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ABSTRACT
Broadband Coherent Anti-Stokes Raman Scattering (B-CARS) is a powerful label-free nonlinear spectroscopy technique allowing one to
measure the full vibrational spectrum of molecules and solids. B-CARS spectra, however, suffer from the presence of a spurious signal, called
non-resonant background (NRB), which interferes with the resonant vibrational one, distorting the line shapes and degrading the chemical
information. While several numerical techniques are available to remove this unwanted contribution and extract the resonant vibrational
signal of interest, they all require the user’s intervention and sensitively depend on the spectral shape of the NRB, which needs to be measured
independently. In this work, we present a novel approach to remove NRB from B-CARS spectra based on deep learning. Thanks to the high
generalization capability offered by the deep architecture of the designed neural network, trained through realistic simulated spectra, our fully
automated model is able to process B-CARS spectra in real time and independently of the detailed shape of the NRB spectrum. This results in
fast extraction of vibrational spectra without requiring user intervention or the measurement of reference spectra. We expect that this model
will significantly simplify and speed-up the analysis of B-CARS spectra in spectroscopy and microscopy.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0007821., s

I. INTRODUCTION

In the last two decades, Coherent Raman Scattering (CRS)1

has emerged as a class of powerful third-order nonlinear spec-
troscopy techniques capable of measuring the vibrational response
of molecules and solids. CRS has found applications in biomedi-
cal optics, for label-free imaging of cells and tissues,2,3 as well as in
materials science and nanotechnology.4 CRS uses two synchronized
pulses, the pump (at frequency ωp) and the Stokes (at frequency
ωS), detuned by ωp − ωS = Ω, to create a coherent superposition
of vibrational oscillators at a frequency Ω. The two most com-
mon CRS techniques, which correspond to different ways of reading
the vibrational coherence, are Coherent Anti-Stokes Raman Scatter-
ing5 (CARS) and Stimulated Raman Scattering (SRS).6–8 In CARS,
a further interaction with the pump pulse generates a signal at the

anti-Stokes frequencyωaS =ωp + Ω = 2ωp −ωS. In SRS, the nonlinear
signal is read as amplification of the Stokes beam (stimulated Raman
gain) or depletion of the Stokes beam (stimulated Raman loss). Both
CARS and SRS work very well in the narrowband mode, where the
signal at only one vibrational frequency is detected, reaching imag-
ing speeds up to the video rate.9,10 However, the limited amount
of spectroscopic information available with narrowband CRS has
prompted efforts to extend it to broadband operation.11

Broadband CARS (B-CARS) combines a narrow-band (10–
20 cm−1 bandwidth) pump pulse with a broadband (≈3000 cm−1

bandwidth) Stokes pulse in order to generate a coherence in an
ensemble of vibrational levels simultaneously. The two pulses, spa-
tially and temporally overlapped, are focused onto the sample. The
CARS signal is detected with a spectrometer after removal of pump
and Stokes light, through steep-edge short-pass filters. Since CARS
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is a homodyne technique,12 the measured signal is proportional to

ICARS(ω)∝ ∣χ(3)(ω)∣
2

= ∣χ(3)R (ω) + χ(3)NR (ω)∣
2

= ∣χ(3)R (ω)∣
2

+ χ(3)NR (ω)
2 + 2Re(χ(3)R (ω))χ

(3)
NR (ω), (1)

where χ(3)R (ω) is the complex vibrational susceptibility that contains
the chemical information about the sample. This quantity can be
modeled as

χ(3)R (ω) =∑
i

Ai

Ωi − ω − iΓi
, (2)

where, for the ith resonance, the amplitude Ai∝ σiCi is proportional
to the cross section (σi) and to the concentration of scatterers (Ci), Ωi
represents the vibrational frequency, and Γi represents the linewidth.
On the other hand, χ(3)NR (ω) can generally be assumed as a purely real
contribution that mediates the nonlinear interaction of the excita-
tion beams with the sample and the surrounding environment. One
should note that, for certain pigments or metabolites of biological
tissues, this assumption may not hold, since two-photon absorption
may occur, bringing also an imaginary contribution to χ(3)NR .

