
Discovering
Target-Branched Declare Constraints

Claudio Di Ciccio1, Fabrizio Maria Maggi2, and Jan Mendling1

1 Vienna University of Business and Economics, Austria,
{claudio.di.ciccio,jan.mendling}@wu.ac.at

2 University of Tartu, Estonia,
f.m.maggi@ut.ee

Abstract. Process discovery is the task of generating models from event
logs. Mining processes that operate in an environment of high variabil-
ity is an ongoing research challenge because various algorithms tend to
produce spaghetti-like models. This is particularly the case when pro-
cedural models are generated. A promising direction to tackle this chal-
lenge is the usage of declarative process modelling languages like Declare,
which summarise complex behaviour in a compact set of behavioural con-
straints. However, Declare constraints with branching are expensive to
be calculated.In addition, it is often the case that hundreds of branching
Declare constraints are valid for the same log, thus making, again, the
discovery results unreadable. In this paper, we address these problems
from a theoretical angle. More specifically, we define the class of Target-
Branched Declare constraints and investigate the formal properties it
exhibits. Furthermore, we present a technique for the efficient discovery
of compact Target-Branched Declare models. We discuss the merits of
our work through an evaluation based on a prototypical implementation
using both artificial and real-world event logs.

Keywords: Process Mining; Discovery; Declarative Processes

1 Introduction

Process discovery is the important initial step of business process management
that aims at arriving at an as-is model of an investigated process [8]. Due to this
step being difficult and time-consuming, various techniques have been proposed
to automatically discover a process model from event logs. These log data are
often generated from information systems that support parts or the entirety of
a process. The result is typically presented as a Petri net or a similar kind of
flow chart and the automatic discovery is referred to as process mining.

While process mining has proven to be a power technique for structured and
standardised processes, there is an ongoing debate on how processes with a high
degree of variability can be effectively mined. One approach to this problem is
to generate a declarative process model, which rather shows the constraints of
behaviour instead of the available execution sequences. The resulting models

2 Di Ciccio, Maggi, Mendling

are represented in languages like Declare. In many cases they provide a way
to represent complex, unstructured behaviour in a compact way, which would
look overly complex in a spaghetti-like Petri net. However, simple branching
statements like “if you do a, you will do eventually either b or c” cannot be
easily mined for Declare models.

In this paper, we address the problem of mining Declare branching con-
straints. We define the class of Target-Branched Declare and devise efficient
mining algorithms for it. The key idea is to exploit dominance relationships,
which help to drastically prune the search space. We present formal proofs to
demonstrate its merits. A prototypical implementation is used for performance
analysis, emphasising feasibility and efficiency for our approach.

Against this background, this paper is structured as follows. Section 2 intro-
duces the essential concepts of Declare. Section 3 provides the formal foundations
for mining Target-Branched constraints. Section 4 defines the construction of a
knowledge base from which the final constraint set is built. Section 5 describes
the performance evaluation. Section 6 investigates our contribution in the light of
related work. Section 7 concludes the paper with an outlook on future research.

2 Background on Mining Declarative Process Models

One of the challenges in process mining is the compact presentation of the mined
behaviour. It has been observed that procedural models such as Petri nets tend
to become overly complex for flexible processes that are situated in a dynamic
environment. Therefore, it has been argued to rather utilise declarative models
in such a context, in order to facilitate better understanding of the mined process
by humans [9,22].

One of the most frequently used declarative languages is Declare introduced
by Pesic and van der Aalst in [26]. Instead of explicitly specifying the sequence
of events, Declare consists of a set of constraints that are applied to activities.
Constraints, in turn, are based on templates that define parametrised classes of
properties. Templates have a graphical representation and their semantics can be
formalised using formal logics [21,7], the main one being Linear Temporal Logic
over finite traces (LTLf). In this way, analysts work with the graphical repre-
sentation of templates, while the underlying formulas remain hidden. Table 1
summarises important Declare templates. For a complete specification see [26].
Here, we indicate template parameters with x or y symbols and real activities
in their instantiations with a, b or c letters.

The formulas shown in Table 1 can be readily formulated using natural
language. The RespondedExistence template specifies that if x occurs, then y
should also occur (either before or after x). The Response template specifies
that when x occurs, then y should eventually occur after x. The Precedence
template indicates that y should occur only if x has occurred before. The tem-
plates AlternateResponse and AlternatePrecedence strengthen the Response and
Precedence templates respectively by specifying that activities must alternate
without repetitions in between. Even stronger ordering relations are specified by

Discovering Target-Branched Declare Constraints 3

Template Formalisation Notation

RespondedExistencepx, yq 3xÑ 3y x ‚ÝÝÝÝ y

Responsepx, yq lpxÑ 3yq x ‚ÝÝÝ§ y

Precedencepx, yq yW x x ÝÝÝ§‚ y

AlternateResponsepx, yq lpxÑ˝p xU yqq x ‚ùùù§ y

AlternatePrecedencepx, yq p yW xq ^lpy Ñ˝p yW xqq x ùùù§‚ y

ChainResponsepx, yq lpxÑ˝yq x ‚ùÝùÝùÝ§ y

ChainPrecedencepx, yq lp˝y Ñ xq x ùÝùÝùÝ§‚ y

Table 1: Graphical notation and LTLf formalisation of some Declare templates

templates ChainResponse and ChainPrecedence. These templates require that
the occurrences of the two activities (x and y) are next to each other.

