
1

EDUARDO FERREIRA FRANCO

A dynamical evaluation framework for technical debt management in

software maintenance process

São Paulo / Roma

2020

2

EDUARDO FERREIRA FRANCO

A dynamical evaluation framework for technical debt management in

software maintenance process

Programs: Computer Engineering and Operations

Research

Advisors: Prof. Kechi Hirama and Prof. Paolo

Dell’Olmo

São Paulo / Roma

2020

3

EDUARDO FERREIRA FRANCO

Original Version

A dynamical evaluation framework for technical debt management in

software maintenance process

Thesis presented to the Polytechnique School of

Universidade de São Paulo and the Università degli

Studi di Roma “La Sapienza” as a partial requirement for

obtaining the title of Doctor of Science.

Programs: Computer Engineering and Operations

Research

Advisors: Prof. Kechi Hirama and Prof. Paolo

Dell’Olmo

São Paulo / Roma

2020

4

I authorize the reproduction and total or partial dissemination of this work, by any conventional

or electronic means, for the purposes of study and research, as long as the source is mentioned.

Cataloging in publication

Franco, Eduardo Ferreira
A dynamical evaluation framework for technical debt management in

software maintenance process / E. F. Franco – São Paulo, 2020.
193 p.

Thesis (Doctorate) - Polytechnique School of Universidade de São Paulo.

Departamento de Engenharia de Computação e Sistemas Digitais.

1.Technical debt 2.Software maintenance 3.Software evolution
4.Software sustainability 5. System dynamics I.Universidade de São Paulo.
Escola Politécnica. Departamento de Engenharia de Computação e Sistemas
Digitais II.t.

5

A sign that the Software Engineering profession has matured will be that we lose our

preoccupation with the first release and focus on the long-term health of our products.

Researchers and practitioners must change their perception of the problems of software

development. Only then will Software Engineering deserve to be called Engineering.

(Parnas, 1994, p. 279)

6

I dedicate this dissertation to my daughter, Beatriz;

my wife, Paula; my sisters, Luciana and Gabriela;

my mother, Cristina; and my father, Laércio.

7

Acknowledgements

At last, this journey has come to an end. Without a doubt, it was more intense and

challenging than I initially imagined. However, for countless reasons, and at the right moments,

I had the company of people, or I had the opportunity to meet others, who were essential for

defining my path and for encouraging me to pursue it. At the same time, these people inspired

me not to be satisfied with the bare minimum, but always to look for more, to get out of my

comfort zone.

First, I am grateful to my beloved wife, Paula, who jumped on board this journey with

me. She was the first to buy into my “daydream” and started to motivate and encourage me to

start this project a few years ago. She was always by my side, during both joyful moments and

hard times. I am also thankful for my young little princess, Beatriz; she was not even born when

this journey began, but has been my biggest inspiration from the first day of her life and the

reason I have kept going and not given up.

I am forever grateful to Professor Laércio Joel Franco, my father, from whom I learned

my first lessons and for whom I have deep and lasting admiration. It was him that fostered my

interest in the endless pursuit of knowledge. Words are also insufficient to express my gratitude

to my mother, Maria Cristina Ferreira Franco, and my two sisters, Luciana Ferreira Franco and

Gabriela Ferreira Franco. They have always unconditionally supported me, and this has been

no different during my studies.

I am deeply thankful to Professor Kechi Hirama, my advisor, for the trust he placed in

me and for his guidance and support throughout this journey. His constant interventions and

directions were crucial for the completion of this work.

I thank Professors Joaquim Santos and Selma Shin Shimizu Melnikoff for their valuable

comments during the qualifying exam. I also thank Professor Joaquim Santos for sharing his

experience and enthusiasm on system dynamics; he continuously challenged me and gave me

valuable input that shaped this research.

During my doctorate, I had the privilege of undertaking a sandwich period in Italy.

Professor Stefano Armenia played a central role in making this period so successful. He

welcomed me at the Sapienza University of Rome and introduced me to the international

research scenario while guiding my research and offering insightful feedback. I am also

8

thankful to Professor Paolo Dell'Olmo for agreeing to be my supervisor at Sapienza. He was

always interested and available to listen to my ideas, and encouraged me to move forward. I

thank Professor Salvatore Monaco, who initially supervised my mobility period and gave me

all the support needed to establish my double degree program between Sapienza and USP.

I thank all the friends who have contributed ideas, support, and encouragement from the

beginning of this project: Hamilton Carvalho, Bassiro Só, and Thyago Nepomuceno.

Finally, I thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES), the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), and the European

Erasmus Mundus Action 2 – Strand 1 (EMA2 – STRAND 1), under which the EBW+ Project

was held, for providing me with research fellowships.

9

Abstract

FRANCO, E. F. A dynamical evaluation framework for technical debt management in

software maintenance process. 2020. Thesis (Doctorate) – Polytechnique School of

Universidade de São Paulo and the Università degli Studi di Roma “La Sapienza”, 2020.

Over the years, initiatives involving software products have enabled increasing maintenance

costs to keep them operating and meeting the needs of their users. During the lifetime of these

software-based systems, development and maintenance activities inevitably introduce technical

violations (some of which can be considered items of technical debt principal), whether

intentional or not. If these violations are not adequately addressed, they can negatively impact

the software product’s maintainability and its capacity to adapt and evolve. In this context, there

is growing motivation from the software engineering community, and from those directly

involved in decision-making related to software investments, to assess and anticipate the

impacts of resource allocation policies (investments) in the various maintenance activity types

(perfective, corrective, and preventive). The aim is to preserve satisfactory technical quality

characteristics of the software and, at the same time, maintain the cost and the tangible software

asset itself at levels acceptable to organizations. Software-based systems have often been in

operation for long period, which makes assessing how to allocate resources to maintenance a

non-trivial and often complex activity. In line with these decision-making challenges, the

modeling of the complexity, mainly with reference to the dynamic dimension, is gaining

attention in terms of its use as a support tool for assessing the impact of various decisions on

maintenance investments regarding the long-term effects. These effects inevitability define the

evolutionary path of the software product, which goes through numerous iterations throughout

its lifetime. The objective of this research is twofold. First, it aims to propose and develop a

simulation model that enable us to expand knowledge in the area of software maintenance and

technical debt management. Second, it aims to explore and evaluate the impact of different

resource allocation policies among the different types of maintenance activities on the

evolutionary behavior of software systems and their quality attributes related to functional

suitability, reliability, and maintainability, together with economic aspects related to cost and

tangible assets. The proposed simulation model was developed and tested using the system

dynamics approach and, together with computational simulations, was used to evaluate three

different resource allocation scenarios focused on (1) perfective maintenance, (2) preventive

10

maintenance, and (3) corrective maintenance. The data obtained from the three scenarios

demonstrate counter-intuitive results. For example, focusing on preventive or corrective

maintenance can cause, in the long run, the number of functional requirements in operation to

be higher than when focusing exclusively on the development of functional requirements

(perfective maintenance). However, the results obtained cannot be easily generalized. They

depend on countless factors and variables that must be analyzed on a case-by-case basis,

depending on context-specific characteristics related to each decision made regarding

investments in software maintenance.

Keywords: Technical debt. Software maintenance. Software evolution. Software sustainability.

System dynamics.

11

Resumo

FRANCO, E. F. A dynamical evaluation framework for technical debt management in

software maintenance process. 2020. Thesis (Doctorate) – Polytechnique School of

Universidade de São Paulo and the Università degli Studi di Roma “La Sapienza”, 2020.

Ao longo dos anos, iniciativas envolvendo produtos de software tem apresentado custos

crescentes para mantê-los operando e satisfazendo as necessidades de seus usuários. Durante o

tempo de vida desses sistemas baseados em software, as atividades de desenvolvimento e

manutenção inevitavelmente introduzem violações técnicas (algumas dessas podendo ser

consideradas itens da dívida técnica). Essas violações podem ser geradas intencionalmente ou

não e, se não forem tradadas, podem impactar negativamente a manutenibilidade e capacidade

de adaptação e evolução do software com o passar do tempo. Nesse contexto, existe um

interesse crescente da comunidade de engenharia de software e daqueles envolvidos

diretamente nas tomadas de decisões relacionadas aos investimentos em manutenção de

software. Esse interesse existe em avaliar e antecipar os impactos causados pelas políticas de

alocações de recursos (investimentos) nas diversas modalidades de manutenção (perfectiva,

corretiva e preventiva) de modo a preservar níveis satisfatórios de qualidade das características

técnicas do software e, ao mesmo tempo, manter o custo e os ativos tangíveis de software em

patamares aceitáveis para as organizações. Atualmente, os sistemas baseados em software têm

operado por períodos longos e cada vez maiores, o que torna a avaliação de como alocar os

recursos uma atividade não trivial e muitas vezes complexa. Alinhado a essas expectativas, a

modelagem da complexidade, em especial pela dimensão dinâmica, vem ganhando atenção e

sendo considerada como uma ferramenta de suporte capaz de avaliar o impacto de longo prazo

de possíveis tomadas de decisão sobre investimentos em manutenção de software, que

inevitavelmente definem o caminho evolucionário do produto de software que sofre inúmeras

interferências ao longo do seu ciclo de vida. O objetivo deste trabalho de pesquisa foi propor e

desenvolver um modelo de simulação que permitisse ampliar o conhecimento na área de

manutenção de software e, ao mesmo tempo, explorar e avaliar o impacto que diferentes

políticas de alocação de recursos em manutenção podem causar no comportamento evolutivo

dos sistemas baseados em software e nos seus atributos de qualidade relacionados a adequação

funcional, disponibilidade e manutenibilidade, juntamente com aspectos econômicos

relacionados a custo e ativos tangíveis. O modelo de simulação proposto foi construído e testado

12

utilizando a abordagem de dinâmica de sistemas e, junto com simulações computacionais,

permitiu avaliar três cenários distintos de alocação de recursos: o primeiro com foco na

manutenção perfectiva, o segundo com foco na manutenção preventiva e o terceiro com foco

na manutenção corretiva. Os dados obtidos a partir dos três cenários simulados demonstraram

resultados contra intuitivos. Por exemplo, focar na manutenção preventiva ou corretiva pode

fazer com que, no longo prazo, o número de requisitos funcionais em operação seja maior do

que o obtido quando se foca exclusivamente no desenvolvimento de requisitos funcionais

(manutenção perfectiva). Entretanto, os resultados obtidos não podem ser analisados de forma

objetiva e conclusiva. Eles dependem de inúmeros fatores e variáveis que devem ser analisados

caso a caso, dependendo do contexto único de cada tomada de decisão em investimentos em

manutenção de software.

