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Abstract: This study explored the electrocortical correlates of conscious and nonconscious perceptions
of emotionally laden faces in neurotypical adult women with varying levels of autistic-like traits
(Autism Spectrum Quotient—AQ). Event-related potentials (ERPs) were recorded during the viewing of
backward-masked images for happy, neutral, and sad faces presented either below (16 ms—subliminal)
or above the level of visual conscious awareness (167 ms—supraliminal). Sad compared to happy
faces elicited larger frontal-central N1, N2, and occipital P3 waves. We observed larger N1 amplitudes
to sad faces than to happy and neutral faces in High-AQ (but not Low-AQ) scorers. Additionally,
High-AQ scorers had a relatively larger P3 at the occipital region to sad faces. Regardless of the AQ
score, subliminal perceived emotional faces elicited shorter N1, N2, and P3 latencies than supraliminal
faces. Happy and sad faces had shorter N170 latency in the supraliminal than subliminal condition.
High-AQ participants had a longer N1 latency over the occipital region than Low-AQ ones. In Low-AQ
individuals (but not in High-AQ ones), emotional recognition with female faces produced a longer N170
latency than with male faces. N4 latency was shorter to female faces than male faces. These findings are
discussed in view of their clinical implications and extension to autism.
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1. Introduction

Autism is a neurodevelopment condition involving dysfunction in reciprocal-social interaction.
Deficits in decoding and understanding facially expressed emotions occur commonly in autism
spectrum disorders ASDs; see [1], which contribute to the impairment of social communication that
serves as one of its core diagnostic criteria; for a review see [2]. Several difficulties in the processing of
facial expressions have been reported with ASD [3-8] and their relatives [9-14]. Subclinical traits of
autism are observed in the general population (i.e., meeting a diagnosis of autism) and are represented
by extreme values on a continuous distribution [15]. Autistic-like traits constitute potential markers of
family genetic liability to autism [16-18]. The Autism Spectrum Quotient (AQ) [19] has been developed
to measure the degree to which an adult with normal intelligence has autistic traits with a threshold
score of 26 to meet a diagnosis of autism [20]. Emotional processing deficits in orienting [21], visual
facial scanning [22,23], and in cognitive evaluation of facial expressions are also reported in autism.
If individuals with ASD exhibit dysfunctional neural activity in response to emotional faces [5,24,25],
perhaps individuals with high AQ (Hi-AQ) may as well.

Neuroimaging research has outlined the central role of amygdala in the processing of facial emotions
in non-clinical populations, including fearful and non-threatening facial expressions [26-29]. However,
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few studies have evaluated the neural correlates of sadness recognition. Blair and colleagues [30] showed
that viewing sad facial expressions activated the left amygdala and right temporal pole. Viewing sad
films resulted in activations in a network including the medial prefrontal cortex, superior temporal
gyrus, precuneus, lingual gyrus, and the amygdale [31]. A deficit in sadness recognition could therefore
be explained by disrupted amygdala-cortical connectivity [8]. The amygdala plays an essential role
in a vigilance system for rapidly alerting other brain regions to the importance of social stimuli.
When emotional faces are presented under 40 ms and immediately followed by a neutral “backwards
masking” face, participants reported no awareness of the emotional face but demonstrated increased right
amygdala activation [32]. The backward masking paradigm examines subliminal automatic processes
along the subcortical route [33,34] and is highlighted by event-related potentials (ERPs; e.g., [35-37].
Behavioral study findings suggest that individuals with ASD are less affected by nonconscious information
compared to typically developing (TD) controls [38,39].

Fujita and coworkers [40] measuring visual evoked potentials (VEPs) found that the N1 component
of VEPs elicited by chromatic gratings (that preferentially activate the parvocellular (P) color pathway)
was significantly prolonged in ASD participants compared to TD controls, suggesting that ASD involves
dysfunction of the P-color pathway at a relatively low level of information processing. In a later
study [41], VEPs in TD and high-functioning ASD subjects were elicited by using the backward-masking
paradigm with subliminally presented fearful and neutral faces and objects (upright and inverted
positions). In the TD group, the N1 amplitude for the subliminal upright fearful (but not neutral) faces
was found significantly higher than the inverted ones, while in the high-functioning ASD subjects this
measure did not show this effect. These findings indicated altered early visual processing of short
duration emotional faces in ASD.

The dimensional approach to understanding personality disorders offers the possibility of studying
particular trait aspects of the ASD syndrome in TD individuals who may not satisfy diagnostic criteria for
the disorder but may embody particular components of the syndrome [42]. ERP research has highlighted
the N170 wave as a face-specific component reflecting the earliest stages of face processing [43,44].
However, there is no reliable experimental support for the modulation of the N170 wave by emotional
facial expressions in TD subjects see e.g., [45-47], as well as in subjects with autism [48-51]. Yet, the N170
wave does differentiate children and adults with autism compared to those without autism [49,52-54].
In addition to the N170 wave, other studies have demonstrated that N1 wave has been found significantly
modulated by affect in the early phase of facial perception processing, with greater negativity for
fearful versus neutral faces [55,56]. Research has also reported an increased N2 for fearful compared
to non-fearful faces at supraliminal and supraliminal stimulation [36,57], and subliminal orienting and
automatic aspects of face processing [58]. The N2 together with late P3 wave can discriminate, respectively,
subliminal and supraliminal fearful face-processing. Subliminal condition has been distinguished by the
enhanced N2 wave (“excitatory”) to fearful faces, representing the orienting and automatic aspects of
face processing. Supraliminal perception of fearful faces was distinguished by the enhanced late P3/N4
wave (“inhibitory”), representing the integration of emotional processes [58,59].

The N4 has been linked to conscious perception of emotional faces. It was found to enhance
together with the late P3 in response to supraliminal fear perception at the parietal midline site and
thought to be involved specifically with the controlled integration and cognitive elaboration of facial
emotional information, [58,60]. More details on the empirical and theoretical aspects of the P300 are
reported by Polich [61]. In his overview of the P300 theory, he dissected the P300 into its constituent
frontal P3a (early-P3) and temporal-parietal P3b (late-P3) and outlined how the P3a and P3b may
interact. He inferred that stimulus evaluation engages first focal attention (P3a) to facilitate context
maintenance (P3b), which is associated with memory storage operations that are then initiated in the
hippocampal formation with the updated output transmitted to parietal cortex; a late P3b is produced
to establish the connection with storage areas in associational cortex.

