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Abstract We consider the two-dimensional random matching problem in R2. In a
challenging paper, Caracciolo et al. [11], on the basis of a subtle linearization of the
Monge-Ampère equation, conjectured that the expected value of the square of the
Wasserstein distance, with exponent 2, between two samples of N uniformly dis-
tributed points in the unit square is logN/2πN plus corrections, while the expected
value of the square of the Wasserstein distance between one sample of N uniformly
distributed points and the uniform measure on the square is logN/4πN. These con-
jectures have been proved by Ambrosio et al. [3].

Here we consider the case in which the points are sampled from a non-uniform
density. For first we give formal arguments leading to the conjecture that if the density
is regular and positive in a regular, bounded and connected domain Λ in the plane,
then the leading term of the expected values of the Wasserstein distances are exactly
the same as in the case of uniform density, but for the multiplicative factor equal to
the measure of Λ .

We do not prove these results but, in the case in which the domain is a square, we
prove estimates from above that coincides with the conjectured result.
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1 Introduction

Let µ be a probability distribution defined on the unit square Q = [0,1]2. Let us
consider two sets xN = {xi}N

i=1 and yN = {yi}N
i=1 of N points independently sampled

from the distribution µ . The Euclidean Matching problem with exponent 2 consists
in finding the matching i→ πi, i.e. the permutation π of {1, . . .N} which minimizes
the sum of the squares of the distances between xi and yπi

, that is

CN(xN ,yN) = min
π

N

∑
i=1
|xi− yπi

|2. (1.1)

The cost defined above can be seen, but for a constant factor N, as the square of the
2-Wasserstein distance between two probability measures. In fact, the p−Wasserstein
distance Wp(ν1,ν2), with exponent p ≥ 1, between two probability measures ν1 and
ν2, is defined by

W p
p (ν1,ν2) = inf

Jν1 ,ν2

∫
Jν1,ν2(dx,dy)|x− y|p,

where the infimum is taken on all the joint probability distributions Jν1,ν1(dx,dy)
with marginals with respect to dx and dy given by ν1(dx) and ν2(dy), respectively.
Defining the empirical measures

XN(dx) =
1
N

N

∑
i=1

δxi(x)dx, Y N(dx) =
1
N

N

∑
i=1

δyi(x)dx,

it is possible to show that

CN(xN ,yN) = NW 2
2 (X

N ,Y N),

(see for instance [8]). In the sequel we will shorten CN =CN(xN ,yN).
In the challenging paper [11], at first for particles in the torus of measure one,

then also in the case of the square, see [14], Caracciolo et al. conjectured that when
xi and yi are sampled independently with uniform density on Q, then

Eσ [CN ]∼
logN
2π

, (1.2)

where with Eσ we denoted the expected value with respect to the uniform distri-
bution σ(dx) = dx of the points {xi} and {yi}, and where we say that f ∼ g if
limN→+∞ f (N)/g(N) = 1. In terms of W 2

2 the conjecture is equivalent to

Eσ [W 2
2 (X

N ,Y N)]∼ logN
2πN

. (1.3)

Moreover, in [11] it is conjectured that asymptotic of the expected value of W 2
2 (X

N ,σ)
between the empirical density XN and the uniform probability measure σ(dx) on Q
is given by

Eσ [W 2
2 (X

N ,σ)]∼ logN
4πN

. (1.4)
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A first general results showing that in the case of the unit square Eσ [W 2
2 (X

N ,Y N)]

behaves as logN
N has been obtained in [4]. The conjectures above has been proved by

Ambrosio et al. [3]. In [1] finer estimates are given and it is proved that the result can
be extended to the case when the particles are sampled from the volume measure on a
two-dimensional Riemannian compact manifold. In [2] it is shown that the properties
of the optimal transport map for W2(XN ,σ) are in agreement with the result in [11].

We notice that if we consider square (or manifold) of measure |Q| 6= 1, the cost
has to be multiplied by |Q|. Namely, if we extract {xi} uniformly in Q, then the points
{γxi}, with γ > 0, are uniformly distributed in γQ, and CN(xN ,yN)= γ−2CN(γxN ,γyN).
By imposing that |γQ|= 1, i.e. γ−2 = |Q|, we obtain that the expectation of the cost
CN(γxN ,γyN) verifies the asymptotic estimate (1.2).

