
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Recombination effects in the ionization chambers dose delivery monitor
of the TOP-IMPLART proton beam
To cite this article: A. Ampollini et al 2020 J. Phys.: Conf. Ser. 1561 012008

 

View the article online for updates and enhancements.

This content was downloaded from IP address 192.107.52.63 on 19/06/2020 at 10:18

https://doi.org/10.1088/1742-6596/1561/1/012008
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsu0J_Hi0hD-LIZlYtbD8WaS88A91Q_03ARCsAwjlVYzn0NVFZMS_JhgPYEtWzUoeCkovC8lUIlM-NO6bE5A8WhKAKascrOZ0ueichLnFG4QagHrgiSy3dTTt6a0mZB6OQ2pux0-aMEFyRwOd4v3qBJPOxK9lXNfcznCqbGE-xjHORDHBr2K9XWpV_sCiGgIRfpQgqER0Tt7FESc-6bL_SEAlQLjRAGkzocilshEPgC1zeEJ6Uxk&sig=Cg0ArKJSzA1zOvRwpVN8&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Detection Systems and Techniques in Nuclear and Particle Physics (DeSyT2019)

Journal of Physics: Conference Series 1561 (2020) 012008

IOP Publishing

doi:10.1088/1742-6596/1561/1/012008

1

Recombination effects in the ionization chambers

dose delivery monitor of the TOP-IMPLART proton

beam

A. Ampollini1, E. Basile2, G. Bazzano1, E. Cisbani3, C. De Angelis3,
S. Della Monaca3, F. Ghio3, F. Giuliani3, M. Lucentini3, P. Nenzi1, C.
Placido4, L. Picardi1, C. Ronsivalle1, F. Santavenere3, A. Spurio3, V.
Surrenti1, M. Vadrucci1

1 ENEA C.R. Frascati, 00044 Frascati (Rome), Italy
2 Azienda Ospedaliera Papardo, 98158 Messina, Italy
3 Istituto Superiore di Sanità, 00161 Rome, Italy
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Abstract. The Intensity Modulated Proton Linear Accelerator for Cancer Therapy (TOP-
IMPLART) is under development and construction by ENEA in collaboration with the Italian
Institute of Health (ISS) and the Oncological Hospital Regina Elena-IFO with financial support
of Regione Lazio.

Its peculiar time structure (few microseconds pulse width) and very high peak intensity
(≈ 109 proton/pulse) demand for ad hoc dose delivery monitors (DDM). The TOP-IMPLART
DDM is based on ionization gas chambers. One segmented chamber prototype uses Micro
Pattern Gaseous Detector technology for the 2-dimensional simultaneous x/y readout; the charge
collected from each active segment (strips with pad-like shape) is readout by a dedicated gain-
adaptable electronics. Two small, highly sensitive, integral ionization chambers, using the same
electronics, complement the 2D chamber for the monitor of the single pulse beam charge, down
to 1 pC/pulse.

While under development and deployment of its accelerating modular cavities, the
linear TOP-IMPLART beam is improved thanks also to the continuous monitoring and
characterization by these devices, whose responses are periodically compared to calibrated
dosimetric detectors such as real-time active microDiamond sensor, passive Alanine pellets,
intrinsically stable integral Faraday Cup.

Different calibration campaigns have been recently conducted to measure the recombination
and dose-rate effects on the above ionization chambers. The outcome of these measurements
shows clear electron-ion recombination in the chamber active volume, largely related to the high
beam intensity and its small transverse cross section. Those effects can be taken into account
and used to correct the actual measurement of the DDM.

In this paper, the TOP-IMPLART project and the DDM devices are shortly presented and
details of the above experimental studies are discussed.

1. Introduction
This paper focuses on the saturation effects of ionization chambers used as dose delivery monitors
(DDM) for a proton linear accelerator (Linac) for cancer radiotherapy.
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Modern external radiotherapy based on accelerators, splits into two main categories:
conventional radiation therapy, where Linacs are used to generate electron and derived photon
beams up to 25 MeV, and particle therapy where hadron beams are produced by circular
accelerators; proton therapy, with about 70 operational centers all over the world is the largest
type of particle therapy.