Palavras-chave: Manutenção de software. Dívida técnica. Evolução de software.

Sustentabilidade de software. Dinâmica de sistemas.

13

Astratto

FRANCO, E. F. A dynamical evaluation framework for technical debt management in

software maintenance process. 2020. Thesis (Doctorate) – Polytechnique School of

Universidade de São Paulo and the Università degli Studi di Roma “La Sapienza”, 2020.

Nel corso degli anni, le iniziative relative ai prodotti software hanno consentito di aumentare i

costi di manutenzione per mantenerli operativi e soddisfare le esigenze dei loro utenti. Durante

la vita di questi sistemi basati su software, le attività di sviluppo e manutenzione introducono

inevitabilmente violazioni tecniche (alcune delle quali possono essere considerate voci di debito

tecnico), intenzionali o meno. Se queste violazioni non vengono adeguatamente affrontate,

possono avere un impatto negativo sulla manutenibilità del prodotto software e sulla sua

capacità di adattamento ed evoluzione. In questo contesto, vi è una crescente motivazione da

parte della comunità dell'ingegneria del software e di coloro che sono direttamente coinvolti nel

processo decisionale relativo agli investimenti nel software, per valutare e anticipare gli impatti

delle politiche di allocazione delle risorse (investimenti) nei vari tipi di attività di manutenzione

(perfetti, correttivo e preventivo). L'obiettivo è preservare le soddisfacenti caratteristiche di

qualità tecnica del software e, allo stesso tempo, mantenere i costi e la risorsa software tangibile

stessa a livelli accettabili per le organizzazioni. I sistemi basati su software sono stati spesso in

funzione per un lungo periodo, il che rende la valutazione di come allocare le risorse per la

manutenzione un'attività non banale e spesso complessa. In linea con queste sfide decisionali,

la modellizzazione della complessità, principalmente in riferimento alla dimensione dinamica,

sta attirando l'attenzione in termini di utilizzo come strumento di supporto per valutare l'impatto

di varie decisioni sugli investimenti di manutenzione a lungo termine effetti. Questi inevitabili

effetti definiscono il percorso evolutivo del prodotto software, che attraversa numerose

iterazioni per tutta la sua vita. L'obiettivo di questa ricerca è duplice. Innanzitutto, mira a

proporre e sviluppare un modello di simulazione che ci consenta di espandere le conoscenze

nel settore della manutenzione del software e della gestione del debito tecnico. In secondo

luogo, mira a esplorare e valutare l'impatto delle diverse politiche di allocazione delle risorse

tra i diversi tipi di attività di manutenzione sul comportamento evolutivo dei sistemi software e

i loro attributi di qualità relativi all'idoneità funzionale, affidabilità e manutenibilità, insieme

agli aspetti economici relativi ai costi e beni materiali. Il modello di simulazione proposto è

stato sviluppato e testato utilizzando l'approccio della dinamica del sistema e, insieme alle

14

simulazioni computazionali, è stato utilizzato per valutare tre diversi scenari di allocazione delle

risorse incentrati su (1) manutenzione perfetta, (2) manutenzione preventiva e (3) manutenzione

correttiva. I dati ottenuti dai tre scenari dimostrano risultati controintuitivi. Ad esempio,

concentrarsi sulla manutenzione preventiva o correttiva può comportare, a lungo termine, un

numero di requisiti funzionali in funzione superiore rispetto a quando si concentra

esclusivamente sullo sviluppo di requisiti funzionali (manutenzione perfetta). Tuttavia, i

risultati ottenuti non possono essere facilmente generalizzati. Dipendono da innumerevoli

fattori e variabili che devono essere analizzati caso per caso, a seconda delle caratteristiche

specifiche del contesto relative a ciascuna decisione presa in merito agli investimenti nella

manutenzione del software.

Parole chiave: Manutenzione del software. Debito tecnico. Evoluzione del software.

Sostenibilità del software. Dinamica del sistema.

15

List of figures

Page #

Figure 1. Percentage of effort expended on hardware, development, and maintenance 34

Figure 2. Interaction of a software product with the operating environment. 36

Figure 3. IBM OS/360 growth throughout releases ... 38

Figure 4. Types of software product maintenance ... 40

Figure 5. Evolution history of software product quality measurement models........................ 41

Figure 6. Hierarchical structure of the SQuaRE quality model .. 42

Figure 7. Software product quality mode ... 43

Figure 8. GQM method’s hierarchical evaluation structure ... 49

Figure 9. System dynamics’ iterative modeling process .. 56

Figure 10. Examples of the elements of a causal loop diagram ... 58

Figure 11. Logical sequence of formal steps of model evaluation ... 62

Figure 12. Theoretical elements of the proposed framework ... 65

Figure 13. Overview of the proposed dynamical evaluation framework 68

Figure 14. Maintenance costs behavior over time .. 73

Figure 15. Technical debt (TD) principal and maintenance effort behavior overtime 74

Figure 16. Changes to software maintainability when the effort employed remains constant . 76

Figure 17. Change of effort employed and the software maintainability when change rate is

constant ... 76

Figure 18. Software system’s functionality growth over time ... 77

Figure 19. Expected growth in higher (left) and lower (right) technical debt scenarios 79

Figure 20. Maintenance policies variations and development investments decisions 80

Figure 21. Impact of technical debt interest due to technical debt item’s repayment 82

Figure 22. Subsystem diagram of the proposed model. ... 83

Figure 23. Continuing growth feedback loop ... 86

Figure 24. Increasing complexity feedback loop.. 87

Figure 25. Requirements gold plating feedback structure .. 88

Figure 26. Declining quality feedback structure .. 90

Figure 27. Continuing changes feedback structure .. 91

Figure 28.Work harder feedback structure ... 92

Figure 29. Haste makes waste feedback structure .. 94

16

Figure 30. Work smarter feedback structure .. 96

Figure 31. Self-regulation feedback structure .. 98

Figure 32. Perfective maintenance activities subsystem’s stock and flow diagram 102

Figure 33. Corrective and preventive maintenance subsystem’s stock and flow diagram 104

Figure 34. Resource management subsystem’s stock and flow diagram 108

Figure 35. Goal evaluation subsystem stock and flow diagram ... 110

Figure 36. Nominal versus current perfective maintenance productivity for Scenario #1 117

Figure 37. Functional requirements growth pattern for Scenario #1 118

Figure 38. Resource allocation fractions for Scenario #1 .. 119

Figure 39. Preventive and corrective violations density for Scenario #1 120

Figure 40. Tangible and perceived asset, and opportunity costs for Scenario #1 121

Figure 41. Technical debt's principal and interest for Scenario #1 .. 122

Figure 42. Relative debt to current asset for Scenario #1 ... 123

Figure 43. Nominal versus current perfective maintenance productivity for Scenario #2 124

Figure 44.Functional requirements growth pattern for Scenario #2 125

Figure 45. Resource allocation fractions for Scenario #2 .. 126

Figure 46. Preventive and corrective violations density for Scenario #2 126

Figure 47. Tangible and perceived asset, and opportunity costs for Scenario #2 127

Figure 48. Technical debt's principal and interest for Scenario #2 .. 128

Figure 49. Relative debt to current asset for Scenario #2 ... 129

Figure 50. Nominal versus current perfective maintenance productivity for Scenario #3 130

Figure 51. Functional requirements growth pattern for Scenario #3 131

Figure 52. Resource allocation fractions for Scenario #3 .. 132

Figure 53. Preventive and corrective violations density for Scenario #3 132

Figure 54. Tangible and perceived asset, and opportunity costs for Scenario #3 133

Figure 55. Technical debt's principal and interest for Scenario #3 .. 134

Figure 56. Relative debt to current asset for Scenario #3 ... 135

Figure 57. Comparisons of the results of the simulated scenarios ... 138

Figure 58. Example of software development framework ... 166

Figure 59. Example of a reinforcement loop for continuous software growth....................... 167

Figure 60. Example of balancing mesh for hiring people .. 168

Figure 61. Structure of delay in the assimilation of new employees 169

Figure 62. Example of table function related to working hours vs. productivity 171

Figure 63. Example of the software development process ... 172

17

Figure 64. Maintenance productivity variance due to size of base system and cyclomatic

complexity .. 190

18

List of tables

Page #

Table 1. Average lifetime of software applications still in use (years) 26

Table 2. Lehman’s laws of software evolution... 37

Table 3. Software sustainability dimensions .. 47

Table 4. Goal/Question/Metric model example ... 50

Table 5. Technical sustainability goals question, and metrics structure. 69

Table 6. Economic sustainability goals question, and metrics structure 70

Table 7. Description of the proposed model’s subsystems .. 83

Table 8. Boundary chart of the proposed model .. 84

Table 9. Summary of the tests performed on the model ... 111

Table 10. Model’s initial conditions for Scenario #1 ... 116

Table 11. Model’s initial conditions for Scenario #2. .. 124

Table 12. Model’s initial conditions for Scenario #3. .. 130

Table 13. Final conditions of the model’s elements for the three simulated scenarios (120

months) ... 136

Table 14. Final conditions of the model’s elements for the three simulated scenarios (60

months) ... 137

Table 15. System dynamics model's elements ... 160

Table 16. Polarity of relations and definitions, with examples. ... 163

Table 17. Common modes of behavior and their feedback structures 164

Table 18. Software defects per function point by industry segment 188

Table 19. Software defect origin percent by industry segment .. 188

Table 20. Approximate U.S. productivity ranges by of applications (data expressed in function

points per staff month) .. 189

Table 21. Approximate productivity rates by size of application (data expressed in terms of

function points per staff month) ... 189

Table 22. U.S. average productivity in function points per staff month 190

Table 23. Application probable requirements “creep” (data expressed in percentage of original

requirements) .. 191

Table 24. Average rate of annual enhancements (data is based on percentage change of