In this paper we consider the case of non-uniform measure µ(dx) = ρ(x)dx with
ρ strictly positive and regular.

In particular in Section 2 we study the asymptotic behavior of the expected value
of the cost when ρ is a density on Q, piecewise constant on a grid of sub-squares.
On the basis of the analysis of this case, in Conjecture 1 we guess that, in the case
of regular and strictly positive density, the asymptotic behavior is still described by
the right-hand-sides of eq.s (1.3) and (1.4). In the case of a density defined on a
regular connected bounded set Λ in the plane, we expect that the asymptotic behavior
changes only for the multiplicative factor |Λ | (see Conjecture 2).

In Section 3 we face the random Euclidean matching problem with the strategy
presented in [11,14], showing that the results conjectured in 2 can be formally justi-
fied on the basis of that approach.

We do not fully prove the conjectures, but in section 4 we prove that (1.3) and
(1.4) give exact estimates from above of the cost, in the case of strictly positive and
Lipschitz continuous density on Q.

Although this work concerns the two-dimensional case for cost and Wasserstein
distance with exponent 2, we briefly review here what is known in the other cases, up
to our knowledge.

In dimension 2, for p≥ 1, p 6= 2, in [4] it has been proved that the expected cost
per particle E[CN ]/N is O(N−p/2) as N → ∞. The value of the limit as N → +∞ of
N p/2E[CN ]/N is not known.

In dimension 1 the random Euclidean matching problem in a segment is almost
completely characterized, for any p≥ 1. This is due to the fact that the best matching
between two set of points on a line is monotone. When the density is uniform on the
segment [0,1] and p = 2, one gets E[CN ]→ 1/3 as N → ∞. In this case, it is well
known that it is possibile to compute explicitly E[CN ] for any N, in fact E[CN ] =
N/3(N +1). Moreover, for any p≥ 1, E[CN ]/N ∼ cpN−p/2, where cp is known, see
[13]. Very recently, an expression for CN , for any N and for any value of p ≥ 1, has
been determined, see [12]. The different behavior in the case in which the density
vanishes in some point or in a segment has been analyzed in [9] (see the Remark 3 at
the end of Section 2). A general discussion on the one-dimensional, also for the case
of non-constant densities and of densities defined on all the line, can be found in [7].
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In dimension d ≥ 3, it has been proved that E[CN ]/N ∼ cN−p/d , for any p ≥ 1
(see [19], [15] for p = 1, and [16] for p≥ 1).

2 Some conjectures for non-constant densities

Let us consider the case µ(dx) = ρ(x) dx with ρ(x) is piecewise constant with respect
to a regular grid of sub-squares of Q. For sake of simplicity we consider the case in
which the grid is made by four sub-squares: [0,1/2)2, [0,1/2)× [1/2,1], [1/2,1]×
[0,1/2), [1/2,1]2 (see fig. 1).

Q1,ρ1

Q3,ρ3

Q2,ρ2

Q4,ρ4

Fig. 1 Grid of 2×2 squares.

Let us denote by Qk : i = 1, . . .4, the four squares and by ρk > 0, k = 1, . . .4 the
corresponding constant densities. Now, let {xi}N

i=1 and {yi}N
i=1 be two samples of

N independent points from the distribution µ , and let us denote with Rk and Sk the
number of points xi and yi in Qk, respectively. Then, both Rk and Sk will be equal to
Nk = ρkN/4 plus terms of the order of

√
N.

Now we make two ansatzes.

1. Up to a correction o(logN), we can calculate Eµ [CN ] by restricting ourselves to
the case in which both Rk and Sk are equal to Nk = ρkN/4 (rounded to integer
numbers in such a way that the sum of the Nk is N).

2. Given the samples with Rk = Sk = Nk, the optimal cost, with the constraint that xi
and yπi

are in the same square, is CN plus an error o(logN).

Under these assumptions we get that, but for terms of order 1, the expected value of
the cost of the optimal matching will be given by the sum of the expected value of
the cost of the optimal couplings in the four squares.

