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Abstract

In this paper, we present a novel and flexible numerical method to solve
non-standard Volterra integral equations of the second kind. Starting
from the mean-value theorem for integrals we give theoretical results
that allow associating to each Volterra integral equation a system of
non-linear equations that is solved by mean of a numerical method. The
algorithm produces very accurate numerical solutions and it is very fast.
To test the fitness of our method, we applied it to some examples.
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1 Introduction

Volterra and Fredholm integral equations of the first and the second kinds have
practical applications in many fields, including engineering, biology, medicine
and finance. In many cases find an analytical solution is unfeasible. Re-
searchers, in the years, proposed several numerical algorithms to avoid the
problem. Many mathematical papers have considered equations of the first
kind; however, they are usually transformed to equations of the second kind
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using regularization method (see [13]). Aziz et al. [2] proposed new algorithms
to solve non-linear Fredholm and Volterra integral equations of the second kind
using Haar wavelets. Further, Doucet et al. [7] considered a standard Von Neu-
mann expansion of the solution of a Fredholm integral equation of the second
kind approximated using Markov chain Monte Carlo methods. In addition,
in a mean-value theorem frameworks, algorithms were developped in order to
solve Fredholm and Volterra integral equations [1] and [6]). Moreover, Aziz
et al. [3] proposed a method based on Haar wavelet for the numerical solu-
tion of two-dimensional non-linear integral equations. Siraj-ul-Islam et al. [14]
suggested a novel technique based on Haar wavelets for numerical solution of
nonlinear integral and integro-differential equations of first and higher orders.

Other methods involve the Runge-Kutta method, successive approxima-
tions method, Laplace transform method and Adomian decomposition method
(see [5] and [16]).

In this paper, we solved non-stanard Volterra integral equations of the
second kind by applying the mean-value theorem for integrals. More precisely,
we offer a theoretical result that allows to associate a system of non-linear
equations to the following equation:

φ(x) = f(x, φ(x)) +

∫ x

a

k(x, t)ψ(x, t, φ(x), φ(t))dt, (1)

where x, t ∈ I = [a, b], f(x, y) is a known function (continuous in both argu-
ments), k(x, t) is the kernel function continuous on I × I and ψ a continuous
function.

The associate non-linear system is solved by means of a numerical method.
To test the fitness of our method, we applied it to examples with known solu-
tions. Particular advantages of our method include its simplicity, its flexibility
and its ease of implementation, thus making the method applicable to Volterra
integral equations with an unknown closed-form solution.

The remainder of the paper is organized as follows. In Section 2, after
recalling some theoretical results, we apply them to present our numerical
method. In Section 3, we present some numerical results. Finally, Section 4
concludes the paper.

2 The mean-value theorem approach

Let I = [a, b] and let us consider a non-standard Volterra integral equation of
the form (1).

Let n be a positive integer. Let us consider the following partition of the
interval I into n intervals of equal length ∆ = (b−a)

n
:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b. (2)
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By means of additive properties for integrals, we can rewrite, for each xi,
i = 0, 1, 2, . . . , n, the equation (1) in the following way:

φ(xi) = f(xi, φ(xi)) +
i∑

m=1

∫ xm

xm−1

k(xi, s)ψ
(
xi, s, φ(xi), φ(s)

)
ds. (3)

Let us suppose the kernel function k(x, t) is continuous in I × I and does not
change its sign in both arguments, the function φ and ψ are continuous.

Then, by virtue of (3) and the Mean-Value Theorem for integrals, the
following equality holds

φ(xi) = f(xi) +
i∑

m=1

k(xi, ξm)ψ
(
xi, ξm, φ(xi), φ(ξm)

)
∆, (4)

with ∆ =
∫ xm
xm−1

, ds. Clearly, these numbers ξm depend on xm−1, xm and
on the unknown function φ, with xm−1 ≤ ξm ≤ xm. Considering the problem
treated in this section, it is very difficult to know, from the theory, the exact
value for each of them. As we show in Proposition 2.1 below, it is not restrictive
to assume ξm(xm) = ξ̃m, where ξ̃m are constants such that xm−1 ≤ ξ̃m ≤ xm.