Advantages, limitations and challenges of current proton therapy are detailed in [1]. The
small emittance, high repetition frequency and high single pulse intensity of a proton beam
generated by a Linac can successfully respond to some of the current technological limitations
of the proton therapy [1]: better delivered dose due to smaller spot size, better collimation
dynamics and respiratory control with faster electronics gating.

The Linac offers a modular scheme, that allows its operation while it is under construction,
with the great advantages of continuous characterization and improvement of the beam and
its components and simultaneously to its exploitation (e.g. for radiobiological, dosimetric,
radiological protection studies and other irradiation purposes). Moreover the high instantaneous
intensity goes in the directions of hypo-fractionation [2] and ultra-fast dose rate [3] treatments.

On the other hand, a proton Linac requires complex acceleration cavities design (especially
at low energies, where proton velocities are not relativistic) and it only works for a single ion
species.

2. TOP-IMPLART Linac
In this scenario, the Oncological Therapy with Proton - Intensity Modulated Proton Linear
Accelerator for Radio Therapy (TOP-IMPLART) [4] is under development and construction by
ENEA in collaboration with the Italian Institute of Health (ISS) and the Oncological Hospital
Regina Elena-IFO with financial support of Regione Lazio, Italy.

TOP-IMPLART is an innovative machine: single pulse energy, intensity, width and repetition
rate control make it similar to the electron Linacs used in conventional radiotherapy, with
the advantage of the proton intrinsic conformation. It requires development of original
techniques in accelerating machine, radioprotection, dosimetry, and radiobiology, which are
tested, characterized and optimized during its realization and deployment.

The TOP-IMPLART project is the oldest of the three projects that are trying to introduce
the proton Linac in cancer radiotherapy: LinearBeam-ERHA [5] and AVO-Light [6].

The TOP-IMPLART is an high frequency, compact, full Linac made of three main
acceleration segments:

• a 7 MeV commercial injector made by AccSys-Hitachi with a duoplasmatron proton source
followed by a 3 MeV Radio Frequency Quadrupole (RFQ) and an up to 4 MeV Drift Tube
Linac (DTL) operating at 425 MHz; an in-house Eizel Lens permits to control the injector
output average intensity between 0 and about 200 µA, a pulse frequency up to about 100
Hz and a pulse width between 20 and 100 µs.

• eight Side Coupled Drift Tube Linac (SCDTL) structures which accelerate protons up to
the first clinical energy (≈ 71 MeV); this is the most challenging and innovative segment of
the whole project; the lower energy structures, have been installed, characterized and are
operational since more than 1 year.

• two Coupled Cavity Linac (CCL) modules up to ≈ 150 MeV (that can be extended up to
230 MeV).

Both SCDTL and CCL operate at 3 GHz.
In 2019, the accelerator delivered a pretty stable, 35 MeV, ≈ 25 Hz1 pulsed proton beam

with pulse width in the range of 1-4 µs, peak current of 0−50 µA [7]; two new SCDTL modules
are going to be installed and operated in the first quarter of 2020.

1 The design pulse frequency is in the range of 10 − 100 Hz.
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Figure 1. The TOP-IMPLART
accelerator, in early 2018, before
the upgrade of the radiofrequency
distribution lines.

Table 1. Dose Delivery Monitor main requirements; the quoted upper limit of the DDM
thickness corresponds to less than 1% contribution to the Moliere angle, for 60 MeV protons
traveling the corresponding range in water.
.

Feature Design Limit

Wide dynamic range ≥ 104

Good sensitivity ≤ 100 fC
Rapid response ≤ 1 ms
Good spatial resolution ≤ 1/10 mm
Minimal Thickness ≤ 0.62 mm (water equiv.)

