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Abstract: Improving the biocompatibility of implants is an extremely important step towards 

improving their quality. In this review, we recount the technological and biological process for 

coating implants with thin films enriched in titanium carbide (TiC), which provide improved cell 

growth and osseointegration. At first, we discuss the use of a Pulsed Laser Ablation Deposition, 

which produced films with a good biocompatibility, cellular stimulation and osseointegration. We 

then describe how Ion Plating Plasma Assisted technology could be used to produce a 

nanostructured layer composed by graphitic carbon, whose biocompatibility is enhanced by 

titanium oxides and titanium carbide. In both cases, the nanostructured coating was compact and 

strongly bound to the bulk titanium, thus particularly useful to protect implants from the harsh 

oxidizing environment of biological tissues. The morphology and chemistry of the nanostructured 

coating were particularly desirable for osteoblasts, resulting in improved proliferation and 

differentiation. The cellular adhesion to the TiC-coated substrates was much stronger than to 

uncoated surfaces, and the number of philopodia and lamellipodia developed by the cells grown 

on the TiC-coated samples was higher. Finally, tests performed on rabbits confirmed in vivo that 

the osseointegration process of the TiC-coated implants is more efficient than that of uncoated 

titanium implants. 

Keywords: titanium; titanium carbide; Pulsed Laser Deposition; Ion Plating Plasma Assisted; TiC 

coating; graphitic carbon; thin film; biocompatibility; implant osseointegration; human primary 

osteoblasts 

 

1. Introduction 

Dental and orthopedic prostheses are made of titanium, a light, strong and inexpensive metal. 

Unfortunately, while extremely useful, titanium is also one of the most oxidizable elements in nature, 

and it reacts spontaneously with the oxygen in air to produce titanium oxides, mainly titanium 

dioxide (TiO2), forming a very thin layer (less than 10 nm) [1–4]. This TiO2 can be found in two phases, 

anatase and rutile, and has known catalytic properties, which could be involved in its interaction 

with the bodily fluids. This passivated layer made of titanium oxides is considered to confer to 

titanium implant its high biocompatibility, making this one of the most used materials for biological 

uses [5,6]. However, this oxide layer may grow in the harsh conditions of biological fluids, and 
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become a non-metal layer interposed between the metal of the implant and the bone. Osteoblasts 

should then approach this passivating layer, which does not form good chemical bonds with bone, is 

more brittle than metal, and may form fractures from which titanium oxide nanoparticles may be 

produced. It can also attract macrophages and neutrophiles that, releasing cytokines, attract 

fibroblasts, instead of osteoblasts, driving the production of a fibrotic tissue around the implant 

instead of a bone tissue [7–9]. 

The chemical composition of the titanium oxide layers is well-known to induce the production 

of a large number of small adhesion areas, and this can lead to fibrinogenesis, soft tissue 

encapsulation of the non-biological substrate, micromotion of the implant, loosening and failure [10–

12]. This is unfortunately quite a common outcome for implants, and causes distress and large social 

costs. In addition, the titanium implants exposed to such a harsh environment can form titanium 

nanoparticles, which, due to their nanoscale, are easily interiorized by the adhering cells, inducing 

toxic reactions and causing further implant loosening [13]. 

In order to avoid these drawbacks, coating titanium implants with a protective layer using 

various technologies is one of the more common strategies. Among these, many physical and 

chemical modifications of the implant surfaces have been proposed, such as coating with titanium 

dioxide or titanium nitride [14,15]. Other works have described the coating of titanium with various 

ceramic materials, deposited using a wide range of techniques such as Physical Vapor Deposition 

(PVD), Chemical Vapor Deposition (CVD) or Plasma Spray Electrolysis (PSE) [16–18]. Since bone 

tissue is formed of about 60% hydroxyapatite, coating titanium implants with this material has been 

attempted, in order to protect the implant and at the same time increase its biocompatibility [18,19]. 

However, while hydroxyapatite provides some osseoinductive properties, its modest mechanical 

properties and brittleness may induce the formation of particles, which, similarly to the titanium 

ones, can cause inflammation and may lead to the formation of a fibrotic tissue and implant 

loosening, till its rejection from the body [3,11]. Other works have proposed different coating 

techniques and various layer compositions to enhance the properties of the layer. For instance, in a 

very recent work, Xia et al. detailed how plasma immersion implantation can be used to embed C/Cu 

ions in the implant surface, in order to provide added bactericidal and osseoinducing properties to 

the implants [20]. 

