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—— Abstract

We consider a distributed system of n identical mobile robots operating in the two dimensional

Euclidian plane. As in the previous studies, we consider the robots to be anonymous, oblivious,
dis-oriented, and without any communication capabilities, operating based on the Look-Compute-
Move model where the next location of a robot depends only on its view of the current configuration.
Even in this seemingly weak model, most formation problems which require constructing specific
configurations, can be solved quite easily when the robots are fully synchronized with each other.
In this paper we introduce and study a new class of problems which, unlike the studied formation
problems, cannot always be solved even in the fully synchronous model with atomic and rigid moves.
This class of problems requires the robots to permute their locations in the plane. In particular, we
are interested in implementing two special types of permutations — permutations without any fixed
points and permutations of order n. The former (called MOVE-ALL) requires each robot to visit at
least two of the initial locations, while the latter (called VISIT-ALL) requires every robot to visit
each of the initial locations in a periodic manner. We provide a characterization of the solvability
of these problems, showing the main challenges in solving this class of problems for mobile robots.
We also provide algorithms for the feasible cases, in particular distinguishing between one-step
algorithms (where each configuration must be a permutation of the original configuration) and
multi-step algorithms (which allow intermediate configurations). These results open a new research
direction in mobile distributed robotics which has not been investigated before.
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Oblivious Permutations on the Plane

1 Introduction

The investigation of the computational and complexity issues arising in distributed systems
of autonomous mobile robots is an important research topic in distributed computing. This
has several applications, teams of robots could be sent to regions inaccessible to humans
to perform a variety of tasks such as exploration and data-collection, monitoring, sensing
or patrolling. Once deployed, the team of robots must coordinate with each other and
perform the tasks autonomously without human intervention; this has motivated the design
of distributed algorithms for coordination among the robots to enable them to perform the
required tasks.

As a theoretical abstraction, the robots are usually viewed as computational entities
modelled as points in a metric space, typically R?, in which they can move. The robots,
identical and outwardly indistinguishable, have the same capabilities and execute the same
(deterministic) algorithm. They can see each other, but cannot explicitly communicate with
one another. This lack of direct communication capabilities means that the only means
of interaction between robots are observations and movements: that is, communication is
stigmergic. Each robot operates in “Look-Compute-Move” (LCM) cycles: during a cycle,
it observes its surroundings, computes a destination point, and moves to it. Typically, the
robots are assumed to have constant-size persistent memory or, more commonly, to be
oblivious having no persistent memory: This paper assumes the latter model where robots in
each cycle act only based on the current observation and have no memory of their activities
from previous cycles. Further the robots do not have any means of orienting themselves;
Each robot observes the location of other robots relative to its own position in the plane and
the robots do not share any common coordinate system. If the robots agree on a common
notion of clockwise direction, then we say the system has chirality.

Some typical problems that have been studied in this model include: gathering of robots
(e.g., [11, 12]), uniform dispersal, filling a region with robots, flocking, etc. (for a review,
see [6]). A generalization of some of these problems is that of pattern formation, where the
n robots need to move from any initial configuration to a predefined pattern of n points
in the plane. This class has been extensively studied (e.g., [1, 2, 5, 7, 8, 14, 15, 16, 17]).
A major issue in such formation problems is the amount of symmetry (quantified by the
notion of symmetricity [15]) in the starting configuration of robots and in the points of the
pattern. In the arbitrary pattern formation problem, the points where the pattern is formed
are relative, i.e. subject to rotation, translation and scaling of the input pattern. A different
line of research is when the points of the pattern are fized, a setting called embedded pattern
and studied in [3, 9].

In some applications, forming a pattern may be the first step of a more complex task
requiring coordination between robots. Consider, for example, robots that contain instrumen-
tation for monitoring a site once there, as well as sensors for measurement (e.g., detecting
traces of oil or precious metals, radioactivity, etc). If each robot has different sensors, the
same site might need to be visited by all robots, and this must be done while still keeping all
the sites monitored. A more relaxed version of this task is where each site must be visited by
(at least) two robots. This task may be useful even in situations where all the robots contain
the same sensors, e.g., if there are faulty sensors and we want to replicate the measurements.

These tasks are instances of a new class of problems quite different from the formation
problems as the robots need to rotate among the given points of interests, forming permu-
tations of a given pattern of points. We assume that each robot is initially occupying a
point of interest (thus marking that location) and the objective is to permute the robots
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among these locations periodically. The question is which permutations can be implemented
starting from which patterns. We show a big difference between these classes of permutation
problems compared to the formation problems studied previously. In particular, we show
that even in the fully synchronous (FSYNC) model, some of the permutation problems are
not solvable, even when starting from configurations that admit a leader. In contrast, any
formation problem (including gathering) is easily solvable in FSYNC when the starting
configuration admits a leader.