For the sake of simplicity, we define the following operators for each fixed
xi:

(Kφ)(xi) = ∆
i∑

m=1

ψ(xi, ξm, φ(xi), φ(ξm))k(xi, ξm),

(K̃φ)(xi) = ∆
i∑

m=1

ψ(xi, ξ̃m, φ(x), φ(ξ̃m))k(xi, ξ̃m).

The following result holds.

Theorem 2.1. Let the kernel function k(x, t) be continuous in I × I and
satisfy the following Lipschitz condition:

‖k(x, y1)− k(x, y2)‖∞ ≤ L‖y1 − y2‖∞. (5)

where L is a positive constant. Let ψ and φ continuous and let M a constant
such that ‖ψ‖∞ ≤M . Then, it follows

‖(K̃φ)(xi)− (Kφ)(xi)‖∞ → 0 when n→∞. (6)

Proof.

‖(Kφ)(xi)− (K̃φ)(xi)‖∞ ≤ ∆‖
i∑

m=1

ψ(xi, ξm, φ(xi), φ(ξm))k(xi, ξ)+

− ψ(xi, ξ̃m, φ(x), φ(ξ̃m))k(xi, ξ̃m)‖∞ ≤
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≤ ∆M
i∑

m=1

‖k(xi, ξm)− k(xi, ξ̃m)‖∞ ≤

≤ ∆ML
i∑

m=1

‖ξm − ξ̃m‖∞ ≤

≤ ∆ML

i∑
m=1

∆ ≤=
T 2

n2
·M · L · i.

As n → ∞, it follows |(Kφ)(xi) − K̃φ(xi)| → 0. We thus conclude the
proof. �

We provide the following algorithm in order to find the numerical solution.

Step 2.1. Let n be a positive integer. Let us consider the following partition
Γ of the interval [a, b] into n intervals of equal length ∆ = (b−a)

n
:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Under the hypothesis of the continuity of the functions k, ψ and φ, we can
write

φ(xi) = f(xi, φ(xi)) + ∆
i∑

m=1

k(xi, ξm)ψ
(
xi, ξm, φ(xi), φ(ξm)

)
.

Let us suppose that Proposition 2.1 is verified.

Step 2.2. We randomly choose ξ̃m ∈ (xm−1, xm), for m = 1, 2, . . . , n, and
insert the n-dimensional random vector {ξ̃1, ξ̃2, . . . , ξ̃n} into the following sys-
tem.



φ(x0) = f(x0, φ(x0))

φ(ξ̃1) = f(ξ̃1, φ(ξ̃1)) + ∆ψ(ξ̃1, ξ̃1, φ(ξ̃1), φ(ξ̃1))k(ξ̃1, ξ̃1)

φ(ξ̃2) = f(ξ̃2, φ(ξ̃2)) + ∆

[
ψ(ξ̃2, ξ̃1, φ(ξ̃2), φ(ξ̃1))k(ξ̃2, ξ̃1) + ψ(ξ̃2, ξ̃2, φ(ξ̃2), φ(ξ̃2))k(ξ̃2, ξ̃2)

]
...

φ(ξ̃n) = f(ξ̃n, φ(ξ̃n)) + ∆
∑n

m=1 ψ(ξ̃n, ξ̃m, φ(ξ̃n), φ(ξ̃m))k(ξ̃n, ξ̃m).

The above non-linear system is solved by means of a numerical method, which
gives the multivariate (n+ 1)-dimensional vector {φ(x0), φ(ξ̃1), . . . , φ(ξ̃n)}.
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Step 2.3. We choose a positive integer q, and repeating Step 2.2 q times we
obtain the following q × (n+ 1)-matrix:

φ1(x0) φ1(ξ̃1) · · · φ1(ξ̃n)

φ2(x0) φ2(ξ̃1) · · · φ2(ξ̃n)
... · · · . . .

...