To identify the vibrational frequencies, quantify their linewidths
and amplitudes, and allow a direct comparison with spontaneous
Raman spectra, one would like to retrieve the imaginary part of the
resonant susceptibility, Im(χ(3)R (ω)), which consists of a series of
Lorentzian peaks at frequencies Ωi. Unfortunately, χ(3)NR (ω) (from
here onward assumed for simplicity to be purely real) gives rise to
a broadband optical signal, the non-resonant background (NRB),
which mixes with the resonant one such that the resulting CARS
spectrum shows a rather complicated profile, depending on the rel-
ative ratio of the two components. This effect is particularly rele-
vant in the so-called low wavenumber (LWN) or fingerprint region
(600–1800 cm−1), which is the most important frequency interval
for chemical identification. In the LWN, very often, one has χ(3)R (ω)
≪ χ(3)NR (ω) so that the B-CARS spectrum becomes

ICARS(ω)∝ χ(3)2NR (ω) + 2Re(χ(3)R (ω))χ
(3)
NR (ω). (3)

In this case, the presence of the NRB has two effects: (i) it heav-
ily distorts the vibrational peaks, which now become proportional
to Re(χ(3)R (ω)) and thus assume a dispersive line shape, and (ii)
it acts as a local oscillator, phase-locked to the resonant signal,
which results in its heterodyne amplification through the term
2Re(χ(3)R (ω))χ

(3)
NR (ω) and allows the detection of comparatively

weak vibrational peaks.13

Several techniques have been adopted to deal with the NRB.
For the narrowband operating mode, interferometric CARS,14,15 fre-
quency modulation CARS,16 and polarization CARS17 allow sup-
pressing the NRB but at the cost of a significant experimental com-
plication and/or signal reduction. For the broadband mode, time-
resolved CARS18 and Fourier transform CARS19–21 allow NRB sup-
pression but again at the cost of increased experimental complexity

and reduced signal levels. An alternative approach is to use numer-
ical techniques to extract Im(χ(3)R (ω)) from the measured B-CARS
spectra. Among them, the maximum entropy method (MEM22,23)
and the Time-Domain Kramers–Kronig transform (TDKK24) tackle
the problem from different standpoints but were demonstrated to be
functionally equivalent.25

The MEM method requires measuring the CARS spectrum of
a reference sample without any vibrational resonances to obtain the
normalized spectrum

S(ω) =
RRRRRRRRRRRR

χ(3)R (ω) + χ(3)NR (ω)
χ(3)NR,ref(ω)

RRRRRRRRRRRR

2

. (4)

This spectrum is then approximated as

S(ν) = ∣ β
1 +∑M

i=1 ak exp(−2πiν)
∣
2

= ∣ β
AM(ν)

∣
2

, (5)

where ν is a normalized frequency and the complex coefficients {β,
ai, i = 1 . . . M} are retrieved by solving a Toeplitz set of linear
equations with coefficients obtained by a discrete Fourier trans-
form of the CARS spectrum at a set of frequencies. The spectral
phase can be then retrieved as ψ(ν) = arg(AM(ν)). A polynomial
fit of its baseline is then used to estimate the background phase
ϕ(ν), calculate the true vibrational phase as θ(ν) = ϕ(ν) + ψ(ν),
and finally retrieve Im(χ(3)R (ν)) =

√
S(ν) sin(θ(ν)). The main

issue of this method is related to the compromise in the choice of
M, i.e., the order of the approximation, which has to be balanced
between the contrasting requirements of large information content
(large M) and low noise (small M). Moreover, the assumption under
which the phase correction is justified is rather restrictive, requir-
ing Im(χ(3)R (ω)) ≪ (χ(3)NR (ω) + Re(χ(3)R (ω))), which is not always
the case, especially for broad spectra, with a non-uniform χ(3)NR (ω)
profile.

