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Introduction

Quelli che s’innamoran di pratica sanza scienza son come il nocchiere, ch’entra
in navilio sanza timone o bussola, che mai ha certezza dove si vada.1

Leonardo da Vinci

1.1 Network Traffic Engineering: What, Why, How

Engineering is the application of scientific principles and results to the design and
optimization of machine, processes, systems. The typical approach of engineers
consists of understanding objectives and requirements, abstracting a model of the
system to be designed, defining a solution approach and testing for its suitability,
i.e., checking if relevant performance metrics meet the prescribed requirements.

A key point is the ability of deriving a simplified model from a description of
the system or function to be designed. The model should be simple enough to
lend itself to analysis and provide understanding of performance trade-offs, yet it
should not miss any feature having significant impact on the relevant performance
indicators.

Optimization of the model is a second key step. This can be often stated as
a constrained optimization problem, where constraints come from performance
requirements, costs, physical limits of the system.

The entire modeling and design process can be conceived as a double loop (see
Figure 1.1). First, comparison with simulations or experimental measurements
leads to the refinement of the model, so that it can reliably match the relevant
dynamics of the system to be modeled. Once the model is assessed, it is used to

1 “Those who are fond of practice without science are like the helmsman of a ship without
rudder or compass, so that he’s never sure of where he’s heading.”

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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4 1 Introduction

Observation Model Analysis
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Figure 1.1 Scheme of system modeling and design process: from system observation
and description, to model definition and refinement, based on comparison with
simulations or experimental measurements (lower loop), then model usage for system
dimensioning and optimization, according to an iterative refinement process based on
performance results checking (upper loop).

refine the system design and to pursue its optimization, according to the results of
the analysis, leading to new (hopefully better) performance results.

The very concise sketch of the engineering approach to problem solving is a
general one. Traffic engineering refers to the design and optimization of a class of
systems and processes: networked service systems.

Let us examine the keywords one by one.
Service system is an abstraction of any physical or logical function under Quality

of Service (QoS) constraints. This is where the essence of service is.
Networked refers to the fact that multiple interconnected systems carry out the

assigned task(s). For that purpose, “traffic” moves from one service system to
another one, according to the topology of the interconnection and subject to the
capacity of the network. We use terms in an informal way in this introductory
section. So, by network capacity we mean the capability of the network to transfer
resources (e.g., information, goods, vehicles) depending on the kind of service,
hence network, we are considering (e.g., communication network, logistic
network, transportation network) to provide service to users’ demand.

Traffic can be defined informally as the stochastic process describing the users’
service demand, as regards both time of demand submission to the system (arrival)
and duration of service. Users of the service system (e.g., applications, persons,
machines) require the service system to carry out its tasks to meet their service
demand. Times when service demand is submitted to the system as well as the
amount of work required to meet the specific demand can be characterized as ran-
dom variables. Hence, traffic engineering is intimately connected with probability
and stochastic processes theory and its applications, a prominent position being
reserved to queueing theory. That is the preferential “language” of traffic engineer-
ing, even if also other mathematical tools are often used (e.g., fluid approximation
theory, optimization theory, game theory, to mention a few).
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Performance evaluation is at the heart of traffic engineering. A service system
encompasses three major aspects: (i) users’ traffic demand; (ii) serving capability
and resources provided by the system; and (iii) QoS constraints. The aim of traffic
engineering is the design of the service system to meet the expected users’ demand
under the prescribed quality constraints. Minimization of cost, both capital expen-
diture to set up the system and operational costs, is of paramount importance to
the system provider. This is usually in conflict with meeting an assigned level of
QoS, which is instead of primary relevance to the system users. Trading off costs
for QoS, given the users’ demand, is the core “business’ of traffic engineering. Con-
versely, estimating the admissible demand for the desired level of QoS, given the
available resources and the way the system is designed, is another key task of traf-
fic engineering, leading to the definition of algorithms and procedures to rule the
access of users to the system resources and to manage those resources (priority,
scheduling, flow control, congestion control, multiple access).

The reason why such a discipline has been developed and has grown as a recog-
nized field is that no ‘free” resource is given in any service system. Hence, rational
design of what resources to use, how much of them, and how to use them, still
providing a “useful” service (i.e., meeting a specified QoS level) is key to making
design of service systems viable from a technical-economic point of view. This is
why the design of service systems calls for suitable quantitative methods, able to
provide predictions of key performance indicators.

Since traffic engineering is based on system modeling and abstractions, it has
long been recognized that many different technical fields give rise to networked
service systems that lend themselves to common models, independent of details of
the specific technology or application field. Mathematical tools have been devel-
oped that can be used across many different application areas to a very large spec-
trum of systems. To mention some of them, communication networks, computing
systems, transportation networks, logistic networks, power grid networks, produc-
tion processes, all can be cast into the service system abstraction and therefore be
designed by resorting to network traffic engineering tools. Each example appli-
cation domain is itself a highly structured and complex system, encompassing a
huge variety of physical resources and processing logic (we could refer to them as
“hardware” and “software,” borrowing a classic terminology of information tech-
nologies).

Networked service systems can be modeled and analyzed by using different
approaches. More in-depth, analysis, dimensioning, and optimization of service
systems can be faced along three main lines:

1. Analytical models
2. Simulations
3. Experiments
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Analytical models provide a mathematical description of the system that yields
to tractable analysis (closed formulas) or, more often, to numerical investigation.
This is the most powerful approach for a quick and nontrivial understanding of
the performance trade-offs, to gauge stability margins of the system, to assess the
impact of key system parameters on performance, to provide a setting for stat-
ing optimization problems. While producing an effective analytical model requires
hard study and a bit of talent to strike the best balance between simplified assump-
tions and a representative model, the time and computational effort required to
use an analytical model make it the least costly among the three approaches listed
above. The real difficulty of an analytical model is not really in solving the model
once stated (books are there just to provide a guide for that purpose). It is rather
the ability “to make things simpler, but not easier,” to say it with Albert Einstein’s
words. The art of modeling consists in making all sort of assumptions leading to
the simplest model that still captures the aspects that are decisive to give a sensi-
ble answer to questions on the system. A fluid model that disregards completely
the discrete nature of packet traffic in a communication network, such as the Inter-
net, can be perfectly acceptable when we set out to study algorithms for congestion
control, whereas it is definitely inadequate if we are interested in characterizing
the delay jitter of a packet voice multiplexer or the collision probability of a random
access protocol.

Among analytical models, a major role is played by stochastic process theory
and queueing theory. The most useful class of stochastic process for service sys-
tem analysis relates to Markov chains. The success of stochastic process theory
and queueing theory as tools for network traffic engineering motivates the space
devoted to them in this book.

Analytical models provide answers to basic questions in a quick and lightweight
way. We can gain valuable insight on the system performance cheaply. When it
comes to assessing second-order effects or we need to relax assumptions on the
system model in a way that does not yield to analytical tractability any more, com-
puter simulation is often a valid approach.

Computer simulation for network traffic engineering purposes amounts to
defining a detailed operational model of the system and reproducing all processes
involved in this detailed model by means of a computer program. This is obviously
not a real-life system; it is, rather, a virtual image of how a simplified version
of the real-life system would work. The limits of this approach reside only in
the limits of the coding language and of the available computational resources.
Extremely complex models can be simulated. As a matter of example, simulating
a vehicular traffic management applications implies modeling these features:

◾ The road map. This includes meta-data describing road lanes, directions, sig-
nals, and surrounding environment (buildings, trees, tunnels).
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◾ Vehicle mobility of different types of vehicles (cars, trucks, buses, motorcycles,
bicycles, etc.), possibly also pedestrians. This includes modeling every useful
detail of the mobility mechanics (end-to-end flow vehicles, routes, motion laws,
overtaking, reaction times).