More recently, Stavropoulos et al. [62] conducted an ERP study to evaluate the relationship
of AQ trait with face efficiency processing under subliminal and supraliminal conditions in TD
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adults. Regardless of AQ score, these authors obtained higher P1 and P3 amplitudes and shorter
N170 latencies for nonconscious versus consciously presented faces. In addition, High AQ (Hi-AQ)
traits were associated with delayed ERP components, indicating that inefficient face perception is
present in individuals with subclinical levels of social impairment. In this research line, Vukusic and
coworkers [63] elicited ERPs by a backward-masked paradigm under subliminal and supraliminal
conditions to evaluate the sensitivity of ERP waves to differentiate conscious and nonconscious
information processing for neutral, fearful and happy faces in Hi- AQ and low AQ (Lo-AQ) traits.
These authors found partial support for their main hypothesis that differences between AQ groups
would emerge in emotion effect under subliminal viewing conditions, since they found enhanced
frontal N2 amplitude only for subliminally presented happy faces in the Lo-AQ, but not in the Hi-AQ
group. They obtained shorter late ERP components of frontal P3 and N4 latencies (representing
event integration) for subliminal vs. supraliminal condition. Finally, they also disclosed shorter N170
latencies for supraliminal vs. subliminal conditions across both AQ groups, although they did not
observe any group differences on the face-specific N170 component.

According to the literature, typically, mothers spend more time in direct face to face contact with their
young children than fathers do. This in turn may affect the child’s experience of faces, thus facilitating the
development of skills for accurate face processing [64] and to discriminate mother from stranger [65,66].
Infants later diagnosed with autism may fail strongly to attend to faces discrimination from those who
were TD infants [7]. Thus, we hypothesize that female faces should capture more attention than male faces
mainly in Lo-AQ participants, while these differences should be less pronounced in Hi-AQ participants.

To our knowledge, there have been few reports showing specific deficits for sadness recognition
in the autistic population, let alone in an all-female cohort. Exceptions are the behavioral study by
Boraston et al. [67], supporting evidence for impaired sad face recognition in adults with autism,
and the ERP study by O’Connor et al. [53] reporting delayed N170 latencies to sad faces and face parts
in adults with ASD. Stavropoulos and colleagues [62] reported larger P3 amplitudes and shorter N170
latencies for nonconscious versus consciously presented faces and delayed ERP components in Hi-AQ
scorers for fear and neutral faces, but they did not find significant differences in their N170 latency to
sad faces.

1.1. Aims

In the current study, we used a subliminal and supraliminal presentation of faces through a
backward-masking paradigm similar to that used in the Vukusic’s and colleagues’ experiment [63],
but with the new inclusion of the gender face factor in the recognition of emotional facial expressions.
This was done to extend ERP results of the referenced study to facial-gender (female, male) factor and
the interaction of this factor with the emotional expression among different levels of AQ traits. As far
as we know, in the current literature, the influence of facial gender on the recognition of emotional
facial expressions has been overlooked. Thus, in addition to the widely used happy and neutral faces,
a further aim of the present study was to further test differences in Hi- and Lo-AQ trait to sad faces.
Finally, considering that ASD is a predominantly male disorder known to manifest sex differences
in face perception [68], our current investigation was limited to the analyses of AQ score in a TD
female cohort.

1.2. Hypotheses

In terms of behavioral performance, our primary hypotheses were: (la) Hi-AQ participants
should be less accurate than Lo-AQ ones to recognize emotions of happy, neutral, and sad facial
expressions [69], and (1b) this difference should be more pronounced for subliminal stimuli [38,39].
(1c) Lo-AQ scorers should have a higher accuracy in the recognition of facial expressions with female
than male faces, while these facial-gender differences should be less pronounced in Hi-AQ scorers [7].

In terms of ERP waves, our main hypotheses were: (2) to find prolonged N1 latency within the
occipital cortex in Hi-AQ relative to Lo-AQ participants; this hypothesis was done to extend to the
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general population previously N1 latency findings in ASD individuals [40]. (3) Hi-AQ, relative to
Lo-AQ participants, would exhibit a smaller N170 amplitude and/or a delayed N170 latency [54,62],
and (4) sad faces should evoke a larger N170 peak amplitude [70] with longer N170 latency than happy
faces [71,72]. (5) In line with Vukusic and colleagues findings, Lo-AQ relative to Hi-AQ scorers should
show enhanced N2 amplitude for subliminal happy faces, and Low-AQ showing a shorter frontal late
P3 and N4 latencies for subliminal vs. supraliminal condition [63].

This study was carried out to investigate whether previous findings of reduced sensitivity to
subliminal and supraliminal emotional faces in ASD are limited to individuals with ASD, or whether
these findings can be extended in a sample of TD female adults characterized by higher scores of
autistic-like traits.

2. Methods

2.1. Participants

Fifty right-handed neurotypical female students volunteered (informed consent) to participate
(18-31 years; mean age = 23.0, SD = 3.0). The study was approved by the institutional review board of
the Department of Psychology at La Sapienza University of Rome in accordance with the Helsinki
Declaration. All participants had normal or corrected-to-normal visual acuity, were medication-free,
and had no reported history of either psychiatric or neurological disorders (including clinical autism).

2.2. Personality Measures

The sample consisted of 50 neurotypical right-handed women students recruited through local
advertisements. All participants completed a battery of personality questionnaires in a session
preceding the electrophysiological recordings. Hand preference was assessed with the Italian version
of the Edinburgh Handedness Inventory [73]. The personality measures of interest in this study were:

(1) Autism Spectrum Quotient (AQ). The AQ is a self-administered questionnaire consisting of
50 questions, devised to quantitatively measure the degree to which a person with normal
intelligence has autistic traits [19,20]. Participants respond using a 4-point rating scale (definitely
agree—slightly agree—slightly disagree—definitely disagree) across five domains: social skills,
attention switching, attention to detail, communication, and imagination. The individual scores
one point for each answer that reflects abnormal or autistic-like behavior. This measure is sensitive
to autistic traits in nonclinical populations [74,75].

(2) The Raven’s Advanced Progressive Matrices (RAPM). The RAPM is a standardized nonverbal
intelligence test and is generally used as a test of general cognitive ability and intelligence [76].
It consists of visually presented geometric figures where one part is missing, and the missing part
must be selected from a panel of suggested answers to complete the designs. The RAPM was
used to eliminate general intelligence as a potential explanation of any differences found between
AQ groups. On this basis, all participants had a RAPM score of at least 14, which is in the normal
range of the Italian Population (M = 20.4, SD = 5.6, Age range: 1547 years, N = 1762) [76].

