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Abstract: Optical circular dichroism (CD) is an important phenomenon in nanophotonics,
that addresses top level applications such as circular polarized photon generation in optics,
enantiomeric recognition in biophotonics and so on. Chiral nanostructures can lead to high CD,
but the fabrication process usually requires a large effort, and extrinsic chiral samples can be produced
by simpler techniques. Glancing angle deposition of gold on GaAs nanowires can (NWs) induces
a symmetry breaking that leads to an optical CD response that mimics chiral behavior. The GaAs
NWs have been fabricated by a self-catalyzed, bottom-up approach, leading to large surfaces and
high-quality samples at a relatively low cost. Here, we investigate the second harmonic generation
circular dichroism (SHG-CD) signal on GaAs nanowires partially covered with Au. SHG is a nonlinear
process of even order, and thus extremely sensitive to symmetry breaking. Therefore, the visibility of
the signal is very high when the fabricated samples present resonances at first and second harmonic
frequencies (i.e., 800 and 400 nm, in our case).
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1. Introduction

Three to five compounds have been utilized efficiently in photonic applications [1] as a result of
their direct band gaps. Among these, the GaN semiconductor is important for its high transparency
and good nonlinear properties in the visible range thanks to its high energy gap (3.4 eV) [2]. GaAs,
for which the bandgap (1.42 eV) lies in the infrared, only recently have been utilized in the visible
range. Indeed, a new category of applications has exploited their very high refractive index (around 4
in the visible range) to guide light in an effective way in nanostructures like nanowires (NWs) by using
leaky waves [3,4], leading to different applications as emitters or even as laser sources [5].

By breaking the symmetry of the nanostructure–light interaction, it is possible to observe a
circular dichroism (CD) due to the so-called extrinsic chirality or pseudo chirality [6–8]. Chirality
is the lack of mirror symmetry [9], and can be probed using photoacoustic techniques that are
sensitive to the differential absorptions of opposite-handed light [10–12] or by techniques sensitive
to symmetry breaking such as second harmonic generation–circular dichroism (SHG-CD) [13,14].
In the case of extrinsic chirality, the high sensitivity of SHG is related to the fact that SHG can
only occur in systems with broken inversion symmetry, enabling background-free measurements
and leading to higher CD responses with respect other measurement systems [15]. The chiroptical
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responses of nanostructures have recently generated interest because most biomolecules are chiral,
and their enantiomeric discrimination is relevant to industries such as pharmacology, agrochemicals
and biotechnology, as well as for circularly polarized light emissions for communication and quantum
optics applications [16,17]. Moreover, organic chiral molecules are used in field-effect transistor devices
to detect or enhance the detection of circularly polarized light [18,19], while chiral oligothiophene
thin films have shown interesting chiroptical properties that are useful to optoelectronic devices for
imaging [20,21]. Thus, there is an evident need for a deep study of chiroptical effects at a nanoscale.

Recently, we observed that GaAs nanowires (NWs) offered interesting waveguiding properties
even for energies above the bandgap, thanks to the high refractive index of GaAs (in particular at
800 and 400 nm) [3]. We further verified, using photoacoustic spectroscopy, that when such GaAs
NWs were partially covered in gold they exhibited strong extrinsic chirality due to the breaking of
the symmetry induced by the asymmetric metal coating [11,12]. We also numerically investigated
near-field chiral effects in high-refractive-index nanowires with [22] and without [23] an asymmetric
plasmonic layer.

Here, we present SHG-CD measurements of gold coated GaAs NWs, confirming the strong presence
of extrinsic chirality and leading to potential applications in chiral light emissions and manipulation.

2. Materials and Methods

The structures under examination are nanowires of GaAs with a hexagonal cross section. They have
a core of GaAs surrounded by a thin shell of AlGaAs to passivate the GaAs surface, around which
there is a thin supershell of GaAs in order to prevent the oxidation of Al, as described in the scheme
in Figure 1a. The geometric parameters of the four samples that were fabricated are depicted in
Table 1 (the NW length L, the overall diameter D, AlGaAs shell thickness tAlGaAs, and GaAs supershell
thickness tGaAs).
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Table 1. Fabrication parameters of the nanowire (NW) samples. Data from [3].

Sample L (nm) D (nm) tAlGaAs (nm) tGaAs (nm)

A 4750 ± 34 138 ± 5 3.5 0.7
B 5190 ± 64 151 ± 5 8.6 1.7
C 4600 ± 52 165 ± 6 11.7 5.8
D 4690 ± 47 197 ± 9 27.7 5.5

The NWs were grown using molecular beam epitaxy on p-Si(111) wafers with lithography-free
Si/SiOx patterns for defining the nucleation sites, as described in [24]. The lengths of the wires were
about 5 microns while the diameters were in the 140–200 nm range (details in Table 1).