◾ Communication equipment on board vehicles, e.g., cellular transponders or
other equipment for local communications (WiFi, vehicle-to-vehicle commu-
nication devices). This means modeling all communication architecture layers,
from the physical layer to the application layer, with all relevant details of
protocols of evert layer, modeling radio propagation among devices, modeling
telecommunications traffic generation processes.

◾ Incidents that change the mobility environment.
◾ The logic of the application for vehicular traffic management, including the rel-

evant message exchange among vehicles and the fixed network infrastructure.
◾ Feedback on vehicle mobility due to the information acquired through the traffic

management application, according to the logic of the application.

Clearly, the software implementing all of these aspects must be highly compli-
cated. A possible simulation framework able to support this kind of modeling is
provided by VEINS (https://veins.car2x.org), a software package that
integrates a module for the simulation of urban mobility (SUMO), a module
to simulate communication network protocol stack (OMNET++), and all the
logic required to develop simulation software of customized application logic, to
import roadmaps and any other meta-data required to parametrize the simulation
experiments.

Even this brief example suggests how powerful simulation can be. On the
down side, setting up a simulation software requires a relatively high software
coding skill level and possibly extensive training on specialized software pack-
ages (dedicated simulation software packages have been developed in many
application fields of science and engineering, e.g, communication networks,
transportation systems, power distribution). Mastering one of those specialized
softwares typically requires several weeks up to months. Another drawback of
the simulation-based approach is the limited flexibility of the model (making
modifications can be very costly in terms of person-time effort). The compu-
tational burden of simulation could also be a problem, often making difficult
to obtain a quick answer to what-if questions. The availability of extremely
large processing resources in the public cloud and the ever-decreasing cost of
computing power relax the boundary of feasibility continuously, but the bottom
line is that developing a simulation model and running simulation experiments
is worth it when one already has a quite firm vision of how the system could be
designed and needs more stringent answers to a number of detailed issues before
delving into the actual realization of the system.
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The last word on system performance is real-life experiments on a possibly
scaled-down prototype. Here we need not make any assumptions or simplifi-
cations on reality. However, development time and required skill level, as well
as material cost, can grow to a significantly higher level than with simulations.
At the same time, an experimental setting is even less flexible and easy to use
than simulations. This is by far the less desirable alternative when it comes to
characterizing the performance of a system, providing input for its design, and
optimizing algorithms. It is however, the only way to give evidence that: (i) the
proposed service system, or at least key parts of it, can be actually realized in a
viable way; and (ii) key assumptions made in the development of the analytical
or simulation model are backed up by experimental data. Both points are an
unavoidable step in the (long) process leading from an idea to a successful
product, whether it be a physical system or a process. Many technology success
stories start with a theoretical idea, first proved by means of analytical models
that point to possibly large gains of exciting breakthroughs, provided that some
assumptions hold. Simulations and ultimately experiments give evidence of
whether the theory is well grounded and promising, given the feasible technology
context and the application opportunities.

1.2 The Art of Modeling

Analysis and design of service systems go through an abstraction process that leads
from real-life systems or processes to a simplified formal description that yields to
mathematical description. This abstraction process is more of an art than a sci-
ence, since there is no single way of doing it, nor is the resulting model unique.
The decision on what part of the original system is good to simplify, i.e., the list
of assumptions, and the choice of the mathematical tool to be used are to a large
extent a subjective decision-making process, highly dependent on the background,
competence, and experience of the person(s) doing the job. A second crucial point
is the application context and the very purpose we set out to develop a model, i.e.,
the questions for which we are seeking an answer. In a sense, a good model is one
that leads as straightforwardly as possible (i.e., with the least effort) to a satisfac-
tory answer (i.e., within the degree of accuracy we need) to the specific questions
that matter for the problem at hand. There are obviously general techniques (e.g.,
Markov chain theory, queueing theory), established results, best practices. Yet, it is
not infrequent that a useful model needs “customization,” depending on the appli-
cation context, the purpose of the modeling, the amount of time, computational
resources, and skill available to those that have to provide results.

Modeling is the approach taken to answer questions arising in some application
context and involving ultimately the investment of workforce effort and the use of
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physical or logical valuable resources. The practical problems that trigger traffic
engineering modeling are the essential motivation for it and push continuously
the development of new tools and theories. As for many other applied science
branches, sometimes traffic engineering theories are studied for themselves, i.e.,
extensions and generalization are investigated even beyond the specific questions
that promoted initially the development of the model. Nevertheless, traffic engi-
neering cannot be merely a theoretical investigation of mathematical tools. The art
of developing a useful model from a description of a system, to answer questions
on its performance and design, is a fundamental ingredient of traffic engineering.
Besides a solid understanding of models, it is therefore highly recommended to be
confronted with several application examples. The art of modeling is probably best
grasped through a learn-by-experience approach. Let us then give two simplified
yet meaningful examples of the kind of issues arising in this process.

Consider a store selling some specific kind of goods, e.g., vegetables and fruit.
It can be thought of as a service system, where “users” are people coming to buy
products sold at the store and the service provided by the system is the possibility
of finding a selection of products with some specified quality (variety of products,
freshness, packaging standards, bio-compatible production chain, special charac-
teristics, like gluten-free). A number of questions could be posed on the system,
such as in which part of the town should the shop be located, which kind of instal-
lation should be employed, how many people should be hired to run it, with which
kind of skill and tasks, what is the best shop opening schedule, where and at what
prices products sold at the store are best procured, and what selling prices should
be applied. The kind of model to be developed depends in a crucial way on what
the questions we seek an answer for are.

As a matter of example, let us ask how many employees we should hire for the
store. That depends primarily on the volume of demand (how many people come
to the store during a regular working day, how much vegetables and fruit they buy).
It also depends on the store installation, whether it is a big store, with a reserved
parking lot, a large building for goods exhibition, and large warehouses; a street
shop, with a relatively small warehouse and limited space for exposing goods; or
even a market stall. The economic viability of the proposed solution is the tar-
get of the modeling, under constraints on customer satisfaction, e.g., the average
amount of time that a customer has to wait before being served during peak hours.
The amount of people coming to the shop could vary during the day, on weekends
with respect to working days, or on a seasonal basis. It depends on the local den-
sity of residential population and on how many competitors are located nearby.
It is clear that many of the variables describing customers and their habits can
be characterized only as random variables, with parameters that can only be pre-
dicted or measured within some level of accuracy. The complexity of the model
should therefore be tuned to the accuracy of the knowledge of customer demand
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(there is no benefit in adopting a sophisticated customer arrival model requiring
several parameters to be tuned, if we have only partial or inaccurate data to fit the
model: better to use a very simple parsimonious model, with as few parameters as
possible). The specific question we pose (how many employees to hire) could be
answered by defining a queueing model of the store and applying known results to
size the number of “servers” to meet the waiting time requirement. We could also
try to state an optimization problem, e.g., what is the optimal number of employ-
ees, given a model of customer impatience (if we hire a lot of people, customer
satisfaction will be excellent, we will attract a lot of customers, but the serving
basin is anyway limited, so expenses for personnel would eventually exceed the
growth of income; conversely, limiting the number of employees makes us lose
customers and potential revenue, and that could possibly bring the store to shrink
its customer basis to a level too small to survive).

