
Exploiting Inter-Processor-Interrupts for Virtual-Time
Coordination in Speculative Parallel Discrete Event Simulation

Emiliano Silvestri
silvestri@diag.uniroma1.it

Sapienza, University of Rome
Italy

Cristian Milia
miliacristian4@gmail.com

University of Rome “Tor Vergata”
Italy

Romolo Marotta
marotta@diag.uniroma1.it

Sapienza, University of Rome
Italy

Alessandro Pellegrini
pellegrini@diag.uniroma1.it
Sapienza, University of Rome

Italy

Francesco Quaglia
francesco.quaglia@uniroma2.it
University of Rome “Tor Vergata”

Italy

ABSTRACT
Reducing the waste of resource usage (e.g., CPU-cycles) when a
causality error occurs in speculative parallel discrete event simu-
lation (PDES) is still a core objective. In this article, we target this
objective in the context of speculative PDES run on top of shared-
memory machines. We propose an Operating System approach that
is based on the exploitation of the Inter-Processor-Interrupt (IPI)
facility offered by off-the-shelf hardware chipsets, which enables
cross-CPU-core control of the execution flow of threads. As soon
as a thread T produces a new event placed in the past virtual time
of a simulation object currently run by another thread T ′, our IPI-
based support allows T to change the execution flow of T ′—with
very minimal delay—so to enable the early squash of the currently
processed (and no longer consistent) event. Our solution is fully
transparent to the application level code, and is coupled with a
lightweight heuristic-based mechanism that determines the actual
goodness of killing thread T ′ via the IPI (rather than skipping the
IPI send) depending on the expected residual execution time of the
incorrect event being processed. We integrated our proposal within
the speculative open-source USE (Ultimate Share Everything) PDES
package, and we report experimental results obtained by running
various PDES models on top of two shared-memory hardware ar-
chitectures equipped with 32 and 24 (48 Hyper-threads) CPU-cores,
which demonstrate the effectiveness of our proposal.

CCS CONCEPTS
• Computing methodologies → Discrete-event simulation;
Shared memory algorithms; • Theory of computation→ Parallel
computing models.
KEYWORDS
Parallel Event Discrete Simulation, Shared memory, Multi core,
Operating Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’20, June 15–17,2020, Miami, FL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7592-4/20/06. . . $15.00
https://doi.org/10.1145/3384441.3395985

ACM Reference Format:
Emiliano Silvestri, Cristian Milia, Romolo Marotta, Alessandro Pellegrini,
and FrancescoQuaglia. 2020. Exploiting Inter-Processor-Interrupts for Virtual-
Time Coordination in Speculative Parallel Discrete Event Simulation. In
Proceedings of the SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-
PADS ’20), June 15–17, 2020, Miami, FL, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3384441.3395985

1 INTRODUCTION
Speculative execution of parallel discrete event simulations is a
mean to achieve high performance and scalability, especially for
models with limited (or null) lookahead [13]. On the downside,
it may suffer from waste of computation, caused by the rollback
mechanism used to overcomemis-speculation (i.e., out of timestamp
order processing). To cope with the reduction of the resource waste,
several approaches have been proposed in the literature, which
range from (1) load balancing [1, 4, 28]—used to reduce the likeli-
hood of divergence in the advancement of concurrent simulation
objects along virtual time—to (2) optimized CPU-scheduling [25]—
used to punctually select the best suited simulation object to be ad-
vanced in virtual time—to (3) throttling [26]—used to artificially de-
lay the processing of events so as to avoid uncontrolled speculation—
to (4) optimized rollback management schemes [2, 23]—aimed at
providing suited tradeoffs between the overheads associated with
the rollback support and the actual rollback tasks.

However, none of the above-mentioned solutions entails the ca-
pability to “promptly react” to the occurrence of rollback. Hence,
none of them is based on the timely interruption of the execu-
tion of events that are no longer causally consistent, but are still
being processed by some thread when the causality error material-
izes. More recently, some solution has been proposed [22] which is
aimed at preempting the event processing phase when the event is
detected as no longer consistent. However, the preemption mech-
anism is based on a polling scheme actuated via the exploitation
of hardware-level timer interrupts, which periodically checks the
event consistency.

The limitation of this approach is that it cannot show an arbitrar-
ily fine granularity—otherwise the polling overhead would reveal
unaffordable. Furthermore, just a reduced percentage of polls will
actually reveal useful in the early detection of a causality inconsis-
tency. On the other hand, a larger grain tends to reduce the benefits
in performance since late detection of inconsistencies increases the

https://doi.org/10.1145/3384441.3395985
https://doi.org/10.1145/3384441.3395985

amount of CPU time spent for doomed to be rolled-back work1—
especially in scenarios with non-minimal incidence of rollbacks.

In this article we explore an orthogonal approach to the early
abort of no longer consistent work, which is based on the Inter-
Processor-Interrupt (IPI) facility, supported by conventional chipsets
by all the major vendors (Intel, AMD and ARM). Our approach is
suited for speculative PDES run on top of shared memory multi-
core machines, where an IPI can be sent by a CPU-core (or hyper
thread) selectively to any other CPU-core on board of the same
machine. The advantages of our proposal, compared to preempt-
ing the execution of a no longer consistent event in the basis of a
polling scheme, are multiple:
• We pay the cost of hardware level cross-CPU-core coordi-
nation only if the CPU-core, which is the destination of the
IPI, is actually running inconsistent work. In other words,
if no causality error materializes, then no overhead at all is
payed for virtual-time coordination via the IPI support. In
contrast, the hardware-timer interrupts used by the polling
approach produce overhead even with rollback free runs.
• The IPI-based mechanism allows for an “almost immediate”
preemption of the doomed to be rolled-back work, since
the delivery of the IPI to the CPU-core that is running the
inconsistent event takes place in very few microseconds.
In contrast, in the polling approach the thread running the
inconsistent event will detect the inconsistency (and will
preempt the event) only upon the expiration of the polling
interval.
• Compared to the polling approach, we reduce the effect of
the event-preemption support on the locality of the access
to memory, thus indirectly improving performance. In fact,
the polling mechanism is based on a control flow variation,
passing control to the consistency check routine, which is
unfavorable to locality, even if no causality violation is in
place. In contrast, the IPI-based scheme does not induce any
thread control flow variation if no causality violation occurs.

Furthermore, our mechanism is coupled with a heuristic-based
decision model that allows detecting whether sending the IPI to-
wards a CPU-core running an inconsistent event can be actually
fruitful, compared to letting the thread go ahead and complete the
event processing routine. The decision relies on threshold based
mechanisms that take into account both the expected residual CPU-
time for completing the event processing phase, as well as runtime
collected statistics related to the types (and expected granularity)
of the events being processed by the threads running within the
PDES platform.