application function points) .. 191

19

Table 25. Defect repairs time by defect origins.. 192

Table 26. U.S. average for delivered defects per function point .. 193

20

Table of contents

Page #

1. Introduction .. 22

1.1 Motivation ... 23

1.2 Objective ... 29

1.3 Justification ... 30

1.4 Document structure ... 33

2. Background ... 34

2.1 Software evolution .. 34

2.2 Software maintenance ... 39

2.3 Software quality models ... 41

2.4 Technical debt ... 44

2.5 Software sustainability .. 46

2.6 Static analysis ... 48

2.7 Goal, Question, Metric method ... 49

2.8 Chapter summary .. 51

3. Materials and methods .. 53

3.1 Research questions .. 53

3.2 Research objectives ... 53

3.3 Research process ... 54

3.3.1 System dynamics .. 55

3.4 Chapter summary .. 63

4. The Dynamical Evaluation Framework .. 65

4.1 Hierarchical software sustainability evaluation structure 69

4.1.1 Technical sustainability evaluation ... 69

4.1.2 Economic sustainability evaluation .. 70

4.2 Proposed simulation model ... 72

4.2.1 Problem articulation and dynamical hypothesis 72

4.2.2 Model formulation .. 100

4.2.3 Model testing .. 111

4.2.4 Policy formulation and evaluation .. 113

4.3 Chapter summary .. 113

21

5. Results and discussion .. 115

5.1 Model evaluation .. 115

5.1.1 Scenario #1: Perfective maintenance focus .. 115

5.1.2 Scenario #2: Preventive maintenance focus ... 123

5.1.3 Scenario #3: Corrective maintenance focus .. 129

5.2 Scenarios comparison ... 135

5.3 Chapter summary .. 139

6. Conclusions .. 140

6.1 Addressing the proposed research questions .. 140

6.2 Contributions .. 143

6.3 Areas of future research .. 144

References .. 146

Appendix A – System dynamics tools and elements .. 160

A.1 Elements and notations ... 160

A.2 Mathematical formulation ... 162

A.3 Common behaviors and their corresponding feedback structures 164

A.4 Basic patterns and equations ... 165

A.4.1 Constant flow and one stock ... 166

A.4.2 Variable flow and one stock ... 166

A.4.3 Reinforcing loop ... 167

A.4.4 Balancing loop .. 168

A.4.5 Delay ... 169

A.4.6 Table function ... 170

A.5 Example .. 171

Appendix B – Model documentation ... 173

B.1 Perfective maintenance subsystem ... 173

B.2 Corrective & preventive maintenance subsystem ... 176

B.3 Resource allocation sector .. 178

B.4 Goal evaluation sector .. 182

Appendix C – Secondary data used .. 188

22

1. Introduction

This work explores the influence, within software maintenance activities, that different

resource allocation policies have on software product quality attributes throughout the phases

of operation, maintenance and deactivation. To evaluate the impact of different scenarios, a

model constructed according to the systems dynamics approach (Forrester, 1961, 1969, 1971)

is used in conjunction with computational simulations.

The unit of analysis corresponds to the set of elements comprising the software

maintenance process, the software product’s quality attributes, and the influences that the

operating environment has on the dynamic behaviors of those quality attributes throughout the

software product’s lifetime.

Among the existing different types of software systems, this research investigates those

whose use is embedded in corporate environments and that “operate in or address a problem or

activities of the real world” (Lehman & Ramil, 2006, p. 12). They automate human or social

activities and make assumptions about the real world, and they interact with it by providing or

requesting services, thereby becoming an integral part of the domains within they operate and

that they address.

In general, software products of this type are known as “E-type” software and represent

most current operating software systems (Lehman, 1980, 1991, 1996b; Lehman & Ramil,

2003). The “E” stands for evolutionary as they must be adapted to fit any change occurring in

the real world. As its operational context is dynamic, “E-type” software must be continuously

adapted to remain faithful to its domain, and its application purpose, compatible with its

operating environment, and relevant to the objectives and expectations of its stakeholders (Cook

et al., 2006).

Another characteristic is that such software becomes an integral part of the domain in

which it operates, influencing and being influenced by the environment. In order to remain

compatible with the inevitable changes in applications, domains, and properties, this software

must be continually modified and updated – that is, it must evolve (Lehman & Ramil, 2006).

23

1.1 Motivation

It is not surprising that currently the software inventory owned by a company usually

represents a significant share of its assets (Wiederhold, 2006); thus the company has a vital

interest in preserving and maximizing the investments made to build its software libraries and

to optimize future ones.

The dissemination and use of software products in corporate environments became a

reality some decades ago. Some authors consider software products no longer as competitive

advantages, but as commodities (Carr, 2003). The wide dissemination of software has resulted

in organizations becoming operationally, managerially, and strategically dependent on

software-based information systems (Melville et al., 2004). This phenomenon has been

accelerated both by increased competitiveness (Bharadwaj et al., 2013; Drnevich & Croson,

2013), and by the unimaginable amount of data and information required for decision making

within an increasingly reduced response time (Chen et al., 2012).

This increasing dependence demands large investments that are frequently associated

with greater expectations of positive results and higher returns on the investments. Those who

finance projects involving software products aim to be successful at the end of the software’s

development, deployment, and operation (McKinsey & Company, 2011), regardless of the

current common understanding of what success and completion of these initiatives mean.

Despite these expectations, the literature reports failures of such software initiatives,

presenting cases where the software was unable to deliver the expected benefits and recorded

disappointing performance indexes. Although controversial, the data presented by the “Chaos

Report” (Standish Group International, 2013), for the period from 1994 to 2012 show that, on

average, 65% of the evaluated projects failed and were canceled before completion (which is

termed “failed”) or had some type of change in relation to the initially anticipated term, cost, or

scope (which is termed “challenged”).

Challenges occur in software and information system projects in various contexts,

including complex information system deployments such as Enterprise Resource Planning

(ERP) (Hong & Kim, 2002), international software development (Ahsan & Gunawan, 2010),

military IT projects (Royal Academy of Engineering, 2004), and the British government’s

initiative to automate health records that extended from 2000 to 2010 and was abandoned after

costs reached the order of US$5–10 billion (Sommerville et al., 2012).

24

Consequently, there is an increasing trend of research on complex projects (Bosch-

Rekveldt et al., 2011; Johnson, 2013) and the dynamic aspect stands out among the dimensions

that characterize complexity (Geraldi et al., 2010).

Although widely cited, the “Chaos Report” is also questioned and criticized (Eveleens

& Verhoef, 2010; Glass, 2005, 2006; Jørgensen & Moløkken-Østvold, 2006). Until 2014, this

report adopted three criteria for defining and evaluating success: time, cost, and quality (also

known as the “iron triangle”). In other words, to be successful a project had to adhere to the

initial forecast for these three variables.

The iron triangle, which has been widely used as the criteria for evaluating project

success, has been discussed and expanded in recent years in light of various considerations. For

example, it has been argued that success evaluation criteria vary from project to project due to

difference in size, complexity, and uniqueness. Müller and Turner (2007), and several authors

have suggested that success consists of a multi-dimensional and inter-related construct

(Carvalho & Rabechini Junior, 2015; Shenhar et al., 2001). These dimensions can include

project efficiency, impacts on the team, impacts on the customer, a distinction between business

and direct success, and preparation for the future (Shenhar et al., 2001) and, more recently,

sustainability dimensions have also been discussed (Carvalho & Rabechini Junior, 2015, 2017).

There is an understanding that software system projects are broader than just putting

artifacts into operation. The introduction of a software system alters the structure and culture

of an organization; in addition, it changes the way people think and work (Dwivedi et al., 2014).

The adoption of a software system also has political implications, since it has the potential to

allow some situations and restrict others, causing some people to win and others to lose

influence and power (Orlikowski & Robey, 1991). These implications indicate that the main

issues associated with the success of software projects are related to political, cultural, and

personal factors (Markus et al., 2000).

Defining the success of software system initiatives is also a non-trivial activity.

Consequently, there is no consensus in the research community about how to define and

measure it (Cecez-Kecmanovic et al., 2014; Seddon et al., 2002).

Among the various proposed models in the scientific literature for evaluating the success

of initiatives of this nature, an especially prominent and influential one was proposed by

DeLone and McLean (1992). Revised 10 years later following contributions and critiques from

the scientific community (DeLone & McLean, 2003), the model proposes a user-centered

25

approach to evaluate success, which is defined as a dependent variable of six interdependent

dimensions: quality of the system, quality of information; quality of service; intention to use

and use of the system; user satisfaction; and benefits generated.

In relation to the analysis of failures, on the other hand, Sauer (1993) proposed that a

software system can only be considered a failure when its development or its operation is

canceled. Based on this criterion of failure, software-based systems resemble natural systems,

where observed behaviors are explained by their survival goals. The survival of a software

system is obtained through the continuous supply of resources (e.g., finances, people) that

support the continuity of its operation, and thus it cannot be considered a failure while

continuing to attract those necessary resources (Yeo, 2002).

Comparing the success of software systems with the survival of natural systems is also

supported by the fact that their early life cycle of design, construction, testing, and deployment

constitutes a small fraction of their entire lifetime and total investments. Lehman (1980) found

that of the total investments made in software in the United States, 70% of the resources were

destined for maintenance (which he considered to be any type of change made in the software

after it had begun operation); this figure was later revised to approximately 80% (Glass, 2001;

INCOSE, 2015).

Furthermore,

Table 1 shows that the average lifetime of software products has been growing steadily

over the last few decades (Jones, 2008). The longer life expectancy implies not only greater

investments to ensure that the software contributes to satisfy business and user needs, but also

the challenge of predicting and anticipating the long-term effects in the early stages of software

development and operation.

The higher and constant demand for resources, even after the software system

deployment and operation, has caught the attention of the scientific community, and since the

1970s researchers have begun to investigate the possible causes of the demand for constant

investments even after software development and deployment have been completed (Belady &

Lehman, 1971, 1976; Woodside, 1979). These investigations, along with the advances made in

recent decades, have given rise to a new area of research in software engineering known as

“software evolution”, and to the consolidation of laws of evolution that describe abstractions of

observed behaviors based on models (Lehman, 1980; Lehman & Ramil, 2006).