As a second example, let us consider a road crossing. “Service” here consists
of vehicles switching from one road to another one through the crossing. “Cus-
tomers” are vehicles. The “server” is the crossing area, with all its features (e.g.,
traffic lights, number of lanes, roundabout or cross-shaped intersection). Depend-
ing on the way the crossing is used, it could be modeled as a single server or a
set of multiple servers (e.g., in case multiple vehicles could engage the crossing
simultaneously). The quality of service can be measured by the time a vehicle has
to wait before being able to access the crossing and by the probability that a col-
lision (accident) occurs at the crossing. A trade-off exists between the two. That
is, if we introduce traffic lights at the crossing, we expect to reduce the probabil-
ity of accidents, but also to increase the time that a vehicle has to wait before it
can engage the intersection. Assume we have to optimize the green times of the
crossing traffic lights to minimize the average vehicle waiting time. We could con-
sider a first-order approximation of the system as a single server system with an
infinite waiting line. This model applies to a single lane on a single road arriv-
ing at the crossing. It disregards interaction of vehicles engaging the crossing, i.e.,
inter-dependencies among the serving capacities of the servers representing the
roads converging to the crossing. The simple model does not account either for
vehicle mechanics (acceleration, speed, vehicle size and length) and for human
reaction times, traffic light overhead times (dead times when switching from red
to green and vice versa). A refined model could be made up of a network of queues,
one for each road (or maybe, each lane) arriving at the crossing. A refined model,
accounting for those details and including sophisticated statistical modeling of
vehicle arrivals could be set up and analyzed by means of simulations. This is still
a model, simulations being virtual processes that mimic real-life situation, still
with a number of simplifications. The last word would be to construct a possibly
scaled-down, real system, where experiments with real vehicles are run. This last
approach is extremely costly and time-consuming. Moreover, it does not lend itself
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to stress the system at high traffic levels, since high traffic entails involving a large
number of vehicles, making experiments unfeasible. This is why analytical model-
ing or simulation are extremely useful tools to understand performance trade-offs,
design algorithms and optimize real-life service systems.

In the following we discuss in some detail an example. Starting from the descrip-
tion of a real-life issue, we derive a model and develop mathematical analysis and
simulations. The assumptions required to derive the model are discussed as well
as the lesson learned from performance results.

Before delving into the detailed development of a model, it is worth noting the
relationship between modeling and machine learning. Machine learning encom-
passes a broad field of theories, algorithms, and applications that has been growing
over the last several decades, leveraging on the progress of information and com-
munication technologies. The last decade has witnessed an impressive growth of
the application range of machine learning, boosted by the ever-increasing avail-
ability of computational power, of big data, and by breakthroughs in algorithm
implementation (e.g., deep learning networks2 [28,67]). Since this book is entirely
devoted to modeling tools and examples of their applications to networked service
systems, it is useful to take a quick look at an approach that might be alternative
to modeling (as intended here).

A basic view of supervised machine learning may be stated as a problem of func-
tion identification (see Figure 1.2). As a matter of example, let us consider a set
of “objects.” An object is associated with a label y and is described through a set
of features x. We can think of the features x as a vector of ℝn (generalizations to
qualitative features, belonging to non metric spaces, are possible). We assume that
a functional relationship exists between x and y, i.e., it is y = f (x) for a suitable
(unknown) function f (⋅).

We aim at identifying the function f (⋅) (at least a good approximation of it)
with a data-driven approach. We assume therefore that we are assigned a set of

Figure 1.2 Illustration of
a basic concept of
supervised machine
learning.

Parametric model

Training data

Performance / 
Generalization

Training
algorithm

Trained model

Test data / New data

2 Recent works point out at apparently fundamental limits of current algorithms, e.g., see [75].
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couples (xk, yk), k ∈  (the so-called “ground truth”). We choose a parametric set
of models for these data, say f (x, 𝜃), 𝜃 ∈  . We split the available data into two
sets: the training set train, used to select one model within the chosen family, and
a test set test, used to evaluate the performance of the selected model.

Using the training data (xk, yk), k ∈ train, and a suitable learning algorithm
(training algorithm), we synthesize the “best” possible model, say f (x, 𝜃∗)
(typically, one that minimizes the error with respect to the ground truth in the
training set).

Using the test data (xk, yk), k ∈ test, we assess the performance of the synthe-
sized function f (x, 𝜃∗).

A key point is the generalization capability of the model f (x, 𝜃∗), i.e., the ability
of the selected model to yield the right value y when fed with a previously unseen
input x (i.e., the ability to reconstruct a new couple, not belonging to the train-
ing set).

Even this very brief description of the machine learning approach highlights its
key aspects: data-driven modeling, generalization capability. In a sense, this is a
black-box approach. We do not start from a functional description of the system
producing the objects, from which we try to find a model able to predict the out-
put y for any given input x. Rather, we collect a (possibly large) set of examples
by “running” the system (input-output couples), then approximate the functional
relationship that we assume to exist between the input and the output data. We
are therefore not required to understand the laws governing the internal working
of the system that produces the objects. We are giving up to insight into the sys-
tem. On the other hand, we are able to define a “working” model, that provides us
(hopefully) useful answers, even for unmanageably complex systems, for which it
is too hard to derive useful models in the “traditional” sense3 .

Both approaches, modeling and machine learning, have their strong and weak
points, both have their use cases. If we are able to state a model of the relationship
between system input and output, say y = f̂ (x), and to define an efficient algorithm
to evaluate f̂ (x) for any interesting x, there is no need to resort to machine learning.
If we cannot collect enough data, in the form of couples (xk, yk), machine learning
is not applicable, either. So what are use cases for machine learning?

◾ When we are not able to state a model.
◾ When we manage to state a model, but it is unfeasible to “solve” it, that is, to use

it for deriving predictions on the studied system.
◾ When we have a model and feasible algorithms, but we can achieve a significant

computational complexity reduction resorting to machine learning algorithms.
◾ When we can collect data in the form of couples (xk, yk) at a reasonable cost.

3 Note however that the machine learning approach cannot forget about a good grasp on the
system to be modeled, even if modeling is data-driven. In fact, assuming that there exists a
functional relationship between the input x and the output y is already calling for some
field-expert knowledge on the specific system.
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The first three items point at cases where machine learning offers a viable or
preferable alternative, whereas “traditional” modeling could be at a deadlock or
too hard. The last point is a precondition for machine learning to be a practical
alternative.

We do not advocate either approach. Both have merits and should be considered
when confronted with a real problem. “Integrated” solutions are also possible, that
use both approaches to build a composite model4 .

In the rest of this book we present tools and examples oriented to developing
modeling skills. It is important to bear in mind that other approaches, besides “tra-
ditional” modeling, exist for designing and optimizing service systems. Which way
to go depends on available skills and time, on design objectives, on technological
opportunities.

1.3 An Example: Delay Equalization

Let us consider a streaming application in the Internet. Streaming is used for
audio/video retrieval and play-out. The content is usually available in servers
located in data centers (the “cloud”), possibly replicated in temporary cache
memories, close to potential users (content delivery networks). The user has a
play-out application (often embedded into a web browser), essentially consisting
of a decoder and a graphical user interface. The encoded audio/video data is
downloaded from the server to feed the decoder. Smooth play-out requires
feeding the decoder with audio/video data according to exactly the same timing
as produced by the encoder. This implies in turn that data delivery delay through
the network should be constant and no piece of information should be lost.

In the real Internet occasional packet loss is possible (typically a few percent
of packets are lost in moderately congested links). In the application example
at hand, packet loss can be concealed by redundant coding, since human per-
ception can be deceived up to a certain amount of missing information in the
reconstruction of the audio/video streaming. More importantly however, packets
sent through the Internet suffer variable delays: packet belonging to the same
end-to-end flow, even if they follow the same network path, encounter different
levels of node congestion. The inevitable result is that delays of successive packets
are different and there is no way to avoid this impairment (unless changing the
fundamental principles of data transfer through the Internet).

The contrast between application requirement (constant delay) and network
operation, resulting in variable delays, can be reconciled by introducing a delay
equalization buffer in front of the decoder. Delay equalization is performed by

4 To make a simple example, one might say that channel estimation and adaptive equalization
in telecommunication receivers is a form of machine learning, embedded into a system that is
designed and optimized based on mathematical models of the signal, the channel impairments,
and the algorithms applied at the receiver.