Our solution is targeted at x86 processors and Linux, although
the approach we take can be easily ported to other architectures and
Operating Systems. Also, our software, which has been integrated
within the USE (Ultimate Share Everything) simulation platform
[12], is available for free download2.

The remainder of this article is structured as follows. In Section 2
we discuss related work. Our IPI-based approach and its integration
within the USE platform are presented in Section 3. Experimental

1With “doomed to be rolled-back work” we indicate an event that is no longer causally
consistent, but is currently being processed.
2Available at https://github.com/HPDCS/USE

data for an assessment of the proposed solution are provided in
Section 4. Conclusions are drawn in Section 5.

2 RELATEDWORK
As hinted, several proposals in the literature have addressed the
issue of reducing the negative incidence of rollbacks on the perfor-
mance of speculative PDES systems. Well balancing the workload
across concurrent threads [1, 4, 12, 28] relies on the idea that dimin-
ishing the divergence in the advancement of concurrent simulation
objects in virtual time provides the expectation of a reduction of
the frequency of causality errors. However, these proposals do not
target the reduction of the resource waste when a rollback occurs.
In other words, they try to prevent rollbacks, but they do not entail
mechanisms to preempt doomed to be rolled-back work carried
out by threads. A similar consideration applies to all the proposals
based on throttling (e.g., [26]) or those based on bounding specu-
lation via synchronization schemes that are not purely optimistic
(e.g., [7, 21]). Since the artificial delay, or the temporary block, is
imposed prior to processing events that are identified (or estimated)
to be more far from the commit horizon of the simulation run, these
solution are not complemented with highly reactive mechanisms
to be triggered when an already CPU-dispatched event, which is
still being processed, becomes no longer causally consistent. All
these solutions are essentially orthogonal to what we propose in
this article.

Another way of limiting the overhead caused by rollback is based
on adopting smart strategies for selecting what event (hence what
simulation object) should be dispatched along a thread as soon as
this thread completes the processing phase of another event. Lowest-
Timestamp-First scheduling [17] is a classical reference, which is
however agnostic of the CPU-demand by the events. Therefore
it can lead to suboptimal choices in scenarios with non-minimal
variation of the CPU-time required to process events that have
very close timestamps. The proposal in [25] takes into account the
event granularity, and does not favor coarser grain events in the
CPU-scheduling decision when compared to finer-gain events that
have timestamps falling in a given (short) virtual time window left
delimited by the lowest-timestamp pending event. This method is
essentially based on less promptly starting the execution of events
that, once CPU-dispatched, might produce a longer CPU-burst of
activities that can in any case be invalidated by a causality error.
However, this solution has been devised for scenarios where, once
CPU-dispatched, the event cannot be preempted. Rather, we pro-
pose a solution where preempting (and squashing) the processing
of an event with close-to-zero delay with respect to the actual
materialization of its causality inconsistency is the core target.

The usage of event-preemption to avoid continuing the pro-
cessing of an event that becomes causally inconsistent has been
adopted in [22]. However, this solution is based on polling, which
is activated through hardware-level timer interrupts. In more de-
tail, when a thread running in the speculative PDES platform is
CPU-scheduled by the Operating System, the system timer is set to
issue interrupts with a fine grain period. Each interrupt changes
the execution flow of the thread so that a consistency-check routine
is executed, to verify if the currently processed event is no longer
consistent. The drawback of this solution is that it pays the cost

https://github.com/HPDCS/USE

of hardware level activities, and control flow variation along the
thread, even in scenarios where no causality error occurs. Also,
the period of the system-timer interrupt cannot be set arbitrarily
short, otherwise there would be a risk of thrashing, which would
impair the progress of the execution. Overall, in the proposal in
[22] preemption cannot be actuated with extreme reactivity with
respect to the instant at which the event becomes inconsistent. Our
approach solves all these issues since we resort to hardware level
specific activities—the sending of the IPI—and to the activation
of the thread control flow variation only if the causality violation
occurs. Further, the delay for propagating the IPI to the destination
CPU-core and for handling it at the destination thread is very mini-
mal, and can largely pay off especially for simulation models with
events (or event types) showing non-minimal granularity. Saving
“almost all” the residual execution cost of these events when they
are no longer consistent can enable a significant reduction of the
resource waste. Hence, with our proposal, the resources within the
computing platform can be more effectively exploited for useful
work.

The proposal in [14] is based on the notion of preemption. How-
ever, it is not applied to events being processed, rather it is applied to
simulation objects. In particular, in this solution the simulation plat-
form gives control to a simulation object for processing its events,
up to the point where an incoming event with lower timestamp is
detected. In this case, the simulation object is preempted, with the
meaning that it is not granted the CPU for processing additional
events, and the CPU is reassigned to the simulation object desti-
nation of the lowest-timestamp event—or to that same simulation
object if it needs to rollback. In this solution, an inconsistent event
being processed is never promptly interrupted via hardware level
mechanisms to save doomed to be rolled-back work, as instead we
do in our solution.

The approach in [19] is based on message broadcasts into groups
of simulation objects. These are used as a sort of signaling mecha-
nism to notify that some event that can have generated a chain of
other events destined to the group members, is no longer consis-
tent. Therefore, that chain of events is no longer consistent too. The
broadcast allows the recipient simulation objects to early rollback,
if they have already been affected by a causality error along that
chain of events, or to avoid processing inconsistent events belong-
ing to the chain. This solution still tackles the issue of reducing the
impact of causality errors, and the associated waste of resources.
However, it does not support the interruption of a doomed to be
rolled-back event that has been already CPU-dispatched, which is
instead the target of our proposal.

Other mechanisms exist for optimizing speculative PDES, which
typically include the combined optimization of the costs for the roll-
back tasks and for all the tasks that enable correct rollbacks. Here,
we find proposal in the fields of checkpointing and reverse compu-
tation [2, 5, 23, 24], as well as the design and the implementation of
housekeeping tasks that are typical of speculative PDES platforms
(like Global Virtual Time computation [10], messaging [3, 27] and
memory management [6, 23]). Our proposal is still orthogonal with
respect to these solutions, and can be combined with them.