26

Table 1. Average lifetime of software applications still in use (years)

Type of application 1990 1995 2005

End-user 1.50 2.00 2.00

Web -.- 1.50 5.00

MIS 10.00 15.00 20.00

Outsourced 5.00 7.00 9.00

Systems 5.50 8.00 12.00

Commercial 2.00 2.50 3.80

Military 12.00 16.00 23.00

Average 5.14 7.43 10.69

Source: Adapted from Jones (2008)

Lehman (1980) found that software, like complex natural systems, evolves as responses

and reactions to pressures from the external environment, and that changes in operational,

functional and structural patterns inevitably makes software systems more complex, inflexible

and resistant to changes. To survive, software systems must maintain their adaptability and

ability to change, and the extent to which these are achieved can make all the difference to their

success or failure, profit or loss.

Whether solution is satisfactory also depends on the circumstances during execution or,

more precisely, when the results of the execution are applied. But computing systems

are, in general, tightly and intimately coupled to applications and application domains

that are forever changing. Hence software must evolve, undergoing continuous

adaptation and change. It must be treated as an ever be adapted organism, not as to he

produced once artifact. This fact compounds the problems to be solved in computer

application, a major challenge to implementors and users alike. (Lehman, 1989, p. 5,

emphasis in original)

Interest in the topic of complexity in the research literature on software-based systems

has grown in recent years (Nan, 2011; Sommerville et al., 2012; Whitney & Daniels, 2013),

especially with respect to their dynamic and emergent behaviors (Georgantzas & Katsamakas,

2008; Geraldi et al., 2010). As well as the recent growth of the topic’s popularity among the

software engineering community, the subject has been discussed for decades in other areas of

science (Weaver, 1948).

27

Complex systems are a multidisciplinary subject; therefore, there is not a single and

absolute definition of them. However, some of their characteristics are common to several

existing definitions, according to which complex system are described as being composed of

multiple elements, that interact in a nonlinear way (colloquially, the “whole is greater than the

sum of the parts”), do not have a central control, present emerging behaviors, process

information, and adapt through learning and evolution (Mitchell, 2011).

Some of these characteristics are shared with definitions of complex software-based

systems. For example, Stoyenko (1995) described them as computational systems composed of

multiple components, that interact with external elements (including people), operate in an

uninterrupted and adaptive way, suffer progressive degradation, and produce unpredictable

reactions when subjected to a sequence of unexpected events. These systems have a long

lifetime (years or decades), and during the period of operation the system’s complexity

increases as its components evolve, and as its logical and physical interconnections, its

operational interfaces and its semantics change.

Throughout its life cycle, a software product must adapt and evolve in response to

several external influences. The ability to adapt and evolve depends on the intrinsic

characteristics of its quality attributes, which in turn are determined by the prioritization of the

different types of maintenance activities. The resource allocation in maintenance activities

represents the configuration of a given organization’s policy to respond to external stimuli and

defines the evolutionary path of the organization’s software product, a path that is influenced

and regulated by several factors.

During the software product lifetime, those responsible for its development and

maintenance may violate good practices related to architecture and coding. The “technical debt”

metaphor was created to describe the liabilities accumulated by decisions, whether intentional

or unintentional, to deliver software products with inferior quality to achieve business

objectives (e.g., to shorten delivery schedules). Technical debt refers to the accumulation of

violations caused by decisions that increase the cost associated with software products’

maintenance and reduce the products’ ability to change to meet current and future business

needs (Cunningham, 1993).

An accumulation of technical debt can accelerate the delivery of features to meet

immediate needs. However, this strategy also entails a growing accumulation of unresolved

errors and violations, which lessen the flexibility and ability to modify the software product,

28

increases the cost and time required to carry out the maintenance activities, and, consequently,

reduces the feasibility of keeping the software in operation and its capacity to meet future

demands (Ramasubbu & Kemerer, 2014).

Dynamically complex business contexts make the evaluation of the long-term impacts

of different investment policies, or even the decision about the ideal timing of deactivation of

software products, a non-trivial activity, and they often lead to counterintuitive results because

of the high failure rate.

It is a strategic issue for organizations to systematically assess a priori the impact of

different investment scenarios on maintenance, and to evaluate the ability of the software

product to remain in operation and still able to be modified and adapted to continue to meet

emerging demands.

More exploration of the impact of project variables such as developer skills, development

approach, and user involvement on System Quality is needed to determine the relationships

between the project management tasks and the resulting technical quality of the system.

Further research exploring the impact of project variables such as IT planning, development

approach, project management skills, and domain expertise on the success of resulting

systems is warranted. (Petter et al., 2013, p. 43)

Despite the advances made in recent decades in processing capability, hardware cost

and the application of scientific rigor and engineering to the software development process,

little attention has been given to management aspects (Abdel-Hamid & Madnick, 1989).

The complexity associated with these initiatives is characterized by interactions

between technological components, people, and information, and by organizational issues that

create a dynamically complex context, containing cycles of feedback, accumulations and

temporal delays between cause and effect, and presenting behaviors that are often not trivial

and demand non-intuitive solutions (Georgantzas & Katsamakas, 2008).

An area of research that has sought to address this issue and has contributed to a better

evaluation of scenarios and prediction of possible impacts of proposals for software process

improvements is “Software Process Simulation and Modeling” (SPSM) (Kellner et al., 1999;

Ruiz et al., 2004).

The application of modeling and simulation in software processes is a relatively recent

development when compared to other areas of research (Kellner et al., 1999), but it has

nevertheless attracted interest from researchers (Ali et al., 2014; Zhang et al., 2014). It has been

29

perceived as an approach and a tool capable of assisting in the analysis of complex business

contexts, in the definition and revision of policies, and in carrying out tests and experiments to

analyze scenarios that would often be economically unviable or too expensive to be explored

in the real world.

The research questions that guide the present research are: Why, even after the start of

their operation, do software products require continuous investments in maintenance to

maintain sufficient levels of quality attributes? And how do different configurations of resource

allocation in maintenance activities influence the variation of these attributes throughout their

evolution?

1.2 Objective

The objective of this research is to propose and develop a simulation model (with

equations, parameters, and initial conditions) that enables an increase in knowledge, as well as

the exploration and evaluation of the impact that different resource allocation policies in

maintenance activities have on software systems’ evolutionary behavior and their quality

attributes related to functionality, maintainability and cost throughout the phases of operation

and maintenance.

The proposed model will support the elaboration and evaluation of different

maintenance policies that optimize the compromise between technical debt accumulation,

investment in different types of maintenance (preventive, perfective, and corrective), and the

ability to modify the software product to meet the emerging demands of its users and business.

The construction process of the simulation model aims to broaden the current

knowledge about the problem addressed in this research, through the formalization of its

structure, the causal relationships between the identified elements, and the analysis of emerging

dynamic behavior.

The proposed model is also intended to be a decision-support tool when planning

software product maintenance, allowing decision makers both to evaluate and anticipate

potential impacts of different investment scenarios and to assess desired quality attributes levels

throughout the software product lifetime.

To achieve the main objective of this research, some intermediate results need to be met

with the purpose of understanding:

30

• The cause and effect structure involved in the relationship between the accumulation

of technical debt and the maintenance activities of software products.

• How different resource allocation scenarios in maintenance activities influence

lifespan.

• How different resource allocation scenarios in maintenance activities influence the

behavior over time of quality attributes of software products.

• How the accumulation of technical debt influences the software product’s

maintenance capacity.

• The main delays in information, decision making, and action in the allocation of

resources in maintenance activities throughout the operation and maintenance cycle.

• The decision structure regarding the allocation of resources in maintenance

activities.

• The pressures involved in decision making for resource allocation in different

maintenance activities.

1.3 Justification

The interest of researchers and practitioners in process modeling and simulating has

grown. It has been perceived as an approach that can be used to help the analysis of complex

business contexts, to support the design and evaluation of potential intervention policies, and

to explore hypothetical scenarios that would often be economically unfeasible to explore in the

real world. Although modeling and simulation techniques have long been and widely employed

in various disciplines, their adoption in the areas of software development and process

improvement has been slow (Kellner et al., 1999).

There are several approaches for building models and performing simulations (Petri

nets, agent-based, Monte Carlo, Bayesian networks etc.); however, a literature review exploring

studies published between 1998 and 2012 on the application of simulation in the software

industry indicated that the predominant approach (accounting for approximately 37% of the

reviewed studies) is system dynamics (Ali et al., 2014).

The system dynamics approach was developed in the 1950s, by Jay Forrester (1961) to

study complex business problems and was later expanded to study problems associated with

the sustainability of population growth in urban centers and throughout the world (Forrester,

1969, 1971). In the mid-1980s, studies applying this approach to study the dynamics associated

with software projects began to emerge (Abdel-Hamid, 1984; Abdel-Hamid & Madnick, 1982).

31

Simulation models of software processes proliferated in the 1990s (Abdel-Hamid & Madnick,

1991; Kellner et al., 1999; Lin et al., 1997; Waeselynck & Pfahl, 1994).

Research studies related to software system projects deal with the development,

management and effects of systems on people, organizations, and markets. These projects are

socio-technical systems that involve interactions between technical components, people, data,

and organizational issues. These interrelationships create a dynamically complex environment

containing feedback loops, accumulations and delays between causes and effects, presenting

behaviors which are often not trivial, thus requiring non-intuitive solutions by making use of

the system dynamics approach suitable for studying how these initiatives evolve over time

(Georgantzas & Katsamakas, 2008).

The use of modeling and simulation techniques to achieve the proposed objective of this

research is appropriate because it provides a viable way to build knowledge when the cost, risk

or logistics of manipulating the real system of interest are prohibitive (Sterman, 2000). It is also

appropriate when the complexity of the system being modeled is beyond what other techniques

can usefully represent (Kellner et al., 1999).

Although several previous works have employed system dynamics in the context of

software systems, there is a predominance of models that explore, as an element of analysis,

parts of the software life cycle, especially the software development phase (Franco et al., 2017).

Therefore, there is a lack of previous research studies that explore the behaviors associated with

the long-term evolution of software systems, services, and organizations (Ali et al., 2014;

Kellner et al., 1999; Zhang et al., 2008, 2010).

Models of emerging and evolving software processes […] are still scarce in the SPS

[software process simulation] community despite their popularity among practitioners.

Discovering the uncharted territory of dynamic process modeling requires input and

critiques not just from model developers but also from prospective simulation consumers

and critics. Broader and more integrated perspectives of systems and of enterprises are also

required. As software complexity increases, holistic approaches to system development can

facilitate better understanding of critical software issues and thus promote better systems.