φq(x0) φq(ξ̃1) · · · φq(ξ̃n)

 . (7)

φ(x0) is exactly known. For each i = 1, . . . , n and for j = 1, . . . q, by
virtue of the matrix (7), we evaluate numerically φ(xi), by solving the following
equation

φ(xi) = f(xi, φ(xi)) + ∆
i∑

m=1

k(xi, ξ̃m)ψ
(
xi, ξ̃m, φ(xi), φj(ξ̃m)

)
.

We obtain the following q × (n + 1)-matrix in which each row represents a
possible approximation of the solution:

φ̃1(x0) φ̃1(x1) · · · φ̃1(xn)

φ̃2(x0) φ̃2(x1) · · · φ̃2(xn)
... · · · . . .

...

φ̃q(x0) φ̃q(x1) · · · φ̃q(xn)

 . (8)

It results that φ(x0) = φ̃1(x0) = φ̃2(x0) = · · · = φ̃q(x0). The final approxi-
mated solution, for each xi, for i = 1, 2, . . . , n, is obtained, starting from the
second, by computing the mean value of each column of matrix (7):

φ(xi)approx =

∑q
j=1 φ̃j(xi)

q
(9)

for i = 1, 2, . . . , n, in agree with the weak law of large numbers.

3 Numerical results

In this section, we present two examples of our implemented method. Calcu-
lations were made by means of the software Matlab and run on a MacBook
Pro with processor 2.6 GHz Intel Core i7 with 16-GB RAM. In our examples
we chose n = 50 and q = 100.

Example 3.1. Let us consider the approximation of the early boundary
exercise arising in the American option pricing problem. In the Black and
Scholes framework, let us assume that the asset price {S(t), t ≥ 0} follows the
log-normal diffusion process of the form

dSt = rSt dt+ σSt dWt, (10)
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where Wt is the standard Wiener process, r is the constant interest rate and σ
is the constant volatility. Let us consider the interval I = [0, T ].

We denote with Φ(·) the standard cumulative normal distribution function.
Let us denote with B(t) the early exercise boundary of an American put

option.
Kim [11] showed that B(t) satisfies the following integral equation:

B(t) = K −Ke−rtΦ

− log
(
B(t)
K

)
+ (r − σ2

2
)

σ
√
t

+

+ B(t)Φ

− log
(
B(t)
K

)
+ (r + σ2

2
)

σ
√
t

+

−Kr
∫ t

0

e−r(t−s)Φ

− log
(
B(t)
B(s)

)
+ (r − σ2

2
)(t− s)

σ
√
t− s

 ds. (11)

The equation (11) represents a non-standard Volterra integral equation of
the second kind.

Because Φ is a continuous and bounded function with M = 1, B(t) is
continuous (see [11]) and the kernel function k(t, s) = e−r(t−s) is continuous
in I × I and Lipschitian respect to s for any fixed t with M = rerT , it easy to
check that the integral in equation (11) satisfies the Proposition 2.1. We are
able to apply the algorithm in Section 2. By applying this method, when s = ti,
the indeterminate form, when we consider the number ξ̃i, arises

Φ

− log
(
B(ξ̃i)
B(ξ̃i)

)
+ (r − σ2

2
)(ξ̃i − ξ̃i)

σ

√
ξ̃i − ξ̃i

 = Φ

(
0

0

)
. (12)

In this case, it is easy to prove that

lim
s→t−

Φ

− log
(
B(t)
B(s)

)
+ (r − σ2

2
)(t− s)

σ
√
t− s

 =
1

2
. (13)

For our purpose, we can define the continuous function

Φ

 log
(
u(t)
u(s)

)
+ (r − σ2

2
)(t− s)

σ
√
τ − x

 =

 Φ

(
log( u(t)u(s))+(r−σ

2

2
)(t−s)

σ
√
t−s

)
⇐⇒ 0 ≤ s < t

1
2
⇐⇒ t = s.
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Table 1: The value of B(t) for some values of t.