�

� �

�

14 1 Introduction

Sender
Equalization

buffer

x

Play-out 

device

time

Packet

network

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7
8
9

Figure 1.3 Illustration of the delay equalization of a streaming flow sent through a
packet network. The ‘x’ denotes packet loss. The slope of the dashed arrows through the
network corresponds to the delay suffered by packets. The initial play-out delay Δ is
shown: once play-out starts, frames are read from the buffer at the same rate as they are
produced by the sender.

imposing an additional delay to each arriving packet, so that the sum of the delay
suffered by the packet in the network plus the equalization delay equals a fixed
delay, same for all packets (hence the name of the algorithm: equalization has the
same root as “equal”).

Figure 1.3 illustrates the system components for this example: the server sending
audio/video data, the intermediate network, the delay equalization buffer, and the
decoder. The detailed explanation of the delay equalization algorithm is developed
in Section 1.3.1.

In the following we pose performance questions, unveiling issues with the
equalization algorithm (starvation, buffer overflow). We derive models that
provide a quantitative tool to gain insight into the delay equalization algorithm
and to dimension its parameters.

1.3.1 Model Setting

We assume that the encoder produces fixed length data frames at a fixed rate. Let
L be the length of a frame and T the time interval between the emission of two
consecutive frames. We assume that a frame fits into a single packet, i.e., there
is a one-to-one correspondence between application-level data units (frames) and
network-level data units (packets). In general, multiple packets are required to
carry a single frame. Capturing this feature requires however a significantly more
complex model (see Problem 1.1).

The data flow throughput sustained through the network is Λ = L∕T. We
assume that a transport capacity at least equal to Λ is available through the
network.
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Let tk = t0 + kT, k ≥ 0 be the time when the k-th frame is released by the
encoder and sent into the network. The network introduces a variable delay,
say Dk for frame k. Occasionally, a frame can get lost and be never delivered at
the destination. Out-of-order delivery is a possible outcome as well. In normal
operating conditions, frame loss and out-of-order delivery are actually sporadic
events: they could typically affect less than a few percent of the frames. For the
time being we neglect frame loss and out-of-order delivery. Those issues are
reconsidered in Section 1.3.3.

We also assume that the Dk’s are independent, identically distributed (i.i.d.) ran-
dom variables, admitting a probability density function (PDF) fD(x), defined for
x > 0. Let also GD(x) = (D > x) be the complementary cumulative distribution
function (CCDF) of the random variable D. Assuming that the Dk’s have a same
probability distribution amounts to require that the stochastic processes that cause
delays inside the network are stationary during the data transfer. This can well be
the case if the time dynamics of the network traffic (i.e., the time scale over which
the average network link loads have a significant variation) is much bigger than the
duration of the audio/video data transfer. As for statistical independence among
the Dk’s, this is a reasonable assumption, if the time dynamics of buffers within
routers along the end-to-end path of the frames is smaller than the inter-frame
time T. If that is true, the queue states sampled by two consecutive frames are
weakly correlated. For a buffer of size Br and a link of capacity Cr, the time scale
of the buffer queue is roughly of the order of Br∕Cr . As a matter of example, with
Br = 10 Mbyte and Cr = 10 Gbit/s, we have Br∕Cr = 8 ⋅ 107 bit∕1010 bit/s = 8 ms.
If T > 8 ms, it is plausible that the delays encountered by two consecutive frames
be negligibly correlated, hence the independence assumption is reasonable.

Play out at the receiver is started after a delay Δ from the reception of the 0-th
frame (see Figure 1.3). After that, frames are consumed, one frame every T sec-
onds, to feed the decoder at the receiver. Variable delays can be compensated by
storing the incoming frames in an equalization buffer temporarily. Two issues
must be faced then: (i) starvation, i.e., not finding the expected frame in the buffer
at the time it must be used by the decoder; and (ii) buffer overflow, i.e., an arriv-
ing frame must be stored until play-out, but there is no more space left in the
equalization buffer. We consider these two issues in the rest of this section, by
dimensioning properly the initial delay Δ of the play-out and the equalization
buffer size B.

1.3.2 Analysis by Equations

To keep the analysis manageable, we resort to approximations, a customary
approach in system modeling. We assume the equalization buffer is infinite, i.e.,
we neglect the overflow issue when dimensioning the initial delay Δ.
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If we apply an initial delay Δ, the k-th frame is expected at the decoder for
play-out at time tout,k = t0 + D0 + Δ + kT, k ≥ 0. Starvation of the decoder is trig-
gered by either of two possible events: (i) the k-th frame was late; or (ii) the k-th
frame arrived in time, but it found a full buffer and was dropped. According to our
approximation (infinite buffer size), the second event is ruled out. Hence, starva-
tion is equivalent to the first event, i.e., it occurs if and only if tk + Dk > tout,k, that
is D0 + Δ < Dk. Denoting the probability of starvation with S, we get:

S = (Dk > Δ + D0) = ∫
∞

0
fD(x)GD(x + Δ)dx (1.1)

For example, if fD(x) = 𝜇 exp(−𝜇x) for x > 0, i.e., the delay through the network
has negative exponential probability distribution with mean E[D] = 1∕𝜇, we get

S = 1
2

e−𝜇Δ = 1
2

e−Δ∕E[D] (1.2)

If we require that S < 𝜖S, then it must be Δ > E[D]| log(2𝜖S)|.
Let us now relax the assumption of an infinite buffer and consider a buffer of

size B. We can upper bound the probability of overflow of the buffer of size B with
the probability that the occupancy level of the infinite buffer exceeds B.

Let Ñ(t) and N(t) be the number of frames stored in the finite buffer and in
the infinite buffer at time t, respectively. Let P̃ denote the overflow probability of
a buffer of size B, i.e., the joint probability of the events {Ñ(t) = B} and (t) =
{a frame arrives at time t}. Since it is5 Ñ(t) ≤ N(t) for all t, the event {Ñ(t) =
B}&(t) implies the event N(t) > B. Hence P̃ = (buffer overflow) ≤ (N(t) >
B), i.e., the probability that the buffer content of the infinite buffer exceeds the
threshold B is an upper bound of the overflow probability of the finite buffer.

Let Nk be the number of frames stored in the buffer at the time immediately
preceding play-out of the k-th frame, i.e., Nk ≡ N(tout,k−). Let N = B∕L (we assume
B is an integer multiple of the fixed frame size). We have P̃ ≤ (Nk > N) ≡ P.

In the following we evaluate the probability distribution of Nk and use its tail
to dimension the equalization buffer size. This is an example of how bounds and
approximations help deriving performance results.

It is Nk > n if and only if the arrival time of the (k + n)-th frame is less then
the time tout,k, that is tk+n + Dk+n < tout,k = t0 + D0 + Δ + kT. Therefore, by letting
Q(n) = (Nk > n), we have

Q(n) = (t0 + (k + n)T + Dk+n < t0 + D0 + Δ + kT) = (Dk+n < D0 + Δ − nT)
(1.3)

5 This is also true if we account for packet loss event in the network.
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Then

Q(n) = ∫
∞

0
fD(x)(Dk+n < x + Δ − nT)dx

= ∫
∞

max{0,nT−Δ}
fD(x)[1 − GD(x + Δ − nT)]dx

= GD(max{0,nT − Δ}) − ∫
∞

max{0,nT−Δ}
fD(x)GD(x + Δ − nT)dx (1.4)

For example, with negative exponential network delays, we obtain

Q(n) =

{
1
2

e−𝜇(nT−Δ) nT ≥ Δ,
1 − 1

2
e𝜇(nT−Δ) nT ≤ Δ.

(1.5)

The upper bound P of the overflow probability we are looking for is then P =
Q(N)|N=B∕L. The requirement P̃ ≤ 𝜖B on the overflow probability of the equaliza-
tion buffer is guaranteed by imposing that P ≤ 𝜖B.