The IPI technology is largely used in Operating System kernels
(e.g., the Linux kernel) and is exploited to manage various kinds of
tasks, such as (1) making the address space of a process consistently

accessible by all its threads (in this case the IPI is used to notify
other CPU-cores of changes in themapping or access rules to virtual
memory caused by a thread running on another CPU-core; this
leads the killed cores to flush their TLB for rejuvenating its content
on the basis of page-table updates), (2) enabling all (or a subset
of) the CPU-cores to be notified that a given function needs to be
executed by them (this is the classical SMP-function call kernel-level
support), or (3) to kill a CPU-core in order to enable it to execute a
CPU-reschedule (this is typical of scenarios where the Operating
System kernel needs to promptly CPU-reschedule a thread on a
given CPU-core because of something that happened on another
CPU-core, namely the sender of the IPI). However, to the best of our
knowledge the IPI technology has not been exploited to provide
solutions useful for a specific application context—PDES in our
case—or more generally for coordinating the execution of threads
in the presence of speculative computation. Overall, we provide a
solution exploiting IPI, which is different in nature with respect to
existing ones.

Finally, we note that the achievement of our same objective
would have not been possible by relying on the conventional Oper-
ating System support for changing the execution flow of threads
asynchronously, like POSIX signals. In fact, the delivery of a signal
to a target thread would lead it to change its execution flow—and
possibly squash its current activity if it were no longer causally
consistent—only upon the next kernel-to-user mode passage. This
may not happen promptly since the thread might not call system-
calls or be interrupted by hardware devices (including the system
timer) for a while. Instead, our solution meets the requirements of
reduced overhead and close to immediate reaction by the destina-
tion thread currently executing doomed to be rolled-back work.

3 OUR APPROACH
3.1 Outline
We provide the outline of our solution by relying on x86/Linux
terminology. However, as already hinted, our design can be easily
ported to processors supporting a different Instruction Set Archi-
tecture (ISA) and to other Operating Systems. At the architectural
level, the IPI-based approach we propose spans across both user
and kernel code. Each of the two parts is discussed in what follows.

3.1.1 Kernel-level Facilities. At kernel level, we have setup the
following two facilities:

• a new system call to allow a thread A—the one that detects
the inconsistency of the event currently executed by another
thread B—to send the IPI towards the CPU-core (or hyper
thread) running B. This activity cannot be executed at user
level since the send of the IPI requires executing a machine
instruction that writes a specific bitmask on a Model-Specific
Register (MSR) of the x86 processor, which is only accessible
when running in kernel mode;
• a new interrupt handler used to process the IPI at the destina-
tion side, which is in charge of changing the execution flow
of the hit thread B. This brings it to run a routine, included
in the user space PDES platform, which can lead to squash-
ing the context related to the processing of the inconsistent
event.

The above two points have been solved via a loadable Linux-
kernel module. The first one has been addressed by searching one
free entry (i.e., an entry pointing to the sys_ni_sys_call) within
the system-call-table, and linking this entry to the kernel-level
routine included in our module, which actually implements the
new system-call called sys_hit_by_ipi. This approach is perfectly
compatible with the recent Page-Table-Isolation (PTI) patch [11]
that contrasts security attacks based on hardware-level speculation,
like Meltdown [18] and Spectre [16]. In fact, our new system-call
is still dispatched by the original dispatcher used for all the other
system-calls3.

More tricky is the solution we adopted for addressing the second
point listed above. In particular, simply linking a new interrupt-
handler to some entry of the Interrupt-Descriptor-Table (IDT) used
by x86 processors would not lead to a solution compatible with
the above mentioned security oriented patch. The new handler is
in fact contained in the external module—hence it is not compiled
in the kernel image—therefore it is not included in the region of
virtual addresses that are left mapped by the security patch on the
page-table used by an active process when running in user mode.
Therefore, as soon as thread B would be hit by the IPI when run-
ning some no longer consistent simulation event in user mode, an
unrecoverable error will occur. To avoid this, we adopted a binary-
patching approach that exploits the modular interrupt architecture
used in the Linux kernel. In particular, as shown in Figure 1, the
actual handling of interrupts in Linux is based on a two level or-
ganization where a top-level routine is linked to the IDT—this is
the routine that is started when the interrupt is really accepted by
the processor—while the actual logic for handling the interrupt is
not directly linked to the IDT and is only triggered by the top-level
routine (if this gets executed). The top-level routines for all the pre-
defined handles are included in the kernel compilation and are left
mapped to the page-table of any process also when running in user
mode, so that these routines will be reachable when an interrupt
occurs on a CPU-core while running in user mode. We exploited
the top-level routine for the so called spurious interrupts—which
are never used by the kernel—and applied a binary-patch where the
original call instruction to the spurious interrupt logic is substituted
with a call to the logic implemented in our module, which applies
the control flow variation. This is also shown in Figure 1. With
this solution, the top-level routine is left in charge of handling the
actions related to the security oriented patch.

Clearly, it is possible that in the interval of clock cycles between
the decision of thread A to hit thread B via the IPI, and the send
of the IPI to the destination CPU-core through the new system-
call, B gets temporarily descheduled in favor of another thread by
the Operating System. Hence, we embedded in our architecture a
mechanism to let the handler of the IPI know if the thread currently
running on the hit CPU-core needs to really change its execution
flow—or is a thread running outside the PDES platform. The mech-
anism we exploited has been based on a special device-file driver,
still supported by our loadable Linux-kernel module, which offers
an ioctl operation that enables all the threads living within the
PDES platform to register their ID at kernel level, as well as on

3The security oriented patch that implements PTI for the case of access to the kernel
via system-calls is in fact fully managed by this dispatcher.

syscall table

sys_open…

sys_ni_syscall

…send_ipi(core_id)

top_spurious_ipi_handler{

…
call bottom_spurious_ipi_handler

…
}

bottom_spurious_ipi_handler{

…
do nothing

…
}

custom_ipi_handler{

…
setup_control_flow_variation

…
}

Sender

Receiver

syscall(sys_ni_syscall, core_id)

Interrupt Descriptor table…

spurious_ipi…

binary

patch

Figure 1: The patching scheme of the spurious interrupt han-
dler.

what CPU they are pinned. This way, the handler of the IPI can
check if the currently running thread is registered and pinned to
the IPI recipient CPU-core. In the negative case it does not apply
the control flow variation—rather, it sets a flag associated with the
real destination thread. In our solution, this flag is checked when
this thread is rescheduled on CPU by the Operating System—this
is achieved by installing a hook at the tail of the kernel schedule
function via the Linux kprobe service. A positive check by the hook
will lead to the control flow variation enabling the thread to squash
the inconsistent work it was running prior to its CPU-deschedule
by the Operating System.