Now let us notice that, by eq. (1.3), if we sample Nk particles uniformly and
independently in a square of size |Qk|, then the expected value of the cost is simply
given by |Qk| logN

2π
, as follows by the scaling argument shown in the previous section.
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Therefore,

Eµ [CN ] =
4

∑
k=1
|Qk|

log(ρkN/4)
2π

+o(logN)

=
4

∑
k=1
|Qk|

logN
2π

+
4

∑
k=1
|Qk|

log(ρk/4)
2π

+o(logN)

=
logN
2π

(
4

∑
k=1
|Qk|

)
+o(logN) =

logN
2π

+o(logN),

where we used that ∑ |Qk|= 1. We can notice that the dependence of Eµ [CN ] on the
values of the densities ρk does not affect the leading term, that only depends on the
measure of the set.

This analysis can be extended when we consider a regular grid of m2 squares.
Therefore, by noticing that it is possible to approximate a continuous density ρ as
well as we want in L∞ with a piecewise constant density, we are led to the following
conjectures.

Conjecture 1 Let µ(dx) = ρ(x)dx a probability measure defined on Q where ρ is
a smooth positive density on Q. Let {xi}N

i=1 and {yi}N
i=1 be two samples of points

independently distributed with µ . Then

Eµ [CN ]∼
logN
2π

. (2.1)

Reasoning in the same way, we can conjecture that the asymptotic behavior of the
2−Wasserstein distance between the empirical measure XN and the measure µ itself
verifies

Eµ [W 2
2 (X

N ,µ)]∼ logN
4πN

. (2.2)

Let us notice that the two ansatzes above are far from been obvious. Nevertheless,
in the next section we will prove that the right-hand-sides of eq.s (2.1) and (2.2) give
exact estimates from above of the expected values.

Let us now consider a bounded connected set Λ in R2 with regular boundary,
and consider a partition of Λ with squares of sides 1/m, as in fig. 2. Let us suppose
that the probability measure µ has a smooth and positive density in Λ , and define
Λk = QK ∩Λ .

Then with the same reasoning made for the case of the square Q, formally we get

Eµ [CN ]∼ ∑
k:Qk⊂Λ

|Qk|
log(ρkN/|Qk|)

2π

=
logN
2π

∑
k:Qk⊂Λ

|Qk|+O(1)∼ |Λ | logN
2π

,

where ρk is the average of ρ on Λk. In fact, we expect that any of the square Qk in Λ

contributes to E[CN ] with a term∼ |Qk|
2π

logN. We have also neglected the contribution
of the squares close to the boundary.

Therefore, we are led to the following conjecture.
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Λ

Fig. 2 Set Λ covered with squares.

Conjecture 2 Let µ(dx) = ρ(x)dx, a probability measure defined on Λ where ρ is
a smooth positive density. Let {xi}N

i=1 and {yi}N
i=1 two samples of N points indepen-

dently distributed with µ .

Eµ [CN ]∼ |Λ |
logN
2π

and Eµ [W 2
2 (X

N ,µ)]∼ |Λ | logN
4πN

.

Remark 1 If the measure of the support of µ is infinite (for instance if the support is
all R2), we expect that

lim
N→∞

Eµ [CN ]

logN
=+∞.

This is in agreement with the fact, proved by Talagrand in [20], that when the density
is the Gaussian, i.e. ρ = 1

2π
e−|x|

2/2, the average of the cost satisfies for large N

(logN)2 ≤ Eµ [CN ]≤C(logN)2.

Notice that an estimate from above proportional to (logN)2 was previously proved by
Ledoux in [16]. Moreover, in [20] the author says that a similar estimate can be ob-
tained for densities ρ ∝ e−|x|

α

obtaining a bound form below for the cost proportional
to (logN)1+2/α , and therefore much larger than logN.

Remark 2 In the above conjectures we require that ρ is positive, but we can reformu-
late the conjectures using the measure of the support of ρ instead of the measure of
Λ . The condition which really can change the asymptotic behavior of the cost is the
connection of the support of ρ . Namely, if this condition is not satisfied, the result
may be false. In particular if ρ is constant in two squares whose distance is positive,
we get that the expected value of cost is O(

√
N)� O(logN). To get an idea of what

happens, consider

µ(dx) =
1
2
(δz1(x)+δz2(x))dx.

Then

XN(dx) =
(

R
N

δz1(x)+
N−R

N
δz2(x)

)
dx,

Y N(dx) =
(

S
N

δz1(x)+
N−S

N
δz2(x)

)
dx,
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where R and S are independent binomial variables of mean N/2 and variance N/4. It
is easy to show that

CN = L2 |R−S|

where L = |z1 − z2|. Then, by noticing that R− S has variance N/2, by the Cen-
tral Limit Theorem we get that the leading term of the expected value of the cost
is L2

√
N/π . This behavior is independent of the dimension. The reader can find in

the paper [9] the exact asymptotic value in the one-dimensional case of two disjoint
intervals of the same length and with constant density.