Another common strategy for enhancing the implant’s integration and cellular adhesion is to 

coat the implant’s surface with biomimetic molecules. Liu et al. obtained very encouraging results by 

adhering short peptide chains on substrates, such as adhesion proteins, i.e., fibronectin [19]. This 

strategy has the advantage of involving natural pathways and proteins commonly found in vivo; 

however, it presents several drawbacks, such as the high costs of the peptides and the difficulty in 

defining a protocol to achieve robust protein adhesion to implant surface. Particularly interesting are 

the approaches to osseointegration that involve Guided Bone regeneration, in which different 

materials are used to produce a localized bone formation for optimal bone reconstruction. In a recent 

example, Zhang and coworkers used MXenes, two-dimensional highly biocompatible materials, as 

membranes to guide and enhance the bone formation in dental implants [21]. 

Several works have detailed techniques to coat titanium implants with a protective layer, which 

shields the implant from oxidation while at the same time providing additional useful properties to 

the surface, such as improved hardness, controlled micro and nano roughness, and good wettability, 

whilst also promoting stimulating effects on osteoblasts growth [22,23]. These characterizations, at 

both the surface science and the biological level, require the combination of a large number of 

techniques. For instance, the combination of Atomic Force Microscopy (AFM) and Scanning Electron 

Microscopy (SEM) is widely employed to characterize surface structures and the evolution of 

biological systems in different conditions [24]. AFM in particular was born as a pure morphological 

characterization tool, but has become in the last 20 years a versatile investigation system, for studying 

mechanical properties at the nanoscale [25–28], single molecule elasticity and characteristics [29,30], 

and cellular morphology, behavior and interactions [31], especially coupled with high-resolution 

spectroscopic tools [32], and it has led to more interesting applications in the field of nanosensors 

[33–36]. 
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Another technique, Transmission Electron Microscope (TEM), is a more complex surface 

investigation tool which can be coupled with other characterization and manipulation instruments, 

such as the Selected Area Electron Diffractometer (SAED), for the analysis of the crystalline structure 

of the sample, the Energy Dispersion Spectrometer (EDS), for chemical analysis, and the ion-beam 

columns Field Emission Gun (FEG), for micro and nano sample manufacturing [37–39]. 

Regarding the chemical composition evaluation of a surface, while X-ray Photoelectron 

Spectroscopy (XPS) is the technique of choice to study the chemical composition of surfaces, Raman 

spectroscopy allows a more detailed view of the elemental interactions, highlighting at the molecular 

level the surface composition [40–42]. 

2. TiC Layers Obtained Using Pulsed Laser and Ion Plated Plasma Assisted Deposition: A Review 

of Their Physical, Mechanical and Biological Properties 

Recent works have identified titanium carbide (TiC) as a promising coating material, which can 

be deposited on titanium implants and prostheses, providing a protection to the underlying bulk 

material and an improved hardness and controlled micro and nano roughness, with, in addition, an 

excellent biocompatibility. For instance, Kumar and coworkers used magnetron sputtering to coat 

stainless steel surfaces with TiC and ZrC layers to improve biocompatibility. These carbides favor the 

adhesion of artificial plasma proteins, which induce a faster and more reliable osseointegration. This 

work also monitored how these coatings influence bacterial adhesion, which is one of the possible 

causes of implant rejection [43]. Similarly, in Olah et al., a TiC layer was produced using sputtering 

on different substrates, and an in-depth characterization of the structural, mechanical and 

electrochemical properties of the layer was performed, showing that the TiC layer provided a longer 

lifetime of implants in the body [44]. Finally, Kao and coworkers detailed how treating the substrates 

before TiC coating could produce a more uniform deposition with better wear resistance, anti-

corrosion properties, and biocompatibility performances [45]. 

Here, we point to two techniques that have been used in the last 10 years to produce these TiC-

rich layers—the Pulsed Laser deposition and the Ion Plated Plasma Assisted deposition—while 

providing a full characterization of the chemical and physical properties of the layers. We also 

describe the in vitro and in vivo experiments that were performed, to demonstrate the effect of the 

TiC layers on osteoblast growth and the improved and faster osseointegration of implants. 

2.1. Pulsed Laser Deposition 

In Pulsed Laser Deposition (PLAD) (Figure 1), a focalized pulsed laser beam oriented with an 

inclination angle of 45°, produced by a Nd:Yag laser source ( = 532 nm;  = 10 ns; repetition rate 10 

Hz), hits a titanium carbide (TiC) target with a laser fluence of 10 J/cm2, for a deposition time of 1 h, 

forming a gaseous cloud (the plume). This is formed by a plasma which is a mixture of atoms, ions, 

molecules, clusters, droplets and target fragments. It deposits on the titanium substrate, forming a 

film bearing small TiC fragments (spalls). In addition to the laser fluence, the number of spalls 

depends on the distance of the sample from the target. In our experimental conditions we determined 

that the best biological results were obtained by placing the titanium sample (disk or dental screw, 

the latter continuously rotated) 8 mm from the target [22,46–48]. 