The as-fabricated NWs (before the gold coating) presented clear resonant modes in absorption [3]
at 800 nm (close to the band edge), with the exception of Sample D (Figure 2a), and a second-order
resonance at 400 nm, thus matching the first and second harmonic frequency of a standard Ti:–sapphire
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laser. This is due to the evidently larger overall diameter that red-shifts the modes into the transparent
region in Sample D.
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Half of each sample was asymmetrically coated with gold by glancing evaporation, as explained
in more detail in [10,24]. The average Au thickness deposited on the sidewalls was around 15 nm, and
the glanced evaporation resulted in the Au presence only on three out of six sidewalls, as described in
the inset of Figure 1c. The absorption spectra of the samples coated with gold were similar to the ones
without gold, except for a slight broadening of the resonant features, as shown in [10]. The Au-free
NWs were used as reference samples for the optical measurements.

The samples were then measured by a SHG-CD setup shown in Figure 2b.
At 800 nm, a linearly polarized Ti–sapphire fs laser with a pulse duration of 100 fs and a repetition

rate of 80 MHz was used on the sample at an incidence angle of 45◦. The average power was attenuated
with a chopper below 1 GW/cm2 to avoid sample damage or multiphoton processes. A quarter
waveplate was used to obtain either left circularly (LCP) or right circularly (RCP) polarized light.
A long-pass filter removed any spurious signals at the second harmonic wavelength (400 nm).

The sample itself was mounted on an automatic azimuthal rotation stage whose axis was aligned
with the incidence point. The SHG signal produced in the reflection was then detected after passing
through a short pass filter that removed the first harmonic pump. The SHG was analyzed in the
s (vertical) or p (horizontal) polarization state by an analyzer (linear polarizer). Since the output
SHG signal in p state was larger than the one in s state, we report explicitly only the p signal in this
manuscript. The signal was further filtered by a narrow bandpass filter centered at 400 nm (FWHM
10 nm) and finally detected by a photomultiplier tube in a gated photon counting regime.

As blank references, we also measured the bare p-Si(111) wafer (thickness of around 400 microns)
and a sonicated sample where the wires were removed, leading to a flat GaAs layer of about 50 nm on
p-Si(111) substrate.

All the SHG measurements were performed with the same intensity level of the laser.

3. Results

In Figure 3a, we show the measured p-polarized SHG signal from the blank reference sample
of the bare p-Si(111) as a function of azimuthal rotation of the sample for two orthogonal circular
polarization states of the laser pump (RCP and LCP), while in Figure 3b we show the measured
p-polarized SHG signal of the flat GaAs sonicated substrate under the same experimental conditions.
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Figure 3. (a) p-polarized SHG signal from the bare p-Si(111) sample for RCP and LCP light with a
maximum signal of 400 counts; (b) p-polarized SHG signal from the flat GaAs sonicated sample for
RCP and LCP light with a maximum signal of 5500 counts; (c) SEM image of the sonicated GaAs sample.
Horizontal residual GaAs crystallites are evident. In the measurements the azimuthal rotation angle
is relative.

The Si substrate response showed a clear, but low, SHG signal with three-fold symmetry, as expected
from the 111 crystallographic orientation. Si is a third order nonlinear material, and thus the SHG signal
is due to surface contribution. There was a small CD due to a normal incidence on the asymmetric
111 surface.

Meanwhile, the flat GaAs sample showed a larger SHG signal (×14 times the one of Si) due to its
bulk nonlinear coefficient [25]. In Figure 3c, the SEM image of the reference flat GaAs sample is shown,
which was obtained by Sample C after sonication in order to remove the NWs. In the figure, the largest
objects are the parasitic crystallites. The orientation of these crystallites correlated with the silicon
substrate, and their microstructures showed a three-fold geometrical symmetry with two possible
orientations for the crystallites, one being rotated by 180 degrees with respect to the other, leading to a
six-fold microstructure symmetry (also evidenced by the hexagonal shaper of the SHG measurements).
The roughness on the Si surface of the substrate in Figure 3c is parasitic polycrystalline AlGaAs/GaAs,
which formed during the shell growth. Since this layer grew on the oxide-covered areas of the Si
substrate, the orientation of these small crystallites was random and gave rise to the main isotropic
SHG signal in Figure 3b.

