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ABSTRACT
This study validated SNAP-derived LAI from Sentinel-2 and its con-
sistency with existing global LAI products. The validation and inter-
comparison experiments were performed on two processing levels, i.
e., Top-of-Atmosphere and Bottom-of-Atmosphere reflectances and
two spatial resolutions, i.e., 10 m, and 20 m. These were chosen to
determine their effect on retrieved LAI accuracy and consistency. The
results showed moderate R2, i.e., ~0.6 to ~0.7 between SNAP-
derived LAI and in-situ LAI, but with high errors, i.e., RMSE, BIAS,
and MAE >2 m2 m–2 with marked differences between processing
levels and insignificant differences between spatial resolutions. In
contrast, inter-comparison of SNAP-derived LAI with MODIS and
Proba-V LAI products revealed moderate to high consistencies, i.
e., R2 of ~0.55 and ~0.8 respectively, and RMSE of ~0.5 m2 m–

2 and ~0.6 m2 m–2, respectively. The results in this study have
implications for future use of SNAP-derived LAI from Sentinel-2 in
agricultural landscapes, suggesting its global applicability that is
essential for large-scale agricultural monitoring. However, enormous
errors in characterizing field-level LAI variability indicate that SNAP-
derived LAI is not suitable for precision farming. In fact, from the
study, the need for further improvement of LAI retrieval arises, espe-
cially to support farm-level agricultural management decisions.
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1. Introduction

Globally, improving remotely sensed characterizationof biophysical properties of vegetation is
of paramount importance for a variety of applications (Davi et al. 2009; Zhu et al. 2010). In
particular, the non-destructive estimation of the Leaf Area Index (LAI) from earth observation
data has been topical for decades. LAI is defined as the one-sided green leaf area per unit
ground area (Myneni 2012), and it is regarded as an essential climate variable (ECV) (GCOS
2009). This is mainly due to its significance in characterizing basic information related to
vegetation growth and productivity such as foliage density, plant health, and functioning, as
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well as its significance for modelling water, carbon and energy fluxes between land and
atmosphere (Chen et al. 2002; Verrelst et al. 2015). In agriculture, LAI is essential for, among
others, monitoring the variability in crops and rangelands productivity, crop stress and health,
biomass, phenology, and yield estimation (Mulla 2013; Cho, Ramoelo, and Dziba 2017; Novelli
et al. 2019). Unfortunately, traditional direct LAI (in-situ) measurement methods are spatially
and temporally limited, expensive, time-consuming, labour-intensive, and destructive
(Alexandridis et al. 2013). Therefore, remotely sensed effective LAI (hereafter, LAI) provides
a promising alternative for operational agricultural monitoring to support the implementation
of global and regional food security mandates such as the United Nations Sustainable
Development Goals (UN-SDGs) and Agenda 2063.

The availability of free-of-cost, high resolution space-borne satellite datasets (finer than
30 m) from sensors such as Sentinel-2, advanced open-source tools such as Sentinel
Application Platform (SNAP), and the increasingly available analysis-ready data (ARD) offers
prospects for accurate, consistent and operational LAI. This should overcome the limitations of
coarse spatial resolution (i.e., 300–1000m) LAI products, such as those derived fromModerate
Resolution Imaging Spectroradiometer (MODIS) (Myneni, Knyazikhin, and Park 2015),
Advanced Very-High-Resolution Radiometer (AVHRR) (García-Haro et al. 2018), Satellite Pour
l’Observation de la Terre Vegetation (SPOT-VGT), and Proba-V (Baret et al. 2013). Beside better
resolution, Sentinel-2’s key advantage over other freely available sensors is its temporal
resolution (i.e., ±5 days), which is adequate (if cloud-free) for most agricultural monitoring
applications. On the other hand, SNAP Toolbox provides advanced functionalities for any user
to perform the atmospheric correction through Sen2Cor tool (Louis et al. 2016), and estimate
biophysical parameters based on physically-based radiative transfer model, i.e., PROSAIL and
robustmachine learning algorithm, i.e., Neural Networks (Weiss and Baret 2016). However, the
validation of SNAP-derived LAI from Sentinel-2 data, as well as its consistency with existing LAI
products, were explored by few studies (Bochenek et al. 2017; Campos-Taberner et al. 2018).
This is indispensable since accurate and reliable agriculturalmonitoring strongly hinges on the
consistency and inter-comparability of biophysical parameters such as LAI (Alexandridis,
Ovakoglou, and Clevers 2019). Furthermore, uncertainties related to the effect of the spatial
resolution andprocessing level of the data onderivedbiophysical parameters such as LAI need
further assessment, especially in Africa, where such studies are rare. Moreover, quantifying
uncertainties in remotely sensed products is useful for users and developers interested in the
operational use of the product and further development, respectively.