Note that the permutation problems considered in this paper are perpetual tasks requiring
continuous visits to the sites by the robots. Unlike the multiple pattern formation problem
where robots continuously move from a pattern to the next [5], here the robots perpetually
move but only exchanging locations in the same pattern. In particular, we focus on two
interesting types of permutations — permutations without fixed points, and permutations
of order n (i.e. n-cycles). These give rise to two specific problems (i) MOVE-ALL: every
site must be visited by at least two robots and every robot has to visit at least two points,
and, (ii) VISIT-ALL: every robot must visit each of the points of interest. We provide a
characterization of the solvability of these problems showing which patterns make it feasible
to solve these problems and under what conditions. To the best of our knowledge, this is the
first investigation on these class of problems.

Our Contributions. We distinguish between 1-step and multi-step algorithms; In the former
case, we must form the permutations without passing through intermediate configurations,
while in the latter case, a fixed number of intermediate configurations are allowed (see
definitions in Section 2). We study 1-step and 2-step algorithms for VisIT-ALL and MOVE-
AvLL, distinguishing the case when the robots share a common chirality from the case when
they do not. We identify a special class of configurations denoted by Cg, that are rotationally
symmetric with exactly one robot in the center of symmetry. Such configurations do not
always allow permutations without fixed points, thus making it difficult to solve the above
problems.

We show that when there is chirality, the sets of initial configurations from which VisiT-
ArL and MOVE-ALL can be solved, using 1-step algorithms, are the same: that is, all
configurations except those in Cg (Section 3). We then show that the characterization
remains the same when we consider 2-step algorithms. Moreover, in the case of VISIT-ALL,
the solvability does not change even for k-step algorithms for any constant k.

On the other hand, when there is no chirality, we observe a difference between the
solvability of VIsIT-ALL and MOVE-ALL. Configurations in Cg, are clearly still non feasible
for both problems. However, for the MOVE-ALL problem the class of unsolvable configurations
also includes the ones where there exists a symmetry axis with a unique robot on it. On the
other hand, the set of initial configurations from which VISIT-ALL is solvable is different: the
problem can be solved if and only if in the initial configuration there are no axes of symmetry
or if there is a unique symmetry axis that does not contain any robots. Interestingly, also in
this case, allowing 2-step algorithms does not change the set of solvable instances.

We then show that, when there is chirality and the coordinate systems of robots are
visible (that is, a robot can sense the local coordinate system of the others), then VISIT-ALL
(and thus MOVE-ALL) is solvable from arbitrary initial configurations, and we provide a
universal algorithm for solving the problems. Finally, we show that allowing a single bit of
persistent memory per robot and assuming chirality, it is possible to solve the problems for
all initial configurations (Section 6).

Due to the space constraint, some of the proofs and formal description of some algorithms
have been omitted, they can be found in the full version.
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2 Model, Definitions and Preliminaries

Robots and scheduler. We consider a set of dimensionless computational entities: the
robots. These robots are modelled as points in the metric space R?; they are able to sense
the environment detecting the presence of other robots, they can perform computations, and
are able to move to any other point in the space. Each robot has its own local coordinate
system centred in its own position (which may differ in orientation and unit distance from
the coordinate system of other robots). For simplicity of description, we will use a global
coordinate system S for analyzing the moves of the robots (robots themselves are unaware
of this global system). Robots are oblivious: they do not have any persistent memory and
thus, they cannot recall any information from previous computations. We indicate the set
of robots with R : {ro,r1,...,7n—1}, however the robots themselves are not aware of the
numbering assigned to them. All robots are identical and follow the same algorithm. We
assume the so-called Fully-Synchronous Scheduler (FSYNC). Under this scheduler, time
can be seen as divided in discrete fixed length slots called rounds. In each round, each robot
synchronously performs a Look-Compute-Move cycle [6]. During the Look phase, a robot r
takes an instantaneous snapshot of the environment, the snapshot is an entire map of the
plane containing positions of all the other robots with respect to the local coordinate system
of r. During the Compute phase, robot r performs some local computation to decide its
new destination point as a function of the aforementioned snapshot as input. Finally, in the
Move phase, the robot moves to the computed destination point (which may be the same as
current location).

Chirality. Robots may or may not share the same handedness: in the former case, they all
agree on the clockwise direction and we say the system has chirality [6], in the latter case,
robots do not have such an agreement and we say there is no chirality.

Configurations. A configuration C' is an ordered tuple of points C' = (po,p1,.--,Pn—1),
where p; = C[i] is the position of robot r; in terms of the global coordinate system S. We
denote by Z = (Zy, Z1,...Z,—1) the ordered tuple of coordinate systems where Z; is the
system used by robot r;. Given a robot r; located at p;, we denote with C'\ {r;} (or sometimes
C\ {p:}), the configuration obtained by removing robot r; from C. We indicate with Cj the
initial configuration in which the robots start. We denote by SEC(C) the smallest circle
that encloses all points in the configuration C.