(Zhang et al., 2014, p. 925)

The phenomenon of software product evolution presents a dynamically complex

context, which is described by Lehman (1996b) in his formulation of the eighth law as a

"feedback system, with multiple levels, multiple loops and multiple agents." Lehman also

highlighted the possibility of constructing predictive models of the phenomenon:

32

The resultant evolution of software appears to be driven and controlled by human decision,

managerial edict, and programmer judgment. […] measures of its evolution display

patterns, regularity and trends that suggest an underlying dynamic that may be modeled

and used for planning, for process control, and for process improvement. (Lehman, 1980,

p. 1067)

In the process of investigating the phenomenon of software evolution, the use of

simulation models enables evaluation of how the set of laws dynamically behave and also

consideration of the influences they exert on each other (Herraiz et al., 2013).

Two approaches predominate in the models described in previous research studies:

black box and white box. The former focuses on observable external behaviors to construct

statistical models that fit the empirical data, and seek to predict some metrics (Kemerer &

Slaughter, 1999; Turski, 2002; Woodside, 1979). The white box approach seeks to identify and

model the different factors that influence evolution, with system dynamics prevailing for the

construction of these models (Kahen et al., 2001; Lehman et al., 2002; Wernick & Lehman,

1999).

Previous works applying systems dynamics investigated and replicated part of the

phenomena described by the laws of software evolution, and the focus of these works was on

the effect that the increasing software complexity has on the capacity of modification and

maintenance of the software over time, with the key variables of interest being time, cost, and

quality (Chatters et al., 2000; Kahen et al., 2001; Lehman et al., 2002; Wernick & Hall, 2003;

Wernick & Lehman, 1999; Zhang et al., 2008). The technical debt effect was also explored, but

only in the software development phase (Cao et al., 2010).

Mens et al. (2005) identified the lack of studies that sought to integrate the phenomenon

of evolution into the software life cycle in order to increase managerial awareness about its

effects and the need to build better predictive models that could help in the long-term

management of software systems. It is this research gap that this thesis seeks to fill.

This research study uses the white box approach, more specifically system dynamics, to

identify causal factors and relationships that explain dynamic complex emergent behaviors

created during the software maintenance phase and stimulated by internal and external

influences. This approach is also used to investigate how different policies of resource

allocation for maintenance activities influence technical debt management and the software’s

lifetime.

33

1.4 Document structure

This thesis is organized into seven chapters, according to the following structure.

1. Introduction: introductory chapter setting out the rationale, objective, and

justification of the research.

2. Background: concepts and theories related to software engineering used to

formulate the simulation model, with discussion of evolution, maintenance process,

quality model, technical debt, sustainability, static analysis, and the “goal, question,

metric” method.

3. Material and methods: presentation of the research questions derived from the

defined research purpose, the expected specific research objective to be obtained

when addressing the research questions, and a brief description the research process

that is based on the system dynamics approach and is used for the construction,

testing, preparation, and evaluation of resource allocation policies in maintenance

activities.

4. The Dynamical Evaluation Framework:

a. Hierarchical software sustainability evaluation structures: presentation of

the two hierarchical structure that were used for evaluating, from technical

and economic perspectives, how difference resource allocation scenarios

behaved over time.

b. Proposed simulation model: presentation of the model, constructed

according to the approach described in the previous chapter.

5. Discussion: contains the discussions about the obtained results and how they address

the proposed research questions.

6. Conclusion: presentation of the conclusions of this work, in light of the results and

discussions, as well as the limitations of the research, possibilities for improvement,

and opportunities for future work.

34

2. Background

This chapter presents an overview of the literature related to software evolution,

software maintenance, software quality, technical debt, static analysis, software sustainability,

and the “Goal, Question, Metric” (GQM) method.

2.1 Software evolution

The proliferation of software systems, the continuous growth in software size, and the

need to continually change a software product throughout its operation have resulted a

substantial increase in the costs of maintaining software systems in recent decades, when

compared to hardware and development costs (Figure 1).

Figure 1. Percentage of effort expended on hardware, development, and maintenance

Source: Adapted from (Deißenböck, 2009)

Regarding the proportion of resources invested in maintenance activities, Lehman

(1980) argued that the constant need for change is intrinsic to the nature of software use and

that it is embedded in a continually changing environment; thus the investigations regarding

high maintenance costs should not focus exclusively on controlling and reducing them.

Software products must be constructed so that they can maintain their ability to be modified

throughout their life cycle. Economic feasibility assessments should include all associated costs

incurred throughout the software lifecycle, not just in the early stages of development.

35

There is no single, standardized definition of the concept of “software evolution”, and

this term is often used interchangeably with “software maintenance”. Lehman and Ramil (2001)

described software evolution as a process of corrections, adaptations and continuous

improvements to maintain stakeholder satisfaction with the software’s response to changes in

domain, needs, and expectations.

Bennet and Rajlich (2000) argued that evolution occurs at a particular stage in the life

cycle and only when the initial development has been successful. The goal of this phase is to

adapt the software to constant changes in requirements and operating environment, to correct

faults, and to respond to the learning of users and developers.

Godfrey and German (2008) proposed semantic differences that distinguish between the

terms “maintenance” and “evolution”. The former suggests the preservation and resolution of

problems and usually represents a set of planned activities carried out in the system, whereas

the latter term indicates new projects that have evolved from older ones and is associated with

what happens to the software itself throughout its lifetime.

The dynamics associated with the evolution of software products is based on the

recognition that any program is “a model of a model within a theory of a model of abstraction

of some portion or of the world or of some universe of discourse” (Lehman, 1980, p. 1061,

emphasis in original). Software, like any other model, contains simplifications and

imperfections, and it interacts with and changes the operating environment itself.

The installation of the program together with its associated system […] change the very

nature of the problem to be solved. The program has become a part of the world it models,

it is embedded in it. Conceptually at least the program as a model contains elements that

model itself, the consequences of its execution. (Lehman, 1980, p. 1063, emphasis in

original)

Figure 2 schematically shows the interaction of a software program with the external

environment, as proposed by Lehman (1980). The activities of analysis, requirements survey,

design, and implementation involve extrapolations and predictions of the consequences of the

introduction of the software into its operating environment and the potential for it to evolve.

These predictions inevitably involve opinions and judgments. Once the software is completed

and becomes operational, issues related to its accuracy, adequacy, and satisfaction emerge and

inevitably lead to additional pressures for change.

36

At the same time, as users become familiar with the software—whose design and

attributes depend in part on the users’ attitudes and practices before software installation—they

will modify their behaviors to minimize their efforts or maximize their efficiency, thereby

creating more pressure for change.

Moreover, exogenous pressures will also cause changes in the application environment

in which the software operates. Examples of such pressures are the introduction of new

hardware, new data traffic patterns, changing demands, technological advances, and wider

social evolution.

Figure 2. Interaction of a software product with the operating environment.

Source: Adapted from Lehman and Ramil (2006)

These investigations, along with the advances made in recent decades, have given rise

to new lines of research associated with software evolution and the consolidation of laws of

evolution that describe abstractions of observed behaviors based on statistical models (Lehman,

1980; Lehman & Ramil, 2006).

Table 2 presents the wording of the last revision of the eight laws proposed by Lehman

(1996b). Several studies have been carried out to confirm and evaluate their applicability in

37

different contexts, and although some authors have found that not all of them apply to the free

software domain, their application to commercial software has been confirmed by several

researchers (Herraiz et al., 2013).

Table 2. Lehman’s laws of software evolution

Name Statement

1 Continuing change An E-type system must be continually adapted, else it becomes progressively

less satisfactory in use.

2 Increasing

complexity

As an E-type system is changed its complexity increases and becomes more

difficult to evolve unless work is done to maintain or reduce the complexity.

3 Self-regulation Global E-type system evolution is feedback regulated. The program evolution

process is self-regulating with close to normal distribution of measure of

product and process attributes.

4 Conservation of

organizational

stability

The work rate of an organization evolving an E-type software system tends to

be constant over the operational lifetime of that system or phases of that

lifetime. The average effective global activity rate on an evolving system is

invariant over the product lifetime.

5 Conservation of

familiarity

In general, the incremental growth (growth rate trend) of E-type systems is

constrained by the need to maintain familiarity. During the active life of an

evolving program, the content of successive releases is statistically invariant.

6 Continuing growth The functional capability (functional content) of E-type systems must be

continually enhanced to maintain user satisfaction over system lifetime.

7 Declining quality Unless rigorously adapted and evolved to take into account changes in the

operational environment, the quality of an E-type system will appear to be

declining.

8 Feedback system E-type evolution processes are multi-level, multi-loop, multi-agent feedback

systems and must be treated as such to be successfully modified or improved.

Source: Adapted from Lehman (1996b) and Lehman and Ramil (2006)

Figure 3 presents one of the first observations to capture the essence of the phenomenon

of evolution and from which the eight laws described in Table 2 were derived. This figure

depicts the growth trend of the IBM OS/360 and the number of modules per release sequence

number (RSN), from its birth to the critical moment where it was segregated into two distinct

versions of the original product.

38

Figure 3. IBM OS/360 growth throughout releases

Source: Adapted from Lehman (1980)

The figure captures the regular dynamic nature of the software evolution and

characteristics of a feedback system, whose cyclic pattern is characteristic of self-regulated

systems. As was observed at the time:

The ripples on the data are typical of a self-stabilizing process with both positive and

negative feedback loops. That is, from a long-range point of view the rate of system growth

is self-regulatory, despite the fact that many different causes control the selection of work

implemented in each release, with varying budgets, increasing number of users desiring

new functions or reporting faults, varying management attitudes towards system

enhancement, changing release intervals and improving methodology. (Belady & Lehman,

1972, p. 503)

The instability period observed in Figure 3 from the “20” release represents the split in

two development branches of IBM OS/360. The oscillatory pattern indicates the loss of control

of the evolution of the system, where the chaotic behavior was triggered by ambitious growth

objectives resulting from excessive positive feedbacks that activated self-stabilization processes

consisting of negative feedback loops (Lehman, 1996a).

The first research to address the issue of evolution and feedback in software processes

originated in 1970 and gained notoriety and interest with the formulation of the hypothesis

known as “Feedback, evolution and software technology” (FEAST). This hypothesis portrays

the evolution of software as a global process, consisting of a complex feedback system of

learning. Therefore, significant improvements can only be achieved when the process is treated

39

in this way, because stabilization effects restrict the outcome of efforts for this purpose (Lehman

& Ramil, 1999).