Therefore, the current study sought to validate and inter-compare SNAP-derived LAI
from Sentinel-2 Top-Of-Atmosphere (TOA) and Bottom-Of-Atmosphere (BOA) reflectances
at two spatial resolutions, i.e., 10 m and 20m, using in-situ data and global LAI products, i.e.,
MODIS LAI (MCD15A3 H) with 500 m resolution and Copernicus LAI based on Proba-V data
(hereafter, Proba-V LAI) with 300 m resolution. The study was conducted in an African
agricultural landscape characterized by large commercial and small-holder farming systems.

2. Study area

The study area is located at latitudes 27°13ʹ0ʺS to 28°8ʹ0ʺS and longitudes 26°0ʹ0ʺE to 27°
05ʹ0ʺE, in the vicinity of Bothaville in Free State province, South Africa. The area constitutes the
primary agricultural production zone of South Africa and is characterized by warm and wet
summers with an average temperature of about 18°C and an annual average rainfall of about
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584 mm. On the other hand, winters are cold, with average temperatures of about 5.1°C.
Large-scale and small-holder commercial crop cultivation of mainly maize and sunflower
occurs on flat, undulating landscapes, with loamy to sandy-loamy soils in summer crop
calendar (i.e., from December to May or June) each year.

3. Materials and methods
3.1. Data

3.1.1. Remotely sensed data
Sentinel-2 Multi-Spectral Imager (tile 35JMK) TOA image acquired on the 15th of
April 2019 (i.e., Peak of Season) was retrieved from ESA Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/). The TOA image data was then converted to BOA
reflectance, i.e., Level-2A using Sen2Cor version 2.8 (Louis et al.2016). Finally, both TOA
and BOA images were then resampled to the two spatial resolutions for Sentinel-2, i.e.,
10 m and 20 m using the Sentinel-2 Resampling algorithm available within SNAP Toolbox.

3.1.2. SNAP-derived leaf area index (LAI)
Sentinel-2 TOA and BOA images at two spatial resolutions (10 m and 20 m) were used to
derive LAI, using the built-in Biophysical processor, also called Sentinel-2 Land bio-physical
processor (SL2P) within SNAP Toolbox. The Biophysical processor uses eight reflectance bands
(B3, B4, B5, B6, B7, B8A, B11, and B12), as well as viewing zenith, solar zenith, and relative
azimuth angles using radiative transfer models (RTMs), i.e., PROSAIL and Neural Networks
algorithm. Further details can be found inWeiss and Baret (2016). SNAP-derived LAI (i.e., 20m)
was rescaled and co-registered to match the spatial resolution of the MODIS LAI product (i.e.,
500 m) and of the Proba-V LAI product (i.e., 300 m), using the Nearest Neighbour resampling
technique. The resampled SNAP-LAI products (i.e., 500 m and 300 m) were used for compar-
ison to MODIS and Proba-V LAI products.

3.1.3. Global leaf area index (LAI) products
Global LAI products from Proba-V with 300 m spatial resolution (Baret et al. 2013) and MODIS
(MCD15A3H.006) with 500 m resolution (Myneni, Knyazikhin, and Park 2015) closest to the
date of Sentinel-2 acquisition, to ensure comparability, were acquired from Copernicus Global
Land Service (http://land.copernicus.eu/global) and Google Earth Engine™ (data provided by
NASA LP DAAC, https://lpdaac.usgs.gov/), respectively. Specifically, Proba-V LAI consisted of
a temporal composite of 10 days starting from 11th to 20th of April 2019, while MODIS LAI
productwas a temporal composite of 4 days starting from11th to 15th of April 2019. The global
LAI products were chosen based on their relatively high resolution compared to other existing
global products (Camacho et al. 2013; Claverie et al. 2016) andwere used for comparison with
SNAP-derived LAI.