It is widely reported that the morphology of the surface, specifically the micro and 

nanoroughness, is a factor that stimulates osteoblast growth [12,49–52]. Typically, this is obtained by 

imposing an artificial roughness on the substrates, by blasting them with zirconia particles. In 

addition, the deposition with the PLAD technology, using a laser fluence of 9–13 J/cm2, formed spalls 

in the TiC layer, producing an additional roughness [22]. 

Brama et al. performed SEM imaging of the TiC layers, showing that the substrate surface 

appeared as a 2–3 µm thick homogeneous layer with a large number of spalls. XPS indicated a 

chemical composition of 20% TiC and 80% titanium oxides, which were distributed as T2O3 (11–13%); 

TiO2 (51–56%); and TiO (14–15%). Finally, using a nanoindenter, the mechanical properties of the 

layer were determined, showing a hardness of 10 GPa [22]. 
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Figure 1. Schematics of a Pulsed Laser Deposition (PLAD) apparatus present at the Department of 

Physics of the Sapienza Rome University. When a solid target is irradiated by a focalized pulsed laser 

beam, a gaseous cloud, known as a plume due to its shape, is produced. The plume, a plasma 

composed of electrons, atoms, ions, molecules, clusters and, in some cases, droplets and target 

fragments, expands in vacuum, and will be deposited on the substrate, giving rise to a film where 

fragments of the target (spalls) may be inserted. 

2.1.1. Effects of the PLAD Layer on Osteoblast Homeostasis 

Thymidine incorporation is the assay used to determine the cellular proliferation [53], and the 

MTT test, [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] based colorimetric assay, 

is used to evaluate cell viability and surface toxicity [54,55]. This showed that the layer did not induce 

any toxicity and, in fact, demonstrated the clear positive effect of the TiC coating on the osteoblast 

proliferation. Indeed, by combining SEM and AFM imaging, Brama and coworkers provided a 

complete morphological overview of the cellular growth, and phenotype using primary human 

osteoblasts and osteoblast cell lines (ROS-SMER#14 and hFOB1.19). The images showed that the cells 

on TiC appeared firmly spread on the substrate, bearing many more filopodia, compared to the cells 

on Ti, further supporting the positive effect of the TiC layer on osteoblast spreading [22]. 

The determination of improved osseointegration involves the evaluation of the expression of the 

genes involved in bone turnover: ALkaline Phosphatase (ALP), Collagen1A2 (COLL1A2), 

Osteocalcin (OC), Bone Morphogenetic Protein-4 (BMP-4), Core binding factor -1/osteoblast specific 

factor (Cbfa1/osf/2) and Tumor Growth Factor-β (TGFβ). Semiquantitative Polymerase Chain 

Reaction (PCR) and Quantitative-Real-Time PCR (q-RT-PCR) are the techniques of choice for these 

analyses [56]. 

In the case of PLAD layers, Brama et al. showed upregulation of all these genes in the cells grown 

on TiC-coated titanium disks, compared to the uncoated ones. Additionally, the measurement of 

InterLeukin-6 and Macrophage Colony Stimulating Factor expression in the cells cultured on TiC-

coated substrates showed no measurable alteration of osteoclastogenesis, and osteoclast activity 

produced by cell–cell interaction and paracrine stimulation, compared to the uncoated ones [22]. 

2.1.2. In Vivo Studies on the PLAD Layer 

To determine the effect of a live biological environment on an implant, and to determine if 

indeed the treatment leads to an improved osseointegration, the final step is to evaluate this in vivo. 

Due to the ethical requirements of these particular experiments, all techniques that allow us to reduce 

the animal suffering or the number of employed animals must be preferred. In this sense, X-ray 

mammography can be used to evaluate the bone density formation in small animals, such as rabbits, 
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without requiring the sacrifice of the animals at every experimental step. This was used by Brama et 

al. to determine in vivo the improved performances of the PLAD TiC film, implanting small TiC-

coated dental implants in the femurs of rabbits [22]. The bone density around the implants was 

evaluated after 4 and 8 weeks using X-ray mammography. At the first time-point, this analysis 

demonstrated an increase in the bone density around the TiC-coated implant compared to the 

untreated ones. After 8 weeks from the implantation, the bone around both the uncoated and the TiC-

coated implant was increased, but the coated implant evidenced greater bone formation. 

Differential fluorescent staining is an excellent way to add to the bone-density evaluation a time 

resolution, in order to monitor the bone growth and the osseointegration of the implants over time. 

Different fluorophores, administered at different time-points, are incorporated into new bone 

growth, therefore indicating the position of growing bone at the time of injection. Brama et al. 

performed these analyses and showed the rapid onset of bone formation around the TiC-coated rods, 

compared to the uncoated Ti ones (Figure 2) [22]. 

 

Figure 2. Confocal microscopy of intravitally stained small rods (2 × 5 mm) inserted in the femurs of 

rabbits. Stains indicate bone formation at 1 week (green), 2 weeks (red), 5 weeks (yellow). Significant 

bone was observed to have accumulated at the implant-bone interface, shown as red staining, at the 

2-week time period near the TiC-coated implants and especially in the cancellous zone of the bone. 