The TDKK method is based on the Kramers–Kronig transform,
which links the real and imaginary parts of a complex function. The
method aims at estimating the spectral phase from log(ICARS(ω)),
through a discrete Hilbert transform, taking into account the causal-
ity condition. The TDKK approach is more suited to describe the
case of the non-uniform spectral density of the NRB. Even TDKK
requires an independent measurement of the NRB to be used as a
reference, thus some a priori knowledge about the investigated sam-
ple, as well as pre-processing steps to be applied to the measured
spectra, which may affect the computation speed.26

Statistical Learning and related techniques (machine learning
and deep learning) are experiencing an unprecedented growth in
terms of application fields and accuracy of the results, thanks to
the ever-increasing availability of computing capacities of mod-
ern hardware solutions and to their high generalization capabili-
ties.27 Even in the broad field of spectroscopy, the applications of
these techniques are numerous: molecular excitation spectroscopy,28

calibration invariant spectroscopy,29 vibrational spectroscopy,30,31

and scanning probe microscopy.32 Deep Learning (DL), in partic-
ular, is attracting a significant interest from the scientific commu-
nity, thanks to its ability to address heavily nonlinear problems by
automatically extracting information from big amounts of data,33
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requiring minimal feature extraction procedures, or even analyzing
directly the raw data. Deep learning has also been applied to CARS
microscopy34 to perform automated lung cancer diagnosis.

In this paper, we present a deep learning-based approach
to extract Im(χ(3)R (ω)) directly from a measured B-CARS spec-
trum, without the need of external measurements or complex pre-
processing. Our model, built as a convolutional neural network
(CNN) with seven hidden layers, is tested on a series of solvents and
accurately retrieves their Raman spectra. After suitable training, the
program is able to autonomously process a B-CARS spectrum in a
time as short as 0.1 ms.

II. EXPERIMENTAL SETUP
The scheme of our B-CARS setup is shown in Fig. 1. A fiber-

based ytterbium laser system (Monaco, Coherent) provides ≈300 fs
pulses at 1030 nm at 2 MHz repetition rate and an average power,
for this experiment, of ≈5 W. A fraction of the fundamental beam is
used to generate the narrow-band pump beam. In order to achieve
enough spectral resolution, the beam is frequency filtered by pass-
ing it through an etalon (TecOptics), which narrows its bandwidth
down to 10 cm−1 (≈1.1 nm), to match the typical linewidths of vibra-
tional peaks. Another portion of the fundamental beam produces
the broadband Stokes pulse via bulk White Light Continuum (WLC)
generation35 in a 6-mm-thick YAG crystal. The red shifted portion
of the WLC, selected by a long-pass filter and covering the 1050–
1500 nm wavelength range, acts as a broadband Stokes pulse. The
pump-Stokes frequency detuning thus spans 450 cm−1–3050 cm−1

and is sufficient to cover both the LWN (600 cm−1–1800 cm−1)
and the High Wavenumber (HWN) region (2500 cm−1–3000 cm−1).
Pump and Stokes pulses are matched in space and time by a delay
line and a dichroic combiner and focused through a pair of objec-
tives (20×, 0.3 NA, ≈1 cm working distance) on the sample; the
power is ≈60 mW for the pump pulse and ≈30 mW for the Stokes
pulse. After the interaction, the CARS signal is spectrally selected by
a pair of short-pass filters and focused into a spectrometer (OceanIn-
sight, USB2000) with a 50 mm lens. The acquisition time for the
B-CARS spectra is 3 ms, limited by the minimum exposure time of

FIG. 1. Scheme of the experimental setup. BS: beam splitter; DL: delay line; L:
lens; L(S)PF: long(short)-pass filter; DM: dichroic mirror; S: sample.

the spectrometer. The detected signal is then processed by the neural
network presented in Sec. III.

III. DEEP LEARNING CARS
A neural network (NN) is a nonlinear mathematical model able

to approximate a map between a set of given inputs x and a set of
given outputs y, which constitute a dataset D = {(xi, yi), i = 1 . . .
M}. In general, NNs are composed by a group of nodes, or neurons,
stacked together into layers. Each neuron takes as input a weighted
sum of the output of the neurons of the previous layer and applies
to it a nonlinear activation function to compute its output, which
is then propagated to the following layers. Layers between the input
and the output are called hidden layers, and their number determines
the depth of the network. NNs learn from the data they are provided
by a training process, in which a given functional cost (loss) of the
network output is optimized, over the given dataset D, through the
so-called backpropagation36 algorithm.