In Figure 4, we show the measured SHG-CD in p-pol light for both Si(111) and the sonicated
GaAs samples, defined as

SHG-CD =
I(2ω)LCP − I(2ω)RCP

I(2ω)LCP + I(2ω)RCP

(1)

where I(2ω)LCP is the intensity of SHG signal when the fundamental pumping light is circularly left

polarized, and I(2ω)RCP is the intensity of SHG signal when the fundamental pumping light is circularly
right polarized.

In the case of Si(111), the SHG-CD was regular even when it was lower than 0.2, while in the case
of GaAs it was randomly distributed at values lower than 0.1.

On the left side of each panel of Figure 5, the measured p-polarized SHG signal from Samples
A,B,C,D are shown without gold as a function of the azimuthal rotation of each sample for two
orthogonal circular polarization states of the laser pump (RCP and LCP), while on the right side of
each panel of Figure 5, the measured p-polarized SHG signal of Samples A,B,C,D are shown with
asymmetric gold coating. It is evident that the asymmetry in the structures of Samples A,B,C (with Au)
led to a strong difference in the SHG signal as a function of the handedness of the circular polarized
light, while the SHG response of Sample D with Au was very similar to its uncoated counterpart.
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Figure 5. p-polarized SHG signal from: (a) Sample A; (b) Sample B; (c) Sample C; (d) Sample D. On the
left side of each panel the samples without Au coating for RCP and LCP light are shown, while on
the right side of each panel, the samples with Au coating are shown. Adapted from [26]. In the
measurements the azimuthal rotation angle is relative.

By concerning the magnitude of the SHG signal, the maximum signal was 50,000 counts for
Sample A without Au, while the Au coating decreased the SHG signal to 16,000 counts. The magnitude
of SHG for sample A (no Au) was nine times larger than the magnitude of the flat GaAs sample, while
the magnitude of Sample A (Au) was three times larger. This indicates that the SHG was enhanced by
the geometrical resonances of the GaAs NWs, and that the Au layer did not increase the SHG signal
but hindered it by selective absorption of one handedness of circular polarized light respect to the
other, leading to a lower signal, but with a higher CD.
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Samples B,C,D without Au showed maximum signals of 60,000, 40,000, and 40,000 counts,
respectively, which decreased to 10,000, 10,000, and 14,000, counts, respectively, when coated with
Au [26].

In Figure 6, we show the SHG-CD of the Samples calculated by Equation (1).
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For all the four samples, the symmetric samples provided negligible SHG-CD, despite the
large magnitude of SHG signals. Sample A with Au, showed a SHG-CD as high as 0.5. Similarly,
the asymmetric Sample B with Au led to a SHG-CD of 0.5.

By considering Sample C, despite a SHG magnitude comparable with previous cases, the SHG-CD
was dramatically decreased at a level of about 0.3-0.25 due to the resonant behavior of Sample C
around 800 nm (see Figure 2a). This is because the diameter of the wires achieved larger values and
thus red-shifted the spectral position of the resonance [3,10].

In the case of Sample D, the SHG-CD was negligible for both symmetric and asymmetric samples
due to the complete lack of resonance at 800 nm (see Figure 2a) [3]. Here, the diameter of the wires was
so large that the modes fell in the transparent region of the GaAs spectrum at larger wavelengths with
respect to the band gap.

4. Discussion

Even though the lithography-free and self-assembled growth methods used for wire growth
suffered from an intrinsic degree of disorder, we nevertheless saw a good agreement in the general trend
of the SHG-CD signal as a function of the wires’ diameters, and we were able to quantitatively compare
different samples with a reasonable degree of approximation. In these experiments, we demonstrated
two main issues. The first one is the possibility for strong circular dichroic responses from asymmetric
samples formed by GaAs NWs partially covered in a thin Au film. This could have applications
in different fields, including the ability to generate photons in a SH field, while selective pumping
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with circular polarized light could be viewed as a possibility for boosting the processes of circular
polarized photon generation or absorption. Secondly, we observed that geometric resonance is an
essential feature in this extrinsic chiral behavior. Only when resonant leaky modes were present
was the geometric-induced CD enhanced in the second harmonic field. The resonance can be finely
tuned by changing the diameter of the NWs. We passed from 138-nm diameter wires that showed a
strong resonance around 750 nm, to 151-nm diameter wires with a strong resonance at 810 nm. As the
diameter increased to 165 nm, the resonance shifted to longer a wavelength (850 nm), decreasing its
magnitude as the wavelength approached the transparent region of GaAs. In these cases, we passed
from a large CD of 50% (0.5) to a CD of 25%. Finally, for larger-diameter wires (197 nm), the resonance
completely disappeared in the GaAs bandgap region, and negligible CD was present, despite the strong
SHG signal, destroying any information about the geometrically induced asymmetry of the sample.
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