Indeed, a significant quantity of new bone had already formed at 1 week near the TiC-coated implants 

[panel (a)]. Conversely, only a small amount of bone had formed around the uncoated Ti implants at 

2 weeks [panel (b)] and no bone formation was visible at 1 week. Reprinted from [22]. Copyright 

(2007), with permission from Elsevier 

The overall results of the in vivo experiments strongly suggest that the coating of titanium 

implants with TiC-enriched film could be a very useful addition to the titanium dental and 

orthopedic implant production process, leading to an improvement in their success rate. 

Unfortunately, a practical application of the PLAD deposition process to orthopedic and dental 

implants would be far too complex for industrial applications, since the PLAD is not easily adaptable 

for the coating of more than one sample per cycle. 

In order to overcome this limitation, whilst maintaining the advantageous properties of TiC-

enriched film, Scandurra’s group proposed a second deposition procedure which can coat several 

samples and three dimensional implants in a single step, producing a well-controlled film: the Ion 

Plating Plasma Assisted (IPPA) with reactive magnetron sputtering [57,58]. 

2.2. Ion Plating Plasma Assisted Deposition 

The Ion Plating Plasma Assisted machine is an evolution of the Ion Plating procedure, which 

was originally proposed by Mattox and subsequently revived by Misiano [59–61]. As shown in Figure 

3a, an IPPA apparatus is composed of a titanium target with a magnetron sputter source, which can 

produce titanium ions activated by a direct current (DC). The vacuum chamber is flushed with 
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ethylene and argon, with the first serving as carbon source. Some of the ionized titanium is expelled 

by the magnetron source, and then accelerated by a negative polarization produced by a 

radiofrequency electric field (RF) applied to the sample holder. This also produces a plasma that 

contributes to generating a further polarization of the neutral titanium particles, inducing an ionic 

bombardment of the argon and carbon gas mixture on the growing film. 

The protocol was defined and optimized by Longo et al. and Mazzola et al., who demonstrated 

an improved efficiency in the osseointegration of this coating, and fully characterized the 

morphological and chemical properties of the layer [57,58]. 

Mazzola et al. demonstrated, using XPS analysis, an increase in the amount of TiC (36%) with 

respect to that produced by coating using PLAD (20%), and a decrease in titanium oxides (63% in the 

IPPA layer against the 80% in the PLAD layer) [58]. Measures of nanoindentation demonstrated that 

the film had a thickness of about 400 nm, strongly adherent to the bulk titanium, with a strength of 

25–30 GPa, two to three times that found in the films deposited by PLAD and a high elastic modulus 

(282 GPa). The AFM imaging showed that the surface of the film deposited by IPPA was uniform in 

all areas, and in comparison with the surface of uncoated titanium, the film had introduced only 

minor morphological differences. Longo et al. combined this with AFM and SEM, which evidenced 

that osteoblasts reacted to the morphology and chemistry of the layer, producing more filopodia and 

better adhering to the substrates as compared to untreated surfaces, even at very short incubation 

times (6 h). Finally, this effect was monitored by evaluating the increase in gene expression of proteins 

involved in bone turnover [57]. 

Subsequent optimization procedures evidenced how an IPPA deposition chamber, with a 

titanium carbide target as a simultaneous source of titanium and carbon (Figure 3b), could provide a 

more uniform coating, maintaining the cellular stimulation and underlying the implant protection 

properties of the layer. This is similar to what was done in the PLAD apparatus, but with the 

reliability of the IPPA technology, and an easy scalability to the industrial level. 

It is worth noting that the energization around the TiC target of the condensing material by a 

laser beam, as in PLAD, or by a DC-activated magnetron as in IPPA, and the bombardment of the 

growing film with energetic particles, induce a very similar deposition. Both techniques deposit 

layers through neutral particles, and accelerate a plasma formed by various elements which surround 

the substrate. A part of the TiC is deposited on the Ti substrate, while another part is dissociated in 

the reactive ions Ti+ and C− by the ion bombardment and by contact with the plasma. This 

modelization of the deposition implies also that the C− ions can either directly react near the substrate 

surface, or that the C2 molecules can condense due to the high temperature of the plasma clouds, to 

form graphitic rings [62]. These are thermodynamically favored forms, and these rings can produce 

clusters of graphitic carbon which are then found inside the nanostructure as a consequence of the 

deposition process. In addition, since the affinity of Ti for oxygen is extremely high (oxygen 

equilibrium pressures over TixOy are around 10−37 Torr at the temperature of 1000 K) [3], at the 

vacuum conditions typical of PLAD and IPPA (10−8 Torr), even the small partial oxygen pressure was 

sufficient to produce many titanium oxides. The Ti+ ions present on the substrate surface easily react 

with residual oxygen to produce TiO, TiO2 and Ti2O3, all found through Ti p2 XPS spectra [63]. The 

structural and the chemical composition of the film deposited by IPPA is thus very similar to that of 

the PLAD film, with the only major difference being in their respective compactness, which is higher 

in the IPPA film. 
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Figure 3. Panel (a): A general schematization of the Ion Plating Plasma Assisted (IPPA) apparatus. 