Several specialized NN architectures and layers were proposed
in the literature37 to address different problems, ranging from time-
series prediction38 to image recognition39 and synthetic data genera-
tion.40 For our purposes, a Convolutional Neural Network41 (CNN)
has been developed, as illustrated schematically in Fig. 2, with the
task of removing NRB from CARS spectra.

A CNN comprises, in its most basic form, two main types of
layers: convolutional layers (CLs) followed by fully connected layers
(FCs). CLs are generally used in image analysis to recognize pat-
terns regardless of their positioning in the input (e.g., identify if a
certain object is in any position of the input picture). In CLs, each
neuron (also called filter in CNNs) is connected only to a limited
subset of neighboring neurons from the previous layer and shares its
weights with all the other neurons of the layer. The main advantage
of such a kind of layer is the significant reduction in the number of
network parameters, which in turn simplifies the back propagation.
Another advantage, derived from the shared weights among filters, is
the ability to extract information from the input in a spatially invari-
ant way and is of particular interest for the problem presented in this
paper as Raman peaks can appear in any location of the spectrum.
CNNs were observed to be able to automatically generate different
representations of the input data,42 referred to as feature maps in
the literature, whose complexity increases with the number of lay-
ers and the depth of the network. On the other hand, FCs have no
restrictions on the connections to the previous layer and their corre-
sponding weights; they are utilized to generalize the information dis-
covered previously by CLs and to correlate the feature maps derived
from the input. The importance of FCs is related to the corner stone
of deep-learning modeling: the universal approximation theorem.43

According to such a theorem, a NN with a single hidden FC with an

FIG. 2. Concept of the neural network used to remove NRB from a B-CARS spec-
trum (blue curve). CL: convolutional layers, with different kernel size and number
of filters; FC: fully connected layers. The output is a clean spectrum (red curve).
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infinite number of neurons and a non-polynomial activation func-
tion is a universal approximator. To mimic such an infinitely large
hidden layer, more finite layers can be stacked sequentially into deep
architectures. The complexity of a model can be tuned by acting on
its hyperparameters,44 e.g., by choosing the amount of nodes and lay-
ers, to achieve a high prediction accuracy while avoiding overfitting,
which is the tendency of the model to specialize too much its weights
to the training dataset only and losing generalization capability.

We developed a DL model called SpecNet to extract vibrational
information from B-CARS spectra. Its architecture is inspired from
the most classical CNN architectures, such as LeNets,45 and exploits
both the richness of representations obtained by the CLs and the
correlating capabilities of FCs. The related code is entirely available
online.46 The training of the model (described in Appendix A) is
performed exploiting a large dataset of simulated spectra, based on
Eqs. (1) and (2). Each element of the training dataset is built by ran-
domly sampling the number of Lorentzian components N (up to 15)
and, for each of them, the corresponding amplitude, resonance fre-
quency, and linewidth. The NRB is simulated by the combination of
two sigmoid functions (see Appendix A) whose parameters are also
randomly sampled. This allows us to produce a model with high gen-
eralization capability, by learning from a dataset that encompasses a
rather large number of experimental scenarios, especially for what
concerns the NRB spectral contribution. In fact, although it is often
modeled as frequency independent, the NRB displays a far from
trivial frequency dependence χ(3)NR (ω), which is determined by the
specific characteristics of each experimental setup. Such a spectrum,
to which also Gaussian noise is added to simulate a realistic B-CARS
spectrum, is the input vector x for the neural network [see Eq. (A2)].
The target vector, y, which the model aims to reproduce, is y
≡ Im(χ(3)R (ω)). Model’s prediction is named as ŷ. Figure 3 reports

FIG. 3. Examples of simulated spectra (x, blue curves) together with the corre-
sponding true Im(χ(3)

R (ω)) (y, green curves) and the predicted output by the
model (ŷ, red curves).

two simulated spectra together with the corresponding imagi-
nary components and model predictions. Note how the frequency-
dependent background contribution produces different levels of
spectral distortion, depending on the local ratio χ(3)R (ω)/χ

(3)
NR (ω).