Symmetricity. Given any configuration C with robots having coordinate systems Z, the
symmetricity o(C, Z) = m is the largest integer m such that the robots can be partitioned
into classes of size at most m where robots in the same class have the same view (snapshot)
in C' (See [15, 16]). Alternatively, we can define the symmetricity (irrespective of Z) of a
configuration as p(C') = m where m is largest integer such that 37 : o(C, Z) = m. For any
configuration C, we have p(C) > 1, the configurations with p(C') = 1 are considered to be
asymmetric (these are the only configurations that allow to elect a leader among robots).
For symmetric configurations with p(C) > 1, C' may have rotational symmetry with respect
to the center ¢ of SEC(C), which coincides with the centroid of C' in this case, or C' may
have mirror symmetry with respect to a line, called the axis of symmetry.

We define a special class of configurations denoted by Cg. A configuration C is in Cg),
if and only if p(C) = 1, and there exists a unique robot r. (the central robot) located at
the center of SEC(C) such that p(C\ {r.}) = k > 1; In other words, C has a rotational
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s

symmetry around 7. such that C' can be rotated around centre r. by an angle 6 = 7 to
obtain a permutation of C. Figure 2 is an example of a configuration in Cg).

Permutations and runs. For a permutation 7 = (7(0),7(1),...,m(n—1)) of (0,1,...,n—1),
define 7(C) = (Px(0),Pr(1)s -+ Pr(n—1)). We denote: (1) the set of permutations with no
fixed points as IIy = {m : 7w(¢) #, Vi:0 <4 <n—1} and (2) the set of cyclic permutations
of order n as I, = {7 : 7/ (i) = i <=> nk = j for some k € N} where 7/ indicates that we
apply permutation 7 j times. Let II(C) be the set of all permutations of C.

Given an algorithm .4 and an initial configuration Cy we denote any execution of algorithm
A, starting with configuration Cy as the run R4,¢, : (Co, C1, Co,...), the infinite ordered
sequence of configurations, where C} is produced during round j of the execution.

Problem Definitions

We will study the following two problems:
MoVE-ALL: An algorithm A is a 1-step solution algorithm for the MOVE-ALL problem,
if every possible run of the algorithm R 4.¢, : (Co, C1,Ca,...) is such that: C; = 7*(Cp)
for some 7 € II,. Intuitively, every configuration is a permutation of Cy and in any two
consecutive configurations, the position of each robot is different. As an extension for
any k € N, a k-step solution requires that C;.,, = 7*(Cp) where m € Ilp. (There is no
constraint on the intermediate configurations C; where k does not divide j.)
ViISIT-ALL: An algorithm A is a 1-step solution algorithm for the VisIT-ALL problem,
if every possible run of the algorithm R 4,¢, : (Co, C1,Ca,...) is such that: C; = 7%(Cp)
for some 7 € II,,. Intuitively, every configuration is a permutation of Cy and in every
n consecutive configurations, every robot visit every location p; € Cy. We can similarly
define a k-step solution for the problem where C;.;, = 7¢(Cj) for some 7 € II,,.

Since II,, C I, it follows that any solution for VISIT-ALL is also a solution to the MOVE-ALL

problem.

Oblivious Permutations

Note that k-step solutions of MOVE-ALL and VISIT-ALL specify that we must have a
permutation of the initial configuration Cy every k rounds. However, no constraint is given
on the other intermediate configurations. Interestingly, when robots are oblivious the previous
definitions imply a stronger version of the problem in which each configuration Cj4j has to
be the permutation of configuration C; that appeared k rounds ago.

» Lemma 1. Let A be a k-step algorithm solving MOVE-ALL (or VISIT-ALL), and let
Rac, & (Co,C1,Co,...) be any run of A starting from Cy. For each j € N we have that
Ciyr = m(C;) for some m € II(C}).

Proof. We prove the lemma for MOVE-ALL, the extension to VISIT-ALL is analogous and

immediate. If j =t -k for some ¢t € N then the lemma follows from the problem definition.

Thus let us consider a configuration C; such that j # ¢ - k for all t € N. We observe that

Ra,c; (that is a run of A starting from Cj) is equal to the suffix of R 4,¢, starting from C;.

This is due to the obliviousness of the robot, the fact that the algorithm is deterministic and
the synchronous scheduler: starting from a certain configuration and an assignment of local
coordinate systems, the algorithm will generate a fixed sequence of configurations. However
in Ra,c; we must have that Cj; = 7(C}) for some 7 € II5(C}), otherwise A is not a correct
algorithm for MOVE-ALL. <
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3 Oblivious Robots with Chirality

In this section we consider robots having chirality (i.e., they agree on the same clockwise
orientation).