3.1.2 User-level Facilities. While devising the user-level facilities
that exploit the IPI support, a core problem to solve has been to avoid
the send of multiple un-needed IPIs in scenarios where multiple
threads concurrently detect that the event e being processed by a
thread X is no longer consistent. Further, we also need to correctly
identify what CPU-core we need to hit with the IPI4 and to setup
fresh information to allow concurrent threads to capture the current
activities of other threads. To cope with these issues, we devised
the usage of metadata associated with each individual simulation
object, which allow:
• identifying the CPU-core that is currently hosting the thread
which is processing the event e , as well as the timestamp of
e;
• identifying if some other concurrent thread has already de-
tected that the event e is no longer consistent, and has taken
care of triggering the IPI send towards the destination CPU-
core;
• keeping information useful for determining whether an IPI
can currently lead to a safe squash of a no longer consistent
event—namely whether the control flow variation possibly
induced by the IPI arrival is compatible with the actual exe-
cution flow of the hit thread.

In Figure 2 we show the structured variable we associated with
each individual simulation object. The variable represents the
simulation-object control table within the IPI-based solution. We
4We recall that the IPI technology works at the level of the processor firmware and is
agnostic of threads and threads’ IDs.

Control-table array

A NULL

Control Table

Core ID 0

• core_id = 0

• timestamp = e.ts
• event_type = e.type

• start_time = 1850

• already_hit = 0

• unpreemptable = 0

Platform Mode

Core ID 1 Event Handler e’

Publish CT

Send e’’ to LP A

CAS………

Z

Event Handler e

{

IPI

Figure 2: The control-table data structure.

recall that our approach works in shared-memory multi-core ma-
chines, so the control table associated with each individual sim-
ulation object is accessible in read/write mode by all the threads
running in the multi-threaded PDES platform. Its fields are as fol-
lows:

• The core_id field is simply the numerical ID—according to
ACPI indexing—of the CPU-core that is currently running
an event destined to the simulation object.
• The timestamp field denotes the timestamp of the simula-
tion event that is currently being processed at that simula-
tion object (or the one that needs to be processed after this
simulation object has finished a rollback phase).
• The event_type field denotes the type of the event being
processed—useful to determine whether to hit it via IPI or
not, as we shall discuss.
• The start_time field keeps the wall-clock-time at which
the event e has been started processing.
• The already_hit field is used to denote if some thread has
already revealed that the current event being processed by
that simulation object (the one associated with the current
content of the control table) is no longer consistent.
• The unpreemptable field is a control field—particularly a
counter—used to determine whether the processing of e can
be safely squashed—an aspect that we shall discuss in a while.

With each simulation object O we associate a pointer ct[O]
into the array ct[], which can be either NULL or can point to O’s
control table. When a thread picks the event e to be processed at
the object O then it initially fills all the fields of a fresh instance of
the control table, and right before invoking the event handler with
e as input, it updates the pointer ct[O] to point to the fresh control
table via an atomic memory update instruction, which essentially
acts as a memory-fence. In particular, we used the Compare-and-
Swap (CAS) x86 instruction (named CMPXCHG). This ensures that
the control table has a consistent content visible to all the other
concurrent threads as soon as they catch a not null value of the
ct[O] pointer. Also, the thread that updates the control table after
picking the event e is able to publish towards all the other threads
the control table by avoiding lock protected critical sections, hence
enabling scalability. Clearly, as soon as the thread finishes working
on the event e , it resets the pointer to the value NULL still via a CAS
instruction and the buffer hosting the no longer active control table

can be collected for later usage according to well-known schemes,
such as Epoch-Based Reclamation [8] or Hazard Pointers [20].

As for core_id, we already hinted that in our solution we re-
sorted on CPU-affinity mechanisms which pin each thread working
in the PDES platform to a different CPU-core. Therefore, the ID
of the CPU-core to be posted by a thread on the control table is
deterministically known at startup of the PDES run. However, we
are currently working on the definition of efficient mechanisms
enabling the dynamic update of the control-table information under
scenarios where the Operating System is allowed to migrate threads
dynamically among different CPU-cores. As for start_time, we
populate it by reading the real-time-clock register on board of the
x86 processor—also known as Timestamp Counter Register (TSC)—
via the RDTSC machine instruction. This is the very last machine
instruction we execute prior to the CAS that publishes the control
table and the actual call to the event handler, so that the value
registered in start_time is likely a good approximation of the real
wall-clock-time at which the processing phase of the event has
started.

As hinted, the shared-memory nature of our target speculative
PDES system enables any other thread that has processed an event
which generated some other event e ′ in the past of the event e
currently being processed at the simulation object O to know that
the causality error has happened. In fact, this can be simply tracked
by comparing the timestamp of e ′ with the value of the timestamp
field registered in the control table associated with the object O .
In this case, the thread that produced e ′ attempts to update the
already_hit field in the control table via a CAS machine instruc-
tion. If it does not fail, it means that this thread is the one that needs
to notify the causality violation to the destination core via the ap-
posite system-call we introduced. Otherwise, a failure in the CAS
indicates that some other thread already notified the destination
core of the causality inconsistency via an IPI, and there will be no
need to re-send the IPI in order to preempt the processing of the
inconsistent event.

After the control table has been published, it is possible that the
execution flow will pass through functions—called by the event
handler—that need to be executed according to an all-or-nothing
semantic. An example is the one of memory allocation functions
managed by (recoverable) memory allocators, which need to cor-
rectly manage metadata in a non-preemptable manner, otherwise
the memory allocator would be left in an inconsistent state (possibly
not able to guarantee rollbackability of the allocation/deallocation
operations). Here, the unpreemptable counter plays a crucial role.
For all these functions, we offer wrappers such that at the entrance
of whichever of them we increment the unpreemptable counter,
still atomically via the Fetch-and-Add (FAD) instruction. Then, we
decrement the counter (again atomically via FAD) right before
returning. In this case, when an IPI hits the currently processed
event (which is no longer consistent) the first action done by the
interrupted flow is the one of checking if the event can be imme-
diately squashed. This is done by checking if the unpreemptable
counter is currently set to zero. If the check is negative, it means
that we are currently running within one (or a chain) of calls to non-
preemptable functions and we cannot squash the event execution
immediately. However, the function-return wrapper is structured in
such a way to check, after decrementing unpreemptable via FAD,

if its value is zero, and if the already_hit field has been set. If both
checks are true, it means that the event is no longer consistent and
we can perform the preemption just upon the return from the cur-
rently executed non-preemptable function—which allows saving
the whole remaining portion of the doomed to be rolled-back work.