The sample holder containing the substrates to be treated is biased by a radiofrequency (RF) produced 

by the generator, while the magnetron sputtering device, on which a titanium target is placed, is 

powered by the Direct Current (DC) generator. Vacuum is applied to the chamber, followed by 

introduction of ethylene as carbon source: maintaining active both DC and RF, a plasma cloud is 

generated and produces the deposition on the substrates. Panel (b): the IPPA apparatus with the TiC 

target on the magnetron sputtering source, powered by variable direct current. The sample holder 

(A) containing the substrates biased by a constant RF produced by the generator, while the magnetron 

sputtering source (C) on which a TiC target is placed is powered by variable DC. Vacuum is applied 

to the chamber through the pump (D). Plasma clouds (P) are generated in front of the TiC target and 

the sample holder, and deposition is produced on the substrates. Reprinted from [63]. Copyright 

(2015), with permission from Elsevier. 

2.2.1. IPPA Layer Characterization and Optimization 

The IPPA deposition involves a large number of different deposition parameters that can be 

changed to improve the biocompatibility and the integration efficiency of the TiC layer. In the case 

of osteoblasts, the best deposition setup must be determined by monitoring the expression of ALP, 

COLL 1A2 and OC, the three protein genes involved in the bone turnover. The deposition method 

can be optimized by fixing the radiofrequency applied to the sample holder and varying the power 

applied to the magnetron source, evaluating the variation of the resulting protein gene expression 

compared to the uncoated substrates. Zanoni et al. showed how 900 Watt of DC applied at the 

magnetron source, and 100 W radiofrequency at the sample holder, and a deposition time of 30 min 

to reach a coating thickness of about 500 nm, were optimal deposition conditions to produce an ideal 

cellular growth [63]. 

Zanoni et al. performed several tests using proliferation assays and MTT, to demonstrate that 

the TiC film deposited by IPPA did not produce any toxicity, and that the substrate biocompatibility 

was not altered by the IPPA treatment. At the same time, they were able to determine the ideal 

parameters to produce the highest stimulating effect on the cells [63]. As for the PLAD layers, the 

morphology of the film was then characterized by Longo et al., combining SEM and AFM imaging. 

(Figure 4a–c). The IPPA-deposited layer appeared rough and patchy, with defects homogeneously 

distributed on the entire area, without any spalls and with uniform roughness [64]. 

By using a Focused Ion Beam (FIB) for micro and nano sample manufacturing, coupled with a 

TEM equipped with a Selected Area Electron Diffractometer (SAED) for the analysis of the crystalline 

structure of the sample, Zanoni and coworkers determined the thickness of the film, which was about 

500 nm. (Figure 4d). By coupling it with a nanoindenter, they also performed nano and micro scratch 

tests, which revealed that this layer was well bound to the bulk titanium, showing a hardness (26.9 

GPa) about five times that of titanium (4.4 GPa), and twice the elastic modulus (299 GPa) of Ti (129) 

[63,65]. In the same work, the authors also used XPS to determine the chemical composition of the 

layer, showing that the IPPA produced a film composed of 60% carbon, 15% TiC and 25% titanium 
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oxides. (Figure 5a,b). Building on previous results [57] and combining XPS and Raman information, 

we can strongly suggest that the two major peaks of the C1s spectra, namely at 281.8 eV and at 284.8 

eV, may be attributed to carbidic carbon and to graphitic carbon, respectively. The presence of 

graphitic carbon in particular was confirmed by Raman spectroscopy [63]. Indeed, due to the high 

similarity between the PLAD and the IPPA processes, this indicates that both processes form 

graphitic carbon in their respective layers, clustered with titanium carbide and titanium oxides, as 

depicted in Figure 5c. 

 

Figure 4. A collection of morphological images of the nanostructured TiC surface layer in a 900 W 

sample. (a) Scanning Electron Microscopy (SEM) image. (b) Large-scale topography and (c) high-

resolution error signal Atomic Force Microscopy (AFM) images. (d) Analysis with Focused Ion Beam 

(FIB)/ Transmission Electron Microscope (TEM)-Selected Area Electron Diffractometer (SAED) to 

determine the different layers of the film and the crystalline arrangement. The ion beam was used to 

reduce the sample to a thin lamella, which was then observed with TEM. Reprinted from [63]. 