2.3. Stimuli

The identical face stimuli protocol reported in the Vukusic et al., study [63] and Goodin et al.,
study [77] was used. The stimuli consisted of colored photographs of the faces of four Caucasian
models (equal male & female) depicting neutral, happy and sad expressions (with closed mouth
exemplars) and were cropped with an oval shape. Faces were selected from the NimStim collection
(http://www.macbrain.org/resources.htm), a freely available collection of emotional face stimuli with
good internal validity and reliability [46]. Best attempts were made to carefully match the stimuli
sets (faces) on a variety of variables that may affect attentional processes including luminance, color
and contrast. This was done with Photoshop CS2, which makes it possible to equate luminance
and contrast across the different emotional expressions. The fills (masks) were made using Adobe


http://www.macbrain.org/resources.htm

J. Clin. Med. 2020, 9, 2306 50f21

Photoshop CS2 (http://www.photoshop.com) and contained two colors, purple or yellow, which were
selected due to their color opposition. In an attempt to infuse a different visual identity into the fills
similar to the differing identities seen in the faces, the two gratings and one pattern consisted of varying
widths ranging from 5 mm line widths to 12 mm in 1 mm increments. Faces were contained within
a black border to focus the participant’s attention on the characteristics of the faces presented and
not peripheral characteristics such as hair or ears. Fills were also presented within a black border.
This was done to reduce the risk of low-level changes in these properties influencing the early ERPs.
The techniques employed to control for these changes were based on the Willenbockel, Sadr [78]
method. All pictures were color photographs (visual angle: 7.4° x 5.1°; mean luminance: 22.5 cd/m?,
with a viewing distance of 100 cm). We used an oval purple/black chromatic square-wave grating as
a pattern mask of the same luminance of photographs (spatial frequency of 0.6 cycles per degree),
which was surrounded by a homogeneous black color background.

To identify the sub-threshold duration at which participants would be able to determine whether the
masked stimuli were faces, we invited 10 psychology students (20 to 34 years, M = 23.6, SD = 2.4 years)
in a pilot experiment. We used an ascending series of trials to prevent participants from perceiving
the contents of the stimuli. In each trial, masked stimuli (neutral, happy, sad faces and mask images)
were randomly presented, and participants verbally reported what they saw. In the first trial block,
the stimulus presentation was 10 ms long and increased by 10 ms steps in each subsequent trial block.
Stimuli were presented 20-30 times in each trial block. The threshold at which participants first reported
that they saw a face-like shape ranged between 20 and 60 ms, with a mean of 45.8 ms. Based on the
results of this experiment, we set the duration of sub-threshold presentation in the current study at 21 ms.
The study was conducted in line with previous ERP studies cited in the text. Moreover the blank screen
was set at 847 ms, due to trying to move away from EEG effects associated with kindling and, therefore,
attempt to induce a “cleaner” ERP [63].

2.4. Procedure

Participants sat in a dimly lit, sound and electrically shielded booth in front of a computer screen.
Stimuli were presented on a 19” color LCD monitor (1400 X 900 resolution and 75 Hz vertical refresh
rate) and in 8 blocks of 120 trials; each block consisting of a randomized presentation of both subliminal
and supraliminal emotional (positive, negative, and neutral) female and male faces. Block order was
counterbalanced across participants with an equal number of trials in each condition for each facial
expression (120 trials for each facial expression, for each condition).

The faces task (in E-Prime 2.0) began with a central white fixation cross followed by a picture
of a face stimulus, which was displayed for duration of 21 ms (subliminal) or 167 ms (supraliminal).
At the end of each trial, a question appeared on the screen asking for explicit emotion recognition for
each face; numbers 1-3 (1 = neutral, 2 = happy, 3 = sad; Figure 1), allowing unlimited time to respond
with their right hand. In the case of subliminal stimuli, participants were asked to guess the facial
expression. The explicit recognition task was adopted because it gives equal importance to all facial
expressions in both conditions.

2.5. EEG Recording

EEG and Electro-ocular (EOG) were acquired using a 40-channel NuAmps DC amplifier system
(Neuroscan Acquire 4.3, Compumedics Neuroscan Inc, Char lotte, North Carolina 28269, USA). Signals
were band-limited to 75 Hz (and 50 Hz notch filter), the gain was set at 200, and the sampling rate was
1000 Hz, with impedances under 5 k(). Standard tin electrodes with electrolyte gel were used. Bipolar
horizontal and vertical EOG were recorded, respectively, from the epicanthus of the right and the left
eye and from the supra- and infra-orbital positions of the left eye. EEG was recorded from 30 electrodes
(i.e., Fpl, Fp2, F7, F8, F3, F4, FT7, FT8, T3, T4, FC3, FC4, C3, C4, CP3, CP4, TP7, TP8, T5, T6, P3, P4,
01, 02, Fz, FCz, Cz, CPz, Pz, Oz) by an electro-cap using an extended montage of the standard 10-20
system. The referenced electrode was obtained by linked ears (A1 + A2)/2 with a ground electrode
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placed 10 mm anterior to Fz. EEG data were analyzed offline using the Brain Vision Analyzer 2.1.0
(Brain Products GmbH, Gilching, Germany). E-Prime 2.0 (Psychology Software Tools, Inc., Sharpsburg,
PA, USA) served to deliver auditory stimuli and triggers for EEG recordings. The resting EEG was
recorded during eyes open and closed for 3 min.

21 (167) ms

287 (141) ms

1. NEUTRAL 1.NEUTRAL
2. HAPPY 2. HAPPY
3.SAD Trial Structure 3.SAD

Figure 1. Backward mask paradigm: Stimulus presentation sequences for happy and sad female/male
faces (supraliminal time in brackets). A white fixation cross appeared centrally, lasting for 687-ms,
followed by a face stimulus (displayed for 21-ms in the subliminal condition or 167-ms in the supraliminal
condition). The mask was presented for 287-ms (subliminal) or 141-ms (supraliminal), to keep the
presentation time constant for 308-ms.

EEG data was analyzed offline using the Brain Vision Analyser for preprocessing and eye movement
correction procedures. Each recording epoch (1000 ms) included a baseline of 100 ms before stimulus
onset. Eye blink correction was first performed [79] and residual artifact exceeding +75 uV was removed.
Recordings were re-referenced to the average reference as computed from all scalp electrodes (for the
N170 component), while an earlobes’ reference was used for N1, P2, N2, and P3 components, for
endogenous ERP components. The common average reference was used as it yielded the largest N170
amplitude [63,80]. ERPs were averaged separately for each stimulus category (each emotion was averaged
for subliminal and supraliminal threshold conditions) and baseline corrected.