3. Dose Delivery monitors
The intrinsically high conformation of the proton beam requires accurate and reliable DDM
which shall measure the beam position, direction and intensity profile of each pulse, at least.

The peculiar pulsed structure of the TOP-IMPLART proton beam requires, in addition, a
quick and pulse-by-pulse response of the DDM; moreover its wide range of pulse intensities
need an extended dynamic range of the monitoring devices and a detailed understanding of
any potential dose rate effect. The main system requirements of the dose delivery monitor are
summarized in table 1.

The TOP-IMPLART DDM is based on ionization gas chambers, a consolidated approach in
external radiotherapy; its current prototyping configuration consist of a 2-dimensional segmented
ionization chamber (2D-IC) in Micro Pattern Gaseous Detector technology and two smaller
conventional, integral ionization chambers.

3.1. 2D segmented Ionization Chamber
The 2D-IC prototype [8] measures the single beam pulse intensity profiles simultaneously along
x (horizontal) and y (vertical) axes with spatial resolution of about 0.3 mm on a 80 × 80 mm2

active area (figure 2); the readout plane produced in Micro Pattern Gaseous Detector technology
by CERN has been designed to maximize the uniformity of the electrostactic field by rhomboidal
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pad-like copper strips that cover large part of the readout kapton foil (as shown in the upper left
pictures of figure 2); through holes connect the apparently isolated pads to strips on the opposite
side of the kapton foil; a ground guard surrounds the readout sensitive area. The cathode-anode
gap is 2 mm and the operating bias voltage is 250 V; the chamber is currently operated in air.
The total thickness of the chamber is equivalent to 0.17 mm of water.

The 2D-IC dynamic range, larger than 104, is obtained by a dedicated electronics, that
readout the 96 strips of the chamber (only the central 40 × 40 mm2 active area is currently
equipped with electronics). Each channel is based on trans-impedance amplifier and integrating
capacitor that automatically adapts the gain on each segment (channel) according to the amount
of collected charge, which is proportional to the intensity of the beam [9]. The capacitors voltages
are multiplexed at 1 MHz into a single ADC channel.

Figure 2. The 2D-IC chamber prototype. Left: pictures of its internal structure and a simplified
drawing showing the peculiar pad-like strips pattern of the readout foil (above) and the cross
section of the chamber (below). Right: picture of the assembled chamber with the dedicated
discrete readout electronics of 48 x and 48 y strips; a grounded cover (not shown) shields the
whole electronics.

3.2. Integral chambers
Two small and thin integral ionization chambers (see figure 3, left) have been developed for
monitoring of the single pulse beam charge, down to 1 pC/pulse [9]. The two chambers performs
identically but have different mechanical supports and geometries: they operates at a bias voltage
of 250 V and the small (few cm2 area) electrodes are made of aluminized mylar (12 µm mylar,
4 µm aluminum) and are spaced by 2 mm. Their single channel front-end electronics, based
on a transimpedance amplifier and integrating capacitor is derived from the 2D-IC described
above, while the readout of the capacitor trans-impedance voltage is managed by a NI-cRIO
modular instrumentation, integrated in the beam control system. Chamber ICA sits at the exit
of the beam pipe while ICB can be placed along the beam line in air. They are currently used
as, fast and sensitive, beam delivered charge monitor for development, testing and during the
irradiation campaigns.
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Figure 3. Left: the ICA in place at the beam pipe exit. Middle: the two integral chambers,
ICA with its cylindrical holder acts as a plug on the beam pipe terminal and the ICB. Right:
the typical configuration during calibration and irradiation: ICB with an aluminum collimator,
in front of the 2D-IC; beyond them the holder of the calibrated dosimeters (e.g. microDiamond,
alanine pallets and other devices).

4. Characterization and calibration campaigns
The DDM responses have been and are routinely compared and calibrated against commercial
passive small alanine pellets (from Gamma-Service, Leipzig, Germany)2, one commercial real-
time active microDiamond (PTW-Freiburg mod. 60019, Germany).