In this case the wrapper squashes the event processing context,
making the thread land to a PDES platform context which allows it
to resume housekeeping operations at the level of the simulation
kernel. A scheme where this “deferred squash” of a no longer con-
sistent event is adopted is provided in Figure 3. It shows an example
time line where the core with id 0 is executing the event handler tar-
geting a specific simulation object. When the corresponding thread
invokes an unpreemptable function (e.g., a standard library routine),
it increases the unpreemptable counter by one. Consequently, if it
receives an IPI since another core has detected a causality violation,
no control flow variation takes place. However, the already_hit
bit in the control table of the simulation object dispatched on core 0
will be set to 1. As soon as the thread completes the call to an unpre-
emptable routine, our wrapper is invoked. Here, the counter will be
set again to 0 and, since the already_hit bit is set, it applies the
control flow variation, squashing the current event management
and giving control again to the simulation kernel.

As a last note, if the IPI arrives late at the destination thread,
with respect to the processing of the event e to be hit, the varied
execution flow still works correctly, since it simply checks whether
an event is currently being processed—possibly different from e—
and if this event is still consistent (this information is in the control
table of the currently dispatched simulation object). In the positive
case, the interrupted execution flow is simply resumed. Otherwise,
it is squashed anyhow.

3.2 Runtime IPI-send Decisions
An additional relevant point in our solution has been the introduc-
tion of a runtime decision support to determine the actual useful-
ness of sending the IPI towards a CPU-core that is currently running
doomed to be rolled-back work. Clearly, such usefulness depends
on several factors, among which we can consider the following:

A) the expected granularity of the inconsistent event currently
being processed;

B) the expected residual processing time of this event.
Even though the two metrics above are somehow correlated,

they have been exploited in differentiated manners in our solution.
In more detail, we keep track of the average CPU-time required
to process events of any given type, as defined by the simulation
model programmer. This is done at the simulation kernel level by
still relying on the TSC register and the RDTSC instruction, used
to determine both start and end time of the event handler routine
so as to take an individual sample of the CPU-time demand by the
event of that type. For each event-type we have therefore a tuple
< type, expected_дranularity >, where the expected granularity
is computed as the Exponential Moving Average (EMA) over the
collected samples (with parameter α , the weight of old sample, set
to 0.2). The usage of EMA allows us to capture scenarios where the
activities at the level of the simulation model implementation are
non-stationary, so that the granularity of the events of a given type
can change along the simulation run. Also, the above tuple can be

associated with each individual simulation object, so that we can
estimate the expected granularity of events of a same given type
occurring at different simulation objects. This helps in scenarios
where the simulation model is not symmetric, so that simulation
objects may perform computations with different CPU-demand
when an event of a given type takes place at different objects.

Given that the control table for the management of the IPI-based
solution keeps the event_type field, when some thread determines
that an event e currently processed on a given CPU-core—which is
destined to simulation O—is no longer consistent, we can exploit
the above statistical information to determine the expectation in
terms of CPU-demand by the event, denoted as CPU (e), and we
can compare it with a threshold value TR.

If CPU (e) ≤ TR, then we can skip sending the IPI towards the
CPU-core currently processing the event e . The motivation behind
this choice is essentially related to the fact that hitting a CPU-core
that is processing a fine grain event e to save the residual execution
cost of e will probably not pay off—being the event too fine grain.
Clearly, this approach requires the determination of a meaningful
value forTR, which in our experiments has been set to 10 times the
delay for delivering the IPI to the destination core. However, we
note that the IPI delivery delay (including the cost for calling the
system-call that issues the IPI) is of the order of 1/2 microseconds
for common chipsets (we obtained these values for the case of both
Intel Xeon and AMD Opteron, which are the platforms used for
the experiments whose results are reported in Section 4). Hence,
opting for sending the IPI if the expected granularity of the event
to be preempted is at least of 10 microseconds seems reasonable to
possibly save a non-minimal amount of CPU-waste.

On the other hand, while the solution above allows avoiding the
send of the IPI when we are confident that no significant revenue
will come out, we cannot be sure that for events with CPU-demand
larger than TR we can actually take advantage by sending the
IPI. In fact, the event to be hit might have already been executed
almost completely. Hence the attempt to squash it via the IPI would
mostly result in overhead. To cope with this problem, we exploit
the start_time field within the control table, which allows us, in
conjunction with the expected event granularity, to compute the
expected residual CPU-time of the event.

Specifically, the thread that detects the inconsistency of e can
read the TSC register, to assess the current wall-clock-time andwhat
portion of the event e has been already processed. Consequently
the expected residual can be easily computed. If the residual, which
we denote as RES (e), is larger than another thresholdTR′, then the
IPI is sent. As for TR′, we suggest the following setup:

TR′ = β ×TR with β ≥ 1 (1)

This way, the expected CPU-time residual of the event to be hit via
the IPI needs to be at least equal to the minimum granularity of the
events that we consider eligible for being hit—so they are not too
fine grain—if they are found to be inconsistent.

As a final note, the timing information used in our scheme is
based on a hardware-level timer (the TSC register) which does
not account for time-sharing of threads on the same CPU-core.
Therefore, when a thread decides to send the IPI at a given wall-
clock-timeT it is possible that it gets descheduled by the Operating
System, and then rescheduled after a delay, so that the IPI send will

Core ID 0

Event Handler e

Core ID 1 Send event e’ < e to object A

preemptable code unpreemptable code

unpreemptable

values
0 1 0

already_hit

values
0 11

wrapper control flow variation

Check

pending IPI

IPI

Figure 3: A timeline with IPI and unpreemptable functions executed while processing the no longer consistent event.

not occur on time. In this case, we are simply paying the cost of an
IPI that will not arrive on time for hitting the target inconsistent
event. However, in scenarios where there is not strong competition
for CPU usage by the threads running in the PDES platform and
other threads, this situation is expected to be unlikely. The same
happens to the thread that is running the event e to be hit, since it
is possible that it gets descheduled by the Operating System while
in this processing phase. In this case, we have a favorable scenario
to the IPI since there will be more time for the IPI to arrive and to
flag the unscheduled thread (see Section 3.1.1) before this thread is
actually given the opportunity to execute the residual portion of
the event.

4 EXPERIMENTAL EVALUATION
In order to assess the effectiveness and the costs associated with our
proposal, we have performed an extensive experimental evaluation
that includes both synthetic and real-world simulation models. A
description of the hardware/software environment used for our ex-
periments is provided in Section 4.1. The simulation models used to
evaluate different aspects of our proposal, along with the associated
performance results, are presented in Section 4.2.