Remark 3 Non-constant densities have been previously addressed in [14], in which
the authors present a general expression which also allows the explicit calculation
of the asymptotic value of the cost in the one dimensional case. Again on the one-
dimensional case, in [9] the authors consider also a matching problem as in eq. (1.1)
but where the distance appears with the power p≥ 1, not necessarily 2. The expected
value of the cost per particle E[CN ]/N goes as cN−p/2, but interestingly c can diverge
if the density approaches zero at some point.

3 A formal proof

It is possible to extend the method by Caracciolo et al. [11] to a generic (positive)
density. In particular in [14] a formula for Eµ [CN ] and for its fluctuations is presented,
in the general case. The formula for Eµ [CN ] is computed in the case of the uniform
density σ in the square, recovering the results in [11]. Here we follow the approach
presented in the papers above, considering the general case of a smooth and positive
density and deriving formally eq. (2.1) of Conjecture 1 (eq. (2.2) can be derived
essentially in the same way).

In the framework of this approach, the main argument we use to derive eq. (2.1)
consists in noticing that the singular part of the Green function of the linearized
Monge-Ampère equation, that in the case of a generic density is an elliptic opera-
tor in divergence form, has a very simple expression.

3.1 Constant density

The strategy proposed in [11] to compute the expected value of CN consists in lin-
earizing the Monge-Ampère equation (which is the Euler Lagrange equation for the
Monge-Kantorovich problem) and then to put a suitable cut-off on the expression
founded. For first, we here report the argument in [11] for the case of constant den-
sity, and we refer to [11,14] for the justification of the approach and further details.

By linearizing the Monge-Ampère equation around the uniform probability mea-
sure σ(dx) = dx, the Wasserstein distance between two regular measures is approxi-
mated by ∫

Q
|∇ψ|2 =−

∫
Q

ψ ∆ψ (3.1)
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where ψ solves
∆ψ =−δρ, (3.2)

whit Neumann boundary conditions, and where δρ is the difference of the densities of
the two measures. We use formally (3.1) in the case of singular measures, introducing
later a suitable cut-off that make finite the cost. In the bipartite case

δρ(x)dx = XN(dx)−Y N(dx) (3.3)

and the cost is N times the Wasserstein distance, that is

CN ∼ N
∫

Q
|∇ψ|2 = N

∫
Q

ψ δρ.

It is convenient to introduce the Green function φz for the Laplace problem on Q,
which is the solution, with zero average, of

∆φz(x) =−δz(x)+1,

with Neumann boundary conditions. Since ψ solves eq. (3.2) with δρ given in eq.
(3.3), from the definition of φz(x) we get

ψ(x) = ∆
−1

δρ(x) =
1
N

(
N

∑
i=1

φxi(x)−
N

∑
j=1

φy j(x)

)
and then

CN ∼
1
N

∫
Q

(
N

∑
i=1

φxi −
N

∑
j=1

φx j

)(
N

∑
i=1

δxi −
N

∑
j=1

δy j

)
.

Taking the expectation in the location of the delta functions, and using that the Green
function has zero average, we get

Eσ [CN ]∼
1
N
Eσ

∫
Q

[(
N

∑
i=1

φxi −
N

∑
j=1

φy j

)(
N

∑
i=1

δxi −
N

∑
j=1

δy j

)]

=
1
N
Eσ

N

∑
i=1

∫
Q

(
φxiδxi +φyiδyi

)
= 2

∫
Q

dz
∫

Q
dx |∇φz(x)|2

= 2
∫

Q
dx |∇φ0(x)|2,

(the integral in x does not depend on the position of z, then we can fix it in z = 0). By
Parseval’s Lemma, the right-hand-side can be written in Fourier series, with respect
to the base of cosines, as

2
π2 ∑

k∈N2\{0}

1
|k|2

.

This series is not summable but a natural cut-off can be imposed by summing up to k
as large as 1

λ
where λ = 1√

N
is the characteristic length of the system, i.e. the typical

distance between a point x and its closest point y. In this way one gets Eσ [CN ] ∼
1

2π
logN+O(1). It is important to notice that if the cut-off is chosen to be λ = α/

√
N
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then the leading term of does not depend on the constant α , which only affects the
O(1) term.