Let us assume that NT ≥ Δ. From eq. (1.5) we have Q(N) = e−𝜇(NT−Δ)∕2, with
𝜇 = 1∕E[D]. Imposing Q(N)|N=B∕L ≤ 𝜖B, we find

B ≥ L
Δ + E[D]| log(2𝜖B)|

T
(1.6)

Substituting the expression found for the initial delay Δ and recalling that the
end-to-end throughput of the audio/video packet flow is Λ = L∕T, we get

B ≥ ΛE[D](| log(2𝜖S) + log(2𝜖B)|) ⇒
B

ΛE[D]
≥ | log(4𝜖B𝜖S)| (1.7)

which gives the minimum required buffer size B as a function of the quantity Λ ⋅
E[D], the so called bandwidth-delay product (BDP). The BDP is a key parameter
in many networking problems. The dimensioning criterion of the buffer size B in
eq. (1.7) exemplifies in a clear way the role of the quality of service constraints (the
parameters 𝜖B and 𝜖S) and of key system parameters (the BDP in this case).

For 𝜖B = 𝜖S = 10−3, we have B ≈ 12.43 ⋅ (Λ ⋅ E[D]). With a buffer of 256 kbytes
we can face a mean network delay of about 41.2 ms for a throughput of 4 Mbit/s.

The expression in eqs. (1.2) and (1.7) hold for a negative exponential distribu-
tion of network delays. The analytical model developed above can in fact be used
with a general distribution of network delays, to dimension the initial delay Δ and
the buffer size B. The analytical formulas found for a general network delay dis-
tribution (eqs. (1.1) and (1.4)) can be used, at least numerically, to evaluate the
starvation probability S and the upper bound P of the overflow probability for given
values of the model parameters.

In the following we show the numerical results obtained by estimating the prob-
ability distribution of the network delay from a sample of measured round trip
times (RTTs). The RTT trace has been collected between a host in a WiFi access
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Figure 1.4 Left plot: Sequence of RTT values measured between a host in a WiFi access
network and a server on public Internet. The sequence has been collected using ping
with an interval of 0.1 s between consecutive message sending times. Right plot:
empirical CCDF of the network delay D based on the RTT sequence shown in the left plot.

network and a server on the public internet, both located in Italy. The sequence
of collected samples is shown in Figure 1.4(a). Figure 1.4(a) suggests that the net-
work crossed by the packets exhibits a relatively large “random” variability of the
delays, on top of which there are occasional delay spikes, according to an appar-
ently random pattern. This hints to occasional heavy congestion phenomena, or to
some recurring high-priority task, carried out by the target server used to collect
RTT values, that causes a large delay of the echo_reply message.

Figure 1.4(b) illustrates the empirical CCDF of network delay. The estimated
mean delay is 15.1 ms, while the estimated standard deviation is 43.2 ms. The bulk
of probability is around the mean, yet there is a rather long tail that can hardly
be estimated, given the available number of samples. The variability of network
delay is evident also from the high value of the ratio of the standard deviation to
the mean6 .

The resulting numerical values of the starvation probability and of the overflow
probability are shown in Figure 1.5(a) as a function of Δ and in Figure 1.5(b) as
a function of B, respectively. We have assumed L = 1400 bytes and T = 33 ms (30
video frames per second).

The values of the initial delay and of the buffer size that meet the performance
requirements 𝜀S = 𝜀B = 10−2 are Δreq = 220.7 ms and B = 19.6 kbytes, respec-
tively. The effect of the slow decay of the CCDF of network delays appears in the
slow decay part of the curve of the starvation probability S as a function of Δ.

6 We have selected an extreme case, exhibiting a rarely seen large variability, to make numerical
results more interesting in the chosen model setting. For the same reason, we have directly used
the sequence of measured RTTs as representative of end-to-end network delays, without
halving them.
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Figure 1.5 Left plot: starvation probability as a function of the initial delay Δ, assuming
an infinite size equalization buffer. The minimum initial delay that meets the starvation
probability requirement (dashed line) is Δreq = 220.7 ms. Right plot: buffer overflow
probability as a function of the equalization buffer size B. The minimum buffer size that
meets the packet loss probability requirement (dashed line) is Breq = 19.6 kbytes.

Even if numerical results are obtained by estimating the probability density
function of the network delays from real data, still there are a number of
assumptions underlying the model. Packet delays are assumed to be i.i.d. random
variables, the equalization buffer is assumed to be infinite, out-of-order packet
delivery has been neglected. To the cost of setting up a detailed simulation code,
we can remove all of these assumptions and check results, which we do in the
next section.

1.3.3 Analysis by Simulation

We can investigate the performance metrics of the delay equalization buffer by
means of simulations. At the cost of developing the simulation model, coding it,
and bearing the computational cost of running simulations (typically much more
expensive than evaluating the analytical model), we gain the possibility to relax the
assumptions we have made in the derivation of the analytical results of the previ-
ous section. Specifically, we can evaluate the frame loss probability (FLP) with the
given buffer size B and initial equalization delay Δ, without the need of assuming
an infinite buffer or resorting to upper bounds. As a consequence, starvation at
time tout,k occurs at the output of the buffer for two possible causes: (i) late arrival,
i.e., frame k has not arrived yet; (ii) loss, i.e., frame k had already arrived at the
input of the buffer, but it was dropped because of a full buffer at the time it arrived.
The FLP is defined as the probability of starvation, whichever the cause.

Given the values of T and L, the simulation of the equalization buffer depends
only on the parameters Δ and B, i.e., the initial delay and the buffer size.
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Figure 1.6 Simulations of the equalization buffer. Left plot: frame loss probability as a
function of the initial delay Δ and the buffer size B. Right plot: frame loss probability as a
function of the initial delay Δ for four different values of the buffer size B.

We account for the effect of the network still using the RTT experimental trace.
The buffer size is converted into the maximum number of packets it can contain,
Nmax = ⌊B∕L⌋.

Figure 1.6(a) shows the 3-D plot of the FLP, as a function ofΔ and B. As expected,
the FLP decreases, eventually going to 0 as the buffer size is increased7 . It might
appear counterintuitive that the FLP increases sharply with Δ for a given value of
B. This is especially evident for the smaller sizes of the buffer.

The reason for this behavior is that FLP is the sum of two components. Some
frames get lost because they arrive at the buffer after due time for play-out; other
frames are lost because they are dropped due to buffer overflow. The first compo-
nent is dominant at low Δ values (up to the order of a few standard deviations of
the network delay) then fades away quickly as Δ grows. The second component of
FLP is dominant when the buffer is small compared to the amount of frames that
can arrive during the initial delay Δ. Since frames arrive at an average rate of 1∕T,
on the average Δ ⋅ L∕T bytes arrive, before play out can start. If B is less than this
quantity, frame loss is massive.

A clearer picture of the phenomenon can be appreciated by plotting FLP as a
function of Δ for some values of B, as done in Figure 1.6(b). All curves have an ini-
tial common behavior, independent of B, that corresponds to the operation region
dominated by late arrivals. This is the behavior correctly predicted by the analyt-
ical model. Then, as Δ grows up further, the subsequent behavior breaks up into

7 The FLP can actually hit 0, since this is a data-driven simulation, where packet delays are
taken from a file of 10000 measured delays, hence there is a maximum delay and
correspondingly a maximum initial delay beyond which no frame loss occurs, for a large enough
buffer size. There are exactly 0 lost frames as soon as Δ > Δmax = max

k
{Dk} − D1 ≈ 533 ms and

for B > ΔmaxL∕T ≈ 22.6 kbytes.
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different branches as a function of B. The FLP grows sharply with Δ, when the
frame loss due to buffer overflows becomes dominant. The bigger B, the wider is
the favorable dimensioning interval, where we achieve a low FLP value.