The FEAST hypothesis was formulated as follows: “As complex feedback systems E-

type software processes evolve strong system dynamics and the global stability tendency of

other feedback systems” (Lehman et al., 1998). This hypothesis includes three assertions:

1. The software evolution process for E-type systems constitutes a complex

feedback system.

2. Where present, feedback is likely to constrain the global benefits derived from

forward path changes to the process, however effective they may appear locally.

3. Major improvement requires process innovation to change system dynamics by

modification of feedback mechanisms.

Learning and feedback loops play an essential role in determining many of the dynamic

aspects at all levels of software evolution. The characteristics and mechanisms of these

feedback meshes are also responsible for the process dynamics, as Lehman observed:

The process may therefore be expected to display the stable behaviour that is the hallmark

of feedback systems in general. Externally observable system properties and behaviour

remain relatively constant within specified limits over the operational range until instability

sets in despite changes in the characteristics of forward path elements, the process

environment and the operational environment. (Lehman, 1996a, p. 683)

2.2 Software maintenance

Throughout the operation of a software product, various maintenance interventions are

performed to maintain its operational condition and meet emerging demands. ISO/IEC

14764:2006 defines software maintenance as: all the activities necessary to provide cost-

effective support for a software system. The activities mentioned correspond to those performed

before or after the delivery of the software product.

This norm hierarchically classifies the demands created by changes into two groups:

“corrections”, or modifications made to a software product after its delivery to correct existing

problems; and “enhancements”, or modifications made to an existing software product to meet

new requirements (Figure 4).

40

 Figure 4. Types of software product maintenance

Source: Adapted from ISO/IEC 14764:2006

The two classifications are further refined into four types of maintenance, defined

according to the purpose of the intervention:

• Corrective: reactive changes in the software product, after delivery, to correct

identified problems.

• Preventive: modifications made after software product delivery to detect and correct

latent faults before they become operational faults.

• Perfective: modifications made after delivery to detect and correct latent faults in

the software product before they manifest themselves as faults. Perfective

maintenance improves the performance or maintainability of the software product.

This category provides user enhancements, documentation improvements, recoding

to improve performance, maintainability, or other attributes of the software.

• Adaptive: modifications made after delivery of the software product to keep the

product usable in a changed or changing environment. This maintenance category

is required to accommodate changes in the environment in which the software

operates (for example, operating system upgrade).

Godfrey and German (2008) argued that, according to this categorization, corrective

and adaptive maintenance activities do not alter external semantics, whereas perfective

maintenance activities, by including a variety of possible changes, and preventive activities,

generate improved projects and change external semantics.

Modification Request

Correction Enhancement

Corrective Preventive Adaptive Perfective

Group

Type of
maintenance

41

2.3 Software quality models

Software product quality models evaluate the aspects of the software product itself.

These models measure different types of source code metrics and group them in order to

evaluate product quality (e.g., code lines, coupling). These models have undergone a period of

intense development and evolution in recent decades (Figure 5).

Figure 5. Evolution history of software product quality measurement models

Source: Adapted from Ferenc et al. (2014)

The first tools to evaluate software product quality were simple, such as code lines,

cyclomatic complexity (McCabe, 1976) and the metrics proposed by Halstead (1977). These

metrics emerged in the mid-1960s and, with their proliferation, gave rise to the first theoretical

models (Boehm et al., 1978; Cavano & McCall, 1978) that were able to hierarchically capture

properties of quality of the software product.

In the 1990s, the theoretical models, that had emerged in the 1970s and 1980s were

compiled and gave rise to the ISO/IEC 9126:1991 standard, which was later revised to become

the ISO 250nn (System and software Quality Requirements and Evaluation – SQuaRE).

Also, in the 1990's, a set of quality assessment approaches, based on predictive

empirical models that were themselves based on regressions, neural networks, and Naive-Bayes

classifiers, were developed. One of these widely used models is the “Maintainability Index”

(Oman & Hagemeister, 1992).

42

According to ISO/IEC 25010:2011, system quality can be defined as “the degree to

which the system meets the stated and implied needs of its various stakeholders and thus

provides value”.

These needs are represented in the SQuaRE series by quality models that categorize

product quality into characteristics, subcharacteristics, and attributes. The lowest level is

composed of attributes, which can be measured by quality element measures (Figure 6).

Figure 6. Hierarchical structure of the SQuaRE quality model

Source: Adapted from ISO/IEC 25010:2011

There are specifications for measurements of three quality dimensions associated with

software products in the SQuaRE series: quality in use (ISO/IEC 25010:2011 and ISO/IEC

25022:2016), product quality (ISO/IEC 25010:2011 and ISO/IEC 25023:2016, 2016) and data

quality (ISO/IEC 25012:2008 and ISO/IEC 25024:2015).

In this research, only a subset of the categories contained in the second dimension (i.e.,

product quality) is explored. This decision was taken because the product quality characteristics

are the only ones that can be statically measured through the automated inspection of the source

code using static analysis tools (described in Section “2.6”).

The software product quality model’s characteristics and attributes are depicted in

Figure 7. The model organizes the attributes into eight categories, which in turn are composed

of a set of related subcategories.

Quality

Characteristic 2 Characteristic 3 Characteristic NCharacteristic 1

Subcharacteristic 1 Subcharacteristic 2 Subcharacteristic N

Quality attribute 1 Quality attribute 2 Quality attribute N

Quality attribute 2Quality attribute 1 Quality attribute 3 Quality attribute N

43

Figure 7. Software product quality mode

Source: Adapted from ISO/IEC 25010:2011

The ISO/IEC 25010:2011 standard descriptions of the subset composed of five

characteristics from the software product quality model, and which are of interest for this

research, are as follows:

• Functional suitability: the degree to which the set of functions covers all the

specified tasks and user objectives.

• Performance efficiency: the performance relative to the amount of resources used

under stated conditions, which may include other software products, the software

and hardware configuration of the system, and materials.

• Reliability: the degree to which a system or component performs specified functions

under specified conditions for a specified period of time (limitation in reliability are

due to faults in requirements, design, and implementations).

• Security: the degree to which information and data are protected so that unauthorized

persons or systems cannot read or modify them, and authorized persons or systems

are not denied access to them.

• Maintainability: the degree of effectiveness and efficiency with which the product

can be modified. Modifications can include corrections, improvement or adaptation

of the software to changes in environment, and modifications to requirements and

functional specifications.

Since 2000, several practical models were proposed to address the complexity and the

low level of details for the implementation of the ISO/IEC 250nn standard, as well as to

overcome the lack of clarity in the interpretation and traceability of the standard (Bakota et al.,

2011; Heitlager et al., 2007; Letouzey & Coq, 2010; Mordal et al., 2013; Wagner et al., 2012).

System/Software
Product Quality

Functional
Suitability

Performance
Efficiency

Compatibility Usability Reliability Security Maintainability Portability

Functional
completeness

Functional
correctness
Functional

appropriateness

Time-behavior
Resource
utilization

Co-existence
Interoperability

Appropriateness
recognition
Learnability
Operability
User error
protection

User interface
aesthetic

Accessibility

Maturity
Availability

Fault tolerance
Recoverability

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Modularity
Reusability

Analyzability
Modifiability

Testability

Adaptability
Installability

Replaceability

44

This set of models defines a set of concrete metrics at the level of the source code and algorithm

and, from the results obtained through the inspection of the elements of analysis (source codes),

these practical models aggregate the results obtained at higher levels following the hierarchical

structure established by the ISO/IEC 250nn (see Figure 6).

2.4 Technical debt

The “technical debt” metaphor was coined by Cunningham (1993) and refers to the long-

term cost associated both with shortcuts taken throughout software development and with

maintenance by programmers to deliver short-term benefits to the business.

Although immature code may work fine and be completely acceptable to the customer,

excess quantities will make a program unmasterable, leading to extreme specialization of

programmers and finally an inflexible product. Shipping first time code is like going into

debt. A little debt speeds development so long as it is paid back promptly with a rewrite.

Objects make the cost of this transaction tolerable. The danger occurs when the debt is not

repaid. Every minute spent on not-quite-right code counts as interest on that debt. Entire

engineering organizations can be brought to a stand-still under the debt load of an

unconsolidated implementation, object-oriented or otherwise. (Cunningham, 1993, p. 30)

Despite the simple and intuitive definition, the metaphor has been used indiscriminately

to describe any kind of impediment, friction and obstacle affecting the sale, development,

deployment, maintenance or evolution of software-based systems. This wider use has weakened

and diluted the meaning of the metaphor (Kruchten et al., 2012).

The technical debt metaphor is composed of a set of comprehensive constructs that help

to communicate the costs and risks relating to the low structural quality of a software program

that remain in a software after it has been released. Its definition can be partitioned into the

following elements (Curtis et al., 2012):

• Should-fix violations: Violations of good architectural or coding practices, which

are known to have an unacceptable probability of contributing to severe operational

problems (interruptions, security breaches, corrupting data, etc.) or to the excessive

cost of acquisition, such as excessive effort to implement change.

• Principal: The necessary cost of remediating should-fix violations in production

software code.

• Interest: The continuous cost attributable to should-fix violations in the production

code that have not been remediated, such as extra hours of maintenance required to

carry out activities and inefficient use of resources.

45

• Technical debt: The future costs attributable to known violations of the software in

operation that should be fixed; technical debt should include both principal and

interest.

The Consortium for IT Software Quality (CISQ)1 later introduced a complementary

concept to the technical debt metaphor that captured the business risks, which consisted of two

elements (OMG, 2018):

• Liability from debt: The costs to the business resulting from operational problems

caused by the flaws in the production code. These flaws include both should-fix

problems included in the calculation of the technical debt as well as problems not

listed as should-fix because their risk was underestimated.

• Opportunity cost: The benefits such as revenue from new features that could have

been achieved had resources been committed to developing new functionalities

rather than being assigned to paying technical debt. The opportunity costs represent

the tradeoff that decision makers must weigh when deciding how much effort to

devote to paying technical debt.

There is no consensus regarding what can be classified as technical debt, what level of

impairment of software quality attributes for the violations can be classified as such, and what

the limits of the metaphor’s use are. However, a systematic mapping of the literature was

conducted to evaluate the use of the metaphor, according to which ten categories were

identified: requirements, architecture, design, code, tests, build, documentation, infrastructure,

versioning and defects (Li et al., 2015).