In order to face the case of a non-constant density, it is convenient to make the
previous computation in the position space, in which the cut-off can be obtained by
smoothing the delta-function evolving it, with the heat semigroup, for a time t = 1/N.
We recall that the Green function can be written as

φz(x) =−
1

2π
log |x− z|+ γ(x,z),

where γ is a regular function. We indicate whit f t the evolution of a function f with
the heat semigroup until the time t, and with Gt(x) the heat kernel in the whole space
R2. We get again

Eσ [CN ]∼ 2
∫

Q
φ

t
0(x)δ

t
0(x)dx = 2

∫
Q

φ0(x)δ
2t
0 (x)dx

=−2
1

2π

∫
R

log |x|G2t(x)dx+O(1) =− 1
π

log
√

t +O(1)

=
1

2π
logN +O(1).

(3.4)

3.2 Non-constant density

Now let us consider the case of a probability measure µ of positive and regular den-
sity ρ . The main difference from the case of a constant density is that the linearized
Monge-Ampère equation reads as

∇ · (ρ∇ψ) =−δρ. (3.5)

(see for instance [18] and references therein). Also in this case

CN ∼ N
∫

Q
ρ |∇ψ|2 = N

∫
Q

ψδρ

where ψ satisfies (3.5). We then introduce the Green function φz(x) which is the
solution of

∇ · (ρ∇φz) =−(δz−ρ) with
∫

Q
φz(x)ρ(x)dx = 0, (3.6)

getting

ψ =
1
N

N

∑
i=1

φxi −
1
N

N

∑
j=1

φy j

and

CN ∼
1
N

∫
Q

(
N

∑
i=1

φxi −
N

∑
j=1

φy j

)(
N

∑
i=1

δxi −
N

∑
j=1

δy j

)
.
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Taking the expectation in the location of the delta functions, that are distributed with
density ρ , we get

Eµ [CN ]∼
1
N
Eµ

∫
Q

(
N

∑
i=1

φxi −
N

∑
j=1

φy j

)(
N

∑
i=1

δxi −
N

∑
j=1

δy j

)

=
1
N
Eµ

∫
Q

N

∑
i=1

(
φxiδxi +φyiδyi

)
= 2

∫
Q

dzρ(z)
∫

Q
dxφz(x)δz(x).

The key observation we make here consists in noticing that in the equation (3.6), that
we rewrite as

ρ∆φz +∇ρ ·∇φz =−δz +ρ,

the term ∇ρ ·∇φz is less singular than the δ function, therefore

φz(x) =−
1

2πρ(z)
log |x− z|+O(1) (3.7)

as x→ z (see the Remark 4 at the end of this section). Finally, we apply the cut-off
by evolving δz until the time t = 1/N with the heat semigroup. Proceeding as in eq.
(3.4)

Eµ [CN ]∼−
1
π

∫
Q

dzρ(z)
∫

Q
dx

1
ρ(z)

log |x− z|G2t(x− z)+O(1)

=
1

2π
logN

(∫
Q

dz
)
+O(1) =

1
2π

logN +O(1),

that is in agreement with our conjecture.
The argument can be generalized to any regular bounded domain Λ in the plane

and to the case of the torus. In the latter case, the operator ∆ requires periodic bound-
ary conditions.

Indeed, changing the domain or the boundary condition only affects the regular
part of the Green function in (3.7).

Remark 4 Denoting with ∆−1 the inverse of the Laplacian, we have

φz =−∆
−1
(

δz−ρ

ρ

)
−∆

−1 ∇ρ ·∇φz

ρ
.

This expression suggests that divergent part of φz is

− 1
2πρ(z)

log |x− z|,

and then that |∇ρ ·∇φz/ρ| is bounded by c
|x−z| . It is easy to show that applying ∆−1

to this term we obtain a bounded continuous function. A rigorous proof of (3.7) when
the domain is all R2 can be found, for instance, in [5], and can be extended to the
case of the square with minor modifications.
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4 Estimate from above

In this section we prove that

Theorem 1 Let µ(dx) = ρ(x)dx be a probability measure defined on Q, where ρ is
a Lipschitz continuous strictly positive density.