The comparison between Figure1.5(b) and Figure 1.6(b) gives a striking visual
evidence of the gap between analytical model predictions and simulation results.
Due to assumptions required to make the model tractable, the analytical curve of
Figure 1.5(b) captures correctly the lower branch of the FLP curve resulting from
simulations, but it misses completely the sudden increase of FLP when Δ grows
beyond a threshold depending on B.

1.3.4 Takeaways

Consider a typical network traffic engineering problem, delay equalization. The
highlights are as follows:

1. Defining an analytical model entails major simplifications and assumptions,
the stronger the simpler the obtained results and potentially more insightful.

2. Analytical models may lose relevant effects or hold only for limited range of
system parameters. Care must be taken when drawing conclusions on the basis
of analytical models. They provide invaluable help in guiding the setup of more
detailed evaluation tools (e.g., simulations or measurements), but they could
miss some phenomena.

3. Simulations can be powerful, since they allow detailed modeling and enable
us to relax a lot of assumptions. Still, it must be considered that simulation is
based on models, Moreover, understanding the system dynamics by brute force
simulation can turn into searching for a needle in a haystack.

4. The design and dimensioning tasks become much more effective when one has
a good intuition and solid expectations on the system behavior.

5. Making illustrative graphs of the performance results, as well as visualizing the
data, can help a lot. Hence, it is worth spending a significant fraction of the time
allowance for performance evaluation on this task.

1.4 Outline of the Book

In this section we first give a concise account of the content of the next chapters.
Then we discuss possible uses of this book for courses and self-learning. Finally,
we introduce definitions and notation of general use throughout the book.

1.4.1 Plan

The book comprises ten chapters besides this one, plus an Appendix.
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Chapter 2 is devoted to service system definition, the role of queueing models,
and general properties of queues in equilibrium. A service system is an abstrac-
tion of a physical or a logical element providing a function (the service) to users
according to a given level of quality, as measured by relevant performance metrics.
The service system is deemed to be out of service if the quality of service con-
straints are violated. In network traffic engineering, examples of service systems
can be a router, a web server, a virtual machine, a protocol, a (sub-)network, or a
data center. The structural elements of a service system are defined in Section 2.1,
and service demand is characterized in Section 2.2. Section 2.6 is devoted to the
formal definition of the traffic process. General properties of service systems in
statistical equilibrium are addressed. First, the notion of stationarity of a random
process is discussed. Then, Little’s law is stated and proved. The probability distri-
butions of the state seen at different event epochs of a service system are charac-
terized (Palm’s probability distributions). Finally, the most common performance
key indicators or metrics are introduced in Section 2.7.

The material in Chapter 3 is functional to applications to the modeling of net-
worked service systems. The Poisson process is first introduced and characterized.
Generalizations of the Poisson process are considered, namely nonhomogeneous
and spatial Poisson processes as well as the Markov modulated Poisson process.
Then, renewal processes are treated. Some operations on renewal process are ana-
lyzed in detail, namely excess variables and superposition. Finally, two special
classes of processes with many applications in network and service system analysis
are introduced: birth-death and branching processes.

Chapter 4 aims at a comprehensive account of the analysis of single server
queues. The M∕G∕1 queueing system is analyzed in depth, with specific attention
devoted to numerical evaluation of the probability distribution and to finite
waiting line systems. An asymptotic approximation of the loss probability of the
M∕G∕1∕K queue is presented as the queue size K grows. An account is given
also of the G∕M∕1 model and of extensions to matrix-geometric models of single
server queues, specifically the queues described by a quasi-birth-death (QBD)
process. The general result known as Reich’s formula, holding for any single
server queue, closes the chapter. More results for the general G∕G∕1 queue can
be obtained only via approximations and are dealt with in Chapter 8.

Chapter 5 focuses on queueing models with multiple parallel servers. The gen-
eral G∕G∕m model does not yield to closed-form analysis. Then, we address spe-
cial, yet relevant, cases, mostly based on Poisson arrivals. We consider both loss-
and wait-oriented systems. The first category is represented by the Erlang model,
i.e., the M∕G∕m∕0 queue, where there is no wait. This is of primary importance
in many practical applications, e.g., in modeling cellular networks. We give sev-
eral examples thereof. Then, we consider the M∕M∕m queue, that is completely
tractable and allows a good insight into the working of multi-server queues. We use
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this model to discuss a classic problem of service system, namely the comparison
between separate versus shared queues. Finally, we analyze infinite server mod-
els. In spite of their seemingly only theoretical relevance, they have highly useful
applications. We discuss the application of an infinite server model to the analysis
of message propagation in a line network.

Differentiated treatment of traffic flows and sharing of a communication or
processing resource are key issues in telecommunication networks as well as
in many other networked service systems (transportation, computing, energy
distribution, to mention few of them). We leverage on results of single server
queueing, specifically on the M∕G∕1 queue, to derive models of priority queueing
systems in Chapter 6. We address head-of-line, shortest job first, shortest remain-
ing processing time, and preemptive policies. We use those results to understand
the basic trade-offs of service policy differentiation. Ultimately, from a traffic
engineering perspective, we aim at characterizing the impact of introducing
prioritized service classes on performance perceived by different customers. The
second part of the chapter is devoted to scheduling. Major examples of scheduling
are introduced and analyzed, namely processor sharing, weighted fair queueing,
credit-based fair queueing, least attained service. A specific attention is payed to
weighted fair queueing, that has laid the conceptual ground on which one of the
major attempts of providing quality of service in the Internet has been founded.
Finally, we review optimal queueing disciplines for different classes of queueing
system, where the classification is based on what information can be exploited by
the service policy.

Chapter 7 is intended to provide a solid introduction to the vast topic of queue-
ing networks. There is a large body of literature on queueing networks, given
both the fundamental theoretical interest of the model by itself and its numer-
ous applications to communications networking, cloud computing, transportation
systems, manufacturing, inventory and storage management. We address first the
Jackson-type model of a queueing network, considering both open and closed
queueing networks. The general theory is discussed in detail. Optimization prob-
lems are defined, as well as extensive examples of use of those models applied
mostly to communication and transportation networks. The famous Braess para-
dox is discussed as a highly instructive warning on how even apparently simple
queueing network models can turn out to be deceptive to intuition. In addition, we
introduce loss networks, since they are a completely different model with respect
to most other queueing networks, so that they deserve an ad hoc treatment. Here
too we devote significant space to application examples of the model. Finally, we
discuss the stability of queueing networks, a topic of growing interest.

In Chapter 8 we review basic results and approaches for obtaining approximate
results with more general models than those for which exact solutions are
available. First, we consider G∕G queues, both single server and multi-server.
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We derive bounds and approximations for the mean system time. We also intro-
duce an asymptotic bound for the waiting time probability distribution and the
Gaussian approximation based on the Brownian motion process. Approximate
analysis of the mean system time is extended to network of G∕G queues. We then
cover the fluid approximation, both as an asymptotic description of a properly
scaled process and as a continuous state approximation of discrete systems.
Within this framework, we address also stochastic fluid models. As an application
example, we apply the fluid model to the performance evaluation of a packet
multiplexer loaded with intermittent (On-Off) traffic sources.

The last three chapters form the third part of the book, devoted to application of
modeling and performance evaluation tools to three broad fields of networked ser-
vice systems: multiple access, congestion control and quality of service guarantees.