In order to illustrate semantics, consider the Response constraint lpaÑ 3bq.
This constraint indicates that if a occurs, b must eventually follow. Therefore,
this constraint is satisfied for traces such as t1 = xa, a, b, cy, t2 “ xb, b, c, dy, and
t3 “ xa, b, c, by, but not for t4 “ xa, b, a, cy because, in this case, the second
instance of a is not followed by a b.

An activation of a constraint in a trace is an event whose occurrence imposes
some obligations on other target events in the same trace. E.g., a is an activation
and b is a target for the Response constraint lpaÑ 3bq, because the execution
of a forces b to be executed eventually. When a trace is compliant with respect
to a constraint, every activation of it leads to a fulfillment. Consider, again, the
Response constraint lpa Ñ 3bq. In trace t1, the constraint is activated and
fulfilled twice, whereas, in t3, the same constraint is activated and fulfilled only
once. On the other hand, when a trace is not compliant, an activation of it can
lead to a fulfillment but also at least to one activation violation. In trace t4,
the Response constraint lpaÑ 3bq is activated twice: the first activation leads
to a fulfillment (eventually b occurs) and the second activation to a violation (b
does not occur subsequently). An algorithm to check fulfillments and violations
is presented in [2]. To judge the relevance of constraints, we adopt support and
confidence from data mining [1]. The support of a Declare constraint in an event
log is defined as the fraction of activations of the constraint that lead to a
fulfillment. The confidence of a Declare constraint is the product between the
support of the rule and the support of the activation, i.e., the percentage of
traces in which the activation occurs.

In spite of its advantages, one of the conceptual limitations of mining De-
clare constraints at this stage is the lack of support for branching. Branching as
supported in the synthesis approach for behavioural profiles [28,24] and for the
alpha algorithm [25] try to explicit mine for statements like “if you do a, you
will (eventually) do either b or c”. Such exclusiveness statements are typically
used in experiments on process model understanding, see [18], because of their
practical importance. Therefore, we investigate how Declare can be enriched

4 Di Ciccio, Maggi, Mendling

with branching constraints in such a way that mining can still be conducted
efficiently.

3 Target-Branched Declare

In this section, we define Target-Branched Declare (TBDeclare). It extends De-
clare such that the target is not a single activity but a set. This means that
Responsepa, tb, cuq is a TBDeclare constraint stating that “if a occurs, b or c
must eventually follow”. In TBDeclare, a constraint template maps to a LTLf
formula, and a constraint is its interpretation over a log (see Table 2). The mod-
els of a constraint are therefore traces that comply with the formula. We consider
the class of TBDeclare for the reason that it exhibits interesting properties. First,
we prove that a property of set-dominance holds. Then, we discuss implications
of this for support. These properties will be exploited in the mining algorithm.

TBDeclare template LTLf semantics

RespondedExistencepx, Y q 3xÑ 3
Ž

yiPY
yi

Responsepx, Y q l

´

xÑ 3
Ž

yiPY
yi

¯

AlternateResponsepx, Y q l

´

xÑ©
´

 x U
Ž

yiPY
yi

¯¯

ChainResponsepx, Y q l

´

xÑ©
Ž

yiPY
yi

¯

PrecedencepY, xq xW
Ž

yiPY
yi

AlternatePrecedencepY, xq PrecedencepY, xq ^l pxÑ©PrecedencepY, xqq

ChainPrecedencepY, xq l

´

©xÑ
´

Ž

yiPY
yi

¯¯

Table 2: LTLf semantics for Target-Branched Declare constraints, given an ac-
tivity x and a set of activities Y “ tyi|i ą 0u

3.1 Set-Dominance

In this subsection, we identify that the inclusion property of two branching sets
translates into the inclusion of their fulfilment of a constraint template.

Lemma 1. Given a task x in the process alphabet Σ, two non-empty sets of
tasks Y and Y 1 such that Y Ď Y 1 Ď Σ, and a TBDeclare constraint template C,
then Cpx, Y q |ù Cpx, Y 1q.

Proof (sketch). In the base case, Y “ Y 1 “ ty1, . . . , ynu. Therefore, Cpx, Y q ”
Cpx, Y 1q.

If Y 1 “ Y
Ť

tyn`1u, with yn`1 R Y , the demonstration proceeds by proving
the statement for each constraint template.

RespondedExistencepx, Y 1q ” 3x Ñ 3 p
Žn
i“1 yi _ yn`1q. Recalling that,

given two non-negated literals ϕ and ψ:

Discovering Target-Branched Declare Constraints 5

(a) ϕÑ ψ ” ϕ_ ψ, and
(b) 3pϕ_ ψq ” 3ϕ_3ψ,

we have that RespondedExistencepx, Y 1q ” 3x _
Žn
i“1 3yi _ 3yn`1. Conse-

quently, RespondedExistencepx, Y 1q ” RespondedExistencepx, Y q _ yn`1. Given
a formula Φ and a non-negated literal ψ, Φ |ù Φ _ ψ. Therefore, Lemma 1 for
RespondedExistence is proven. The argument for the other templates has been
established in a similar way, which is here omitted for space reasons. [\

3.2 Support Monotone Non-Decrement w.r.t. Set-Dominance

Given a constraint C and a log L, the support function S pC,Lq returns the
number of cases in which the constraint is verified (C`L) over the number of cases
in which the constraint is activated along the log (CTL):

S pC,Lq “
C`L
CTL

Theorem 1 describes the monotonic non-decreasing trend of support for con-
straints with respect to set-containment of the target set of activities.