2.6. Behavioral Data Analysis

We measured the accuracy rates (percent of correct detections of the facial expressions) and
due to unlimited time given to participants for recognizing facial expressions, we did not report the
reaction times. To test the effect of gender and AQ factor on task performance, the accuracy scores
were compared using an ANCOVA with Emotion, Condition and Facial-Gender as within-subject
factors, while AQ scores were used as a covariate. Two-tailed ¢-tests were used to compare accuracy to
chance levels for the two conditions and for each of the emotions within the conditions. To control for
false-positive errors, significance levels for F and t-test coefficients were corrected by using the false
discovery rate (FDR) method [81].

2.7. ERP Analyses

ERP components (target) were identified and quantified across Fz, Cz, Pz, and Oz midline sites.
The following components were identified: N1 ERP peak was (M + SD = 104.0 + 5.0 ms), quantified as
negative values as the baseline-to-peak difference in voltage for the most negative peak within the 90-140
ms window following face stimulus onset; N2 (217.7 + 9.5 ms, window 170-310 ms); P3 (320 + 12.4 ms,



J. Clin. Med. 2020, 9, 2306 7 of 21

window 200-390 ms); N4 (382.2 + 9.2 ms, window 330-500 ms). Finally, the N170 ERP wave was also
examined at the lateral posterior-temporal sites T5 and T6 (closest to the occipito-temporal sites P7 and
P8). This ERP component was peaking at 180.7 + 13.1 ms and was measured within the 140-260 ms time
window [35,36,58,63]. Peak values were first semi-automatically detected as local minima for negative
waves (or maxima, for positive waves) and then, after visual inspection, the position of the peak changed
manually if necessary. The N1, N2, and N170 peak values were then multiplied by -1 and expressed as
positive values for our convenience. The ERP analysis included both correct and incorrect behavioral
responses. The amplitude and latency of each ERP component were quantified by the highest peak value
within the chosen latency window. ERP amplitude and latency were analyzed with repeated measures
ANCOVAs using AQ scores as a covariate. For these analyses, Emotion (neutral, happy, sad), Condition
(subliminal, supraliminal), Facial-Gender (female, male), and Electrode Location (Fz, Cz, Pz, Oz) as
within-subject factors were used. For the N170 wave, Electrode Location was replaced with Hemisphere
(T5, T6) factor. An alpha criterion level of 0.05 was used unless otherwise noted. Huynh-Feldt adjustments
were used when the assumption of sphericity was violated [82].

To report effect size estimates, partial ILZP values (see supplemental material for statistical details)
were also calculated. Paired samples t-tests were performed to supplement the behavioral and ERP
findings. To control for false-positive errors, significance levels obtained for ERP measures were
corrected by applying the false discovery rate correction (FDR) method across all ERP amplitude and
latency measures [81]. Only for graphical illustrations, and to understand the direction of changes of
significant main and/or interaction effects involving AQ trait, we applied a separate median split on
this personality measure (M = 14.9, Md = 14.5; Skewness = 0.278, Kurtosis = —0.984). Participants were
considered as belonging to either group Hi-AQ (N = 25, M = 20.6, SD = 4.3, Range = 15-26) or Lo-AQ
(N=25M=9.2,5SD =2.8, Range = 3-14) when their AQ scores were above or below the median. None
of the AQ scores fell on the median, therefore, none of the participants were excluded.

3. Results

3.1. Behavioral and Personality Results

Pearson correlation coefficients among trait measures of interest together with descriptive statistics
are reported in Table 1. There was no evidence for a significant relation of AQ with RAPM (p > 0.05).
There were also no significant between AQ group differences on the RAPM (Hi-AQ: M =21.8,SD =5.2;
Lo-AQ: M =22.7,SD =5.1; t = =0.66, p = 0.51).

Table 1. Pearson correlations and descriptive statistics for AQ, RAPM and Age scores in 50 women.

AQ RAPM Age
AQ 1
RAPM -0.034 1
Age 0.144 -0.192 1
Mean 14.9 225 22.5
SD 7.2 4.7 3.1
Range 3-26 14-34 18-30

Note: Personality Measures - AQ: Autism Spectrum Quotient; RAPM: Raven’s Advanced Progressive Matrices.

The repeated measure ANCOVA on accuracy scores yielded a significant main effect for AQ
(F (1,48) =25.82, p < 0.001, ILZP = 0.349), showing a lower accuracy in Hi-AQ scores compared to Lo-AQ
ones (i.e., M = 71.0%, SD = 6.5 vs. M = 76.5%, SD = 0.04). The main effect of Condition (F (1,48) = 277.62,
p < 0.001, rsz = 0.853) and the AQ X Condition interaction (F (1,48) = 7.93, p = 0.0137, rsz = (0.144) were
both significant. The first effect indicated lower accuracy rates in the subliminal compared to supraliminal
condition (M =55.3, SD =7.0 vs. M =92.3%, SD =7.5); the second effect showed that recognition accuracy
of supraliminal faces in Hi-AQ participants was significantly lower than that in Lo-AQ ones (M = 88.2%,
SD = 8.5% vs. M = 96.3%, SD = 3.1, p < 0.001), while between-group difference of subliminal faces did
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not reached the significance level (M = 53.8%, SD = 6.5% vs. M = 56.8%, SD = 7.3, p = 0.06). Further,
Facial-Gender factor (F (1,48) = 23.83, p < 0.001, ILZP = 0.331) and the Facial-Gender X AQ interaction
(F (1,48) = 61.18, p < 0.001, rsz = 0.560) were both significant. The first effect disclosed a higher accuracy
rate for female than male faces (M = 76.3%, SD = 4.5% vs. M = 71.2%, SD = 10.1%). The interaction
effect indicated that Hi-AQ participants’ accuracy to recognize facial expression with female faces was
significantly higher than that with male faces (M = 76.5%, SD = 5.3%, vs. M = 65.6%, SD = 10.5%,
p < 0.001), while in Lo-AQ there were no differences in facial expression recognition with female versus
male faces (M = 76.2%, SD = 3.5%, vs. M = 76.9%, SD = 5.5%, p > 0.05).

This effect also indicated that Lo-AQ individuals, as compared with the Hi-AQ ones, had a
significantly higher accuracy for male faces (p < 0.001), but not for female faces (p > 0.05). Finally the
fourth order interaction of Facial-Gender x Condition x Emotion X AQ was significant (F (2,96) = 2.99,
p < 0.05, n%p = 0.057) and disclosed that Hi-AQ participants had higher accuracy in detecting emotions
with female faces than male faces for both subliminal and supraliminal stimuli. In contrast, in Lo-AQ
participants, facial gender differences did not reach the significance level (Figure 2). On the whole, these
findings support our first hypothesis (more statistical details are available as Supplementary Materials).