3.1.4. In-situ leaf area index (LAI)
In-situ effective leaf area index (LAI) samples were collected in 40 m × 40 m plots along
transects randomly selected per field using LICOR 2200 c Plant Canopy Analyser (Li-Cor 2012).
Within each plot of available LAI measurements, there was one above-canopy and an average
of nine (9) below-canopy measurements taken randomly to capture the variability of each
crop. These LAI measurements were collected under predominantly clear sky conditions
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between the 8th and 14th of April 2019 (i.e., Peak of Season). Table 1 indicates summary
statistics for in-situ LAI.

3.2. Performance metrics

The validation of LAI with in-situ data and comparison with global LAI products was
performed using the coefficient of determination (R2), root mean squared error (RMSE),
mean absolute error (MAE), and BIAS

4. Results and discussions

4.1. Validation of LAI derived from SNAP

SNAP-derived LAI from Sentinel-2 data at two spatial resolutions and two processing
levels, i.e., TOA (L1 C) and BOA (L2A), were validated using in-situ LAI data. The results
(Figure 1) show differences between SNAP-derived LAI at various spatial resolutions and
processing levels. Specifically, SNAP-derived LAI at 10 m and 20 m spatial resolution
showed similar overall agreement with observed (in-situ) LAI, i.e., R2 = 0.69 for L1 C. In
comparison, there were marginal differences in overall agreement at 10 m and 20 m, i.e.,
R2 = 0.67 and 0.68, respectively, for L2A. Nevertheless, the error metrics were mostly
similar at both resolutions. Moreover, the results show that LAI derived from TOA
reflectances had marginally better agreement with observed LAI, i.e., R2 = 0.69 than
that derived from BOA reflectances that achieved R2 ~ 0.68 across all spatial resolutions.
Generally, the performance of SNAP-derived LAI, in this study, is better than that found by
Pasqualotto et al. (2019), i.e., R2 ~ 0.54, using SNAP-derived LAI from BOA reflectances at
10 m spatial resolution over two agricultural sites in Spain and Italy.

Considering LAI over individual crops, i.e., maize and sunflower, the results show remark-
ably better agreements with observed LAI over sunflower, i.e., R2 > 0.8 across spatial
resolutions and processing levels. In contrast, maize showed moderate R2 values of up to
0.56 and marginal differences between processing levels. As can be expected, the error
metrics, i.e., RMSE, MAE, and BIAS, were also the lowest over sunflower, with 10 m and 20 m
TOA reflectances achieving equivalent RMSE (i.e., 1.86 m2 m–2), and MAE (i.e., 1.75 m2 m–2).
On the other hand, themost significant errors were evident over maize, with RMSE andMAE
>2m2 m–2 across all considered spatial resolutions and processing levels. The magnitude of
errors in SNAP-derived LAI from BOA data, found in this study, can be attributed to residual
errors of atmospheric correction (AC) using the Sen2Cor procedure. This is because studies
have shown that various AC approaches perform differently for different environments, land
cover types, and spectral bands (Sola et al. 2018; Doxani et al. 2018). For example, Sentinel-2
visible bands used in the Biophysical processor are known to be sensitive to Rayleigh and
aerosol scattering effects (Martins et al. 2017).

Table 1. Descriptive statistics of measured LAI (m2 m–2) used for validating SNAP-derived LAI.
Crop type Number of plots Min Mean Max Standard deviation

Overall 65 1.49 3.86 5.83 1.23
Maize 31 1.54 3.62 5.42 0.98
Sunflower 34 1.49 4.07 5.83 1.40
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In fact, Djamai and Fernandes (2018) show that such uncertainties in BOA data cause
proportional uncertainties on derived biophysical parameters. However, this aspect requires
further investigation in future studies, for example, by assessing the effect of various AC
approaches on retrieval of LAI and other remotely sensed biophysical parameters.
Furthermore, an apparent overestimation of LAI values for all crops by SNAP Biophysical
processor using both TOA and BOA reflectances is evident in scatter plots (Figure 1) and
BIAS. This finding is consistent with Bochenek et al. (2017) that found that SNAP-derived LAI
is unreliable due to its overestimation of LAI at varying crop developmental stages. The
overestimation of LAI and significant biases observed from SNAP-derived LAI may be due to
prior assumptions made from global LAI retrieval algorithms, i.e., Artificial neural networks
(ANN) and look-up tables (LUTs) simulated with PROSAIL radiative transfer model (RTM), i.e.,
PROSPECT+SAIL that may not be calibrated to local conditions. Therefore, as previous
studies have demonstrated, models that are calibrated locally may be more robust and
increase operational product accuracy (Djamai et al. 2019; Jiang et al. 2019).