Theorem 1. Given a task a in the process alphabet Σ, two non-empty sets of
tasks Y and Y 1 such that Y Ď Y 1 Ď Σ, a log L and a TBDeclare constraint
template C, then S pCpx, Y q, Lq ď S pCpx, Y 1q, Lq.

Proof. In the following, we name the number of cases in which Cpx, Y q and
Cpx, Y 1q are verified as, resp., C`L and C 1`L . In the light of Lemma 1, if Y Ď Y 1

then Cpx, Y q |ù Cpx, Y 1q. Therefore, due to the definition of model for a constraint
w.r.t. a log, we have C`L ď C 1`L . Since a is the activation for both constraints,
the cases in which they are activated are the same, accounting to CTL . As a

consequence,
C`L
CTL

ď
C1`L
CTL

. [\

4 Discovery

This section describes MINERful for Target-Branched Declare (TB-MINERful),
a three step algorithm for: (i) building a knowledge base, which keeps statistics
on task occurrences; (ii) querying the knowledge base for support and confidence
of constraints; (iii) pruning constraints not having sufficient support and confi-
dence. The input of the algorithm is a log L based on a log alphabet Σ. Three
thresholds can be specified: (i) branching factor, limiting the size of the activity
sets for discovered constraints, (ii) support, and (iii) confidence.

4.1 The Knowledge Base

The first step is the construction of a knowledge base keeping statistics on task
occurrences in the log. It consists of 9 functions listed below along with a semi-
formal definition. We indicate parameters for constraints as x, y, z. Y , Z are

6 Di Ciccio, Maggi, Mendling

set-parameters. Consider, e.g., a set of activities Σ “ ta, b, c, du (log alphabet).
While a, b, c, d refers to activity instantiations, a possible instantiation of Y is
tb, cu. As example log we use L “ txa, a, b, a, c, ay, xa, a, b, a, c, a, dyu.

–

γ0 pxq counts the traces where x did not occur. For instance,


γ0 paq “ 0 for

L, because a occurs in every trace.

γ0 pdq “ 1 instead.

– Γ pxq counts the occurrences of x. Therefore, Γ paq “ 8 in L.

–
Û

δ0 px, Y q counts the occurrences of x with no following y P Y in the traces.

In the example, e.g.,
Û

δ0 pa, tduq “ 4,
Û

δ0 pa, tbuq “ 4, and
Û

δ0 pa, tb, cuq “ 2.

–
Ú

δ0 px, Y q counts the occurrences of x with no preceding y P Y in the traces.

Thus, e.g.,
Ú

δ0 pa, tduq “ 8,
Ú

δ0 pa, tbuq “ 4, and
Ú

δ0 pa, tb, cuq “ 4.

–
Ü

δ0 px, Y q counts the occurrences of x with no y P Y in the traces. Therefore,
Ü

δ0 pa, tduq “ 1, and
Ü

δ0 pa, tb, duq “ 0 in L.

–
Ñ

δ1 px, yq counts the occurrences of x having y as the next event. Hence,
Ñ

δ1 pa, bq “ 2,
Ñ

δ1 pa, dq “ 1.

–
Ð

δ1 px, yq counts the occurrences of x having y as the preceding event. In L,
Ñ

δ1 pa, bq “ 2 and
Ñ

δ1 pa, dq “ 0.

–
í

β px, Y q counts how many times x repeats until the first y P Y . If no y P Y
appears in the trace, the count is not further considered. In the example,
í

β pa, tbuq “ 2,
í

β pa, tcuq “ 4,
í

β pa, tb, cuq “ 2, and
í

β pa, tb, duq “ 3.

–
ì

β px, Y q is similar to
í

β px, Y q , but reading the trace contrariwise. Thus,
ì

β pa, tbuq “ 2,
ì

β pa, tcuq “ 0,
ì

β pa, tb, cuq “ 0, and
ì

β pa, tb, duq “ 2.
Next, we discuss how this knowledge base is built based on an input log.

4.2 Building the Knowledge Base

Here, we define an algorithm for building the knowledge base, which requires
one run over the traces to update it. This makes the algorithm linear w.r.t. the
number of traces and their length.

For evaluating
Û

δ0 px, Y q, the technique executes two steps for each string. As
a first step, it computes for every activity y P Σztxu the value to accumulate in
Û

δ0 px, yq, i.e., Nδ0x,y . We will also refer to Nδ0x,y as a pairwise counter. Table 3a

shows how this is achieved for xa, a, b, a, c, ay. Nδ0x,y is incremented by 1 every

time x is read, while parsing the trace. When y is read, Nδ0x,y is reset to 0.
The � symbol indicates this operation (“flush”). At the end of the trace, the
value stored in Nδ0x,y reports the occurrences of x after which no y occurred.
Pairwise counters do not take into account the relation of x with sets of activities,
though. On the other hand, computing a value for each Y P P pΣztauq would
be impractical. Therefore, we build differential cumulative set-counters, ∆Nδ0x,Y . If