1. Let {xi}N
i=1 and {yi}N

i=1 be two samples of N points chosen independently with
distribution µ . Then

limsup
N→∞

2π

logN
Eµ [CN ]≤ 1 (4.1)

that is equivalent to

limsup
N→∞

2πN
logN

Eµ [W 2
2 (X

N ,Y N)]≤ 1 (4.2)

2. Moreover
limsup

N→∞

4πN
logN

Eµ [W 2
2 (X

N ,µ)]≤ 1 (4.3)

We first prove the second part of the theorem, and then we show that (4.3) implies
(4.2).

The idea of the proof is to divide the square Q into small squares where the density
can be considered constant in order to apply the result in eq. (1.4). More precisely,
we state the following Lemma.

Lemma 1 Let ρ(x) be a strictly positive and Lipschitz continuous function defined
in Q` = [0, `]2, let ν(dx) = r(x)dx be the probability measure of density r(x) =
ρ(x)/

∫
Q` ρ , and let σ `(dx) = `−2 dx be the uniform probability measure on Q`. Let us

denote with {xi}R
i=1 a sample of R points independently distributed with ν , and with

{zi}R
i=1 a sample of N points independently distributed with the uniform probability

measure σ `, and let us indicate with XR(dx) and ZR(dx) the corresponding empirical
measures.

Then there exists a constant c > 0 such that for sufficiently small `

EνW 2
2 (X

R,ν)≤ (1+ c`)E
σ `W 2

2 (Z
R,σ `).

Proof Let us denote with L the Lipschitz constant of ρ , and with a a constant such
that ρ(x)≥ a > 0. The measure ν is approximated by σ ` in the sense that∣∣∣∣r(x)− 1

`2

∣∣∣∣= 1∫
Q` ρ

∣∣∣∣ρ(x)− 1
`2

∫
Q`

ρ

∣∣∣∣≤ L
a`

.

Moreover,

|r(x)− r(y)| ≤ L
a`2 .

Let us define

r2(x2) =
∫ `

0
r(x′1,x2)dx′1
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and note that ∣∣∣∣r2(x2)−
1
`

∣∣∣∣≤ L
a
.

We consider the map 
G1(x1,x2) = `

1
r2(x2)

∫ x1

0
r(x′1,x2)dx′1

G2(x1,x2) = `
∫ x2

0
r2(x′2)dx′2.

The map x = (x1,x2)→ G = (G1,G2) is continuously differentiable, its Jacobian is
r(x), and it is bijective from Q` in Q`. Then, if x is uniformly distributed on Q`,
G(x) is distributed with density r. The inverse map Γ of G transports the uniform
distribution σ `(dx) in the probability measure ν(dx) of density r. By definition of Γ

W 2
2 (X

R,ν) = inf
J

∫
J(dx,dy)|Γ (x)−Γ (y)|2,

where the infimum in taken on the joint probability measures of Zn(dx) and σ `(dy),
with zi = G(xi). Now we show that

|Γ (x)−Γ (y)|2 ≤ |x− y|2 sup
x 6=y

|Γ (x)−Γ (y)|2

|x− y|2

= |x− y|2 sup
x 6=y

|x− y|2

|G(x)−G(y)|2
≤ (1+ c`)|x− y|2

from which the proof follows immediately. Let us define

α =
`

x2− y2

∫
[x2.y2]

r2(x′2)dx′2,

β =
`

x1− y1

∫
[x1.y1]

r(x′1,x2)

r2(x2)
dx′1,

γ =
`

x2− y2

∫ y1

0

(
r(x′1,x2)

r2(x2)
− r(x′1,y2)

r2(y2)

)
dx′1.

Using the estimate on r−1/`2, r2−1/` and on the Lipschitz constant of r, we have

|α−1| ≤ c`, |β −1| ≤ c`, |γ| ≤ c`.

Then

|G(x)−G(y)|2 = (α2 + γ
2)(x2− y2)

2 +β
2(x1− y1)

2 +2βγ(x1− y1)(x2− y2)

≥ (1− c`)|x− y|2,

for a suitable constant c and ` sufficiently small.

We will also need to bound the 2−Wasserstein distance between two slightly dif-
ferent and positive densities on the square. We can do this with the following Lemma,
which is a corollary of Benamou-Brenier formula [6].
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Lemma 2 If ν1 and ν2 are two probability measures on a convex domain Λ , abso-
lutely continuous with respect to the Lebesgue measure, with densities bounded from
below and from above by finite non-zero constants, then

W 2
2 (ν1,ν2)≤ c‖ν1−ν2‖2

2.