Hi-AQ Lo-AQ
100 -
+ p<0.001

90 4 ep<0.01
X *p<0.05 W Female-Face
Q
w 801 @ Male-Face
<
g 70-
S
3
Q -
g 60

50

40
QUb-Hap Sub-Sad Sup-Hap Sup-Sad  Sub-Hap Sub-Sad  Sup-Hap  Sup-Sad
Sub-Neu Sup-Neu Sub-Neu Sup-Neu

Figure 2. Mean performance values of accuracy scores across subliminal (Sub) and supraliminal (Sup)
stimuli of happy (Hap), neutral (Neu), and sad (Sad) female and male faces in Hi-AQ (N = 25) and
Lo-AQ (N = 25) women.

3.2. ERP Results

3.2.1. N1 Amplitude and Latency

The ANCOVA, using AQ scores as a covariate, on the N1 amplitude data showed a significant
main effect of Location (F (3,144) = 13.64, p < 0.001, ILZP = 0.221), indicating that the N1 was larger
at frontal (Fz) than parietal (Pz) and occipital (Oz) regions (both p < 0.0001) and also larger at central
(Cz) than Pz and Oz (both p < 0.001) regions. Further, the significant Emotion X Location interaction
(F (2,288) =5.11, p = 0.0022, n?, = 0.096) demonstrated larger N1 amplitudes for happy than neutral and
sad faces at Fz, Cz and Pz sites (Fzz M =7.2,SD=3.0,M=3.6,SD=15M=3.3,SD=1.5;,Cz: M = 6.6,
SD=32,M=34,SD=15M=34,5D =15 Pz M=25,5D=24M=13,5D=13M=13,
SD = 1.1, respectively for happy, neutral, and sad faces; all ts, p < 0.001). In addition, the significant
Emotion X Location x AQ interaction (F (6,288) = 4.48, p = 0.0046, 1,2, = 0.083). Simple effect analysis at
each recording site indicated that in the Lo-AQ group there was a larger negative peak for sad compared
to happy and neutral expressions at Pz, and P4 leads (Pz: sad vs. happy t = 2.30, p < 0.05; sad vs. neutral
t=-221,p <0.05; P4: sad vs. happy t = 3.55, p < 0.01; sad vs. neutral t = =2.17, p < 0.05; paired t-tests
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respectively for sad vs. happy and sad vs. neutral faces). In contrast, paired samples ¢-tests performed

separately in the Hi-AQ groups did not disclose any significant difference between emotions (all p > 0.05;
see right quadrant of Figure 3).

N1 Amplitude

Difference
Sad Happy - Neutral Happy - Sad Sad-NeutraI

N1 Lo-AQ
Ha
4 o Neﬁfril o ggﬁ Wt oo Neutral
-*'/ 4 4 4
1208

AW 15 100 0100 300 500 700 1000100 300 500 700 100 0100 300 500 700
Figure 3. Left-panel: scalp maps and difference maps of N1 amplitude in Hi-AQ (N = 25) and Lo-AQ
(N = 25) women. Right-panel: difference maps between emotions separately within Hi-AQ and LO-AQ
group. Bottom panel (b): ERP waveforms of emotions in the Lo-AQ group (* p < 0.05).

The ANCOVA on N1 latency disclosed a main effect of Location (F (3,144) = 49.80, p = 0.0019,
n?p, = 0.509) and of Condition (F (1,48) = 6.65, p = 0.015, n?p = 0.122). The first effect showed a
progressive significant reduction in N1 latency starting from Fz to Cz, Pz, and Oz sites (all p < 0.001;
see Table 2). The second main effect indicated that subliminal stimuli elicited shorter N1 latencies than
supraliminal stimuli (Table 2). Moreover, the significant AQ X Emotion interaction (F (2,96) = 4.86,
p = 0.0123, 2, = 0.092) showed that in Hi-AQ participants happy faces had a longer N1 latency than
neutral and sad faces (M =106.2, SD = 4.5 vs. M =104.2, SD = 4.6, p < 0.05 and vs. M = 104.5, SD = 4.9,
p < 0.05), while, in contrast, in Lo-AQ there were no differences among emotional faces (M = 102.3, SD
=6.2vs. M=103.5,5D =6.2,and M = 103.3, SD = 6.2, all p > 0.05). In addition, Hi-AQ had a longer N1
latency to happy faces compared to Lo-AQ participants (M = 106.2, SD = 4.5 vs. M =102.3, SD = 6.2,
p < 0.05), whilst there were no latency differences between AQ groups for the neutral and sad faces.
A simple analysis conducted on N1 amplitude data of the Oz lead alone found a main effect of AQ
(F (1,48) = 4.95, p = 0.031, n?p, = 0.093), indicating a relatively longer N1 latency at occipital midline
region in the Hi-AQ scorers. This finding was in support of our second main hypothesis and in line
with Fujita, Yamasaki [40] findings in ASD patients (see Figure 4).

Finally, the interaction effect of Facial-Gender x Emotion X Location (F (6,288) = 4.91, p < 0.001,
rsz = 0.093) and Facial-Gender x Emotion x Location X AQ (F (6,288) = 3.10, p = 0.0123, rL2p =0.061)
were both significant. These effects disclosed that for female happy faces, Hi-AQ scorers had a longer
N1 latency than Lo-AQ scorers at Fz and Oz scalp leads, while for female sad faces, this between-group
difference was significant for the Fz lead alone. For male happy and sad faces, there was also a relative
longer N1 latency in Hi-AQ scorers, although this difference was significant at only the occipital lead
(see Figure 4).
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Table 2. ERP peak latencies (N = 50 women) across all electrodes and separately for each electrode,

showing significant differences between subliminal and supraliminal conditions. Probability levels are

corrected using False Discovery Rate (FDR) method.

ERP.Peak Subliminal SD Supraliminal SD p Values ( FDR
Latencies (ms) Correction)
N170
(T5, T6) 183.2 14.5 178.2 13.8 0.0019
T5 188.3 20.3 184.4 20.6 0.066
T6 178.1 129 172 12.6 <0.001
N1
(Fz, Cz, Pz, Oz) 102.6 5.7 105.4 5.5 0.0019
Fz 114.5 75 118.4 8.4 0.0019
Cz 1129 8.3 116.4 8.3 0.0019
PZ 102 12.7 102.8 10.7 0.648
Oz 81.1 94 84.0 9.8 0.0456
N2
(Fz, Cz, Pz, Oz) 210 10.1 225.6 10.7 <0.001
Fz 235.9 10.9 251.3 13.3 <0.001
Cz 234.1 114 251.2 13.8 <0.001
Pz 207.8 23.1 224.1 24.3 <0.001
Oz 161.5 16.2 175.7 16.4 <0.001
P3
(Fz, Cz, Pz, Oz) 288.5 124 308.8 13.8 <0.001
Fz 314.6 15.2 3279 12.9 <0.001
Cz 315 17.8 334.5 19.6 <0.001
Pz 288.3 25.0 306.3 21.9 <0.001
Oz 238.1 19.9 266.7 25.2 <0.001
N4
(Fz, Cz, Pz, Oz) 382 12.2 382.4 10.5 0.822
Fz 393.8 5.8 393.2 44 0.453
Cz 3929 5.6 392.4 6.1 0.515
Pz 383.8 18.7 387.7 13.3 0.186
Oz 357.5 34.4 356.5 31.3 0.866
Female-Face Male-Face
l Happy Neutral Sad l l Happy Neutral Sad l
p<0.05
120- 1 p<0.05
B Hi-AQ :
1107 m Lo-AQ
£ I
gmo- |
g
E p<0.01 FK%H
90 p<0.05
r T
80 | I
704
Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz

Figure 4. N1 peak latency across midline scalp sites (Fz, Cz, Pz, Oz) to female and male faces of happy,
neutral and sad facial expressions in Hi-AQ (N = 25) and Lo-AQ (N = 25) women.
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3.2.2. N170 Amplitude and Latency

The analysis on the N170 amplitude data showed a significant effect of Condition (F (1,48) = 7.99,
p = 0.0123, %, = 0.142), which was due to a larger N170 peak to supraliminal than subliminal faces
(Figure 5a). Moreover, the Emotion by Condition interaction (F (2,96) = 6.59, p = 0.0034, ILZP =0.120)
was also significant and showed a significantly smaller N170 under subliminal condition to sad faces
than happy and neutral faces (p < 0.01; Figure 5b).

'
(o2}

Overall Avg (T5 & T6)

v N170
i Supraliminal Face

-2 ‘ Subliminal Face

-100 0 100 300 500 700

(@)

Supraliminal Face
-6 1 Avg (T5 & T6)

Hv N170 Happy
-4 Neutral
Sad
)
0 M‘

Subliminal Face

Avg (T5 & T6)

4 **p <001 Happy

Y ‘ Neutral
-2 i Sad

-100 0 100 300 500 700

(b)

Figure 5. Grand-average ERP waveforms showing the N170 wave at lateral occipital-temporal sites:
(a) for supraliminal and subliminal conditions, indicating larger waves in the supraliminal than
subliminal condition; (b) for supraliminal and subliminal conditions of happy, neutral, and sad faces,
showing a smaller N170 wave to sad relative to neutral and happy faces.

The analysis of N170 peak latencies revealed a significant Emotion x Condition (F (2,96) = 3.69,
p =0.029, 12, = 0.071) interaction. This effect indicated a shorter N170 latency for both happy and sad
expressions (but not neutral) in the supraliminal condition than in the subliminal one (Happy: M = 176.5,
SD =13.6 vs. M =184.4,SD =159, p < 0.001; Sad: M = 180.3, SD = 1542 vs. M =186.8,SD =19.8 p =
0.0131; Neutral: 177.7, SD = 17.8 vs. M = 178.3, SD = 14.18, p = 0.765; for each emotion comparisons
were for supraliminal vs. subliminal condition). Moreover, the interaction of AQ x Facial Gender was
significant (F (1,48) = 8.31, p = 0.0086, rsz = 0.147). This effect showed that in Hi-AQ participants there
were no differences between female and male faces (M = 181.1, SD = 13.7 vs. M = 182.3, SD = 12.9,
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p > 0.05), while in Lo-AQ participants, female faces had longer latency than male faces (M = 180.6,
SD =14.8 vs. M =176.1,SD = 10.5, p < 0.05).

On the whole, the present N170 amplitude and latency findings were not consistent with our third
and fourth hypotheses.

3.2.3. N2 Amplitude and Latency

The analysis of the midline N2 amplitudes yielded significant interactions of Facial-Gender x Emotion
(F (2,96) = 8.00, p = 0.0025, ILZP = 0.143) and of Facial-Gender X Emotion X Location (F (6,288) = 6.08,
p <0.001, n?, = 0.114). These effects indicated that for happy female-faces there was a larger frontocentral
N2 than for male-faces, while for sad faces there was an opposite trend between female and male faces
(all p < 0.05; Figure 6).

N2 Amplitude
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w., Ay o Py
: rF W. W
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1 Happy Male-Face Faces ° . P L S o #
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-2 Ty A
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1 Neutral Male-Face aces - i ‘\n . - O 0 i
) \-:// N o / v
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Fz P <0.05
Y

e
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Figure 6. ERP responses at frontal lead Fz (a) and scalp maps with difference maps of N2 amplitude for
female and male faces of happy, neutral and sad faces (b).

The ANCOVA for N2 latency found a significant main effect of Location (F (3,144) = 62.52, p < 0.001,
n?p = 0.57) and Condition (F (1,48) = 35.76, p < 0.001, n?, = 0.427). The Location effect showed a
progressive significant reduction in N2 latency from Fz and Cz to Pz and Oz regions (all p < 0.001).
The Condition effect indicated that subliminal stimuli elicited shorter N2 latencies than supraliminal
stimuli (M = 225.6, SD = 10.8 vs. M = 209.8, SD = 10.1, p < 0.01). No other main or interaction effects
were significant.

The analysis of the midline N2 amplitudes yielded significant interactions of Facial-Gender x Emotion
(F (2,96) = 8.00, p = 0.0025, I‘LZP = 0.143) and of Facial-Gender X Emotion X Location (F (6,288) = 6.08,
p <0.001, n?p = 0.114). These effects indicated that frontal-central N2 to happy female-faces was larger than
happy male-faces, while N2 to sad female-faces was smaller than sad male-faces (all p < 0.05; Figure 6).

For N2 latency, we found a significant main effect of Location (F (3,144) = 62.52, p < 0.001,
n?p = 0.57) and Condition (F (1,48) = 35.76, p < 0.001, n?, = 0.427). The Location effect showed a
progressive significant reduction in N2 latency from Fz and Cz to Pz and Oz regions (all p < 0.001).
The Condition effect indicated that subliminal stimuli elicited shorter N2 latencies than supraliminal
stimuli (see Table 2). No other main or interaction effects were significant. The above reported results
are new and not in line with our fifth hypothesis.
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3.2.4. P3 Amplitude and Latency

Statistical analysis on P3 amplitude scores yielded a significant Location effect (F (3,144) = 9.45,
p = 0.0019, 1%, = 0.164), showing larger P3 waves in the Pz and Oz regions than Fz and Cz regions
(FzzM =-0.7,SD = 1.5; Czz M = 1.3,SD = 1.8; Pz: 3.0, SD = 1.8; Oz: M = 5.4, SD = 3.2; all p < 0.001).
Further, the following interlinked interactions were all significant: Emotion x Location (F (6,288) = 4.59,
p = 0.0022, n?, = 0.087), Emotion x Location x AQ (F (6,288) = 3.22, p = 0.0147, n?, = 0.062) and
Facial-Gender x Emotion X Location x AQ (F (6,288) = 3.58, p = 0.0032, sz = 0.069).