Discovering Target-Branched Declare Constraints 7

Trace

a a b a c a

N
δ0
a,b 1 2 � 1 2

Nδ0a,c 1 2 3 � 1

N
δ0
a,d 1 2 3 4

(a) Computation of ∆Nδ0a,¨

N
δ0
a,¨ ∆N

δ0
a,¨

N
δ0
a,b “ 1` Nδ0a,c “ 1 N

δ0
a,d “ 1` ñ ∆N

δ0
a,tb,c,du

“ 1

1 1` ñ ∆N
δ0
a,tb, du

“ 1

2 ñ ∆N
δ0
a,t du

“ 2

(b) Computation of ∆Nδ0a,¨, given the values of Nδ0a,¨

Table 3: Computation of Nδ0a,¨ and ∆Nδ0a,¨, given a sample trace: xa, a, b, a, c, ay

∆N
δ0
a,¨ ñ

Û

δ0 pa, ¨ q

tb, c, du “ 1 ñ
Û

δ0 pa, tb, c, duq “
Û

δ0 pa, tc, duq “
Û

δ0 pa, tcuq “ 1

tb, du “ 1 ñ
Û

δ0 pa, tb, duq “
Û

δ0 pa, tbuq “ 2

t du “ 2 ñ
Û

δ0 pa, tduq “ 4

Table 4: Computation of
Û

δ0 pa, ¨q , given ∆Nδ0a,¨

Y Ď Z, ∆Nδ0x,Z reports the number of times in which none of its elements occurred

in the trace after x. ∆Nδ0x,Y reports only the difference between (i) the number of

times in which no y P Y occurred, and (ii) ∆Nδ0x,Z . Therefore, in xa, a, b, a, c, ay,

we have that ∆Nδ0a,tb,c,du “ 1, ∆Nδ0a,tb,du “ 1, and ∆Nδ0a,tdu “ 2. Passing from pairwise

counters to differential cumulative set-counters is a linear operation: Table 3b

sketches the technique. From this data structure,
Û

δ0 px, Y q can be extracted as
follows:

Û

δ0 px, Y q “
ÿ

ZĚY

∆Nδ0x,Z

Table 4 shows the extraction for the example trace. It is straightforward to
see that the differential accumulation (∆Nδ0x,Y) allows for keeping fewer values
in memory (3 in the example) than the possible entries for the knowledge base

(
Û

δ0 px, Y q, which amounts to 6). Every time a new trace is parsed, Nδ0x,y is reset
to 0 for each x, y P Σ. At the end of the analysis of every subsequent trace,

values for a new structure ∆N
δ
1

0

x,Y are calculated. Thereupon, they are added to
the preceding results. It might happen that a new Z set was not considered in

∆Nδ0x,¨ for previous traces, but a new ∆N
δ
1

0

a,Z is computed. In such case, ∆Nδ0x,Z is

considered as 0 by the default and the new value in ∆N
δ
1

0

x,Z is added. This technique

extends to the computation of
Ú

δ0 px, Y q and
Ü

δ0 px, Y q with slight modifications.
The values of the remaining functions are also determined in a similar way.
However, the detailed descriptions are here omitted for the sake of space.

8 Di Ciccio, Maggi, Mendling

4.3 Querying the Knowledge Base

Once the knowledge base is built, the support of constraints can be calculated.
Table 5 lists the functions adopted to this extent, for each TBDeclare constraint.
All queries build upon a Laplacian concept of probability with support being

TBDeclare constraint Support

RespondedExistencepx, Y q 1´
Ü
δ0px,Y q
Γ pxq

Responsepx, Y q 1´
Û
δ0px,Y q
Γ pxq

AlternateResponsepx, Y q 1´
Û
δ0px,Y q`

í
β px,Y q

Γ pxq

ChainResponsepx, Y q
ř

yPY

Ñ
δ1px,yq

Γ pxq

PrecedencepY, xq 1´
Ú
δ0px,Y q
Γ pxq

AlternatePrecedencepY, xq 1´
Ú
δ0px,Y q`

ì
β px,Y q

Γ pxq

ChainPrecedencepY, xq
ř

yPY

Ð
δ1px,yq

Γ pxq

Table 5: Target-Branched Declare constraints and support functions

computed as the number of supporting cases divided by the total number of
cases. In particular, the total number of cases is the count of occurrences of
the activation in the log, Γ pxq. For ChainResponsepx, Y q, supporting cases are

those occurrences of a immediately followed by some y P Y , i.e.,
Ñ

δ1 px, yq. Sup-
porting cases can be summed up because if x is followed by a given y P Y
in a trace, it cannot be immediately followed by any other event z P Y . In
other words, the two cases are mutually exclusive. However, this assumption
does not hold true, e.g., for Responsepx, Y q. Therefore, we consider the non-

supporting cases, when x is not followed by any of the y P Y , i.e.,
Û

δ0 px, Y q.
We get that P pEq “ 1´ P pEq with P pEq being the probability of E and E its

negation. Hence, the support of Responsepx, Y q is 1´
Û

δ0px,Y q
Γ pxq . Likewise, the sup-

port of RespondedExistencepx, Y q is computed on the basis of the non-supporting
cases. The support of AlternateResponsepx, Y q is then based on the cases when

either (i) x is not followed by any y P Y (
Ü

δ0 px, Y q), or (ii) x occurs more

than once before the first occurrence of y P Y (
í

β px, Y q). The two conditions
are mutually exclusive. Therefore, it is appropriate to sum them up. Similar
considerations lead to the definition of support functions for PrecedencepY, xq,
AlternatePrecedencepY, xq and ChainPrecedencepY, xq.