t PSOR BRQ PRK EKK Zhu SSCK MVT

0.00001 99.70 99.68 99.71 99.69 99.51 99.69 99.70
0.00005 99.40 99.43 99.37 99.37 99.03 99.36 99.38
0.0001 99.20 99.11 99.18 99.14 98.72 99.11 98.18
0.0005 98.31 98.29 98.30 98.28 97.57 98.27 98.31
0.001 97.73 97.63 97.70 97.10 96.83 97.66 97.73
0.01 94.18 94.43 94.21 94.33 92.73 94.07 94.20
0.04 90.30 91.02 90.25 91.12 88.66 91.31 90.27
0.1 86.94 85.25 86.88 86.29 85.25 86.76 86.89

In Table 1 we report some numerical approximations of the early boundary
exercise close to expiry. Some approximations here reported are taken from
[12] and were considered K = 100, σ = 0.3 and r = 0.1.

In the first column, with n = 1000 time steps, PSOR indicates the projected
successive over-relaxation method of Elliot and Ockendon [8], EKK refers to
the analytical approximation for times close to expiration due to Evans et al.
[9]. BRQ and PRK refer to respectively to the barycentric quadrature and
the Pouzet-Runge Kutta method considered by Nedaiasl and Bastani in [12].
SSCH refers to an improved analytical approximation for the free boundary
near the expiry due to Stamicar et al. [15]. Zhu refers to the method of Zhu [17]
that suggested an analytical expression to the value of American put options
and their optimal exercise boundary. Our algorithm, with n = 50 and q = 100,
by virtue of the presence of the function Φ, took about 45 seconds.

MV T indicates the value of early exercise boundary obtained by means of
the method described in this work. As shown in the table, our method produces
results that are better or comparable with the others.

Example 3.2. Let us consider the following non-standard Volterra integral
equation:

φ(x) =
√

2 + x− 1

2
(log(5+3x)− log(5−2x))+

∫ x

0

5 + x+ t

10 + 4x+ 2t

1

1 + φ(x)2 + φ(t)2
dt,

(14)

where x ∈ [0, 1]. The exact solution is
√

2 + x. The equation (14) is taken
from [10] and solved numerically by Nedaiasl et al. [12] by means of Runge-
Kutta and barycentric rational quadrature types. It is easy to see that Propo-
sition 2.1 is verified. In fact the kernel function k(x, t) = 5+x+t

10+4x+2t
verifies the

Lipschitz condition with L = 1
50

and the function ψ(y, z) = 1
1+y2+z2

is bounded
with M = 1. Nedaiasl et al. considering n = 80 time steps obtained ad error
of magnitude 10−7 (see Figure 2 in [12]). Applying our algorithm with the
same number of time steps we obtained ad error of magnitude 10−7. So the
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two methods are comparable. Our algorithm, with n = 50 and q = 100 took
about 5 seconds.

n ‖e‖∞ (q=100) ‖e‖∞ (q=1000)
5 2.5291e-04 2.4080e-04
10 1.2654e-04 1.2204e-04
20 5.7578e-05 5.9815e-05
30 3.9196e-05 3.9910e-05
40 2.8482e-05 2.9407e-05
50 2.3445e-05 2.3752e-05

Table 2: Convergence analysis of equation 14.

To test the convergence of our algorithm, in Table 2 we report the error
‖e‖∞ between the exact solution and the approximate ones obtained by virtue
of the present method. We considered the cases q = 100, 1000.

The error size of order 1e − 5 obtained when increasing the value of n
with q=1000 assesses the goodness and the precision of the proposed algorithm.
Furthermore, it is worth evidencing that the same error size order may be
obtained by using q=100. Hence, the algorithm performs well already with
q=100, thus allowing to reduce the computational execution time and, at the
same time, maintain the same precision.

Through these tables, it is easy to see that the algorithm presented is very
accurate.

4 Conclusion

This work deals with a computational method to obtain numerical solutions for
a non-standard Volterra integral equations of the second kind. The approach
proposed is able to numerically solve integral equations with unknown closed-
form solutions in a way that is simple, flexible and easy to implement. The
numerical computation given in order to compare the method with others
mentioned in this paper highlights the effectiveness of the method proposed.
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