3.1 1-Step Algorithms

We first consider 1-step algorithms, and show that MOVE-ALL and VISIT-ALL are solvable if
the initial configuration Cj is not in Cg.

Intuition behind the solution algorithms. The underlining idea of our solution algorithms
is to first make robots agree on a cyclic ordering of the robots, and then permute their
positions according to this ordering. This algorithm is shown in Algorithm 1. When the
center ¢ of SEC(Cy) is not occupied by any robot, we compute a cyclic ordering on the
robots by taking the half-line passing through ¢ and one of the robots closest to ¢ and rotating
it w.r.t. point ¢; the robots are listed in the order the line hits them. We can show that
the ordering computed by any robot is a rotation of that computed by another robot (See
Figure 1 for example). The only issue is when there is a robot at ¢. In this case, the robots
compute a unique total order on the robots; this is always possible since Cy ¢ Cg, which
implies that Cj is asymmetric and admits a total ordering.

From the above observations, it is immediate that the algorithm solves VISIT-ALL: take
a robot 7, w.l.o.g. in position p;, during n activations, the robot moves through all the robot
positions in the computed cyclic order, returning back to p;; thus, it has visited every point
in Co.

Algorithm 1 VisiT-ALL Algorithm using a cyclic order.

1: Compute a cyclic order (po,p1,...,pn—1) on C using ORDER(C).
2: If my position is p;, set destination as p(;+1) mod n-

(a) An example of cyclic order induced by the (b) Another example of cyclic order in-
ORDER algorithm. duced by the ORDER algorithm.

Figure 1 ORDER algorithm: Examples of cyclic order computed by Algorithm 1.

» Theorem 2. In systems with chirality, there exists a 1-step algorithm that solves VISIT-ALL
from any initial configuration Cy & Cg.
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Figure 2 Configuration Cy € Cy where it is impossible to solve MOVE-ALL with a 1-step
algorithm.

We now show that, when Cy € C;; MOVE-ALL (and thus VISIT-ALL) is unsolvable by any
1-step algorithm.

» Theorem 3. If Cy € Cy there exists no 1-step algorithm that solves MOVE-ALL, even
when the robots have chirality.

Proof. In any configuration in Cgy, the adversary can assign coordinate systems in such a way

that each robot, except the central robot 7., has at least one analogous with a symmetric view.

This derives directly from the definition of Cg. It is immediate to see that it is impossible to
elect a unique robot to move to the center of Cy, taking the position of r.. An example is
given in Figure 2, where if one robot moves to the centroid of Cy, then every robot except
r. would do the same. This implies that, in the next round, it is impossible to form any
Cy € TI(Cy) with a different central robot. <

Note that Theorem 2 implies that MOVE-ALL is solvable under the same assumptions
of the theorem (if we satisfy the VISIT-ALL specification we satisfy also the MOVE-ALL
specifications). Moreover, for the same reason, Theorem 3 implies that VISIT-ALL is
unsolvable. We can summarize the results of this section as follows:

» Theorem 4. [In systems with chirality, MOVE-ALL and VISIT-ALL can be solved in 1-step
if and only if Cy & Co.

3.2 2-step Algorithms

In light of Theorem 4, one may wonder what happens when multiple steps are allowed. In
this section we show that allowing an intermediate step to reach the goal does not bring any
advantages. We first introduce a technical lemma.

» Lemma 5. Let A be a 2-step algorithm that solves MOVE-ALL. Starting from configuration
Cy € Co, algorithm A cannot generate a run Ra.c, : (Co, C1,C2,Cs,...) where C1 € Co.

The above result is based on the observation that it is impossible to replace the central
robot by another robot in 1-step. Thus the intermediate configuration must be a configuration
(4 ¢ Cu. Based on the above result, we can show the following:

» Theorem 6. There exist no 2-step algorithm that solves MOVE-ALL from a configuration
Cy € Co, even if the system has chirality.

24:7
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The informal idea here is that the central robot r. in configuration C needs to move
away from the center to form the intermediate configuration C;. However, in any 2-step
algorithm, C5 must be a permutation of Cy, with a different robot 7’ in the center. Now,
following the same algorithm, robot 7’ would move away from the center to form the next
configuration C3. By choosing the coordinate systems of robots r. and r’ in an appropriate
way, the adversary can ensure that C3 would not be a permutation of C, thus violating the
conditions in Lemma 1. This shows the impossibility.

Interestingly, when we consider VISIT-ALL we can prove a stronger impossibility result
that includes algorithms using any constant number of steps.

» Theorem 7. There exists no k-step algorithm for VISIT-ALL, starting from any configura-
tion Cy € Cq, where k = O(1). This result holds even if the system has chirality

4  Oblivious Robots without Chirality

In this section we consider robots that do not share the same handedness. Interestingly,
the absence of chirality changes the condition for solvability of MOVE-ALL and VISIT-ALL,
showing the difference between these two problems. This is due to the fact that in systems
without chirality, the configuration of robots may have mirror symmetry, in addition to
rotational symmetry as in the previous section.