Technical debt can be beneficial or detrimental to the management of operation and

maintenance of software products. Violations that are intentionally incurred to obtain short-

term benefits can be positive if the associated costs are kept visible and under control (Allman,

2012). On the other hand, they can occur unintentionally and not be perceived by those

involved. If they remain invisible and unresolved, they can accumulate and pose risks to long-

term maintenance and evolution activities (Li et al., 2015).

Violations of good practice and the accumulation of technical debt compromise quality

attributes. Li et al. (2015) surveyed works related to technical debt and identified that the

existing literature indicates that only attributes related to product quality are affected (quality

1 http://www.cisq-it.org

46

attributes are only indirectly affected). Most papers claim that technical debt negatively affects

the maintainability of software products, while other features and sub-features are reported only

in a small number of cases.

By negatively impacting the maintainability of the software product, the accumulation

of technical debt negatively influences the adaptability and evolution of the software in

operation.

Technical debt management consists of a set of activities that seek to prevent potential

violations from being incurred or to treat existing debt to keep it at a reasonable level. It

encompasses the activities of identification, measurement, prioritization, prevention,

monitoring, payment, representation, and communication.

To avoid the long-term effects of technical debt accumulation on software maintenance

ability, debt needs to be paid at some point in the lifecycle. The most commonly used form of

payment is the refactoring technique, which involves making changes to the source code, design

or architecture of a software without changing its external behavior to improve its internal

quality (Fowler et al., 1999).

Despite the growing interest among the scientific community and software engineering

practitioners, technical debt management still lacks tool support for accurately managing

sources of debt. The metaphor remains an abstract concept and lacks the details for delineating

the source of technical debt from its causes and consequences (Ernst et al., 2015).

In addition to the introduction to the technical debt metaphor presented above, further

details are elaborated in the proposed model formulation (Section 4.2).

2.5 Software sustainability

Software sustainability has recently began to attract the attention of researchers and

practitioners (Becker et al., 2015; Venters et al., 2014). Although there is still no consensus

about its definition, the general rationale of software sustainability is that it is related to the

software’s capacity to endure and to meet current needs without compromising future needs

(i.e., software survival goals). The “Karlskrona Manifesto” was proposed in 2015 (Becker et

al., 2015), and it lists some of the principles of software’s sustainability:

• It is a systemic property and systems thinking has to be the starting point for the

transdisciplinary common ground.

47

• It has multiple dimensions that have to be taken into account to understand its nature

(the whole is more than the sum of its parts).

• It requires action on multiple levels and different systems may have different

interventions leverage (counter-intuitive behaviors).

• It requires long-term thinking, and the benefits and impacts of any interventions

should be evaluated at the outset (cause and effect are not closely related in time and

space).

• There are different orders of effects, since the consequence of actions plays out over

multiple timescales, and their cumulative impact may be irreversible (nonlinear

effects).

Sustainability is seen as a systemic property that encompasses multiple dimensions,

which are shown in Table 3.

Table 3. Software sustainability dimensions

Dimension Covers

Individual Individual freedom and agency (the ability to act in an environment),

human dignity, and fulfillment.

Social Relationships between individuals and groups. For example, it covers

the structures of mutual trust and communication in a social system

and the balance between conflicting interests.

Economic Financial aspects and business value. It includes capital growth and

liquidity, investment questions, and financial operations.

Technical The ability to maintain and evolve artificial systems (such as software)

over time. It refers to maintenance and evolution, resilience, and the

ease of system transitions.

Environmental The use and stewardship of natural resources.

Source: Adapted from Becker et al. (2015)

Venters et al. (2014) suggested that software sustainability is also an emergent property

that cannot be attributed to any particular part of the system; rather, it emerges once its

components have been integrated. Thus, they argued that sustainability “cannot be designed or

engineered and quantified until after the software system is operational” (Venters et al., 2014,

p. 5).

There is no quantifiable and objective way to measure sustainability directly. Its

evaluation varies according to the context, the stakeholder perspective and the point in the life

cycle at which it is assessed. One way to evaluate technical and economic sustainability is to

use the software product’s quality models and source code properties as proxies to assess them

indirectly.

48

2.6 Static analysis

Software quality metrics and technical debt estimates are usually made using static

analysis tools. There are several tools for automating the identification of predefined types of

anomalies by scanning and parsing the source code while looking for a fixed set of patterns.

Some of these tools are commercial, and others are free or even open source.

Many tools automate the process of scanning a software source code and parsing it to

detected predefined quality rules to gather quality measurement data (e.g., SonarQube2, PMD3,

Checkstyle4, FindBugs5, Cobertura6, Jacoco7, among others). These tools provide an API for

extracting time series data for the different measures, which are necessary for calibrating the

proposed simulation model, as well as the list of detected violations, which is necessary for

consolidating the low level metrics into the proposed CISQ’s standards (OMG, 2016a, 2016c,

2016d, 2016b).

After each version of the software’s source code is scanned, the data are extracted from

the scanning tool, and the identified violations are assigned to one of the software product’s

characteristics, according to the SQuaRE model, and to one of the proposed CISQ’s static

analysis rules. The computation for calculating each of the base normative measures is to count

the frequency of each type of violation and sum them by categories:

𝐵𝑎𝑠𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = ∑(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖)

𝑛

𝑖=1

To obtain the functional density of violations for each type of quality characteristics,

the base measure is divided by the size of the software:

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐵𝑎𝑠𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒

2 http://www.sonarqube.org

3 https://pmd.github.io

4 http://checkstyle.sourceforge.net

5 http://findbugs.sourceforge.net

6 http://cobertura.github.io/cobertura/

7 http://www.eclemma.org/jacoco/

49

The CISQ standards also offer some alternative weighted informative measures, one of

which is useful when estimating the technical debt of a software system. For each of the quality

characteristics, the standard suggests weighting each of the identified violation element by its

estimated effort to fix it. Then, we sum all of them to assess information regarding total cost of

ownership and to estimate future maintenance costs and effort.

Overral maintanence effort = ∑(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑖 ∙ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑓𝑓𝑜𝑟𝑡 𝑡𝑜 𝑓𝑖𝑥)

2.7 Goal, Question, Metric method

The “Goal, Question, Metric” (GQM) method (Basili et al., 2002; Basili & Weiss, 1984)

is based on a hierarchical structure capable of creating a purposeful measurement model that

targets a particular set of issues and has a set of rules for interpreting the measurement data.

To achieve this, it must:

• Clearly specify goals (conceptual level)

• Establish how each goal would be evaluated by defining questions for each of them

(operational level)

• Trace each of these questions to the data that must be interpreted in order to answer

them individually (quantitative level).

Figure 8. GQM method’s hierarchical evaluation structure

Source: Adapted from Basili et al. (2002)

The resulting measurement model has three levels, which are shown in Figure 8. Basili

et al. (2002) provided the following definitions for each of these levels:

GOAL 1 GOAL 2

QUESTION 1 QUESTION 2 QUESTION 3 QUESTION 4

METRIC 1 METRIC 2 METRIC 3 METRIC 4 METRIC 5

Conceptual level

Operational level

Quantitative level

50

• Conceptual level (goal): a goal is defined for an object, for a variety of reasons,

concerning various models of quality, from various points of view, relative to a

particular environment. Objects of measurement are products (artifacts,

deliverables, and documents that are produced during the system life cycle), process

(software-related activities), and resources (items used by a process to produce their

outputs).

• Operational level (question): a set of questions is used to characterize the way the

assessment/achievement of a specific goal is going to be performed based on some

characterizing model. Questions try to characterize the object of measurement

(product, process, resource) concerning a selected quality issue and to determine its

quality from the selected viewpoint.

• Qualitative level (metric): a set of data is associated with every question in order to

answer it in a quantitative way (objectively or subjectively).

Basili et al. (2002) argued that the process of setting goals is critical to successful

application of the GQM method. Each goal has four elements:

• Purpose: Why is the object being examined?

• Issue: Which attribute of the object is being examined?

• Object: What is being examined?

• Viewpoint: From which point is the object being examined?

The development of a goal is based on three sources of information: (a) policy and

strategy of the organization, where the purpose and the issue of the goal are derived; (b) the

description of the process and products of the organization, where the description of the model

of the object of interest is defined; and (c) the model of the organization, which provides the

viewpoint on the goal.

Table 4 presents a complete example of an GQM model structure developed following

the described method.

Table 4. Goal/Question/Metric model example

Goal Purpose

Issue

Object

Viewpoint

Improve

the timeliness of

change request processing

from the project manager’s viewpoint

51

Question 1

Metrics

What is the current change request processing speed?

• Average cycle time

• Standard deviation

• % cases outside of upper limit

Question 2

Metrics

Is the performance of the process improving?

•
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒
∙ 100

• Subjective rating of manager’s satisfaction

Source: Adapted from Basili et al. (2002)

2.8 Chapter summary

This section summarizes the content presented in this chapter, with the purpose of

organizing the main concepts adopted in the formulation of the proposed model.

The relevant concepts are:

• Software evolution: The laws of software evolution describe statistical models of

behavior observed in software products throughout their life cycle. These behaviors

are incorporated in the formulation of the proposed model. Examples of the

behaviors are continuous growth, decreasing quality, increasing complexity, and

continuous changes.

• Software maintenance: This section aimed to typify the activities involved in the

process of maintaining software products. The segregation of the maintenance

process into perfective, preventive, corrective and adaptive activities supports the

establishment of the configuration of resource allocation. It is influence of resource

allocation on quality attributes and the accumulation of technical debt that this thesis

seeks to evaluate.

• Software quality models: The software product quality model establishes the quality

attributes that serve as evaluation constructs for the different resource allocation

configurations in the maintenance process. This thesis evaluates the characteristics

of functionality and maintainability are evaluated.

• Technical debt: This concept is used to represent accumulations and delays in the

proposed model. The “principal” component of technical debt represents the

accumulation of violations that occur during the execution of maintenance activities.

This accumulation over time reduces the maintainability of the software process and

52

the ability to deliver new features (i.e., interest), phenomena also described in the

laws of software evolution.

• Software sustainability: Sustainability is a theme of increasing interest in many

fields, including in the software engineering area. This thesis explores two software

sustainability dimensions (economic and technical) for constructing the hierarchical

evaluation policy structure.

