Here, cx
ν , cy

ν , cz
ν are Cartesian components of the phonon group

velocity cν .
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FIG. 9. Illustration of different sample geometries: spherical
grain, wire, and thin film.

APPENDIX B: TECHNICAL DETAILS

A fully relativistic norm-conserving pseudopotential with
5d electrons frozen in the atomic core and including nonlinear
core correction has been designed in this work. Calculations
were performed with a plane-wave energy cutoff of 90 Ry and
the local density approximation (LDA). Spin-orbit coupling
(SOC) was accounted for in the calculation of the electronic
structure and vibrational properties.

At theoretical equilibrium, the calculated lattice parameters
are a0 = 4.667 Å, α = 57.99◦, and u = 0.236 (in units of a0),
which are very close to the experimental values a0 = 4.724 Å,
α = 57.35◦, and u = 0.234 [46]. A 20 × 20 × 20 Monkhorst-
Pack k-points grid has been used to sample the Brillouin
zone and a band structure in extremely satisfactory agreement
with the DFT-LDA calculations of Ref. [47]—where the 5d

electrons were considered as semicore states and treated with
the valence electrons—has been obtained.

APPENDIX C: ACCUMULATED VS CASIMIR APPROACH

As mentioned in the main text, in our work the change in the
phonon distribution �Nν has been varied in the presence of the
sample boundaries, and/or in the presence of the grains inside
the polycrystalline sample, through Casimir’s scattering rate.
At variance, the typical approach used in the literature to study
the effect of size reduction, the accumulated approach [43,44],
is an a posteriori analysis of the results obtained for the bulk
material. This consists in keeping the �Nν constant in Eq. (3),
and in canceling the phonon contribution into the LTC when
the phonon mean-free path is larger than the nanostructure size
[43,44].

As shown in Table I, for the prediction of the nanostructure
size that would yield a 50% reduction of the LTC, our results
of the accumulated approach are found in close agreement
with those of Ref. [28]. In contrast, we find that nanostructure

TABLE I. Bi: maximum value of the heat carrier mean-free path
� (nm) which provides a contribution of 50% to the bulk lattice
thermal conductivity in the binary direction.

Method Accumulated approach Casimir’s scattering

T (K) Previous worka This work This work

10 3380 10400
20 526 1430
50 120 148 410
100 55 69 185
200 26 34 95
300 17 22 62

aLee et al. from Ref. [28].

sizes obtained with the accumulated approach are about three
times smaller than those predicted using Casimir’s scattering
rate (see Table I), at all temperatures.

APPENDIX D: DISTRIBUTION OVER THE
BRILLOUIN ZONE

We have analyzed our calculated LTC κL of Eq. (3) as a
function of the modulus of the wave vector of the initial phonon
|q| (see main text). It is presented in Fig. 10 for T = 300 K
(top panels) and for T = 5 K (bottom panels) in the binary
(left panels) and trigonal (right panels) directions. We have
also extracted the contributions of the three acoustic branches
(thin lines).

The behavior of the LTC (thick solid lines) at 300 K was
discussed in the main text in the binary direction. Results in
the trigonal direction are very similar.
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FIG. 10. Bulk Bi. Brillouin zone distribution of the acoustic
phonon contributions (thin lines) to the LTC (thick lines) as a function
of the modulus of the phonon vector of incoming phonon |q| in
the binary (left) and trigonal (right) directions at 300 K (top) and
5 K (bottom). Thin solid lines: TAs branch. Thin dashed lines: TAf
branch. Thin dash-dotted lines: LA branch. See caption of Fig. 7 for
the definition of TAs and TAf.

064301-8



NANOSCALE MECHANISMS FOR THE REDUCTION OF . . . PHYSICAL REVIEW B 93, 064301 (2016)

Coming to the contributions from separate phonon modes,
as one can see in Fig. 10, at |q| smaller than 0.25 2π/a0, the
main contribution is due to the highest acoustic branch which
has the highest group velocity and the smallest phonon-phonon
linewidth. However, at q vectors larger than 0.25 2π/a0

the phonon-phonon linewidth of the highest acoustic branch
rapidly increases, and, in consequence, the contribution of this
branch decreases. The contributions of the lowest acoustic
branches, at 300 K, show the behavior similar to that of the
|q|-dependent phonon DOS (inset panel of Fig. 8).

Contrastingly, at T < 20 K the major contribution to
κL(|q|) starts to drift towards the small |q| since most of the

high-energy phonon states are not populated due to the small
thermal energy kBT . The only active states are thus located
near 	. In the bottom panels of Fig. 10 we see the LTC κL(|q|)
at 5 K which has a pronounced peak at |q| ≈ 0.15 2π/a0 for
both directions.

By comparing right and left panels of Fig. 10, one can
see that the contributions of all three phonon modes show
anisotropy, at all values of |q|, and at all temperatures. The
anisotropy of the lattice thermal conductivity of bismuth,
mentioned in the main text, is due at the same time to phonon
group velocities, which differ in different directions, and to
phonon lifetimes.
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