Note also how the NRB contribution is different between the two
examples, in terms of spectral shape. The capability of a model to
generalize with respect to different background conditions is crucial
for B-CARS experiments performed with WLC, generated either in
bulk or in a fiber,47–49 since the optimal condition for the genera-
tion of the broadband pulse and its detailed spectral content may
vary with time according to the environmental conditions. Finally,
note that the normalization of the spectrum does not fix its max-
imum value to be 1. This is crucial in order to be able to use the
model to process a batch of spectra, as, for example, in a B-CARS
image, whose intensities have to be compared, by normalizing all
the curves to the global maximum of the batch such that all the other
amplitudes are in the (0, 1) range.

Thanks to the capability of convolutional layers to handle spa-
tial invariance, i.e., to recognize similar structures in different loca-
tions of the input, although the model was trained with a maximum
number of features N = 15, it performs well even if the number
of features is larger. In Fig. 4, a simulated B-CARS spectrum with
30 vibrational features is processed with our CNN. The predicted
Im(χ(3)R (ω)) shows a very good agreement with the true one.

The final architecture was obtained after a model selection pro-
cedure based on a 10-fold cross-validation on a training dataset of
30 000 simulated spectra of 640 points each. SpecNet consists of five
1-dimensional CLs with 128, 64, 16, 16, and 16 filters of dimen-
sions 32, 16, 8, 8, and 8, respectively, followed by three FCs of 32,
16, and 640 neurons (as the output is expected to have the same
dimensions as the input). All layers had a ReLU44 (rectified Linear
Unit) activation function. The resulting total number of trainable
parameters was approximately six × 106. The loss function chosen
was the mean squared error (MSE) between the true target vector y
and the predicted one ŷ. To avoid overfitting and reduce the sensi-
tivity of the model to noise, we utilized L2 weight regularization44

FIG. 4. Simulated spectrum with 30 vibrational features. The resonant frequencies
are indicated by the vertical dotted lines. Top panel: simulated B-CARS spectrum.
Bottom panel: true corresponding imaginary Im(χ(3)

R (ω)) (green curve); model
prediction (red curve).
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on the weights of the first fully connected layer with a weight of 5 ⋅
10−4. The back propagation was performed using Adam44 with a
batch size of 256 examples. The entire training procedure required
10 epochs, each taking about 5 s [running on an RTX 2060 graphics
processing unit (GPU)]. The computing time required to process a
spectrum, averaged over 100 000 examples, is about 0.1 ms, which
is much shorter than the current state of the art for the acquisition
time of a B-CARS spectrum, around 3.5 ms for a biological tissue
sample.26 The NN was implemented by Keras,50 and the reader is
referred to the code available online,46 together with the trained
model, for additional details on the network implementation.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the ability of our model to

extract the vibrational spectrum, Im(χ(3)R (ω)), from measured B-
CARS spectra. We used pure solvents, held in a 1 mm-thick quartz
cuvette, as test samples. Figure 5 reports the B-CARS measurement
on acetone. From the spectrum, it is clear that the vibrational fea-
tures in the LWN region are heavily distorted by the NRB contribu-
tion, while in the HWN region, around 2900 cm−1, its contribution
is reduced. These vibrations, in fact, are excited by the 1500 nm
component of the Stokes beam, which lies in the tail of the WLC
spectral lobe and therefore has a lower spectral density. The red
curve in Fig. 5 corresponds to Im(χ(3)R (ω)), predicted by the Spec-
Net. The model is able to accurately retrieve all the vibrational fea-
tures present in the spectrum. Notably, some of the peaks in the
fingerprint region are very small, even if their presence is clear by
looking at the CARS spectrum. This effect is due to the interfer-
ence term of Eq. (1) that results in a heterodyne amplification to
the signal. All the retrieved peaks are in agreement with sponta-
neous Raman spectra in the literature.51,52 The correspondence for
the most clear peaks is reported in Table I. Due to the limited spectral
resolution, not all the features are clearly resolved, especially in con-
gested regions (e.g., around 2900 cm−1). Nevertheless, it is possible
to see the shoulder-like shapes that correspond to those vibrational
modes. Some spurious contributions are retrieved in the so-called
“silent-region” of the vibrational spectrum, between 2000 cm−1 and

FIG. 5. Measured B-CARS (blue) and retrieved (red) vibrational spectrum of ace-
tone. Gray vertical lines represent the Raman resonances for acetone reported in
Ref. 51.