Proof The Benamou-Brenier formula allows to estimate the 2−Wasserstein distance
between two measures in terms of the Ḣ−1 norm of their difference. More precisely,
Theorem 5.34 in [18] says: if ν1 and ν2 are two absolutely continuous measures
defined on a convex domain Λ , with densities bounded from below and from above
by the constants a and b respectively, 0 < a < b, then

1√
b
‖ν1−ν2‖Ḣ−1(Λ) ≤W2(ν1,ν2)≤

1√
a
‖ν1−ν2‖Ḣ−1(Λ),

where the Ḣ−1 norm of a 0−average charge distribution ν is defined by

‖ν‖Ḣ−1(Λ) =
∫

Λ

|∇∆
−1

ν |2,

where the inverse of Laplacian is defined with Neumann homogeneous boundary
conditions on ∂Λ . Therefore, by noticing that the Ḣ−1 norm is bounded from above
by a positive constant depending only on |Λ | times the L2 norm, we get the result.

We remark that more general results, including the case of non-convex domains, can
be found in [17] and references therein. We also remark that this Lemma fails if the
supports of the measures are not connected, according to remark 2 at the end of the
previous section.

Now we can start to prove Theorem 1. Let m a positive integer and let us cover
Q = [0,1]2 with the m2 squares {Qk}m2

k=1, of sides 1/m and of measure 1/m2, given
by [i/m,(i+1)/m]× [ j/m,( j+1)/m], with i, j = 0, . . .m−1. as in fig. 3.

Fig. 3 Regular grid of squares.



14 Dario Benedetto, Emanuele Caglioti

We define:

σk(dx) = m2 dx the uniform probability measure on Qk (4.4)

pk =
∫

Qk

ρ(x)dx the probability that x, extracted with µ , belongs to Qk (4.5)

µ
m
k (dx) =

1
pk

ρ(x)dx the distribution of x, conditioned to x ∈ Qk. (4.6)

Let {xi}N
i=1 be a sample of N independent points distributed with µ , and let us denote

with Rk the number of points xi in the square Qk. Let Jk(dx,dy) a joint probability
distribution on Qk×Qk with marginals given by

∫
Qk

Jk(dx, ·) = XN
k (dx) :=

1
R k

N

∑
j=1

χ{x j ∈ Qk}δx j(x)dx

∫
Qk

Jk(·,dy) = µ
m
k (dy).

Then

J(dx,dy) =
m2

∑
k=1

Rk

N
Jk(dx,dy)

is a joint distribution in Q×Q with marginals given by

∫
Q

J(dx, ·) = XN(dx) =
1
N

N

∑
j=1

δx j(x)dx

∫
Q

J(·,dy) = µ
m(dy) :=

m2

∑
k=1

Rk

N
µ

m
k (dy) =

m2

∑
k=1

Rk

pkN
ρ(y)χ{y ∈ Qk}dy.

We will estimate E[W 2
2 (X

N ,µ)] by the triangular inequality, trough the estimates of
E[W 2

2 (X
N ,µm)] and E[W 2

2 (µ
m,µ)].

Estimate of E[W 2
2 (X

N ,µm)].

By definition

W 2
2 (X

N ,µm)≤
m2

∑
i=1

Rk

N
W 2

2 (X
N
k ,µm

k ).

We first take the expected value conditioned to the variables Rk, which is equivalent to
fix {Rk} and to extract a sample of Rk particle in Qk with distribution µm

k , as defined
in (4.6). Then we will take the expectation in {Rk} with respect to µ , which means to
extract the multinomial variables {Rk} with probability pk, as defined in (4.5):

Eµ

[
W 2

2 (X
N ,µm)|{Rk}m2

k=1

]
≤

m2

∑
i=1

Rk

N
Eµm

k
W 2

2 (X
N
k ,µm

k ).
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We estimate Eµm
k

W 2
2 (X

N
k ,µm

k ) using Lemma 1, identifying `= 1/m, Q` with Qk, and
using the results in Eq. (1.4):

Eµm
k
[W 2

2 (X
N
k ,µm

k )]≤ (1+ c/m)Eσk [W
2
2 (Z

Rk ,σk)]

= (1+ c/m)
1

m2

(
logRk

4πRk
+o(logRk/Rk)

)
.