Models for Slotted ALOHA and carrier-sense multiple access (CSMA) are intro-
duced in Chapter 9 as an application of the tools defined in the previous parts.
Selected topics are discussed out of the huge existing literature. The main target
is twofold: (i) grasp how the general analysis tools of the previous chapters can
be applied to a specific technical context; (ii) give concrete examples of how the
working of a system can be understood and performance trade-offs characterized
by means of a model. Under this respect, multiple access systems are one of the
major examples of the potential of Markov chains. We first look at Slotted ALOHA,
devoting special attention to the stabilization of the protocol. Pure ALOHA is con-
sidered as well, specifically in the general case of variable length packets, which
leads to a new, nonclassic analysis. CSMA is then examined in detail. We consider
models able to describe a general multi-packet reception setting. Stabilization is
investigated as well. The remaining part of the chapter is devoted to the famous
WiFi MAC protocol, the CSMA/CA. We derive the saturation throughput, access
delay performance and give a thorough discussion of the drawbacks of the binary
exponential back-off mechanism, advocating an alternative back-off adaptation
algorithm, the so-called idle sense. Finally, the fairness issue of WiFi is discussed
and evaluated.

Congestion control is among the most important topics in network traffic engi-
neering. In Chapter 10, we address specifically congestion control in the Internet,
even if the considered models can be applied to other contexts, abstracting from
technology details. We address closed-loop congestion control as realized by the
Transmission Control Protocol (TCP). First, general ideas and definitions are laid
out. Then, several variants of the TCP congestion control algorithms are reviewed
(classic TCP, CUBIC, Vegas, DCTCP, BBR). As for the models, the fluid approx-
imation is used to gain insight into the dynamics of a TCP connection. First, a
simple constant capacity single bottleneck scenario is considered. Then, a variable
capacity model is introduced, thus showing the usefulness of the fluid approach
and at the same time, identifying a resonance phenomenon of TCP congestion
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control with the time scale of the bottleneck time-varying capacity. We consider
then fluid models of multiple TCP connections sharing a same fixed capacity bot-
tleneck link. We review models for classic TCP (with a drop-tail buffer and with a
buffer running an Active Queue Management algorithm) and models for DCTCP.
The fairness concept is explored and a general framework is introduced, based on
Network Utility Maximization (NUM). Besides giving a general approach to the
definition of fairness, NUM allows revisiting TCP congestion control, interpreting
the classic TCP operations as a distributed, iterative algorithm for the solution
of a global network optimization problem, namely the maximization of a social
utility function under link capacity constraints. Finally, we review the main traffic
engineering issues that TCP faces in current networking practice, highlighting
state-of-the-art approaches to solve them and open problems.

Chapter 11 is devoted to models of traffic sources, sharing a common network
resource, under strict quality of service (QoS) requirements. This framework is
apt for so called inelastic or inflexible traffic sources, that require their throughput
and delay to lie in suitable ranges to provide an effective service. We consider
first the deterministic traffic theory. It is based on nontrivial deterministic bounds
that describe the traffic source behavior and the service provided by network
elements. The main result it provides is a kind of “system theory” that allows
us to give worst-case end-to-end performance bounds for networked service
systems and to dimension network elements that guarantee a prescribed level
of quality of service. The down side is that performance bounds can sometimes
be quite loose. Moreover, the stochastic nature of traffic is not canceled alto-
gether, since we need to analyze and dimension devices (the “traffic shapers”)
that enforce deterministic bounds on the stochastic traffic flows offered to the
network. We move then to stochastic models of the multiplexing of inelastic
traffic sources. Here we introduce the concept of effective bandwidth and
give some major results on the relevant theory. We show how effective band-
wdith can be used to analyze and dimension a network of service elements,
exploiting the stochastic variability of the offered traffic to reap the so-called
multiplexing gain.

Finally, a primer on probability, random variables, and stochastic processes is
presented in the Appendix. It gives essential definitions and properties to ease the
reader of this book that needs a quick reference to refresh its background of prob-
ability and Markov chains.

1.4.2 Use

This book is meant as an advanced textbook, suitable for senior undergraduate,
graduate, and PhD students. It can be consulted also by those who need a solid
introduction to performance evaluation in an applied context. It aims to provide a
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self-contained source text to cover traffic theory, queueing theory, and their appli-
cation to networked service systems.

The objective of the book is to provide a comprehensive guide to these topics:

◾ What traffic is, and how it is characterized and applied to networked systems.
◾ The performance evaluation tools from queueing theory, used to model, analyze,

and dimension service systems to which traffic is offered.
◾ Applications of performance evaluation tools to major aspects of networked sys-

tems, selected for their interest both from theoretical and application points of
view: multiple access, congestion control, quality of service.

The book can be a primary reference for classes in engineering, computer sci-
ence, data science, and statistics, for students desiring to gain understanding of
fundamentals of performance evaluation as well as aiming at consolidating a basic
knowledge with more advanced material. The book assumes a basic knowledge
of probability (a concise refresher is provided in the Appendix, tailored to topics
required in the book) and programming (any language will do; what matters is
having firmly understood the logic of programming). To appreciate fully several
examples of the book, it is useful to know the basics of TCP/IP networking and of
communication systems (especially cellular and wireless ones). Most undergradu-
ate students of computer, electrical, telecommunications, and industrial engineer-
ing and of computer science take classes on communication and networking at an
introductory level, which is more than enough to understand application examples
of this textbook. Occasional readers of this textbook could be found among grad-
uate students of data science, transportation engineering, physics, mathematics,
statistics as far as they need to manage, design and optimize service systems within
their work. As a matter of example, transportation is a prolific field for application
of queueing and traffic theory. It is not by chance that some examples presented
in this textbook are drawn from transportation systems. Moreover, many scientists
make extensive use of networking and computing facilities, which they often need
to tailor to their special needs.

A set of exercises is proposed at the end of each chapter. They provide a self-test
to assess the comprehension level of the subject of each chapter.

The book can be used modularly, given the dependencies among chapters, as
depicted in Figure 1.7.

A directed arc between two chapters represents a major dependence. An arc
labeled by section number means that the section of the source chapter is relevant
to the target chapter. A label with two section numbers, connected by an arrow,
means that the source chapter section is relevant for the target chapter section in
the label. If the lecturer wishes to focus on the mathematical tools (with possibly
some application examples), Parts I and II can be used. This way, a solid intro-
duction to traffic and queueing theory is provided, moving from first principles
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Figure 1.7 Dependencies among chapters.
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and basic definition to rather advanced topics. If a short course is to be set up,
besides the whole of Part I, Chapters 4 and 5 provide an introductory cornerstone
to queueing theory (possibly skipping some more advanced topic, e.g., Sections 4.3,
4.7, 4.8, 5.5). According to available time, class interest and skills, the queueing
theory core could be extended by considering advanced topics in Chapters 4 and
5, covering also priority and scheduling in Chapter 6 or generalizing stand-alone
queueing systems to network of queues, dealt with in Chapter 7 or choosing topics
from Chapter 8, to introduce bounds and approximations that go beyond queueing
models yielding to mathematical analysis in closed form.

To offer a course leaning toward applications, Part I plus selected chapters from
Part II can be sampled and then Part III can be covered. The minimum set of
material to be covered in Part II in this case comprises Section 4.2 (the concept
of embedded Markov chain and its application to a single server queue) and
Section 8.6 (the fluid approximation). A richer selection of Part II chapters can be
organized according to the guidelines mentioned above.

1.4.3 Notation

Scalar variables are denoted usually with plain letters (e.g., x), while vectors are
denoted with small-capital boldface letters (e.g., x) and matrices with capital bold-
face letters (e.g., X). The identity matrix is denoted with I, while e stands for a
column vector of 1’s.

Time is usually denoted with t. Hence, Q(t) denotes a function of time. Space
variables are usually denoted with x, y, and z.

The usual mathematical notation is used for the sets of integer and real numbers,
ℤ and ℝ respectively. The notation ℝ+ (ℤ+) indicates the set of non-negative real
(resp., integer) numbers.