Discovering Target-Branched Declare Constraints 9

Confidence is computed as the constraint’s support multiplied by the frac-
tion of traces where the activation occurs. Therefore, given a TBDeclare con-
straint Cpx, Y q, a log L, and the support function S pCpx, Y q, Lq, the confidence
of Cpx, Y q w.r.t. L, L pCpx, Y q, Lq, is defined as

L pCpx, Y q, Lq “ S pCpx, Y q, Lq ˆ

˜

1´


γ0 pxq

Γ pxq

¸

4.4 Pruning the Returned Constraints

The power-set of activities in the log alphabet amounts to 2|Σ|´1. Therefore, if
we name the number of TBDeclare constraint templates as N , up to N ˆ 2|Σ|´1

constraints can potentially hold true. When a maximum limit to the cardinality
of the set is imposed, the number is reduced to

|Σ| ˆN ˆ

min tρ , |Σ|´1u
ÿ

i“1

ˆ

|Σ| ´ 1

i

˙

However, even with branching factor set to 3 and |Σ| “ 10, already 3087 con-
straints have to be evaluated. A model including such a number of constraints
would be hardly comprehensible for humans [18,26]. In order to reduce this num-
ber, we adopt pruning based on set-dominance and on hierarchy subsumption.

Pruning Based on Set-Dominance. The idea of this pruning approach is
that if, e.g., Responsepa, tb, cuq and Responsepa, tb, c, duq have the same support,
the first is more informative than the second. Indeed, stating that “if a is exe-
cuted then either b or c would eventually follow”, implies that also “either b, c or d
would eventually follow”. In general terms, the support of TBDeclare constraints
that are instantiations of the same template and share the activation increases
according to the set-containment relation of target activities (see Theorem 1). To
this end, the mining algorithm distributes the discovered constraints, along with
their computed support, on a structure like the Hasse Diagram of Figure 1. This
is a Direct-Acyclic Graph, such that a breadth-first search can be implemented.
For each constraint, the pruning technique visits the nodes, from the biggest in
size to the smallest. For instance, it can start from Responsepa, tb, c, d, euq, i.e.,
the sink node, if the branching factor is equal to the size of the log alphabet.
Given the current node, it checks whether in one of the parent nodes a constraint
is stored (i.e., Responsepa, tb, c, duq, Responsepa, tb, c, euq, Responsepa, tb, d, euq,
Responsepa, tc, d, euq) with greater or equal support. If so, it marks the current as
redundant, and proceeds the visit towards the parent nodes that are not already
marked as redundant. Otherwise, it marks all the ancestors as redundant. The
parsing ends when either (i) the visit reaches the root node, or (ii) no parent,
which is not already marked as redundant, is available for the visit.

10 Di Ciccio, Maggi, Mendling

tu

tbu tcu tdu teu

tb, cu tb, du tb, eu tc, du tc, eu td, eu

tb, c, du tb, c, eu tb, d, eu tc, d, eu

tb, c, d, eu

Rspn’edExist.ta , bu
Responseta , bu

Precedencetb , au
. . .

Rspn’edExist.ta , tb, cuu
Responseta , tb, cuu

Precedencettb, cu , au
. . .

Rspn’edExist.ta , tb, c, duu
Responseta , tb, c, duu

Precedencettb, c, du , au
. . .

Rspn’edExist.ta , tb, c, d, euu
Responseta , tb, c, d, euu

Precedencettb, c, d, eu , au
. . .

ρ “ 1

ρ “ 2

ρ “ 3

ρ “ 4

Fig. 1: A Hasse Diagram representing the Partial Order set containment relation.
Containing sets are at the head of connecting arcs, contained sets are at the tail.

RespondedExistencepx, Y q

Responsepx, Y q

AlternateResponsepx, Y q

ChainResponsepx, Y q

PrecedencepY, xq

AlternatePrecedencepY, xq

ChainPrecedencepY, xq

Fig. 2: Diagram showing the subsump-
tion hierarchy relation. Constraints that
are subsumed are at the tail.

Pruning Based on Hierarchy
Subsumption. As investigated in
[7,23,13], Declare constraints are not
independent, but partially form a
subsumption hierarchy. We consider
a constraint Cpx, Y q subsumed by
another constraint C1px, Y q when
all the traces that comply with
Cpx, Y q also comply with C1px, Y q.
Responsepx, Y q, e.g., is subsumed by
RespondedExistencepx, Y q. Figure 2
depicts the subsumption hierarchy for
TBDeclare constraints. It follows that
a subsumed constraint always has a support which is less than or equal
to the subsuming one. This pruning technique aims at keeping those con-
straints that are the most restrictive, among the most supported. There-
fore, it labels as redundant every constraint C which is at the same time
(i) subsumed by another constraint C 1, and (ii) having a lower support
than C 1. Therefore, if, e.g, given a log L, S pRespondedExistencepx, Y q, Lq ą
S pResponsepx, Y q, Lq, then Responsepx, Y q is marked as redundant. However, if
S pRespondedExistencepx, Y q, Lq “ S pResponsepx, Y q, Lq, then Responsepx, Y q
is preferred. This is due to the fact that more restrictive constraints hold more
information than the less restrictive ones. The pruning approach is based on
the monotone non-decrement of support (cf. Figure 2). It operates as follows.
Starting from the root of the hierarchy tree, if a constraint has a support equal
to one of the children, it is marked as redundant and the visit proceeds with the
children. If a child has a support which is lower than the parent, it is marked as
redundant. All its children will be automatically marked as redundant as well,
as they cannot have a higher support.