(4.7)

Then, multiplying for Rk/N and summing on k

Eµ

[
W 2

2 (X
N ,µm)|{Rk}m2

k=1

]
≤ (1+c/m) ∑

k:Rk>0

(
1

m2
1

4πN
logRk +

1
m2 o(logRk/N)

)
.

The expected value of Rk is Nk = pkN, where pk is of order 1/m2. Then we need that
N/m2 diverges with N. For N large, Rk differs from Nk of a term of order

√
N/m,

then

E

[
∑

k:Rk>0

1
m2 o(logRk/N)

]
= o(logN/N)+o(logm/N) = o(logN/N).

Moreover

logRK = log(Rk/Nk)+ log pk + logN ≤ log(Rk/Nk)+ logN,

and since pk ≤ 1 and since log is a convex function

Eµ [logRk]≤ Eµ [log(Rk/Nk)]+ logN ≤ logN.

Therefore, we conclude that

Eµ [W 2
2 (X

N ,µm)]≤ (1+ c/m)

(
logN
4πN

+o(logN/N)

)
.

Estimate of E[W 2
2 (µ

m,µ)].

Here we use Lemma 2:

W 2
2 (µ

m,µ)≤ c‖µm−µ‖2
2 = c

m2

∑
k=1

(
Rk

pkN
−1
)2 ∫

Qk

ρ(x)2 dx

= c
m2

∑
k=1

1
p2

kN2 (Rk− pkN)2
∫

Qk

ρ(x)2 dx.

Taking the expectation

Eµ [W 2
2 (µ

m,µ)≤ c
m2

∑
k=1

1
p2

kN2 N pk(1− pk)
∫

Qk

ρ(x)2 dx

≤ c
1
N

m2

∑
k=1

1
pk

∫
Qk

ρ(x)2 dx≤ c‖ρ‖∞

m2

N
.
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Proof (Proof of Theorem 1.) Using that (a+b)2 ≤ (1+ δ )a2 +(1+1/δ )b2 for any
δ > 0, from the triangular inequality for W2 we have

N
logN

Eµ [W 2
2 (X

n,µ)]≤(1+δ )
N

logN
Eµ [W 2

2 (X
n,µm)]

+(1+1/δ )
N

logN
Eµ [W 2

2 (µ
m,µ)]

≤(1+δ )(1+ c/m)

(
1

4π
+o(1)

)
+ c(1+1/δ )

m2

logN
.

We achieve the proof of eq. (4.3) taking the limsup in N and then passing to the limit
m→+∞ and δ → 0.

To prove estimate (4.1) we use a nice argument introduced in [3, Prop. 2.1]. For
first, let us remind that the best coupling between an absolute continue measure µ and
XN can be represented with a measurable map T XN : Q→ Q such that T XN transport
µ(dx) in XN(dx), and

JT (dx,dy) = δ (y−T XN (x))ρ(x)dx dy

is the joint distribution which realize the infimum in the definition of the 2-Wasserstein
distance:

W 2
2 (µ,X

N) =
∫

JT (dx,dy)|x− y|2 =
∫
|TXN (x)− x|2ρ(x)dx.

Let Y N another empirical measure obtained extracting N particles with distribution
µ , and let TY N be the corresponding map which gives the best coupling. Then, since
T XN and TY N transport µ in XN and Y N respectively,

W 2
2 (X

N ,Y N)≤
∫
|T XN (x)−TY N (x))|2ρ(x)dx

=
∫
|T XN (x)− x− (TY N (x)− x)|2ρ(x)dx

=
∫
|T XN (x)− x|2ρ(x) dx+

∫
|TY N (x)− x|2ρ(x) dx+

−2
∫
(T XN (x)− x) · (TY N (x)− x)ρ(x)dx.

Considering that, since XN and Y N are independent and identically distributed, also
T XN (x) and TY N (x) are independent and identically distributed. Then, taking the ex-
pectation,

Eµ [W 2
2 (X

N ,Y N)]≤ 2Eµ

∫
|T XN (x)− x|2ρ(x)dx−2

∫
|Eµ [T XN (x)− x]|2ρ(x)dx

≤ 2Eµ

∫
|T XN (x)− x|2ρ(x)dx = EµW 2

2 (X
N ,µ).

Therefore, by (4.3) we get (4.1).
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