4.1 Test-bed Platform
Our proposal has been embedded into theUltimate Share-Everything
Simulator (USE) [12], a highly-optimized PDES engine for
shared-memory multi-core machines, which provides non-blocking
progress in both virtual and wall-clock time. The latter is guar-
anteed by exploiting fine-grain synchronization techniques that
confine critical sections to the execution of individual atomic in-
structions, ensuring scalability while accessing shared data and
metadata within the simulation engine. The former is achieved by
having an innovative implementation of the Time-Warp protocol,
which is highly optimized for maximum exploitation of the capa-
bilities of shared-memory machines. The key characteristic of USE
is the presence of a unique pool of events to be processed, which is
shared among all the compute units (worker threads) of the run-
time environment. This guarantees that the computing power is
always assigned to the processing of highest-priority events, thus
reducing the occurrence of causality violations, and consequently

Table 1: Hardware Evaluation Platforms

Platform
A B

Processors 4 x AMD Opteron
Processor 6128

2 x Intel Xeon E5-
2650v4

Cores (Logical) 32 24 (48)
NUMA Nodes 8 2
RAM 64GB 128GB
Operating System Debian 5.4.19 Ubuntu 19.04
Linux Kernel v5.4.0 v5.0.0
IPI latency 1µs 1µs

improving the overall efficiency. Therefore, adopting USE as test-
bed platform allows us to evaluate benefits and shortcomings of
our approach in a worst case scenario, namely when it is deployed
within an engine characterized by a generally low incidence of
rollback and, hence, to be rolled-back work. On the other hand, the
two hardware platforms A and B, whose details are given in Table
1, provide an adequate level of parallelism (32 and 48 hardware
threads respectively).

The Operating System running on the machines exposes the IPI
API through a loadable kernel module5 that we have developed
according to the patching scheme described in Section 3.1.1.

The parameters β andTR of the decision model have been set so
as to avoid preemption of events/processing tasks whose residual
time is ten times the IPI latency. Finally, the parameter α used in
the EMA computation has been set to 0.2.

4.2 Benchmark Applications and Results
In order to evaluate the effectiveness of our solution, we have per-
formed an experimental evaluation that relies on two different
simulation models: PHOLD [9] and Personal Communication Sys-
tem (PCS). The first one has been exploited to estimate potential
overheads of our approach under different configurations in terms
of event granularity. Conversely, PCS allows us to provide an ex-
ample of the benefits given by reducing the amount of doomed to

5Available at https://github.com/HPDCS/ipi4user

https://github.com/HPDCS/ipi4user

 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

5us 15us 45us 135us 405us

R
e
l
a
t
i
v
e

s
p
e
e
d
u
p

(
I
P
I

v
s

n
o
n
-
I
P
I
)

Event granularity

4x AMD Opteron 6128 (32 Cores)

#SO=1x#Cores
#SO=2x#Cores
#SO=3x#Cores

 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

5us 15us 45us 135us 405us

R
e
l
a
t
i
v
e

s
p
e
e
d
u
p

(
I
P
I

v
s

n
o
n
-
I
P
I
)

Event granularity

2x Intel Xeon E5-2650 v4 (48 Cores)

#SO=1x#Cores
#SO=2x#Cores
#SO=3x#Cores

Figure 4: Results with PHOLD - each bar represents the speed up/slowdown obtained by our solution while running on top of
the two different hardware platforms.

be rolled-back work in a real-world simulation model. Both models,
whose detailed description and results are given in the following
two sections, have been configured with a number of simulation
objects (SOs) equal to 1, 2 and 3 times the number of CPU cores.
The reduced ratio between the number of simulation objects and
the number of cores, as well as the absence of lookahead, make
the execution characterized by a high degree of simulation-object
execution parallelism, which is considered a challenging scenario
for speculative simulation.

4.2.1 PHOLD. The first test-bed application is the classical PHOLD
benchmark [9]. The execution of an event leads to updating the
state of the target simulation object, which keeps track of statistics
related to simulation advancement such as the number of processed
events and average simulation time advancement observed by sim-
ulation objects. It also leads to executing a classical CPU busy-loop
for the emulation of a given event granularity. There are two types
of events: i) regular events, whose processing generates new events
of any type; ii) diffusion events that do not generate new events
when being processed. The number of diffusion events generated
by regular ones (denoted as Fan-Out) is set to 1 in our evaluation.
This event pattern leads to scenarios where the average number of
events in the event pool is stable, but there are punctual fluctua-
tions. The timestamp increments are drawn from an exponential
distribution with mean set to one simulation-time unit. Finally, the
busy loop proper of PHOLD event processing generates a different
event granularity in different tests, namely 5µs , 15µs , 45µs , 135µs
and 405µs , in order to emulate low to high granularity events proper
of a large variety of discrete event models.

The results of this benchmark are presented in Figure 4, which
reports the speedup/slowdown introduced by our solution. This

has been computed as the ratio between the average throughputs
for different thread counts. For platform A, the plot shows that
our support introduces a sensible overhead (5%) for very fine-grain
events (5µs), even though the occurrence of causality violations is
very infrequent—the percentage of straggler events is below 1% in
all configurations. Such overhead is even smaller (up to 2%) when
running on a different and more recent architecture, as for the case
of platform B. This result shows that our approach is non-intrusive,
while being capable of providing speed up (i.e., 4% and 6% for
platforms A and B, respectively) in very adverse scenarios—namely
when rollbacks involve larger-grain events.

4.2.2 PCS. PCS models a mobile network adhering to GSM tech-
nology. Each simulation object models the evolution of an individ-
ual hexagonal cell. Each cell can handle a number N of channels,
which are modeled via power regulation and interference/fading
phenomena, according to the results in [15]. The records associated
with channels are dynamically allocated/released upon start/end
of calls. Upon call setup, power regulation is performed, which
involves scanning the aforementioned list of records to compute
the minimum transmission power allowing the current call setup to
achieve the threshold-level signal-to-interference ratio (SIR). Each
record is released when the corresponding call ends or is handed
off towards an adjacent cell. In the latter case, a similar call-setup
procedure is executed at the destination cell. Data structures keep-
ing track of fading coefficients are also updated while scanning the
list, according to a model defining meteorological conditions (and
their variations). The set of configurable parameters entails:

• τA, which is the inter-arrival time of subsequent calls to any
target cell;
• τD , which expresses the expected call duration;

 0.95

 1

 1.05

 1.1

 1.15

 1.2

0.3 0.6 0.9R
e
l
a
t
i
v
e

s
p
e
e
d
u
p

(
I
P
I

v
s

n
o
n
-
I
P
I
)

Channel utilization factor

4x AMD Opteron 6128 (32 Cores)

#SOs=1x#Cores

0.3 0.6 0.9

Channel utilization factor

2x Intel Xeon E5-2650 v4 (48 Cores)

#SOs=2x#Cores #SOs=3x#Cores

Figure 5: Results with PCS.