The first interaction showed a larger occipital P3 to sad faces than neutral and happy faces (M =5.0,
SD=33vs. M=52,SD=34,p>0.05M=52SD=34vs. M=65,5D=33,p<0.05M=5.0,
SD =3.3vs. M =6.5,5D = 3.3, p < 0.01; respectively for happy vs. neutral, neutral vs. sad, and happy
vs. sad faces). The second interaction disclosed that Hi-AQ had a larger P3 at occipital lead to sad
faces than Lo-AQ (M =3.45SD =14vs. M=22,5D =15, t=292, p < 0.01; respectively). The last
interlinked effects indicated that for male happy and sad faces, Hi-AQ participants elicited a larger
parietal occipital P3 than Lo-AQ ones, while the difference between AQ groups was significant for sad
female faces alone (all comparisons survived to FDR p < 0.01; see Figure 7).
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Figure 7. Scalp maps with difference maps of P3 amplitude of Hi-AQ (N =25) vs. Lo-AQ (N = 25) women
for male (left panel) and female faces (right panel) of happy, neutral and sad emotional expressions.

The P3 latency analysis showed a main effect of Condition (F (1,48) = 20.48, p < 0.001, rsz = 0.300),
indicating significantly shorter P3 latencies in the subliminal than supraliminal condition (M = 288, SD
=12.4vs. M =309, SD = 13.8). The Location main effect was significant (F (3,144) = 56.15, p < 0.001,
qu = 0.539). The Location effect indicated that P3 latencies in Fz and Cz regions were significantly
longer than those in Pz and Oz, as well as that in Pz was longer than in Oz (all p < 0.001; Table 2). Finally,
the significant Condition effect showed that there was a robust P3 latency reduction in subliminal
compared to supraliminal condition (Table 2), a result that is opposite to the fifth hypothesis.

3.2.5. N4 Amplitude and Latency

There were no significant main effects for N4 amplitudes, with the exception of Location
(F (3,144) = 9.68, p < 0.001, ILZP = 0.168), showing a larger N4 wave in Fz and Oz regions. However,
the analysis for the N4 latency found a significant Facial-Gender main effect (F (1,48) = 6.08, p = 0.020,
rsz =0.112), and a significant interaction Facial-gender x Location interaction (F (3,144) = 9.11, p = 0.0007,
n?p = 0.159), and indicated a significantly shorter N4 wave to female faces than male-faces in Pz and
Oz recordings (Pz: M =384, SD = 16.3 vs. M ='388, SD = 11.5, p < 0.05; Oz: M = 350, SD = 28.5 vs.
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M =364, SD = 26.8, p < 0.05; respectively for female faces vs. male-faces). The Emotion main effect was
also significant (F (2,96) = 4.83, p = 0.0131, n?, = 0.091) and disclosed a longer N4 latency to sad faces
than happy and neutral faces (M = 384.3, SD = 9.8 vs. M = 378.2, SD = 11.5 and M = 376.1, SD = 10.2;
respectively, both p < 0.05).

4. Discussion

In the present study, we found no evidence for a significant relation of AQ with RAPM. This result
is not new and in line with previous observations indicating no relation between composite AQ and
RAPM [83]. We think that this lacking relation can be due to the fact that AQ total score is a composite
of facets, such as social skill subscale and attention switching subscale, that are conceptualized as
directly and inversely related to RAPM [83]. However, the above-mentioned lacking association makes
us exclude general intelligence as a potential factor influencing any significant effect found for AQ.

Behaviorally, we found that the Hi-AQ group (vs. Lo-AQ) had a reduced accuracy in the detection
of facial expressions and that subliminal faces had a lower accuracy relative to supraliminal ones.
The Hi-AQ group (but not Lo-AQ) was more accurate to detect facial expressions presented with
images of female faces than with male faces, and this facial gender difference was more pronounced for
subliminal than supraliminal stimuli (see Figure 2). These findings are aligned with those previously
reported in TD individuals showing that a selective impairment in identification of emotional facial
expressions is primarily related to the extent of autistic traits [63,69].

The current findings are in line with clinical studies on emotional expression processing in
people with high-functioning ASD, showing a decline in recognition mainly for negative emotions
as disgust and anger [84] and sadness [11]. The authors of these studies suggested that the limited
experience in social interactions is a likely source of the observed altered affective behavior in ASD.
Although in the present study we cannot exclude this possibility, we had no a priori reason to assume
any such differences. Our participants were healthy female psychology students with no history of
neurodevelopmental or psychological disorders, which might cause a different way of engaging in
social interactions. Further studies might help us validating this assumption. Nevertheless, the lower
accuracy in the detection of facial expression between high than low AQ scorers share behavioral
similarities with people with autism: Baron-Cohen, Wheelwright [19] also found higher AQ scores
among ASD individuals. However, in terms of individual differences in facial gender recognition,
the present findings are new and indicate that in women with higher autistic-like traits, female faces
facilitate in identifying facial expression.

Consistent with our prediction, the N1 peak amplitude did not change across emotions in Hi-AQ
scorers, whereas in Lo-AQ ones, we found that at central and right-parietal regions, the N1 peak to
sad faces was significantly higher than that to happy and neutral faces (right quadrant of Figure 3).
This early N1 amplitude difference observed in the Lo-AQ participants may have been due to a
difference in perception of sad faces rather than due to an early attention effect on face recognition,
since it was independent from the presentation time of the face stimuli (i.e., subliminal or supraliminal).
To our knowledge, this is one among few studies providing neurophysiological evidence of altered
early visual processing of perceived emotional faces in individuals with autistic-like traits. Importantly,
this finding is consistent with and extends previous ERP findings by Fujita, Kamio [41] that were
obtained in high-functioning ASD individuals, as well as behavioral findings reported in ASD [38,39].
Additionally, we found a longer N1 latency at occipital midline region in Hi-AQ relative to Lo-AQ
individuals. This finding was in line with previous Fujita, Yamasaki [40] findings in ASD patients
(see Figure 4) and provides novel evidence that not only ASD patients but also TD individuals with
autistic-like traits may have weak neural processing of face stimuli. In ASD patients, the inefficient
face processing has been speculated to occur because of an impairment in processing chromatic
stimuli that preferentially activate the P-color pathway [40]. Therefore, we speculate that this process
may be extended to individuals with autism spectrum traits, although perceptual and attentional
processing are not independent of each other. Even very early feed forward visual processing cannot
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bypass top-down control or attentional set, as directly evidenced in ERP studies with a high temporal
resolution of brain activities see e.g., [85]. Thus, we maintain that the prolonged N1 latency in Hi-AQ
scorers may be part of a broader autism phenotype rather than categorically present for individuals
with ASD [19,86].