Although not considered in this study, error in in-situ measurements may have a great
influence on the validation of satellite-based LAI products and lead to erroneous conclusions.

Figure 1. Scatterplots and associated statistical metrics for observed (in-situ) Leaf Area Index (LAI)
against predicted LAI from Sentinel-2 at 10 m (a and b) and 20 m (c and d) using Biophysical processor
within SNAP Toolbox. Figure 1(a,c) show observed LAI against predicted LAI from TOA data, while
Figure 1(b,d) show observed LAI against predicted LAI from BOA data.
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Therefore, future studies should consider this aspect in detail. Overall, the high uncertainties
observed in this study necessitate further studies to improve and optimize LAI retrievals,
especially for supporting field-level agricultural management decisions, i.e., precision farming.

4.2. Inter-comparison of SNAP LAI with global LAI products

Inter-comparison of SNAP-derived LAI to existing and well-established global LAI pro-
ducts, namely; MODIS LAI (MCD15A3 H) and Proba-V LAI, is essential to determine its
consistency and compatibility with such products. Generally, the results (Figure 2) indi-
cate that SNAP-derived LAI from TOA data is more correlated to global LAI products than
that from BOA data. As a result, the error metrics, i.e., RMSE, MAE, and BIAS, were also
lower in SNAP-derived LAI from TOA than that from BOA data for both MODIS and Proba-
V LAI. This may be attributed to errors in the input data, including residual errors of
atmospheric correction using Sen2Cor procedure in Sentinel-2 bands since atmospheric
correction performance varies by spectral bands (Djamai and Fernandes 2018).

Moreover, the difference in algorithmic design and input variables between SNAP-
derived LAI and global LAI products may be the reason for moderate R2 for MODIS LAI and
relatively higher R2 for Proba-V LAI. For example, MODIS LAI algorithm is biome-specific,
uses LUTs generated using 3D RTMs, and input variables include vegetation structural
type, sun-sensor geometry, bidirectional reflectance functions (BRFs) at red (648 nm) and
near-infrared (NIR, 858 nm) bands, and their uncertainties (Knyazikhin et al. 1998).
Therefore, misclassification of vegetation type per pixel of interest due to the coarse
resolution (Tian et al. 2000), might also be a source of error during the comparison with
higher resolution Sentinel-2 data. Contrarily, Biophysical processor (i.e., S2LP) is similar to
Proba-V LAI algorithm, i.e., both are based on ANN, and more input variables are con-
sidered which include the cosine of the: view zenith angle, solar zenith angle, and relative
azimuth angle, as well as three Proba-V BOA bands, i.e., blue (470 nm), red (650 nm) and
NIR (837 nm). Therefore, SNAP-derived LAI and Proba-V LAI are likely to be similar even
though the Biophysical processor incorporates more variables such as visible (except blue
band), red-edge (RE), NIR, and shortwave infrared (SWIR) bands and LUTs generated from
PROSAIL RTMs. The relatively higher errors in Proba-V may be due to the use of the blue
band. In most studies, the blue band is not used because of its high sensitivity to
atmospheric contamination, i.e., Rayleigh and aerosol scattering (Martins et al. 2017).
Furthermore, the higher dimensionality of inputs in the SNAP Biophysical processor may
be the reason for higher errors between SNAP-derived LAI and Proba-V LAI (Li et al. 2014;
Wang et al. 2018). Therefore, future studies should focus on the selection of the optimal
subset of variables that improves the estimation of LAI.

The agreement between products is also evidenced by separability metrics in Table 2,
which indicates poor separability (i.e., high similarity) between SNAP-derived LAI and global
LAI products. Overall, the results showed that SNAP-derived LAI from TOA data had better
consistencies with global LAI products than that from BOA data, owing to relatively higher
R2 with global LAI products as well as relatively lower errors, i.e., RMSE, MAE and BIAS.