• τH , which expresses the residual residence time of a mobile
device into the current cell.

These parameters affect the channel utilization factor, expressed as
ρ = τD

τA ·N . The value ρ impacts the granularity of the events, since
the more the busy channels, the more power-management records
are allocated and consequently scanned/updated while processing
events. At the same time, higher values of the channel utilization
factor lead to higher memory requirements for the state image of
individual simulation objects. Also, CPU and memory demands are
bounded depending on the total number N of per-cell managed
channels. In fact, when a call-setup operation is requested due to
a call arrival (or a hand off arrival), if all the channels are already
busy, then the call is dropped, mimicking the real-world scenario
where communication is interrupted whenever the base station has
no available resources to support the communication.

For this model, we have studied a configuration resembling high
mobility of the devices involved in communication activities, like
during morning hours around a commercial or business area, with
many people moving towards their office or work place. Hence,
we set the parameters to provide a non-minimal likelihood that an
ongoing call is handed off between cells, in particular τD = 300s and
τH = 120s . N and τA have been set in order to evaluate scenarios
where the channel utilization factor is equal to 0.3, 0.6 and 0.9.

Figure 5 shows the results achieved while running on top of
the two hardware platforms. Coherently with what observed with
the PHOLD model, the benefits from the IPI-based mechanism are
more evident when running with lower counts of simulation objects
because of the higher degree of actual simulation-object execution
parallelism, leading to more pronounced speculation. For instance,
the maximum performance is in most of the cases achieved when
running with a number of simulation objects tied to the number of
cores, giving at least 1.05x and 1.12x speedup in platforms A and
B respectively—and providing a maximum speedup of 1.15x with
platform B.

Even though the event granularity is enough large compared to
the IPI latency (it varies from to 87µs to 195µs and from 45µs to
100µs in platform A and B respectively, depending on the channel
utilization factor), the benefit introduced by our solution is strongly
related (and increases) with the probability of rollbacks. As for
this aspect, we report in Figure 6 data related to the frequency of
causality violations for the executions on platform B. By the curves
we see that (as expected) the frequency of causality violations de-
creases from about 12/13% to 3/5% when reducing the actual level

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 60 80 100 120 140

#Simulation Objects

Frequency of causality violations

ρ=0.3
ρ=0.6
ρ=0.9

Non-IPI
IPI

Figure 6: Results with PCS - frequency of causality viola-
tions.

of execution parallelism (namely, when increasing the number of
simulation objects). Also, we see a slightly reduced frequency of
casuality violations when relying on the IPI approach, indicating
that this approach can early prevent the spreading of inconsistent
computation. In fact, early interrupting the execution of an incon-
sistent event e avoids injecting in the system additional inconsistent
events that would otherwise have been generated by the processing
of e .

Still for runs on platform B, we show in Figure 7 the frequency
of early interruptions of inconsistent events achieved with the
IPI mechanism. By the results we see how this frequency ranges
from about 40% to a maximum of 55%, depending on the different
application settings. This confirms the fact that a good percentage
of the inconsistent events can be actually early aborted, saving
waste of resources.

Finally, in Figure 8 we offer a different view on the final perfor-
mance data for executions of the PCS model on top of platform B. In
particular, we report the throughput curves for the two scenarios—
IPI vs non-IPI—including the confidence interval calculated on the
basis of the different outcomes achieved over the 10 runs per data-
point we carried out. The data show that the advantages by the IPI
approach are statistically consistent across all the simulation object
counts.

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 60 80 100 120 140

#Simulation Objects

Frequency of early event interruptions

ρ=0.3
ρ=0.6
ρ=0.9

Figure 7: Results with PCS - frequency of early event inter-
ruptions.

 0

 50

 100

 150

 200

 250

 300

 350

 60 80 100 120 140

#Simulation Objects

Throughput
(committed events per ms)

IPI

No-IPI

ρ=0.3
ρ=0.6
ρ=0.9

Figure 8: Results with PCS - throughput curves.

5 CONCLUSIONS
Inter-Processor-Interrupts (IPIs) are a fundamental technology in
modern software/hardware systems. They allow a CPU-core to
notify other cores about important tasks to be promptly executed.
IPIs are widely exploited in Operating System technology, as an
example to correctly drive the execution of multi-threaded applica-
tions, where something occurring on a given CPU-core because of
the activities of the hosted thread needs to be reflected on the state
of the hardware or shared data structures seen by another thread
possibly running on another CPU-core. However, to the best of
our knowledge, IPIs have not yet been exposed to the application
programmers, and have not been exploited for optimizing specific
application scenarios. In this article we have proposed a solution
where IPIs are used to drive the evolution, in virtual time, of simu-
lation objects running within a speculative parallel discrete event
simulation environment hosted by a multi-core machine. In more
detail, our solution enables the close-to-zero delay notification to a

CPU-core of the inconsistency of the speculative work it is carrying
out. This enables the on-demand early squash of incorrect portions
of the computation, with benefits on CPU-cycles savings and (indi-
rectly) energy savings to run the speculative simulation. We have
embedded our solution within the Ultimate-Share-Everything (USE)
open source simulation platform, and report in this article data for
an assessment of the proposed solution with both synthetic and
real-world simulation models. Our proposal is in the direction of in-
troducing an innovative and unconventional system-level support
offering runtime capabilities to be exploited by last generation par-
allel simulation systems, oriented to high performance and to the
exploitation of scaled-up hardware parallelism in shared-memory
platforms.

REFERENCES
[1] Christopher D Carothers and Richard M Fujimoto. 2000. Efficient execution of

Time Warp programs on heterogeneous, NOW platforms. IEEE Transactions on
Parallel and Distributed Systems 11, 3 (2000), 299–317.

[2] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.
Efficient optimistic parallel simulations using reverse computation. ACM Trans-
actions on Modeling and Computer Simulation 9, 3 (1999), 224–253.

[3] Malolan Chetlur, Nael B. Abu-Ghazaleh, R Radhakrishnan, and Philip A. Wilsey.
1998. Optimizing Communication in Time-warp Simulators. In Proceedings of
the Twelfth Workshop on Parallel and Distributed Simulation (PADS ’98). IEEE
Computer Society, Washington, DC, USA, 64–71. https://doi.org/10.1145/278008.
278017

[4] Myongsu Choe and Carl Tropper. 1999. On Learning Algorithms and Balanc-
ing Loads in Time Warp. In Proceedings of the 13th Workshop on Parallel and
Distributed Simulation. Springer Verlag, 101–108.