4.1 Move-All

The following theorem illustrates the configurations for which the MOVE-ALL problem is
unsolvable.

» Theorem 8. In systems without chirality MOVE-ALL is unsolvable in 1-step starting from
any configuration Cy € Cg, as well as from any configuration that has a symmetry axis
containing exactly one robot.

We now consider the solutions to the MOVE-ALL problem for the feasible instances. If the
configuration has a central symmetry (i.e., a rotational symmetry with 6 = 7), each robot
can be paired to its counterpart on the opposite end of the center, and the paired robots can
swap positions. When the initial configuration has a rotational symmetry but no symmetry
axes, then the robots can agree on a common chirality and the algorithms from the previous
section can be applied. Thus the only remaining configurations are those with an axis of
symmetry that are not central symmetric. For such configurations, it is possible to partition
the robots in three disjoint subsets, and it make them move as follows: (see also Figure 3)
(i) For the robots located on a symmetry axis, there exists a unique cyclic order on these
robots. Robots on the axis are permuted according to this ordering. (ii) The second subset
contains robots that are closer to one symmetry axis compared to other axes. These robots
swap positions pairwise, each robot switching with its symmetric robot w.r.t. the closest
axis. (iii) The last subset consists of robots that are equidistant from two distinct symmetry
axes. Also in this case robots switch positions pairwise, and each one switches position with
its symmetric robot w.r.t. the centroid ¢ of configuration Cj.

For all the configurations excluded by Theorem 8, MOVE-ALL can be solved using the
above approach.

» Theorem 9. If Cy & Co and Cy does not have a symmetry axis containing exactly one
robot, then MOVE-ALL is solvable in 1-step even when the system does not have chirality.
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Al

Figure 3 Configuration Cy having 3 axes of Figure 4 Configuration Cy with a unique
symmetry. The arrows indicate three types of symmetry axis A and no robots on the axis. The
robot swaps: (1) Robots on the axis agree on a arrow on axis A indicate the direction on which
cyclic order (white robots); (2) Robots that are robots agree. The arrows among configuration
closer to one axis of symmetry swap positions points indicate the cyclic order induced by the

w.r.t this axis (stripped robots); (3) Robots that algorithm.
are equidistant from two axes, swap position

with symmetric robots w.r.t. the center (black

robots).

To summarize, we have the following characterization for solvability of MOVE-ALL without
chirality:

» Theorem 10. In systems without chirality, MOVE-ALL is solvable in 1-step if and only if
Co € Co and Cy does not have a symmetry azis containing exactly one robot.

4.2 \Visit-All

The VisiT-ALL problem differs from MOVE-ALL only when n > 2, so we will assume in this
section that n > 3. We will show that VIsSIT-ALL is solvable without chirality if (i) Co & Co
and (ii) Cp does not have symmetry axes, or there is a unique axis of symmetry that does
not intersect any point of Cy. The main idea of the algorithm is the following. When Cj
does not have a symmetry axis, then it is possible to agree on a common notion of clockwise
direction. Once this is done the algorithm from the previous section can be used. So we
consider the case when Cj has a unique axis of symmetry that does not intersect any point
of Cy. We partition Cy in two sets C’ and C”, containing robots from the two sides of the
axis of symmetry. In each of these sets it is possible to agree on a total order of the points
(recall that the symmetry axis is unique). Let [py,p],...,p’n_.] be the total order on C’ and
2

oo, pY, -, p’rﬂ% | be the analogous order on C”'. We obtain a cyclic order on Cjy by having

element p following p’,_., and, in a symmetric way, pf, follows p’;_, (see Figure 4).
2

2

» Theorem 11. When n > 2 and robots do not have chirality, VISIT-ALL is solvable in
1-step if the initial configuration Cy € Ce and either

(i) There are no symmetry azes in Cy, or,

(ii) There exists a unique symmetry axis of Coy and no point of Cy intersects the axis.

24:9
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Interestingly, without chirality, VISIT-ALL is not solvable if the assumptions of Th. 11 do
not hold:

» Theorem 12. When n > 2 and there is no chirality, there exists no algorithm that solves
VISIT-ALL in 1-step from an initial configuration Cy if one of the following holds:
Cy € C@
There exists a symmetry axis of Cy intersecting a proper non-empty subset of Cy.
There are at least two symmetry axes of Cy.

To summarize, we have the following:

» Theorem 13. In systems without chirality, VISIT-ALL is solvable in 1-step if and only if
Co & Co and either there are no symmetry azes in Cy, or there exists a unique symmetry
axis that does not intersect any point of Cy.

4.3 2-step Algorithms

We can show that 2-step algorithms do not help to enlarge the class of solvable configurations.