TABLE I. Amplitude, resonance, and linewidths of the retrieved vibrational features of
acetone.

Frequency Amplitude Linewidth
(cm−1) (a.u.) (cm−1) Assignment

787 0.71 23 CC2 symmetrical stretch
1066 0.09 25 CH3 rock
1217 0.07 36 CC2 anti-symmetrical stretch
1427 0.13 43 CH3 asymmetrical stretch
1703 0.28 28 C=O stretch
2914 1 35 CH3 stretch

2500 cm−1, due to some oscillatory features in the WLC spectrum
that are translated to the NRB shape. The small peaks expected at
393 cm−1, 493 cm−1, and 530 cm−1 are overwhelmed by a strong
contribution around 467 cm−1, which is attributed to the quartz53,54

FIG. 6. Measured B-CARS spectra of different solvents
(blue curves) reported with a small vertical offset and
retrieved Im(χ(3)

R (ω)) (red curves).
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of the cuvette, excited together with the sample due to the long work-
ing distance (≈1 cm) of the employed objectives, resulting in a long
Rayleigh range. This contribution is also present in the measure-
ments performed on other solvents (shown in Fig. 6) with different
amplitudes due to variations in the alignment of the B-CARS signal
in the spectrometer.

To validate the capability of SpecNet to handle different NRB
spectral shapes, the experimental conditions under which each sol-
vent was measured were slightly modified (e.g., by longitudinal
translation of the YAG crystal used for WLC generation). The
results show that the model is able to correctly retrieve Im(χ(3)R (ω))
independently of the details of the NRB.

V. CONCLUSIONS
We presented a deep learning model called SpecNet that

enables one to remove the non-resonant background contribution
from broadband CARS spectra. The model is built as a convolutional
neural network with seven hidden layers. The training was per-
formed on a simulated dataset that allows a high generalization capa-
bility to different spectral shapes of the non-resonant background.
We presented an experimental setup for broadband CARS, cover-
ing both the fingerprint region and the high wavenumber region.
The performances of SpecNet were assessed on real measured data,
which the model was able to correctly process retrieving all the rele-
vant vibrational peaks of different solvent specimens. Once trained,
the model retrieves Im(χ(3)R (ω)) from the CARS spectrum in a
time of 0.1 ms, which is faster than the time required to record the
spectrum, and does not need the independent measurement of a
reference sample or any manual intervention by the operator. We
believe that our approach will significantly speed-up B-CARS imag-
ing, allowing for an on-line retrieval of the vibrational features. This
could be implemented, for example, in parallel during the integra-
tion time of the next pixel so that no time is lost for the spectral
processing at all, thus considerably reducing the processing time26

of CARS hyperspectral images.

ACKNOWLEDGMENTS
This work was supported by the European Research Council

Consolidator Grant VIBRA (Grant No. ERC-2014-CoG 648615),
the Horizon2020 GRAPHENE Flagship (881603), the Regione
Lombardia project NEWMED (Grant No. POR FESR 2014-
2020), and “Coherent H2 Raman Metrology” CH2ROME project
(R164WYYR8N).