Both pruning techniques complement one another in reducing the constraint set.

Discovering Target-Branched Declare Constraints 11

100

10000

5 8 11 14
Number of activities

N
um

be
r

of
 c

on
st

ra
in

ts
 [l

og
]

(a) Number of discovered
constraints as function of
the log alphabet size

100

10000

2 4 6 8
Branching factor

(b) Number of discovered
constraints as function of
the branching factor

10

100

1000

0.85 0.90 0.95 1.00
Support threshold

Pruning phase
0) No pruning
1) Set−containment (SC)
2) SC + Hierarchy (H)
3) SC + H + Support threshold
No pruning, above support th.

(c) Number of discovered
constraints as function of
the branching factor

Fig. 3: Effectiveness tests performed on synthetic logs.

5 Experiments and Evaluation

In this section, we investigate the efficiency and effectiveness of our approach.
Section 5.1 shows results obtained by applying the proposed technique on syn-
thetic logs. Section 5.2 demonstrates the effectiveness of our approach for event
logs from a loan application process of a Dutch financial institute. All experi-
ments were run on a server machine equipped with Intel Xeon CPU E5-2650 v2
2.60GHz, using 1 64-bit CPU core and 32GB main memory quota.

5.1 Evaluation Based on Simulation

To test the effectiveness and the efficiency of our approach, we have defined a
simple Declare model including the following constraints:

– ChainPrecedence(ta,bu, c)

– ChainPrecedence(ta,b,du, c)

– AlternateResponse(a, tb,cu)

– RespondedExistencepa, tb,c,d,euq

– Responsepa, tb,cuq

– Precedence(ta,b,c,du, e)

and we have simulated it to generate a compliant event log as described in [7].
In our experiments, we focus on different characteristics of the discovery task
including average length of the traces, number of traces, and number of activities.
Moreover, we consider characteristics of the discovered model including minimum
support and maximum number of branches. In our experiments, we have run the
algorithm varying the value of one variable at a time. The remaining variables
were fixed and corresponding to 4 and 25 for resp. minimum and maximum trace
length, 10,000 for log size, 8 for log alphabet size, 1.0 for support threshold, and
3 for branching factor.

Effectiveness: First, we demonstrate the effectiveness of our approach by inves-
tigating the reduction effect of the proposed pruning techniques. In particular,

12 Di Ciccio, Maggi, Mendling

we analyse the trend of the variable “number of discovered constraints” as a
function of log alphabet size, branching factor, and support threshold.

Figure 3a shows the trend (in logarithmic scale) of the number of discov-
ered constraints by varying the log alphabet size. Different curves refer to dif-
ferent configurations of the miner: without any pruning (diamonds); with set-
containment-based pruning (crosses); with set-containment- and hierarchy-based
pruning (asterisks); with set-containment- and hierarchy-based pruning, along
with support threshold (points); with support threshold only (triangles). This
plot provides evidence that as the number of activities in the log alphabet in-
creases, the number of discovered constraints increases as well. However, we
discover a lower increase of constraints as we proceed further in the sequence
of pruning techniques. Moreover, there is a significant difference between the
number of discovered constraints with filtering based on the minimum support
threshold, and based on the pruning techniques presented in this paper. This
improvement yields a reduction ratio of 84% (100.3 v. 15.2, on average).

Figure 3b shows the trend (in logarithmic scale) of the number of discov-
ered constraints by varying the branching factor. Here, the trend of the number
of discovered constraints is different for different configurations. Without prun-
ing, or with the simple filtering by minimum support threshold, the number of
discovered constraints increases as the number of branches increases. On the
other hand, when we apply the set-dominance- and hierarchy-based pruning
techniques, the number of discovered constraints increases up to a branching
value of 3. After this value, the number of constraints decreases. When we apply
all the proposed pruning techniques together the number of constraints eventu-
ally increases. In addition, the number of constraints obtained by applying set-
dominance and subsumption hierarchy converges to the number of constraints
discovered when all the pruning techniques are applied together. The difference
between the number of discovered constraint with support threshold and the
number after using the pruning techniques presented in this paper is quantified
(branching factor of 8) in a reduction ratio of 88% (46.2 v. 5.2, on average).

The plot in Figure 3c confirms that for any threshold between 0.85 and 1.0,
the number of constraints discovered by applying all the pruning techniques is
lower than the one obtained by applying the support-threshold filtering. The
reduction ratio is indeed 93% (331.8 v. 22, on average), when the threshold is
set to 1.0.

Efficiency: Second, we focus on time efficiency of our approach. We observe
that efficiency strongly depends on the template. In particular, the “alternate”
templates are less performative. Figure 4a shows this by plotting the computa-
tion time as function of the log alphabet size (in logarithmic scale). When the
alternate templates are included in the evaluation, the computation time grows
exponentially with the growth of the alphabet size.

As a next step, we therefore exclude the alternate templates and get the com-
putation time as a function of log alphabet size (Figure 4b), log size (Figure 5a),
and average trace size (Figure 5b). Figure 4b shows the trend (in logarithmic
scale) of the computation time by varying the log alphabet size. Different curves

Discovering Target-Branched Declare Constraints 13

1e+05

1e+07

5 8 11 14
Activities

C
om

pu
ta

tio
n

tim
e

[lo
g

m
se

c]

Computation

●●
W/ Alternate cns.
W/o Alternate cns.