Copyright (2015), with permission from Elsevier. 
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Figure 5. The distribution of the oxides in the layer was determined from the X-ray Photoelectron 

Spectroscopy (XPS) spectra of the film by investigating the Ti2p region, while the carbon species was 

obtained by studying the C1s spectra (panels a and b), both taken with Al kα monochromatized 

radiation, and the relative abundance histograms. This allows us to propose the reported pictorial 

model (c) of the TiC-enriched layer, where Ti oxides (TiO2), TiC and graphitic carbon are strictly 

connected to form a cluster as a consequence of the deposition conditions adopted. Reprinted from 

[63]. Copyright (2015), with permission from Elsevier. 

2.2.2. Cellular Adhesion 

The processes through which the cells adhere to a substrate are very complex, and involve at 

least four steps which give way to the subsequent proliferation and differentiation of the cell: at first 

there is protein adsorption, followed by the formation of contact points between the cell and the 

substrate; next is the cellular attachment, and finally the spreading of the cell. The interactions 

between cells and substrate are dependent on both the substrate’s chemical structure [66,67] and on 

the surface’s physical properties, such as its local roughness [68,69], its wettability (which is 

determined by the contact angle that water droplets form with the dry surface) and its surface free 

energy. In particular, a contact angle smaller than 90° indicates a hydrophilic or partially hydrophilic 

surface (good wettability), while a contact angle greater than 90° defines a hydrophobic surface [70–

75]. Lampin and coworkers showed that, for the best biocompatibility, the wettability of a surface 

should be about 70° [76]. 

Remarkably, Longo et al. showed that the water contact angle of uncoated titanium disks is 60.0° 

± 2°, while the ones coated with the nanostructured film had an angle of 70.5° ± 2.3°, with a net 

increase in hydrophobicity of approximately 18%. Regarding the surface free energy, which was 

calculated according to the Van Oss–Chaudhury–Good method [74], a TiC-coated sample had values 

which were smaller than those of uncoated substrates, but this reduction was almost all concentrated 

in the reduction of the surface polar component, which was very low (γp = 0.13 mJ/m2), as was the 

acid fraction of the surface free energy [64]. The combination of the water contact angle, the decrease 

of surface free energy, and the large reduction of the polar and acidic fraction, leaving only the surface 

free energy basic fraction, indicates that the TiC-coated samples can favor osteoblast adhesion, since 

these cells are among the cells that react more strongly to the chemistry of the substrates. The coating 

can stimulate a profitable bidirectional cross-talk between cells and implants, enhancing the 

production of integrins, a group of membrane receptors that mediate the cellular adhesion to the 

extracellular matrix (ECM). These receptors are distributed on the cell membrane and can sense the 

specific chemical composition of the environment. They interact with paxillin, talin and other 

proteins that are part of the focal adhesion kinase complex, which induce changes in the cytoskeleton 

to respond to external stimuli, including the substrate properties [77–79]. In the particular case of 

osteoblasts, this is of particular importance, and ITGA3 is the gene which is upregulated by a positive 

adhesion to the substrate [80]. The interaction between the resulting dimer α3β1 and the integrins, 

transfers the chemical signal from the external environment, through the cell membrane, amplified 

by the cytoskeleton, to the cell nucleus, where adhesion, spread and cellular migration genes are 

activated, thus stimulating the growth processes and cellular differentiation [66,67,81–83]. 

There are several ways to evaluate directly the cellular adhesion strength [84]. Bulk experiments 

are the most commonly used methods, which involve growing the cells on the substrate, exposing 

them to a buffer which produces cell detachment, and monitoring the percentage of cells which are 

capable of maintaining their adhesion to the surface. By performing such analyses, Longo et al. 

showed that approximately 60% of the cells growing on untreated titanium surfaces had detached 

after this treatment, while in the case of the cells incubated on TiC-coated surfaces, only 35% were 

removed [64]. A second technique to perform such investigations exploits the high force sensitivity 

and the single cell capability of AFM: the Single Cell Force Spectroscopy [85–87]. These experiments 

showed that only 20 s are needed for the osteoblasts to form adhesion points towards the TiC 

substrates, and that the adhesion forces were much higher for the cell-TiC interactions than for the 

cell-Ti [64]. This is a clear indication that osteoblasts can evaluate very rapidly the chemical 
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composition of the surface (around 20 s), and that, in the same timeframe, can activate the metabolic 

pathways which stimulate the substrate interaction. This is further indicated by the quantitative 

determination of the interaction forces. 

2.2.3. Effects of IPPA-Treated Substrate Topography and Chemistry on Osteoblasts Growth: 

Biochemistry, Immunofluorescence and Microscopy 

As in the case of the PLAD films, to determine the stimulating activity of the IPPA films on 

osteoblasts, the toxicity of the layer and the cell adhesion, proliferation and gene expression must be 

characterized. In this case, Longo et al. showed, using the MTT viability test, that human osteoblasts 

grown for three days on the coated titanium disks had a 20% higher proliferation than those 

incubated on uncoated titanium disks. This difference was reduced to 10% after seven days. This 

indicated that the nanostructured layer produced a stimulating activity on osteoblasts [64]. 