APPENDIX A: SIMULATED SPECTRA
The procedure to build the input vector x is here described in

some detail. The SpecNet model accepts simulated and measured
CARS spectra whose intensity I ∈ [0, 1]. The frequencies are defined
in a normalized interval ν̃ ∈ [0, 1], where

ν̃ = ν − νmax

νmax − νmin
,

where νmix and νmax are the frequencies corresponding to the
extrema of the CARS spectrum (see Sec. II). The generation of a

simulated broadband CARS spectrum requires the sampling of sev-
eral random numbers, starting from the number N of Lorentzian
peaks that are present in the spectrum, whose maximum is fixed to
15,

N ∼ U(1, 15),

where U denotes the uniform distribution. For each Lorentzian
component, the amplitude, the resonance frequency, and the
linewidth are sampled from the following distributions:

Ai ∼ U(0.01, 1),
Ωi ∼ U(0, 1),
Γi ∼ U(0.001, 0.008)

with i = 1 . . . N. The range for the linewidths is chosen to cover
the typical vibrational linewidth range 1 cm−1–20 cm−1 to the nor-
malized frequency axis. Next, the simulated χ(3)R (ν̃) is computed
through Eq. (2) and normalized by max∣χR(ν̃)∣. The normalization
ensures that

max(Im(χ(3)R )) = 1.

To avoid restrictions to the flexibility of the model, χ(3)R is multiplied
by a random number r ∼ U(0.3, 1) to ensure that diverse examples
of vibrational amplitudes are present in the training set.

χNR(ν̃) is simulated as the product of two sigmoid functions,

χNR(ν̃) = σ1(ν̃) σ2(ν̃) (A1)

with

σi(ν̃) =
1

1 + exp(−(ν̃ − ci) si)
.

The parameters {ci, si, i = 1, 2} are randomly sampled in order to
generate a non-uniform background distribution across the spectral
range, whose amplitude is in the (0, 1) range. The variability of the
background shapes that are generated through Eq. (A1) ensures a
high generalization capability of the model. Refer to the code46 for
full numerical details.

Finally, the input vector x is computed as

x =
∣r χ(3)R (ν̃) + χ(3)NR (ν̃)∣

2

2
+ ε(ν̃), (A2)

where ε is the noise component, normally distributed ε ∼ N(0,
s), where s is chosen to properly mimic real experimental noise.46

The factor 2 normalizes the simulated spectrum to the maximum
possible value, which is obtained for a vibrational resonance ν̃res if

max(Im(χ(3)R (ν̃res))) = 1

and

max(χ(3)NR ) = 1,

being Re(χ(3)R (ν̃res)) = 0. This normalization ensures that the spec-
trum intensity is comprised in the (0, 1) range without fixing the
maximum value of each spectrum to 1. This is crucial to make the
model be able to extract Im(χR) from intensity-related spectra, with-
out losing the information encoded in the peak relative intensities.
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The corresponding imaginary part, which represents the quantity to
be output by the model, is given by

y = Im(r χR). (A3)

APPENDIX B: SNR ANALYSIS
The SpecNet model is able to retrieve small vibrational features,

as shown in Figs. 5 and 6. There are two factors that limit the cor-
rect retrieval, namely, the amount of NRB and the random noise
that affects the measurements. If χ(3)NR ≫ χ(3)R , then the shape of
the vibrational feature may be completely overwhelmed, prevent-
ing the correct retrieval. On the other hand, noisy environmental
conditions may cause the model to detect false peaks, producing a
noisy outcome. To quantitatively assess the incidence of these two

FIG. 7. Analysis of the retrieval. In each box are reported the simulated spectrum
(blue curve), the true corresponding spontaneous Raman spectrum (green curve),
and the one retrieved by the model (red curve). The Mean Square Error (MSE) is
reported in each panel to evaluate the performances of the model for each noise
configuration.

factors on the retrieval capability of the deep learning model, we
performed a study on a simulated spectrum with a single feature
as a function of the ratio R = χ(3)R /χ

(3)
NR , computed in resonance (ω

= Ω), and the rms noise added to the spectrum. The goodness of
the predicted outcome is evaluated as the mean square error (MSE).
In Fig. 7 are reported the results. The Gaussian noise varies along
the columns, while R varies along the rows. For each configuration,
the corresponding MSE between the true and retrieved spectra is
reported. This analysis shows that even for very noisy spectral traces,
the retrieval works fine, provided that the vibrational signal is not
completely overwhelmed by NRB.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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