Further, research has demonstrated a magnocellular dysfunction in autism [87,88], and that in
terms of cortical processing, the inability to process early visual information correctly should also
be taken in high regard in terms of a dysfunctional magnocellular system [89]. The magnocellular
pathway, known to be more sensitive to stimuli of lower spatial frequencies [90], activates a subcortical
visual pathway that bypasses the visual cortex and has a faster conduction speed than the parvocellular
pathway, which is more sensitive to stimuli of higher spatial frequencies [91,92] and dominates input
to the dorsal cortical stream. Research has also shown that fast magnocellular projections link early
visual and inferotemporal object recognition regions with the orbitofrontal cortex and amygdala and
facilitate object recognition by the activation of fast-attentive responses involved in early predictions
about objects [89,93].

In terms of N170 wave, our current findings were not in support of our third hypothesis of a smaller
and delayed N170 wave in Hi-AQ relative to Lo-AQ scorers [54,62,72] and a larger N170 to sad faces than
happy faces [36,70]. We failed to find any effect involving AQ on the N170 amplitude, while this measure
was smaller to sad faces than happy and neutral faces under subliminal condition. Yet, we obtained
that in Lo-AQ individuals (but not in Hi-AQ ones), emotional recognition of female faces produced a
longer N170 latency than male faces. This is a new result that is aligned with previously reported N170
findings in youth and adults with ASD ([49,52,53], e.g., [54,94,95], but see [96] for a contray account) and
suggest that this ERP component reflects non-specific configural and attentional processes associated
with encoding of structural facial gender cues, rather than with emotional significance per se [97,98].
These novel findings warrant validation. These present findings together with those of accuracy and
N1 response ones are also aligned with behavioral and ERP findings for autistic-like traits in general
population [69,99] and with clinical studies showing an impairment in ASD patients to recognition of
emotional expressions as negative emotions of disgust and anger [84,100] and sadness [11].

The findings of reduced accuracy in the recognition of facial expressions together with longer N1
latency at occipital region and larger P3 amplitude to sad faces in Hi-AQ relative to Lo-AQ scorers
indicate that two distinct neural processes may account for dysfunctional facial expression processing in
autism-like traits. The first may involve the function of the magnocellular system responsible for early
attentional processing, and the latter marks global processing and attention allocation to facial stimuli
and is implicated in the integration processing of negative facial expression as sadness. These findings
have an important clinical implication since they appear in line with reduced attentional control in
autism [87-89,97]. These exploratory findings, if being replicated, imply that N1 latency and P3 amplitude
parameters might have a possible role as neurophysiological markers of clinical severity of autistic and
sensory symptoms. Combining the latency of N1 and P3 to emotional backward-masked faces as stimuli,
together with behavioral accuracy and AQ trait score, might have a potential predictive value to assist for
clinical diagnosis of autism in adults. However, these novel findings need to be validated in independent
samples to test their specificity to ASD diagnosis.

Finally, in terms of N2 amplitude scores, we failed to support our fifth hypothesis according
to which differences between individuals with lower and higher autistic traits would emerge under
subliminal viewing conditions (Vukusic, et al., 2017), since we did not find any significant effect
involving AQ and/or subliminal/supraliminal condition factors. We found, instead, that frontocentral
N2 wave to happy female-faces was larger than happy male-faces, while for sad expression, there was
an opposite trend between female and male faces (see Figure 5). Nonetheless, the N2 latency and P3
latency were both shorter for subliminal vs. supraliminal stimuli across both AQ groups. We also
found a significantly shorter N4 wave to female faces than male faces in Pz and Oz recordings and to
happy faces than sad faces.
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On the whole, Hi-AQ, compared to low AQ scorers, had both higher and longer N1 peaks in
the frontal-central leads of the scalp, and a larger parieto-occipital P3 for happy and sad male faces,
while differences between AQ groups was significant for sad female faces alone. These findings were
seen possibly to reflect more effortful compensatory analytical strategies used by our participants,
with high levels of autistic traits to process facial expression and emotion, and support abnormal ERP
findings of facial emotion observed within the first 300 ms of stimulus onset in autistic children, which
would likely disrupt the development of normal social-cognitive skills [50]. The present results also
parallel recent reports by Stavropoulos and colleagues [62] of delayed ERP components in individuals
with high AQ scores, and are seen as indicating an inefficient social perception in individuals with
subclinical levels of social impairment. Finally, our finding of relative longer N170, N2, and P3 to
subliminal vs. supraliminal faces, is consistent with Vukusic and collaborators’ findings [63].

One potential limitation of this study is that we cannot investigate potential effects of gender
since the participants in the current sample were female. Since ASD is a predominantly male disorder
known to manifest sex differences in face perception (Coffman, et al., 2015), it is worthwhile for
future investigations of AQ score on conscious versus nonconscious face processing to analyze male
and female data separately. The present sample was drawn from a participant pool of neurotypical
right-handed university women students, thus it will also be important to determine that this observed
relationship holds in a more diverse population with a more broadly distributed range of traits on the
autism spectrum or even an ASD diagnosis.

In sum, behavioral accuracy, N1 latency and N2 and P3 amplitudes were all sensitive to facial
gender in the recognition of facial expression. These findings appear in line and complement previous
behavioral reports, e.g., [101,102]. Above all, it is important to note that facial gender effects occurred
regardless of the task requirement to explicitly attend the gender of the face of each emotional expression
and that N1 latency and N2 and P3 amplitude reflect different stages of information processing in
facial expressions. First, N1 latency findings indicated that that signals of different facial gender can
be discriminated from each other as early as 80 ms following stimulus presentation, a finding that
is consistent with previously reported findings on emotional facial expressions [103], showing that
signals associated with different facial identities can be discriminated from each other as early as 70 ms
following stimulus presentation. Next, N2 amplitude and P3 component are shown to contribute
information to both emotional facial expression and facial-gender discriminability. The N4 latency,
sensitive to facial gender alone, may reflect more general categorization processes. These effects are
compatible with previous ERP results, reporting enhanced activities beyond 200 ms post-stimulus at
lateral posterior sites during explicit judgments of facial gender [104-106].
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