To determine osteoblast viability and function, the presence of osteogenic differentiation factors, 

such as ALP and TGFβ1, as well as the gene expression of OC, COL1, PAX, ITGA-3, FHL1 and RUNX-

2, are of paramount importance. As in the PLAD case, these factors were evaluated through enzyme-

linked immunosorbent assay (ELISA) [88] and q-RT-PCR, showing a rapid upregulation effect of TiC. 

After a longer period of incubation, the increase in gene expression levels had disappeared for both 

Saos-2 and hOB, demonstrating that the effect of the chemistry of the nanostructured film had been 

exerted only at the early steps of the cell adhesion, and that the information on the chemistry of the 

environment had been transferred into the cell [64]. This was subsequently also performed using 

other primary cell lines, showing similar upregulation [89]. 

Since immunofluorescence requires optical microscopy imaging, the transparency of the 

substrates is fundamental. For these applications, glass slides coated with about 10 nm of film can be 

employed to simulate the full substrates. Indeed, in the case of IPPA deposition, XPS spectra 

confirmed that the chemical composition of these layers was compatible with that of the IPPA-coated 

discs. The coated glass slides allowed the transmission of 25% of the light, which was sufficient to 

perform fluorescence microscopy analyses. Longo et al. employed such substrates to perform a 

comparison between TiC- and Ti-coated glass slides. The cells grown on glass slides coated with the 

nanostructured film had a higher number of ITGA3 receptors (Figure 6a, red spots), TAL receptors 

(Figure 6b, green spots) and PAX receptors (Figure 6c, red spots). By exposing the cells to fluorescent 

dyes, the analysis showed that the tubulin was better distributed around the nucleus and in the 

cytoplasm, and that actin cytoskeleton was better defined in cells grown on TiC-coated glass slides. 

(Figure 7) [64]. These results demonstrated that the chemical and morphological information 

captured by receptors of integrin α3β1, talin and paxillin were transferred through the cytoskeleton 

to the synthetic apparatus of the cell, which, in the case of coated titanium disks, responded with a 

higher production of a cytoskeleton of better quality. 
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Figure 6. Immunofluorescence images of integrin α3β1, talin and paxillin in Saos-2 cells and in human 

primary osteoblasts (hOB). Panel (a): The Saos-2 (left panels) and the hOB cells (right panels) were 

grown for 96 h on glass slides coated with 10.5 nm of titanium or the nanostructured TiC layer, treated 

with primary monoclonal antibodies against integrin α3β1 (10 µg/mL). Panel (b): The cells were 

treated with primary monoclonal antibodies against talin (10 µg/mL). Panel (c): Cells were treated 

with primary monoclonal antibodies against paxillin (10 µg/mL). In all cases, the treatment was 

followed with Alexa Fluor 568 goat anti-mouse secondary antibodies, diluted 1:500, and the nuclei 

were stained with the organic dye DAPI. The images were collected with a magnification of 63× for 

ITGA and PAX, and of 100× for TAL, and the bar represents 100 µm. Obtained with permission from 

[64]. Copyright (2016), with permission from PLoS ONE. 

 

Figure 7. Immunofluorescence images of tubulin and actin in Saos-2 cells and in human primary 

osteoblasts. Panel (a): The Saos-2 (left panels) and the hOB cells (right panels) were grown for 96 h on 

glass slides coated with 10.5 nm of titanium or the nanostructured TiC layer, treated with primary 

monoclonal antibodies against tubulin (tubulin mouse monoclonal antibody 10 µg/mL) and Alexa 

Fluor 568 goat anti-mouse secondary antibodies, diluted 1:500. Panel (b): The cells were treated with 

Phalloidyn Alexa Fluor 488-conjugated, diluted 1:10. In all images, the nuclei were stained with DAPI. 

The images were collected with a magnification of 63×, and the bar represents 100 µm. Obtained with 

permission from [64]. Copyright (2016), with permission from PLoS ONE. 

The combination of optical microscopy, AFM and SEM is the best way to fully characterize the 

morphology of cells [24,90]. Optical microscopy evidenced that several cells grown for 6 h on Ti 

coated disks had a rounded form, whereas several cells grown for the same time on TiC-coated disks 

had a more elongated form. This was confirmed by AFM, which revealed the presence of a higher 

number of filopodia on cells grown on the TiC-coated glasses and a lower number of filopodia on 
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cells grown on the Ti coated glasses [64]. The SEM images showed similar morphologies, where, after 

6 h of incubation, the Saos 2 cells (Figure 8a) and the hOB (Figure 8b) grown on Ti substrates exhibited 

a rounder form, with a smaller number of filopodia and lamellipodia. The differences were enhanced 

after longer incubation times (24 h), where the TiC layer produced more flat cells, more spread out 

and with longer cellular extensions (Figure 8, bottom panels) [64]. On the other hand, the osteoblasts 

incubated on untreated titanium substrates had fewer cellular extensions, and their shape was similar 

to that evidenced in the first phases of substrate adhesion. 