In 2018 and 2019 several test and calibration campaigns have been carried on with the main
purposes of characterizing and improving the proton beam and the above ionization chambers as
well as of calibrating and using them for irradiation studies on biological targets. The preliminary
characterization of the 35 MeV TOP-IMPLART beam, and intercalibration of the different
dosimetric devices, has been reported in [7].

The DDMs are then used for characterization of the beam, as shown in figure 4, where the
left plot shows the (gaussian) x and y profiles of the spread beam in air, measured by the 2D-IC
at 160 cm from the beam pipe exit; as expected from the beam optics, the proton spot has an
ellipsoidal cross section, larger along y than x. It is worth mentioning that the 2D-IC measures
the charge accumulated along the whole strips perpendicular to the profile direction. On the
right plot of figure 4 are reported the gaussian fit sigma’s of the beam profiles measured at
different distances from the beam pipe exit.

The characterization campaigns contributed to better understand the accelerator
performances and tune them; the pulse-to-pulse stability improved significantly, allowing to
explore the DDM chambers responses at different dose rates.

5. Dose Rate Effects
The delivered TOP-IMPLART dose rate can be controlled in at least three ways, acting on the
main pulse parameters: intensity (or instantaneous current), width and frequency.

In a dedicated irradiation sessions, ICA, 2D-IC and microDiamond responses have been
compared; the latter is expected to be independent (in the explored range) from dose rate,
as confirmed by preliminary measurements of microDiamond and alanine pellets3. Figure 5
summarizes the obtained results: the y-axis represents the normalization factor of ICA and 2D-
IC relative to the microDiamond while the x-axis contains the instantaneous current derived
from the microDiamond response. The dose rate has been controlled mainly by pulse intensity
variation, keeping the pulse width at 4 µs and the frequency at 20 Hz; some measurements have

2 The alanine pellet, ≈ 4.8 mm diameter, ≈ 3 mm height, consists of a mixture, by weight, of 96% alanine and
4% of binder material. The exposed alanine is readout offline by a Bruker ELEXSYS spectrometer [10].
3 To a very large extend the alanine pellets are not influenced by dose rate variations.
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Figure 4. 2D-IC chamber response; left: x/y beam profiles measured at 160 cm2 from beam
pipe exit, with Gaussian fits and relative parameters. Right: the widths measured by the 2D-IC
profiles gaussian fits (sigma) at different distances from the beam pipe exit.

been performed with pulse frequency of 10 Hz and/or smaller pulse width (2.5 and 3 µs). The
results show a clear dependence of the two chamber responses from the dose rate; the 2D-IC
chamber (sitting at 160 cm from the beam pipe exit) measured points are pretty well reproduced
by a quadratic function with fluctuations around such curve within few percent maximum; the
2D-IC response does not depend on the way the dose rate is changed.

On the other hand, the ICA intercepts the beam right after the exit from the vacuum
pipe, where the beam spot diameter is about 1 mm; it clearly shows much larger fluctuations
(approximately ±15%) and its response seems to be affected by the way the dose rate is obtained
(e.g. acting on the beam pulse length, intensity, or frequency).

Figure 5. Evidence of recombination effects in ICA and 2D-IC; dose rate variation induced by
current, width, frequency of the pulses; the typical therapeutic dose rate of 1 Gy/min corresponds
to about 0.2 mA on the x-axis.
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The different behavior of the two ionization chambers most likely depends on the much
more localized beam passing the ICA which causes larger recombination effects and therefore
more sensibility of this chamber to small variation of the beam spot parameters: the much larger
fluctuation in ICA is probably related to the fact that variations of the pulse parameters affect, to
different extend, the spot characteristics at the ICA level; in fact, in the current implementation,
pulse width and frequency variation may influence the beam stability more than the changes in
pulse intensity, and this seems to reflect on correspondingly large fluctuation of the ICA response
for the points marked with open squared and circles in figure 5.