(a) Efficiency test results, including and
excluding alternate templates in the
evaluation

1e+03

1e+04

1e+05

5 10 15 20 25 30
Activities

C
om

pu
ta

tio
n

tim
e

[lo
g

m
se

c]

Computation

●●●
●●●

KB
Querying
Total

(b) Efficiency test results, w.r.t. the dif-
ferent phase of the algorithm

Fig. 4: Efficiency tests performed on synthetic logs, considering computation time
as function of the log alphabet size.

refer to the computation time for (i) the knowledge base construction, (ii) the
querying on the knowledge base, and (iii) to the total computation time. Notice
that there is a break point when the log alphabet is composed of 12 activities
in which the query time becomes higher than the knowledge base construction
time. Figure 5a shows the trend (in logarithmic scale) of the computation time
by varying the log size, whereas Figure 5b depicts the trend (in logarithmic
scale) of the computation time by varying the average trace size. In both cases
the query clearly outperforms the knowledge base construction time.

5.2 Evaluation Based on Real Data

We have evaluated the applicability of our approach using real-world event logs
provided for the BPI challenge 2012 [27]. The event log pertains to an application
process for personal loans or overdrafts of a Dutch bank. It contains 262,200
events distributed across 24 different possible event names and includes 13,087
cases.

In this case, it is possible to prune the list of discovered constraints in
order to obtain a compact set of constraint, which is understandable for human
analysts. By applying the miner with a support equal to 1, confidence equal to
0.85, and branching factor 5, we obtain the following 11 constraints:

ChainResponse(A SUBMITTED, A PARTLYSUBMITTED)

ChainPrecedence(A SUBMITTED, A PARTLYSUBMITTED)

ResponsepA SUBMITTED, tA PREACCEPTED,A DECLINED,A CANCELLEDuq

ResponsepA SUBMITTED, tA PREACCEPTED,A DECLINED,W Afhandelen leadsuq

14 Di Ciccio, Maggi, Mendling

0

10000

20000

30000

0 25000 50000 75000 100000
Traces

C
om

pu
ta

tio
n

tim
e

[m
se

c]

Computation

●●●
●●●

KB
Querying
Total

(a) Computation time as function of the
log size

2500

5000

7500

5.0 7.5 10.0
Avg. events read per trace

C
om

pu
ta

tio
n

tim
e

[m
se

c]

Computation
KB
Querying
Total

(b) Computation time as function of the
average trace size

Fig. 5: Efficiency tests performed on synthetic logs.

ResponsepA SUBMITTED, tW Completeren aanvraag,A DECLINED,A CANCELLEDuq

ResponsepA SUBMITTED, tW Completeren aanvraag,A DECLINED,W Afhandelen leadsuq

RespondedExistencepA PARTLYSUBMITTED, tA SUBMITTEDuq

ResponsepA PARTLYSUBMITTED, tA PREACCEPTED,A DECLINED,A CANCELLEDuq

ResponsepA PARTLYSUBMITTED, tA PREACCEPTED,A DECLINED,W Afhandelen leadsuq

ChainResponse(A PARTLYSUBMITTED, tA PREACCEPTED,A DECLINED,W Afhandelen leads,W Beoordelen fraudeu)

ResponsepA PARTLYSUBMITTED, tW Completeren aanvraag,A DECLINED,A CANCELLEDuq

ResponsepA PARTLYSUBMITTED, tW Completeren aanvraag,A DECLINED,W Afhandelen leadsuq

These results have been derived with a computation time of 7.2 sec for the
construction of the knowledge base, and 25.98 min for constraint mining.

6 Related Work

Several analysis tools for Declare are available in the literature. Some of them
have been implemented as plug-ins of the process mining tool ProM [12].

Some approaches focus on the run-time monitoring of compliance specifi-
cations defined through Declare. For example, in [16,11], the authors propose
a technique for monitoring Declare models based on finite state automata. In
[29], the authors define Timed Declare, an extension of Declare that relies on
timed automata. In [19], the EC is used for defining a data-aware semantics for
Declare. In [20], the authors propose an approach for monitoring data-aware De-
clare constraints at run-time based on this semantics. This approach also allows
the verification of metric temporal constraints.

Other works [10,3,5,7,17,15,14] focus on the discovery of Declare models. The
algorithms proposed in [5,17,15] are suitable for discovering standard Declare

Discovering Target-Branched Declare Constraints 15

models, also for highly flexible processes [6,4], but cannot be used for dealing
with Target-Branched Declare. From this perspective, the approaches proposed
in [10,3] are more flexible and allow for the specification of rules that go beyond
the traditional Declare templates. However, these approaches can be hardly used
in real-world settings since they are based on supervised learning techniques
requiring negative examples. In the work proposed in [14], a first-order variant
of LTL is used to specify a limited version of data-aware patterns. Such extended
patterns are used as the target language for a process discovery algorithm, which
produces data-aware Declare constraints from raw event logs. Also in this case
Target-Branched Declare is not supported.