 

Figure 8. Investigation of cell morphology by SEM. Panel (a): SEM micrographs showing the 

morphology of Saos-2 cells grown for 6 h and 24 h on uncoated (Ti) and TiC-coated (TiC) titanium 

disks. Panel (b): similar analysis on hOB cells. The images reveal that both types of cells are richer in 

philopodia and lamellipodia, and better adhered to the substrate when grown either for 6 or 24 h on 

the TiC-coated titanium disks compared to the uncoated. In each figure, the bars represent 5 µm. 

Reprinted from [63]. Copyright (2015), with permission from Elsevier. 

2.2.4. In Vivo Experiments on the IPPA Layer 

All these morphological, biological and biochemical results concur to suggest how IPPA 

deposition can produce nanostructured layers which stimulate osteoblast adhesion, spreading, and 

overall cellular colonization. 

Since all the data in vitro indicate how the mechanical, chemical and morphological properties 

of the hard, nanostructured TiC layer improve the osseointegration process, stimulating osteoblast 

proliferation, adhesion and activity, the subsequent step was to perform experiments similar to those 

already performed with the PLAD-coated implants in vivo. These results are detailed in Veronesi et 

al., where X-ray images, histological analyses and intravital fluorochrome experiments are combined 

to demonstrate the improved response of the bone formation near the TiC-coated implants, compared 

to the plain titanium ones [91] (Figure 9). All the analyses, including histomorphometric assays, 

histological evaluations, bone–implant contact measurements and Bone Ingrowth values of the bone 

formation around TiC implants were significantly higher than the cases in which bare Ti was 

implanted. Similarly, the mineral apposition rate and bone formation rate values were higher for the 

TiC-coated implanted material [91]. 
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Figure 9. Histological images of the in vivo study of uncoated (Ti) and TiC-coated (TiC) titanium 

implants at 2, 4 and 8 weeks: 10× of magnification, scale bar is 200 µm. Toluidine blue and fast green 

staining. Reprinted from [91]. Copyright (2017), with permission from Elsevier. 

In conclusion, all the measured parameters in this in vivo study, even if on a limited number of 

animals, confirm the results obtained in vitro with the osteoblast cells, which all indicate that the 

coating with the nanostructure deposited by the IPPA technology has many beneficial effects, which, 

at the end, bestow a superior osseointegration efficiency on the TiC-coated implants when compared 

with the uncoated ones. 

3. Conclusions 

In this review, we have followed the biological itinerary that was used to demonstrate how TiC-

coated implants produce increased osseointegration. We have shown how the deposition has been 

performed using IPPA technology, which has been demonstrated to form a nanostructure composed 

of graphitic carbon, a highly biocompatible material whose biocompatibility is enhanced by its 

binding to titanium oxides and titanium carbide. The stiffness of the nanostructure is particularly 

useful to protect the bulk of the implants, avoiding any further oxidation caused by the oxidizing 

environment of biological tissues. 

Remarkably, the structural and chemical composition of the films deposited by the IPPA 

technology is very similar to that of the film deposited with other techniques that have been 

employed to coat different substrates with a TiC layer, including the PLAD technology, with the only 

difference being in their respective compactness, which is higher in the IPPA film. 

In all cases, the morphology and chemistry of the TiC nanostructured coating caused the cells to 

initiate a profitable bidirectional cross-talk through their integrins, specifically activated by the 
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chemistry of the environment, allowing the chemical environmental stimuli to rapidly reach the 

nucleus, inducing a rapid upregulation of bone turnover genes, increased cellular adhesion, spread, 

and migration, and overall stimulating the growth processes and cellular differentiation. The strength 

of the adhesion to the substrate, the formation of philopodia and lamellipodia, and the overall 

improved proliferation, adhesion and activity, indicate that TiC is capable of enhancing the 

osseointegration process. These results were confirmed by several works detailing experiments in 

vivo, using titanium implants coated with TiC to underline that the osseointegration process of the 

TiC-coated implants is more efficient than that of uncoated ones. 

Recent studies have indicated that the stimulating effect of this nanostructured thin film is not 

limited to osteoblasts, but that TiC also provides improved cellular proliferation and adhesion on 

other cell types typically employed in research laboratories [89]. Since the thickness of the TiC layer 

can be regulated to be as small as 10 nm, this coating can be applied to glass slides to use in inverted 

optical microscopes and in fluorescence microscopes. 

Furthermore, since the deposition with IPPA is inexpensive and easily implementable in an 

industrialized process, this could be proposed as a simple addition to the substrate preparation 

protocols, to improve their biocompatibility and osseointegration capability. 
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