» Theorem 14. When the system has no chirality, MOVE-ALL is not solvable in 2-steps,
from an initial configuration Cy, if Cy € Cq), or if there exists an axis of symmetry in Cy
containing a single robot.

» Theorem 15. When n > 2 and there is no chirality, VISIT-ALL is not solvable in 2-steps,
from an initial configuration Cy, if one of the following holds:
Cy € C@
There exists a symmetry azis A of Cy intersecting a proper non-empty subset of Cy.
There are at least two symmetry azes of Cy.

5 Oblivious Robots with Visible Coordinate Systems

In this section, we assume that each robot can see the coordinate system of all robots and the
system has chirality. As we have seen in Section 3, with chirality, the only configurations in
which VISIT-ALL cannot be solved are the ones in Co. We now present a VOTING algorithm
that solves VISIT-ALL also starting from these configurations, provided that robots have this
extra knowledge of the coordinate systems of other robots. The algorithm (see Algorithm 2)
uses Procedure INNERPOLYGON, which takes a configuration C' and returns only the points
on the smallest non degenerate circle having the same center as SEC(C') and passing through
at least one point of C.

When Cj ¢ Cg), the algorithm uses the ORDER procedure from Section 3. In case the
initial configuration is in Cg, the algorithm implements a voting procedure to elect a unique
vertex of the innermost non-degenerate polygon P computed by Procedure INNERPOLYGON.
The vote of a robot r is computed by translating its coordinate system to the center of
SEC(Cp). The vote of r will be given to the point of P that forms the smallest counter-
clockwise angle with the z-axis of the translated system. Since the number of robots is
co-prime to the size of P, a unique vertex (robot) can be elected and the elected point is
used to break the symmetry and compute a total order among the robots. As before, the
robots use this total order to move cyclically solving VISIT-ALL.

» Theorem 16. If each robot can see the axes of the others and there is chirality, then there
exists a 1-step algorithm solving VISIT-ALL for any initial configuration Cy.
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Algorithm 2 ORDER Algorithm when robots have visible coordinate systems.

procedure GETVOTE(Polygon P, robot )
o = getCenter(P)
Consider the coordinate system with origin o and axes parallel to the system S, of robot r. Let
pv € P be the point with smallest polar coordinates in this coordinate system.
return p,
procedure VOTING(Configuration C')
P = innerPolygon(C)
V=vector of size |P| with all entries equal to 0.
for all r € C do
ry = getVote(P,r)
Vvl =V[v] +1
p; = elect one robot in P using the votes in V.
return p;
procedure ORDER(Configuration C)
if C € Cp then
pi = Voting(C)
Compute a cyclic order on positions in C' using the leader robot p;.
else
Compute an order using ORDER(C') of the algorithm in Section 3.1.

return the cyclic order computed

6 Robots with one bit of Persistent Memory

Motivated by the impossibility result of Theorem 6, we now investigate non-oblivious robots
having some persistent memory. Interestingly, we show that a single bit of memory is
sufficient to overcome the impossibility, and solve VISIT-ALL using a 2-step algorithm. Note
that we cannot overcome the impossibility using 1-step algorithms and Theorem 3, holds
even if the robots are equipped with an infinite amount of memory.

We present the 2-step algorithm below (Algorithm 3) for n > 3 robots.

Algorithm 3 2-step VIsSIT-ALL with one bit of memory.

1: (Initially: b= 0)

2:

3:if C ¢Co Ab=0 then

4: Compute an order using Algorithm from Section 3.

5: Permute robots according to the computed order.

6: else if C € Co ANb=0 then

7 b=1

8: if I am the central robot then

9: Compute a destination point v =COMPUTEMOVEMENTCENTRAL(C).
10: set destination as v
11: else if C € Co Ab =1 then
12: compute a destination point v =COMPUTEMOVEMENTNOTCENTRAL(C).
13: set destination as v

14: else if C ¢ Co Ab =1 then

15: (C’',p, Leader) =RECONSTRUCT(C')

16: Compute a cyclic order po,p1,...,pn—1 of positions in C’ using the pivot robot p’.
17: if I am the Leader then

18: b=1

19: else

20: b=0

21: if my position in C’ was p; then
22: set destination as p(i41) mod n

Intuitive description of the algorithm. The general idea is to use alternate rounds of
communication and formation of the actual permutation. In the communication round, the
robots create a special intermediate configuration that provides a total order on the robots;
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Figure 5 Case C2: the central robot 7. = 7, moves to indicate the pivot point p’ on circle P.

In the subsequent round they reconstruct the initial pattern forming the permutation of the
initial configuration. The memory bit is crucial to distinguish the intermediate configuration
from the initial configuration. If the initial configuration Cy ¢ Cg, then the robots follow the
1-step algorithm described in Section 3 and we will show that this does not conflict with the
rest of the algorithm designed for the case when Cy € Cg, as described below.