[5] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-
parently Mixing Undo Logs and Software Reversibility for State Recovery in
Optimistic PDES. ACM Trans. Model. Comput. Simul. 27, 2, Article Article 11
(May 2017), 26 pages. https://doi.org/10.1145/3077583

[6] Samir R Das and Richard M Fujimoto. 1997. Adaptive Memory Management and
Optimism Control in Time Warp. ACM Transactions on Modeling and Computer
Simulation 7, 2 (1997), 239–271. https://doi.org/10.1145/249204.249207

[7] Phillip M. Dickens, David M. Nicol, Paul F. Reynolds, and J. M. Duva. 1996.
Analysis of bounded time warp and comparison with YAWNS. ACM Transactions
on Modeling and Computer Simulation (1996). https://doi.org/10.1145/240896.
240913

[8] Keir Fraser. 2003. Practical lock freedom. Ph.D. Dissertation. Cambridge University
Computer Laboratory.

[9] Richard M Fujimoto. 1990. Performance of Time Warp Under Synthetic Work-
loads. In Proceedings of the Multiconference on Distributed Simulation. Society for
Computer Simulation, 23–28.

[10] Richard M. Fujimoto and Maria Hybinette. 1997. Computing Global Virtual
Time in Shared-Memory Multiprocessors. ACM Transactions on Modeling and
Computer Simulation 7, 4 (1997), 425–446. https://doi.org/10.1145/268403.268404

[11] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 161–176. https://doi.org/10.1007/978-3-319-
62105-0_11

[12] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and
Francesco Quaglia. 2018. The Ultimate Share-Everything PDES System (SIGSIM-
PADS ’18). Association for Computing Machinery, New York, NY, USA, 73–84.
https://doi.org/10.1145/3200921.3200931

[13] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming
Languages and System 7, 3 (1985), 404–425.

[14] David R. Jefferson, Brian Beckman, Frederick Wieland, Leo Blume, Mike Di
Loreto, Phil Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tupman, L. Van
Warren, John J. Wedel, Herb Younger, and Steve Bellenot. 1987. Distributed
Simulation and the Time Warp Operating System. In Proceedings of the Eleventh
ACM Symposium on Operating System Principles, SOSP 1987, Stouffer Austin Hotel,
Austin, Texas, USA, November 8-11, 1987, Les Belady (Ed.). ACM, 77–93.

[15] Sunil Kandukuri and Stephen Boyd. 2002. Optimal Power Control in Interference-
Limited Fading Wireless Channels with Outage-Probability Specifications. IEEE
Transactions on Wireless Communications 1, 1 (2002), 46–55.

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative execution. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy. https://doi.org/

https://doi.org/10.1145/278008.278017
https://doi.org/10.1145/278008.278017
https://doi.org/10.1145/3077583
https://doi.org/10.1145/249204.249207
https://doi.org/10.1145/240896.240913
https://doi.org/10.1145/240896.240913
https://doi.org/10.1145/268403.268404
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002

10.1109/SP.2019.00002 arXiv:1801.01203
[17] Yi-Bing Lin and Edward D Lazowska. 1991. Processor Scheduling for Time Warp

Parallel Simulation. In Advances in Parallel and Distributed Simulation. IEEE
Computer Society, 11–14.

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading kernel memory from user
space. In Proceedings of the 27th USENIX Security Symposium.

[19] Vijay K. Madisetti, Jean C. Walrand, and David G. Messerschmitt. 1988. Wolf: a
rollback algorithm for optimistic distributed simulation systems. In Proceedings
of the 20th conference on Winter simulation, WSC 1988, San Diego, California,
USA, December 12-14, 1988, Michael A. Abrams, Peter L. Haigh, and John Craig
Comfort (Eds.). ACM, 296–305.

[20] Maged M Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects. IEEE Transactions on Parallel and Distributed Systems 15, 6 (2004),
491–504. https://doi.org/10.1109/TPDS.2004.8

[21] D.M. Nicol and Jason Liu. 2002. Composite synchronization in parallel discrete-
event simulation. IEEE Transactions on Parallel and Distributed Systems 13, 5 (may
2002), 433–446. https://doi.org/10.1109/TPDS.2002.1003854

[22] Alessandro Pellegrini and Francesco Quaglia. 2017. A Fine-Grain Time-Sharing
Time Warp System. ACM Transactions on Modeling and Computer Simulation 27,

2 (may 2017), 1–25. https://doi.org/10.1145/3013528
[23] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2015. Autonomic

State Management for Optimistic Simulation Platforms. IEEE Transactions on
Parallel and Distributed Systems 26, 6 (jun 2015), 1560–1569. https://doi.org/10.
1109/TPDS.2014.2323967

[24] Bruno R Preiss, Wayne M Loucks, and D MacIntyre. 1994. Effects of the Check-
point Interval on Time and Space in Time Warp. ACM Transactions on Modeling
and Computer Simulation 4, 3 (1994), 223–253.

[25] Francesco Quaglia and Vittorio Cortellessa. 2002. On the processor scheduling
problem in time warp synchronization. ACM Transactions on Modeling and
Computer Simulation 12, 3 (2002).

[26] S Srinivasan and P F Reynolds Jr. 1998. Elastic Time. ACM Transactions on
Modeling and Computer Simulation 8, 2 (apr 1998), 103–139.

[27] Brian Paul Swenson and George F Riley. 2012. A New Approach to Zero-Copy
Message Passing with Reversible Memory Allocation in Multi-core Architectures..
In PADS. 44–52.

[28] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. Load sharing
for optimistic parallel simulations on multi core machines. ACM SIGMETRICS
Performance Evaluation Review 40, 3 (jan 2012), 2–11. https://doi.org/10.1145/
2425248.2425250

https://doi.org/10.1109/SP.2019.00002
http://arxiv.org/abs/1801.01203
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2002.1003854
https://doi.org/10.1145/3013528
https://doi.org/10.1109/TPDS.2014.2323967
https://doi.org/10.1109/TPDS.2014.2323967
https://doi.org/10.1145/2425248.2425250
https://doi.org/10.1145/2425248.2425250

	Abstract
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Outline
	3.2 Runtime IPI-send Decisions

	4 Experimental Evaluation
	4.1 Test-bed Platform
	4.2 Benchmark Applications and Results

	5 Conclusions
	References