Despite the relatively coarse resolution, SNAP-derived LAI wasmore consistent withMODIS
LAI than Proba-V LAI, owing to relatively lower errors. This suggests that the aggregation (i.e.,
down-sampling) of SNAP-derived LAI from 20m toMODIS and Proba-V spatial resolutions, i.e.,
500 m and 300 m, respectively, did not have a significant effect on LAI values. This finding is
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consistent with Bochenek et al. (2017) that found that aggregation of information to coarser
resolution has an insignificant impact on estimated LAI values. Therefore, better consistencies,
i.e., lower errors with MODIS LAI, can be attributed to its shorter temporal aggregation, i.e.,
four days, than Proba-V, which had relatively longer temporal aggregation of 10 days. Overall,
downscaling of SNAP-derived LAI to global product resolutions (i.e., 500 m and 300 m)
included all the errors and noises existing in the higher resolution product, which may be
one of the reasons explaining some of the low-correlating results. Hence, the application of
a smoothing technique before applying the downscaling method on high-resolution pro-
ducts might have been beneficial for the accuracy of the relevant results.

Figure 2. Scatterplots of MODIS LAI (MCD15A3 H) against SNAP-derived LAI at 500 m (a and b), and
Proba-V LAI against SNAP-derived LAI at 300 m (c and d). Figure 2(a,c), are results for MODIS/Proba-V
LAI against SNAP-derived LAI from TOA data, while Figure 2(b,d), are results for comparison with
SNAP-derived LAI from BOA data.

Table 2. Separability metrics for SNAP LAI distributions with MODIS LAI (MCD15A3 H) and Proba-V LAI
products at 500 m and 300 m spatial resolutions, respectively. JM-distance values closer to 2 indicate
complete separability between LAI values from SNAP and MODIS/Proba-V LAI, while values < 1 indicate
poor separability. M-Statistic < 1 indicates poor separability, while M > 1 indicates good separability.

SNAP LAI from TOA SNAP LAI from BOA

MODIS Proba-V MODIS Proba-V

JM-distance 0.09 0.19 0.13 0.25
M-Statistic 0.29 0.36 0.35 0.41
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5. Conclusions

This study revealed interesting results. First, SNAP-derived LAI correlates moderately well
in agricultural landscapes when compared with in-situ LAI data; however, the errors are
considerably high for field-level agricultural management. Crop-specific error assessment
revealed that SNAP-derived LAI values were overestimated, and accuracy varied by crop
type; therefore, future studies should investigate this finding further. Second, the spatial
resolution and Sentinel-2 processing levels have an impact on the performance of SNAP-
derived LAI; however, the difference in accuracy between different Sentinel-2 resolutions
is negligible. The finding is consistent with previous studies (Sprintsin et al. 2007;
Bochenek et al. 2017). On the other hand, marked differences between BOA and TOA
derived LAI across resolutions were observed attributable to the residual errors after
atmospheric correction procedure in certain bands since atmospheric correction perfor-
mance varies by different spectral bands of Sentinel-2 (Djamai and Fernandes 2018).
Therefore, future studies should consider this aspect in more detail, for instance, by
quantifying the effect of various atmospheric correction approaches such as Sen2Cor,
FORCE, iCor, and MAJA on biophysical parameters retrieval accuracy. Third, SNAP-derived
LAI is consistent with global LAI products, however, with marked differences in errors
between MODIS LAI (MCD15A3 H) and Proba-V LAI. This indicates its global applicability
and potential for operational large-scale agricultural monitoring where within-field varia-
bility is not a concern. However, due to poor performance at field-level, SNAP-derived LAI
is not suitable for precision agriculture. We hypothesize that a better fit and reduction in
errors between SNAP-derived LAI and global LAI products can be achieved if noise-
reduction and smoothing techniques were applied on MODIS and Proba-V.
Overall, the poor performance of SNAP-derived LAI when validated against in-situ LAI
data, necessitates further improvement to support precision agriculture, while relatively
better consistency with global LAI products suggests that it can be applicable and
sufficient for large-scale agricultural monitoring. The results have implications for future
use of SNAP-derived LAI from Sentinel-2 imagery and ascertain the usefulness of Sentinel-
2 data and SNAP Toolbox for supporting regional and national agricultural management
decisions and policymaking, towards the achievement of global mandates such as UN-
SDGs especially in Africa where such information is limited.

Acknowledgments

We acknowledge ESA/Copernicus for providing data, i.e., freely available from the ESA data hub
(https://scihub.copernicus.eu/dhus) and AfriCultuReS project Consortium for providing field data
used in this study. We acknowledge the assistance provided by Mr. Johnny Rizos during fieldwork
and participating farmers. Last but not least, we acknowledge the voluntary participation of
anonymous reviewers in the peer-review process.