Initially every robot has the bit b set to 0. When a robot observes that the configuration
is in Ce and bit b is 0, it sets the bit to 1 to remember that the initial configuration Cy € Cg .
The central robot r; in Cy takes the role of Leader and performs a special move to create
the intermediate configuration C; that is not in Cgy but from C1, it is possible to reconstruct
the initial configuration Cy or any permutation of it (This move is determined by procedure
CoMPUTEMOVEMENTCENTRAL described in the next paragraph).

A key point of the algorithm is that the Leader robot remains invariant. At the next
activation, the robots observe a configuration that is not in Cg and they have bit b = 1;
this indicates that this is an intermediate configuration and the robots move to reconstruct
a configuration Cy = II(Cp). With the exception of the Leader r; whose memory bit b is
always set to 1, all the other robots will now reset their bit b to 0.

In the next round, the robots are in configuration C5, where the central robot r. is not
r; (the robots have performed one cyclic permutation). At this point, the robot r; is the
unique robot whose bit b = 1. All other robots have b = 1 and they behave similarly as in
the first round, including robot r. which moves like the central robot moved in Cy. However,
the leader robot 7; also moves at the same time, in a special way (as described in procedure
COoMPUTEMOVEMENTNOTCENTRAL presented in the next paragraph). The combination
of moves of the leader robot and the central robot allows the robots not only to determine
the initial configuration, but also to uniquely identify a “pivot” point in the pattern (see
Figure 6), which is kept invariant during the algorithm. The recognition of the pivot point
allows the robots agree on the same cyclic ordering of the points in the initial pattern, thus
allowing cyclic permutations of the robots.
An example execution of this algorithm is presented in Figure 6.
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it is a central robot. reconstructed central configuration.

Figure 6 Example execution of the first 4 rounds for the case n > 3.

Movements of r; and .. We now describe details of procedures COMPUTEMOVEMENT-
CENTRAL and COMPUTEMOVEMENTNOTCENTRAL used in Algorithm 3. The movements
of the robot leader r; and the central robot r. (if different from r;) have to be designed in
such a way as to break the symmetry of the configuration by electing always the same pivot
position p’, and to make it possible to reconstruct the original configuration after the move.
For any configuration C' € II(Cy). we define Py, P, ..., P, as a decomposition of C' into
concentric circles, where Py is the degenerate circle consisting of only the central robot, P is
the innermost non-degenerate circle on which p’ is located, and finally P,, = SEC(C) (see
Figure 5).
Procedure COMPUTEMOVEMENTCENTRAL determines the movement of robot 7., according
to the number of robots n.
(Case Cl1: n =3 ): In such a case, the robots are on a single line. Let s be the segment
of this line containing all three robots. Robot . moves perpendicularly to s of a distance
d= |2i‘ The direction of movement is chosen such that the pivot position p’ will be the
position of the first robot in the clockwise direction from r..
(Case C2: n > 3): Robot 7. chooses a robot position p’ on P; as the pivot point. Robot
r. moves on the segment connecting 7. and p’ by a very small distance (much smaller
compared to the radius of P;). See Figure 5.
Procedure CoMPUTEMOVEMENTNOTCENTRAL computes the movements of the leader robot
r;, when different from 7., again according to the value of n:
(Case L1: n =3 ): Note that robots are on a single line. Robot r; moves along s by a
small distance, changing segment s to s’. The pivot position p’ will be indicated by the
direction that goes from the center of s to the new center of s’.
(Case L2: n > 3 ): We have three sub-cases depending on the circle P; which contains
robot r;, and on the number of other robots on P;. Recall that r; ¢ Py. We treat each P;
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as a set, e.g. |P;| indicates the number of robots in P;. Let « be the difference between
the radii of P;_; and P;, and let i be the segment connecting Py and robot r;. Let p
be the position of the first robot on P; encountered by walking in clockwise direction
starting from the point of intersection between h and P;. Let nhop be the number of
robots in P; between p and the pivot point p’. Recall that |P,,| > 1, since P,, = SEC(C)
and C' is rotationally symmetric. In the following, encode is an appropriately chosen
function from N to (3, 1).

(Sub-case L2.1): When P; # P,, or P; = P,, and |P,| > 3: Robot 1, moves on h

towards P; by a quantity encode(nhop) * 5.

(Sub-case L2.2): When P; = P,, and |P,,| = 3: Note that P, has to be rotationally

symmetric; therefore it contains 3 robots each of them forming an angle of %’T with its

adjacent neighbours. Robot r; moves to a point of P; that creates with its counter-

clockwise neighbour an angle that is encode(nhop) * %’T

(Sub-case L2.3): When P; = P,,, and |P,,,| = 2: let s be the segment connecting the

two robots on P;. Robot 7 moves on s, expanding P; in such a way that the new

diameter is 2D + encode(nhop) * D.