The recombination effects have been further investigated on the integral chamber ICB

comparing its response to a custom designed Faraday Cup (FC) which is dose rate independent:
the beam passing the ICB is completely intercepted by the FC sitting right after the ionization
chamber (see figure 6). The FC is a block of aluminum, with an internal cylindrical cavity
(30 mm diameter) and a thick conical base (> 10 mm); it is sensitive to beam current larger
than ≈ 5µA, and its amplified current is readout by one dedicated single channel of the same
electronics than the DDMs, mentioned above.

Figure 6. ICB and FC assembly
for recombination studies in the
integral chamber.

The simultaneous responses of the ICB and FC have been initially acquired at fixed proton
beam parameters, but along different longitudinal distances of the devices assembly from the
pipe exit window (and therefore for different beam cross sections). The left plots of figure 7
report the pulse-by-pulse outputs of both devices versus the pulse number; different bunches
of pulses correspond to different positions of the ICB-FC assembly: while the FC (lower plot)
shows constant response at different position (until the collimator starts intercepting part of the
beam) as expected, the ICB (upper plot) has a remarkable trend to increase its response (to
constant beam intensity of ≈ 0.95 · 109 proton/pulse) due to the fact that at higher distances,
the beam cross section is larger and therefore the recombination effects smaller.

Moreover, the responses of the two devices have been compared varying the pulse intensity
(and therefore the dose rate) at fixed positions (beam cross section); some of the results are
summarized by the right plots in figure 7, where, the ICB and FC outputs are linearly correlated
but the correlation coefficients depend on the position of the device assembly respect to the beam
pipe exit window (and therefore the beam transverse size), suggesting that the recombination
effects are mainly determined by volume than columnar/initial recombination [11].

Assuming the response of the FC proportional to the beam charge passing through the
ionization chamber (corrected for the collimator geometrical effect), the angular coefficients of
the linear fits of the left plots in figure 7 are essentially the ratio Qc/Q between the collected
charge Qc and the produced charge Q in ICB. This ratio is reported in figure 8 versus the
chamber position along the beam path in air (and therefore the beam transverse size). The
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points are fitted by an adapted Boag formula4 [12] where the ion density ρ in the chamber is
parametrized by ρ ∼ b/(x + c)2 which accounts for the variation of the transverse size of the
beam with x; the free b parameter somehow includes potential charge screening effects at high
intensity.

Figure 7. ICB and FC responses. Left: the two devices pulse-by-pulse responses at different
distance from the beam pipe exit. Right: the response correlations for different dose rate (pulse
intensities) and at different distances; in red the linear fits.

6. Conclusions
The above results cannot be considered conclusive, however the reasonable agreement of the fit
in figure 8 is a good hint toward a main role of the volume recombination effects in the ICA and
ICB chambers, with likely contribution from charge screening at high beam intensities.

The 2D-IC is affected by the same recombination processes occurring in the integral ionization
chambers; however at more than 100 cm from the beam pipe exit, where the 2D-IC sits,
the transverse beam charge distributions are wide enough to make the charge density effects
noticeable only at very high dose rate.

The intrinsic modularity of the TOP-IMPLART Linac permits to test the performances of
the accelerator and its components simultaneously to the facility implementation. Many aspects
that can be critical at lower energies (and would require specific setup at higher energies) can
be carefully investigated and characterized in a sort of natural way, very in advance respect

4 The Boag function describes the ionization chamber volume recombination effects in rapid pulsed beam, with
pulses much shorted than the ions transit time in the chamber gap as in the TOP-IMPLART beam (pulse width
≈ 4 µs versus transit time of ≈ 1 ms).
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Figure 8. Recombination effects in the integral chamber ICB: ratio of the collected Qc and
produced Q charges in the chamber versus the beam pipe exit window distance in air (and
therefore the beam transverse size). The fitting curve is described in the text, χ2

r = 1.64.

to accelerator completion; among them, the study of the effects of dose rate on the delivery
monitors is one of the priority of the TOP-IMPLART developments.
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