Funding

This research was conducted as part of the project, “Enhancing Food Security in African Agricultural
Systems with the Support of Remote Sensing,” which received funding from the European Union’s
Horizon 2020 Research and Innovation Framework Programme under grant agreement No. 774652.

890 M. KGANYAGO ET AL.

https://scihub.copernicus.eu/dhus


ORCID

Mahlatse Kganyago http://orcid.org/0000-0001-9553-0378
Thomas Alexandridis http://orcid.org/0000-0003-1893-6301
Giovanni Laneve http://orcid.org/0000-0001-6108-9764
Georgios Ovakoglou http://orcid.org/0000-0001-7195-6112

References

Alexandridis, T., D. Stavridou, S. Strati, S. Monachou, and N. Silleos 2013. “LAI Measurement With
Hemispherical Photographs At Variable Conditions For Assessment Of Remotely Sensed
Estimations.” ESA Living Planet Symposium. Edinburgh, UK: ESA

Alexandridis, T. K., G. Ovakoglou, and J. G. Clevers. 2019. “Relationship between MODIS EVI and LAI
across Time and Space.” Geocarto International 1–15. doi:10.1080/10106049.2019.1573928.

Baret, F., M. Weiss, R. Lacaze, F. Camacho, H. Makhmara, P. Pacholcyzk, and B. Smets. 2013. “GEOV1:
LAI and FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over
Existing Products. Part1: Principles of Development and Production.” Remote Sensing of
Environment 137: 299–309. doi:10.1016/j.rse.2012.12.027.

Bochenek, Z., K. Dąbrowska-Zielińska, R. Gurdak, F. NIRO, M. Bartold, and P. Grzybowski. 2017.
“Validation of the LAI Biophysical Product Derived from Sentinel-2 and Proba-V Images for
Winter Wheat in Western Poland.” Geoinformation Issues 9: 15–26.

Camacho, F., J. Cernicharo, R. Lacaze, F. Baret, and M. Weiss. 2013. “GEOV1: LAI, FAPAR Essential
Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part 2:
Validation and Intercomparison with Reference Products.” Remote Sensing of Environment 137:
310–329. doi:10.1016/j.rse.2013.02.030.

Campos-Taberner, M., F. J. García-Haro, L. Busetto, L. Ranghetti, B. Martínez, M. A. Gilabert, G. Camps-
Valls, F. Camacho, and M. Boschetti. 2018. “A Critical Comparison of Remote Sensing Leaf Area
Index Estimates over Rice-cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1
and EUMETSAT Polar System.” Remote Sensing 10: 763. doi:10.3390/rs10050763.

Chen, J. M., G. Pavlic, L. Brown, J. Cihlar, S. Leblanc, H. White, R. Hall, D. Peddle, D. King, and
J. Trofymow. 2002. “Derivation and Validation of Canada-wide Coarse-resolution Leaf Area
Index Maps Using High-resolution Satellite Imagery and Ground Measurements.” Remote
Sensing of Environment 80: 165–184. doi:10.1016/S0034-4257(01)00300-5.

Cho, M. A., A. Ramoelo, and L. Dziba. 2017. “Response of Land Surface Phenology to Variation in Tree
Cover during Green-up and Senescence Periods in the Semi-arid Savanna of Southern Africa.”
Remote Sensing 9: 689. doi:10.3390/rs9070689.

Claverie, M., J. Matthews, E. Vermote, and C. Justice. 2016. “A 30+ Year AVHRR LAI and FAPAR Climate
Data Record: Algorithm Description and Validation.” Remote Sensing 8: 263. doi:10.3390/rs8030263.

Davi, H., C. Barbaroux, C. Francois, and E. Dufrêne. 2009. “The Fundamental Role of Reserves and
Hydraulic Constraints in Predicting LAI and Carbon Allocation in Forests.” Agricultural and Forest
Meteorology 149: 349–361. doi:10.1016/j.agrformet.2008.08.014.

Djamai, N., and R. Fernandes. 2018. “Comparison of SNAP-derived Sentinel-2A L2A Product to ESA
Product over Europe.” Remote Sensing 10: 926. doi:10.3390/rs10060926.