It is easy to see that after r. and r; move according to the above procedures, the resulting
intermediate configuration C’ is not in C;. We now show how to reconstruct the initial
configuration C from C”.

Reconstruction of the initial configuration. When the current configuration C’ is not
in Cy and the robots have bit b = 1, the robots know that they are in an intermediate
configuration and they have to (1) reconstruct the original configuration C, (2) determine
the pivot point p’ in C, and (3) identify the leader robot r;. The reconstruction is performed
by procedure RECONSTRUCT, which again, depends on the value of n.
If n = 3: the robots must form a triangle. The base of the triangle is its largest edge e.
The algorithm computes the ratio of the height of the triangle over the length of base e
to determine if r; was 7. or not.
If the height of the triangle is exactly half of e, the algorithm infers that r; = r, and
that the two other robots are the endpoints of e (case C1). The pivot point p’ is the
position of the first clockwise robot starting from the top of the triangle. The original
configuration C' is easily reconstructed: the endpoints of e are in the same position,
and the central robot will be in the intersection of the perpendicular segment that
goes through r; and e.
If the height is slightly less, or slightly more, than the largest edge e, then the algorithm
infers that ; was one of the endpoint; we are in case (L1.1). The reconstruction of
C is simple: take the intersection x of the perpendicular segment that goes through
r; and e, the position of the endpoints of C' is reconstructed using the fact that the
height of the triangle is exactly half of the original segment, and that x was the center
of the original segment. Robot r; is the endpoint that moved, and the pivot p’ can be
computed by evaluating if r; moved towards or away from the old center.
If n > 3: The algorithm starts by examining P,,, in order to understand if r; was on the
SEC and executed the sub-case (L2.2) or (L2.3). If the test is negative it proceeds using
an ‘“onion peeling” approach, in which the algorithm, starting from the outermost P,,,
progressively examines each P; until it finds an asymmetry or it reaches Fy. The onion
peeling proceeds by first computing the SEC, that is F,,, and then computing each P; by
considering progressively smaller concentric circles.
Test for case (L2.3): This test case is done only on P,,. If the center of P, is not
contained in SEC(C" \ P,,—1), then the algorithm detects case (1.2.3). P,, is adjusted
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to a new one that has the diameter equal to the distance between the two furthest

robots on P,,. Robot r; will be the robot on P, that is farthest from robots in P,,_1.

The reconstruction of the last layer is done by knowing that it will be a circle with the
same center of SEC(C’ \ P,,—1) that passes through P, \ {r;} and finally p’ will be
indicated by decoding the information encoded in the diameter of P,,.

Test for case (L2.2): This test case is done only on P,,. If |P,| = 3 and it is not
rotationally symmetric, and (|P,,—1| > 1 or m — 1 = 0), then the algorithm detects
case (L2.2). Robot r; is one that is not forming an angle of %’T radians with any of its

adjacent neighbours, position p’ is encoded in the smallest angle that r; is forming.

The original position of r; can be easily reconstructed: it is the one that forms an
angle of %’“ with each of its adjacent robots.
Test for case (L2.1): This test case is done on layers different than P,,. If |P;| =1
then the algorithm detects case (L2.1): robot r; is the only robot in P; and it is trivial
to reconstruct C' and compute the pivot p’.
If the algorithm reaches Py without finding any asymmetry, then we have that r; = r,
(case C2). The decoding is trivial in this case: the original position of r; is the center of

Py, and the pivot position p’ is in the direction where r; moved.

Based on the above discussion, we conclude with the following result:

» Theorem 17. There exists an universal algorithm to solve VISIT-ALL for robots with 1 bit
of persistent memory when the system has chirality.

7 Concluding Remarks

To the best of our knowledge, this is the first investigation of the problems of permuting the
positions of a set of mobile robots in the plane. Surprisingly this class of problems seems to be
more difficult than the previously studied problems such as gathering and pattern formation,
which have easy solutions for the strongest model of fully synchronous robots with rigid
movements. Thus the characterization of solvable instances for permutation problems is quite
different as shown in this paper. Moreover we also showed that being non-oblivious is helpful
for permuting robots, unlike the formation problems where the solvability is unaffected by
obliviousness [16]. The paper opens several research directions that are worth investigating:
an interesting direction would be to discover other class of problems which cannot be solved
even when it is easy to elect a leader (as the class of problems considered here). The difficulty
in solving the permutation problems seems to be unrelated to agreement problems such as
leader election. In particular we may try to study the differences between leader election
and permutation problems and determine if the latter is strictly more difficult than the
former. We may also consider other interesting assumptions that can help in overcoming the
challenges for permuting robots without orientation. One possibility is the investigation of
robots with the additional capability of communicating using visible lights [4, 10, 13].
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