We use sometimes the o(⋅) and O(⋅) notation. Writing g(x) ∼ o(f (x)) for x → x0
means that lim

x→x0
g(x)∕f (x) = 0. Instead g(x) ∼ O(f (x)) for x → x0 means that the

ratio |g(x)∕f (x)| remains bounded as x → x0.
A − (+) subscript on a variable x corresponds to approaching x from

the left (right). As an example, f (x−) stands for lim
𝜖→0

f (x − |𝜖|). Analogously
f (x+) = lim

𝜖→0
f (x + |𝜖|). For a continuous function, it is f (x+) = f (x−), whereas a
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function for which the two limits are finite, but f (x+) ≠ f (x−), is said to have a
jump at x.

The probability of event E is denoted with (E). I(E) denotes the indicator func-
tion of the event E: it is equal to 1 if and only if event E occurs.

Capital letters denote random variables, while sample values are usually
denoted with a small capital letter, e.g., the random variable V that takes a specific
value x is written as V = x.

The cumulative distribution function (CDF) of a random variable V is denoted
with FV (x) ≡ (V ≤ x), the complementary CDF (CCDF), sometimes also referred
to as survivor function, with GV (x) = (V > x) = 1 − FV (x). When existing, also the
PDF is used and it is given by fV (x) = F′(x) = −G′(x).

The expectation operator associated with the random variable X is denoted
with EX [⋅]. The subscript X is dropped unless it is necessary to avoid ambiguity.
Given a function g ∶ D → ℝ, where D is the domain of the random variable X ,
it is E[g(X)] = ∫Dg(x)dFX (x). Specifically, the mean value of X is denoted with
E[X]. The variance is denoted with 𝜎2

X = E[X2] − (E[X])2. Sometimes the notation
Var(X) is used for the variance of the random variable X . The coefficient of
variation (COV) of the random variable X is defined as CX = 𝜎X∕E[X]. Also the
squared COV (SCOV) C2

X is used.
The Laplace transform of the PDF of a non-negative random variable

V is denoted with 𝜑V (s), and it can be calculated from 𝜑V (s) = E[e−sV ] =
∫ ∞

0−
fV (x)e−sx dx.

For random variables defined over the entire real axis, we define the moment
generating function (MGF) 𝜙V (𝜃) = E[e𝜃V ] = ∫ ∞

−∞ fV (x)ex𝜃 dx.
As for discrete random variables, the CDF, CCDF, and probability distribution of

a discrete random variable N are denoted with FN (k) = (N ≤ k), GN (k) = (N >

k) and pN (k) = (N = k) for k ∈ ℤ. Note that in the discrete case the equality sign
in the definition of the CDF is important.

The MGF of a non-negative discrete random variable N is denoted with 𝜙N (z).
It can be calculated from 𝜙N (z) = E[zN ] =

∑∞
k=0 pN (k)zk.

The notation A ∼ B means that the random variables A and B have the same
probability distribution. The notation Z ∼  (a, b) means that Z is a Gaussian
random variable with mean a and variance b, while Z ∼  (a, b) denotes a ran-
dom variable Z uniformly distributed in the interval [a, b]. A random variable Z
with negative exponential probability distribution and mean a is denoted with
Z ∼ Exp(a).

Measure units follow the scientific International System, i.e., meters, seconds
and multiples thereof. The symbols and values of multiples and sub-multiples of
measure units used in this text are listed in Table 1.1 for reader’s ease.

A list of acronyms can be found at the beginning of the book.
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Table 1.1 Symbols of multipliers and sub-multipliers of measure units.

Symbol Name Value Symbol Name Value

k kilo 103 m milli 10−3

M Mega 106 𝜇 micro 10−6

G Giga 109 n nano 10−9

T Tera 1012 p pico 10−12

P Peta 1015 f femto 10−15

1.5 Further Readings

Many books can be consulted to integrate the material of this book or to provide
in-depth follow-ups.

A first group of references addresses applied probability and queueing theory
[54, 86, 94, 121, 130, 131, 196]. This list contains textbooks biased toward or
definitely devoted to queueing theory. While being excellent sources for learning
on queues, they are not concerned with any specific application. [94, 130, 131] are
classic introductory textbooks on queueing theory. [86] is a more recent textbook
on queueing theory and stochastic networks, with some emphasis on fluid
approximations. [54, 121] are mainly monographs on stochastic and queueing
networks. The comprehensive textbook [196] provides an excellent and thorough
introduction that covers everything from probability, to Markov chains, queues,
and simulation.

Another group of books, [30, 58, 98, 122, 137, 139, 193], leans more toward
applications to networked service systems, often in the realm of information
and communications technologies. [30] is a classic textbook on communication
network performance evaluation. It represents one of the first examples of a
perfect mix of technological aspects coupled with rigorous modeling, analysis and
dimensioning approaches, based on queueing theory and Markov chains. A much
more recent attempt to introduce modeling and performance analysis approaches
starting from real-life problems in offered by [58], with specific reference to social
networks and communication networks. It uses a wide range of mathematical
tools, mostly at an introductory level, and does not give any account of queueing
theory, except of elementary notions. The ponderous book of Kumar et al. [137]
overviews models and performance results for all aspects of communication
networks (multiplexing, switching, routing). It assumes that the reader is already
familiar with the required basic theory. It focuses only on performance models.
[98] gives a full introductory account of queueing theory, constantly coupling
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theory and application to computer networks. The book is mostly at an introduc-
tory level. [122] is a very nice and concise book on rather advanced modeling,
mostly applied to communication and networking problems. This deep book is
a neat example of a smart balance between presenting methodological tools and
applying them to technical systems, even if examples are rather at high level and
do not touch many technical details of real systems. [139] is mainly an introductory
level queueing theory book, the last chapter overviewing applications to commu-
nication networks. The recent book [193] applies optimization, game and control
theories to modeling, analysis and dimensioning of communication networks.

Finally, to expand fundamental theories on probability and Markov chains, the
reader might refer to the following classic textbooks, being advised that many other
excellent books can be found: for probability theory [76, 90]; for Markov chains
and stochastic processes [172, 117, 60, 40]. A concise and rigorous introduction
to statistics can be found in Part II of [87], while statistics applied to performance
evaluation is presented in [145].

Since networks and networked system have been mentioned several times, it is
worth spending a word on a terminology clarification. Here “network” is meant
to be a technological network, i.e., the interconnection of service systems (either
physical or logical), set up to support a class of applications, e.g., telecommuni-
cations, computing, transportation, energy distribution, logistics and inventory,
industrial production. The word network is also meant sometimes to address
graph-based models of interconnected entities. This is more precisely referred to
as network science. Two reference textbooks on the subject are those by Albert Lás-
zló Barabási [24] and by Mark E. J. Newman [169]. While graphs are a widely used
model for any network, the focus of network science is on understanding the prop-
erties of graphs and what they mean to the specific “environment” being modeled.

The focus of this book is to apply rigorous mathematical methodology to the
performance evaluation, design, and optimization of technological networks. This
is essentially the difference between science and engineering (or, more broadly,
between fundamental and applied science). The former is concerned with model-
ing reality to understand it; the second aims at understanding in order to act on
reality.

Problems

1.1 Let an audiovisual (AV) frame have a constant length F bigger than the
maximum packet payload L, so that each AV frame requires m = ⌈F∕L⌉
packet to be conveyed to the destination. Play-out of an AV frame requires
all packets carrying the frame information to have been received in due
time. Generalize the analysis of the delay equalization buffer of this chapter
to the multi-packet per frame case.
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1.2 Generalize further the model of Problem 1.1 by letting the number M of
packets (each having a fixed length L) per AV frame be a random variable
with probability distribution qm ≡ (M = m), m ≥ 1. Give an expression of
the starvation probability for an assigned PDF of the network delay fD(x),
under the same assumptions as in Section 1.3.1.
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