Djamai, N., R. Fernandes, M. Weiss, H. Mcnairn, and K. Goïta. 2019. “Validation and Comparison of
Cropland Leaf Area Index Retrievals from Sentinel-2/MSI Data Using Sl2P Processor and
Vegetation Indices Models.” IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing
Symposium, 4595–4598. Yokohama, Japan: IEEE.

Doxani, G., E. Vermote, J.-C. Roger, F. Gascon, S. Adriaensen, D. Frantz, O. Hagolle, A. Hollstein,
G. Kirches, and F. LI. 2018. “Atmospheric Correction Inter-comparison Exercise.” Remote Sensing
10: 352. doi:10.3390/rs10020352.

García-Haro, F. J., M. Campos-Taberner, J. Muñoz-Marí, V. Laparra, F. Camacho, J. Sánchez-Zapero, and
G. Camps-Valls. 2018. “Derivation of Global Vegetation Biophysical Parameters from EUMETSAT Polar
System.” ISPRS Journal of Photogrammetry and Remote Sensing 139: 57–74. doi:10.1016/j.
isprsjprs.2018.03.005.

REMOTE SENSING LETTERS 891

https://doi.org/10.1080/10106049.2019.1573928
https://doi.org/10.1016/j.rse.2012.12.027
https://doi.org/10.1016/j.rse.2013.02.030
https://doi.org/10.3390/rs10050763
https://doi.org/10.1016/S0034-4257(01)00300-5
https://doi.org/10.3390/rs9070689
https://doi.org/10.3390/rs8030263
https://doi.org/10.1016/j.agrformet.2008.08.014
https://doi.org/10.3390/rs10060926
https://doi.org/10.3390/rs10020352
https://doi.org/10.1016/j.isprsjprs.2018.03.005
https://doi.org/10.1016/j.isprsjprs.2018.03.005


GCOS. 2009. “Implementation Plan for the Global Observing System for Climate in Support of the
UNFCCC (2010 Update).” Proceedings of the Conference of the Parties (COP), 7–19. Copenhagen,
Denmark: Citeseer.

Jiang, J., M. Weiss, S. Liu, and F. Baret 2019. “The Impact of Canopy Structure Assumption on the
Retrieval of GAI and Leaf Chlorophyll Content for Wheat and Maize Crops.” IGARSS 2019-2019 IEEE
International Geoscience and Remote Sensing Symposium, 7216–7219. Yokohama, Japan: IEEE.

Knyazikhin, Y., J. Martonchik, R. B. Myneni, D. Diner, and S. W. Running. 1998. “Synergistic Algorithm
for Estimating Vegetation Canopy Leaf Area Index and Fraction of Absorbed Photosynthetically
Active Radiation from MODIS and MISR Data.” Journal of Geophysical Research: Atmospheres 103:
32257–32275. doi:10.1029/98JD02462.

Li, X., Y. Zhang, Y. Bao, J. Luo, X. Jin, X. Xu, X. Song, and G. Yang. 2014. “Exploring the Best
Hyperspectral Features for LAI Estimation Using Partial Least Squares Regression.” Remote
Sensing 6: 6221–6241. doi:10.3390/rs6076221.

Li-Cor, I. 2012. LAI-2200 Plant Canopy Analyzer Instruction Manual. Lincoln, NE: LI-COR.
Louis, J., V. Debaecker, B. Pflug, M. Main-Knorn, J. Bieniarz, U. Mueller-Wilm, E. Cadau, and F. Gascon

2016. “Sentinel-2 Sen2Cor: L2A Processor for Users.” Proceedings Living Planet Symposium 2016,
18. Prague, Czech Republic: Spacebooks Online.

Martins, V., C. Barbosa, L. De Carvalho, D. Jorge, F. Lobo, and E. Novo. 2017. “Assessment of
Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain
Lakes.” Remote Sensing 9: 322. doi:10.3390/rs9040322.

Mulla, D. J. 2013. “Twenty Five Years of Remote Sensing in Precision Agriculture: Key Advances and
Remaining Knowledge Gaps.” Biosystems Engineering 114: 358–371. doi:10.1016/j.
biosystemseng.2012.08.009.