7 Conclusion

In this paper, we have defined the class of Target-Branched Declare, which ex-
hibits interesting properties in terms of set-dominance. We exploit these prop-
erties for the definition of an efficient mining approach. Furthermore, we specify
pruning rules in order to arrive at a compact rule set. Our technique is evalu-
ated for efficiency and effectiveness using simulated data and the case of the BPI
2012 challenge. In future research, we aim to investigate potential for improving
efficiency. We also plan to extend our technique towards the coverage of data, in
order to discern which condition leads to a specific choice.

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Associ-
ation Rules in Large Databases. In VLDB, pages 487–499. Morgan Kaufmann,
1994.

2. A. Burattin, F.M. Maggi, W.M.P. van der Aalst, and A. Sperduti. Techniques for
a Posteriori Analysis of Declarative Processes. In EDOC, pages 41–50, 2012.

3. F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Ex-
ploiting Inductive Logic Programming Techniques for Declarative Process Mining.
ToPNoC, 5460:278–295, 2009.

4. Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. Knowledge-Intensive
Processes: An Overview of Contemporary Approaches. In KiBP, pages 33–47,
2012.

5. Claudio Di Ciccio and Massimo Mecella. Mining Constraints for Artful Processes.
In BIS, LNBIP 117, pages 11–23, 2012.

6. Claudio Di Ciccio and Massimo Mecella. Mining Artful Processes from Knowledge
Workers’ Emails. IEEE Internet Computing, 17(5):10–20, 09 2013.

7. Claudio Di Ciccio and Massimo Mecella. A Two-Step Fast Algorithm for the
Automated Discovery of Declarative Workflows. In CIDM, pages 135–142. 2013.

8. Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamen-
tals of Business Process Management. Springer, 2013.

9. Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo Reijers, Barbara Weber, Matthias
Weidlich, Stefan Zugal. Declarative versus Imperative Process Modeling Lan-
guages: The Issue of Understandability. In BPMDS, pages 353–366, 2009.

16 Di Ciccio, Maggi, Mendling

10. Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari. Applying In-
ductive Logic Programming to Process Mining. In Inductive Logic Programming,
LNCS 4894, pages 132–146, 2008.

11. F. M. Maggi, M. Westergaard, M. Montali, and W. M. P. van der Aalst. Runtime
Verification of LTL-based Declarative Process Models. In RV 2011, LNCS 7186,
pages 131–146.

12. Fabrizio Maria Maggi. Declarative Process Mining with the Declare Component
of ProM. In BPM (Demos), CEUR 1021, 2013.

13. Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst.
A Knowledge-Based Integrated Approach for Discovering and Repairing Declare
Maps. In CAiSE, LNCS 7908, pages 433–448, 2013.

14. Fabrizio Maria Maggi, Marlon Dumas, Luciano Garćıa-Bañuelos, and Marco Mon-
tali. Discovering Data-Aware Declarative Process Models from Event Logs. In
BPM, LNCS 8094, pages 81–96, 2013.

15. F.M. Maggi, J.C. Bose, and W.M.P. van der Aalst. Efficient Discovery of Under-
standable Declarative Models from Event Logs. In CAiSE, pages 270–285, 2012.

16. F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In BPM 2011, LNCS 6896, pages 132–147, 2011.

17. F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-Guided Discovery of
Declarative Process Models. In CIDM, pages 192–199. IEEE, 2011.

18. Jan Mendling, Mark Strembeck, and Jan Recker. Factors of Process Model Com-
prehension - Findings from a Series of Experiments. Decision Support Systems,
53(1):195–206, 2012.

19. Marco Montali, Federico Chesani, Fabrizio Maria Maggi, and Paola Mello. Towards
Data-Aware Constraints in Declare. In SAC, pages 1391–1396, 2013.

20. Marco Montali, Fabrizio Maria Maggi, Federico Chesani, Paola Mello, and Wil
M. P. van der Aalst. Monitoring Business Constraints with the Event Calculus.
ACM TIST, 5(1):17, 2013.

21. Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani, Paola
Mello, and Sergio Storari. Declarative Specification and Verification of Service
Choreographies. ACM Transactions on the Web, 4(1), 2010.

22. Hajo A. Reijers, Tijs Slaats, and Christian Stahl. Declarative Modeling–An Aca-
demic Dream or the Future for BPM? In BPM, LNCS 8094, pages 307–322, 2013.

23. Dennis M. M. Schunselaar, Fabrizio Maria Maggi, and Natalia Sidorova. Patterns
for a Log-Based Strengthening of Declarative Compliance Models. In IFM, LNCS
7321, pages 327–342, 2012.

24. Sergey Smirnov, Matthias Weidlich, and Jan Mendling. Business Process Model
Abstraction Based on Synthesis from Well-Structured Behavioral Profiles. Int. J.
Cooperative Inf. Syst., 21(1):55–83, 2012.

25. W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow Mining: Discov-
ering Process Models from Event Logs. IEEE TKDE, 16(9):1128–1142, 2004.

26. Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative Work-
flows: Balancing between Flexibility and Support. CSRD, 23(2):99–113, 2009.

27. B.F. van Dongen. BPI Challenge 2012, 2012.
28. Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, Jan Mendling, and Mathias

Weske. Process Compliance Analysis Based on Behavioural Profiles. Inf. Syst.,
36(7):1009–1025, 2011.

29. Michael Westergaard and Fabrizio Maria Maggi. Looking into the Future: Using
Timed Automata to Provide A Priori Advice about Timed Declarative Process
Models. In OTM, LNCS 7565, pages 250–267, 2012.