Myneni, R. 2012. “MODIS LAI/FPAR Product User’s Guide [Online].” lpdaac.usgs.gov: USGS LP DAAC.
https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS-LAI-FPAR-User-Guide.pdf

Myneni, R., Y. Knyazikhin, and T. Park 2015. MCD15A3H MODIS/Terra+ Aqua Leaf Area Index/FPAR
4-day L4 Global 500 m SIN Grid V006 [Data Set].

Novelli, F., H. Spiegel, T. Sandén, and F. Vuolo. 2019. “Assimilation of Sentinel-2 Leaf Area Index Data into a
Physically-based Crop Growth Model for Yield Estimation.” Agronomy 9: 255. doi:10.3390/
agronomy9050255.

Pasqualotto, N., J. Delegido, S. Van Wittenberghe, M. Rinaldi, and J. Moreno. 2019. “Multi-Crop Green LAI
Estimation with a New Simple Sentinel-2 LAI Index (Seli).” Sensors 19: 904. doi:10.3390/s19040904.

Sola, I., A. García-Martín, L. Sandonís-Pozo, J. Álvarez-Mozos, F. Pérez-Cabello, M. González-Audícana,
and R. M. Llovería. 2018. “Assessment of Atmospheric Correction Methods for Sentinel-2 Images
in Mediterranean Landscapes.” International Journal of Applied Earth Observation and
Geoinformation 73: 63–76. doi:10.1016/j.jag.2018.05.020.

Sprintsin, M., A. Karnieli, P. Berliner, E. Rotenberg, D. Yakir, and S. Cohen. 2007. “The Effect of Spatial
Resolution on the Accuracy of Leaf Area Index Estimation for a Forest Planted in the Desert
Transition Zone.” Remote Sensing of Environment 109: 416–428. doi:10.1016/j.rse.2007.01.020.

Tian, Y., Y. Zhang, Y. Knyazikhin, R. B. Myneni, J. M. Glassy, G. Dedieu, and S. W. Running. 2000.
“Prototyping of MODIS LAI and FPAR Algorithm with LASUR and LANDSAT Data.” IEEE
Transactions on Geoscience and Remote Sensing 38: 2387–2401. doi:10.1109/36.868894.

Verrelst, J., J. P. Rivera, F. Veroustraete, J. Muñoz-marí, J. G. Clevers, G. Camps-valls, and J. Moreno.
2015. “Experimental Sentinel-2 LAI Estimation Using Parametric, Non-parametric and Physical
Retrieval methods–A Comparison.” ISPRS Journal of Photogrammetry and Remote Sensing 108:
260–272. doi:10.1016/j.isprsjprs.2015.04.013.

Wang, L., Q. Chang, J. Yang, X. Zhang, and F. LI. 2018. “Estimation of Paddy Rice Leaf Area Index
Using Machine Learning Methods Based on Hyperspectral Data from Multi-year Experiments.”
PloS One 13: e0207624. doi:10.1371/journal.pone.0207624.

Weiss, M., and F. Baret. 2016. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Avignon: Institut
National de la Recherche Agronomique (INRA).

Zhu, Z., C. Yang, M. Cao, and K. Liu. 2010. “Changes of Plant Leaf Area and Its Relationships with Soil
Factors in the Process of Grassland Desertification.” Chinese Journal of Ecology 29: 2384–2389.

892 M. KGANYAGO ET AL.

https://doi.org/10.1029/98JD02462
https://doi.org/10.3390/rs6076221
https://doi.org/10.3390/rs9040322
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS-LAI-FPAR-User-Guide.pdf
https://doi.org/10.3390/agronomy9050255
https://doi.org/10.3390/agronomy9050255
https://doi.org/10.3390/s19040904
https://doi.org/10.1016/j.jag.2018.05.020
https://doi.org/10.1016/j.rse.2007.01.020
https://doi.org/10.1109/36.868894
https://doi.org/10.1016/j.isprsjprs.2015.04.013
https://doi.org/10.1371/journal.pone.0207624

	Abstract
	1. Introduction
	2. Study area
	3. Materials and methods
	3.1. Data
	3.1.1. Remotely sensed data
	3.1.2. SNAP-derived leaf area index (LAI)
	3.1.3. Global leaf area index (LAI) products
	3.1.4. In-situ leaf area index (LAI)

	3.2. Performance metrics

	4. Results and discussions
	4.1. Validation of LAI derived from SNAP
	4.2. Inter-comparison of SNAP LAI with global LAI products

	5. Conclusions
	Acknowledgments
	Funding
	ORCID
	References