• Static analysis: This is a technique and a set of tools that can be used to automate

data extraction and collection based on a software source code, which can be used

to support the estimation of technical debt.

• Goal, Question, Metric method: This is a method for creating a hierarchical

measurement structure. It is used to establish the measurement structure for

evaluating maintenance resource allocation policies based on the simulation model’s

output data.

53

3. Materials and methods

This chapter presents the materials and methods that were employed in order to achieve

the specific purpose of this research, which was: to propose and develop a simulation model

(with equations, parameters and initial conditions) that enables an increase in knowledge, as

well as the exploration and evaluation of the impact that different resource allocation policies

in maintenance activities have on the technical and economic sustainability of software

systems’ evolutionary behavior and on their quality attributes related to functionality,

maintainability and cost throughout the phases of operation and maintenance.

3.1 Research questions

In order to achieve the proposed research purpose, three research questions (RQ) were

defined. They are as follow:

• RQ1: How should the dynamical behavior of a software product’s quality attributes,

due to maintenance activities, be characterized throughout its evolution?

• RQ2: How do different resource allocation policies in software maintenance

activities affect the dynamical behaviors of these quality attributes?

• RQ3: How should the resource allocation in maintenance activities be managed to

improve the technical and economic sustainability of a software product?

3.2 Research objectives

For each research question, a specific research objective was defined. Each objective

detailed the expected key research outcomes for the three research questions previously defined.

a) Explain how the observed behavioral characteristics of software maintenance

emerges as a result of the system structure: based on an extensive literature

review an initial hypothesis was proposed, which identified how key elements

and their relationships influence each other, detailing the equations for

describing their interaction and the initial conditions that account for the

observed dynamical behaviors. This initial hypothesis was formulated with

textual explanations, causal loops diagrams, and stock and flow diagrams, and

time series plots (behavior over time). The outcome of this objective is “as is”

54

hypothetical description of the system under investigation, endogenously

explaining how and why the observed behavior emerged. This description is

given in Section 4.2.1 (“Problem articulation and dynamical hypothesis”).

b) Identify and describe the impact that different resources allocation policies in

software maintenance activities have on a software product’s quality attributes

and how they influence the software’s long-term technical and economic

sustainability: a review was undertaken of how different hypothetical resource

allocation policies affect the quality characteristics of software system along the

software system’s lifetime, how they impact on technical and economic

sustainability, and how different outcomes emerge from the inner elements of

the system being modeled. The outcomes and discussion of this objective are

presented in Section 5 (“Results and discussion”).

c) Propose and evaluate alternative resource allocation policies: based on specific

contexts and selected evolutionary conditions, resource allocation policies that

help to improve the software product’s technical and economic sustainability

were specified. This objective generated suggested resource allocation policies

that can be better suited to different goals of different software systems and

contexts (see Section 5, “Results and discussion”).

3.3 Research process

In order to achieve the objectives proposed in this work, a model was constructed that

was based on the dynamic system approach and used the Vensim Professional software

(Ventana System, 2018). This enabled the model to be simulated and helped in conducting tests,

the evaluation of the proposed dynamical hypothesis, and the analysis of hypothetical resource

allocation policies scenarios.

The modeling process was carried out according to the methodology proposed by

Sterman (2000), the system dynamics approach. This approach is described in the Section 3.3.1

(“System dynamics”), and more details are available in Appendix A (“Appendix A – System

dynamics ”).

Once a model is formulated, the test stage begins to build confidence in the model.

Validation or verification to establish the truth and accuracy of the model or to derive correct

conclusions based on assumptions is impracticable (Sterman, 2000). Instead, the testing stage

seeks to establish confidence in the model’s representativeness of the real world (Forrester &

55

Senge, 1980). Models should focus on solving specific problems and being useful for

broadening the understanding of the problem and for efficiently intervening in the real-world

context.

This research study took place in three distinct phases, which were as follows:

1. Literature review: an extensive and systematic literature review was carried out to

identify previous work that could contribute to the proposed research, to identify

theories and elements that could be used as starting points or incorporated into the

proposed model, and to justify modeling decisions taken during the model

development. Some of the results obtained from this phase have already been

published (Franco et al., 2017).

2. Model construction: the model formulation was conducted according to the system

dynamics approach. It was based on an extensive literature review, to identify

elements and descriptions of dynamic behaviors, which served as the basis to the

definition of the dynamical hypothesis tested in this thesis. Secondary data

collection was used in the construction of the plausible preliminary version of the

model that captures the defined dynamic hypothesis.

3. Experimentation: finally, the model was used to conduct experiments on a set of

managerial practices and policies for the maintenance and operation of software

products. The expected results of this phase were: to identify dysfunctional

consequences of current practices adopted; to enable the formulation of new

proposals for allocation of resources in software maintenance activities; and to

generate new knowledge associated with the phenomenon of software evolution

during operation and maintenance phases of software systems.

3.3.1 System dynamics

The maintenance process was modeled using the system dynamics approach (Sterman,

2000), which consists of an iterative approach consisting of five stages: problem articulation;

the definition of dynamic hypotheses; formulation; testing; and policy formulation and

evaluation (see Figure 9).

56

Figure 9. System dynamics’ iterative modeling process

Source: Sterman (2000)

The objectives and activities performed in each of these stages are briefly described in

the following sections. The approach consists of an iterative and non-linear process, where

results and knowledge acquired throughout the process can be used to revise assumptions and

conclusions from previous steps to refine the model (Sterman, 2000).

3.3.1.1 Problem articulation

For a model to be useful, it needs to solve a specific problem and it needs to simplify

rather than to reproduce the complete system under investigation in details. It should simplify

the real-world to allow understanding of the research context and problem. The articulation of

the problem establishes the purpose of the model, which serves as a criterion for defining the

elements that must be included and for excluding those that can be ignored, so that the goal of

the model is reached (Sterman, 2000).

Two of the most common tools for this purpose are:

• Reference modes: problems are characterized dynamically, that is, patterns of

behavior unfold over time, demonstrating how the problem originated and how it

can evolve over time.

57

• Time horizon: this tool involves looking back in time and describing the symptoms

of the problem until the reasons for the problem’s emergence can be identify. At the

same time, this tool must also involve and extension into the future to capture the

indirect and delayed effects of potential intervention policies.

3.3.1.2 Dynamic hypothesis

The dynamic hypothesis corresponds to a developing theory that seeks to explain

problematic behavior, and how it originated. It serves as a guide for modeling the inner

structures of the system involved. The focus is to construct a theory that endogenously justifies

and reproduces the dynamics observed through the interaction of the variables and agents

represented in the model (Sterman, 2000).

The system dynamics approach provides various tools to represent the boundaries and

the inner causal structures of the model. In this work three specific tools were used:

• Model boundary chart: summarizes the concepts included in the model

endogenously (i.e., that affect the model and are affected by it) or exogenous (i.e.,

that affect the model but are not affected by it), and those that were excluded (i.e.,

relevant aspects, but which are not part of the model’s focus). When listing items

that have been removed, the model limitations and results exceptions are stated

explicitly.

• Subsystem diagram: presents the general architecture of the model constituted by

the main subsystems. Each subsystem is presented in conjunction with the resource,

information, and request flows that coupled with the subsystems. The subsystems

convey information about the boundary and aggregation level of the model,

presenting the number and types of organizations and the different agents

represented, and they establish a channel of communication between the mental and

formal model (Morecroft, 1982).

• Causal loop diagram: corresponds to the mapping of the causal relations between

the variables, identifying how they affect each other. This type of diagram

constitutes an important tool for representing feedback loops of systems of any

domain. The diagram consists of nodes (variables) and their relationships (arrows),

where relationships can be positive or negative (indicated by the corresponding

symbol at the end of an arrow). Figure 10 shows examples of the elements that make

up the causal diagram.

58

Figure 10. Examples of the elements of a causal loop diagram

Source: Adapted from Sterman (2000)

• Stock and flow maps: emphasize the physical structure of the model. These diagrams

represent the accumulations of materials, financial resources, and information as

they move through the system. The flows represent the rates of increases or

decreases in inventories. Inventories characterize system states and generate the

information on which decisions are made. Decisions, in turn, change the rates of

flows and the stocks, and they close the feedback loop structures of the system.

3.3.1.3 Model formulation

The formulation of a simulation model enables experiments to be performed that would

not be possible in certain situations (due to economic or ethical issues). A simulation model

also allows experiments to be conducted in a virtual environment facilitating the identification

of flaws in the designed dynamic hypothesis.

This step consists of transposing the conceptual domain of the diagrams into a fully

specified model, with equations, parameters, and initial conditions. In this stage the following

activities are conducted:

• Specification of the structure and decision rules of the model.

• Estimation of parameters, behavioral relationships and initial conditions.

59

• Tests to assess the consistency of the model for the research purpose and to define

the model’s boundaries.

3.3.1.4 Testing

Once the model is formulated, the test stage begins, and confidence is built in the

developed model. Validation or verification to establish the model as a truth, and accuracy or

to derive correct conclusions based on assumptions is impracticable (Sterman, 2000). Instead,

tests seek to establish confidence in the representativeness of the model, which is gradually

accumulated as it undergoes new tests and as new points of correspondence with the empirical

reality are identified (Forrester & Senge, 1980).

Sterman argued that:

all models, mental or formal, are limited, and correspond to simplified representations of

the real world. They differ from reality in small and large forms, but in infinite numbers.

The only statements that can be validated – shown to be true – are pure analytic statements,

propositions derived from the axioms of a closed logical system (Sterman, 2000, p. 846)

Forrester also recognized the impossibility of validation in the sense of establishing

truth, where he wrote:

Any “objective” model-validation procedure rests eventually at some lower level on a

judgment or faith that either the procedure or its goals are acceptable without objective

truth. (Forrester, 1961, p. 123)

Barlas later pointed out the reasons for the impossibility of using statistical techniques

to validate the systems dynamics models:

Validation of a system dynamics model is much more complicated […] because judging

the validity of the internal structure of a model is very problematic, both philosophically

and technically. It is philosophically difficult, because […] the problem is directly related

to the unresolved philosophical issue of verifying the truth of a (scientific) statement. And

the problem is technically difficult, because there are no established formal tests (such as

statistical hypothesis tests) that one can use in deciding if the structure of a given model is

close enough to the “real” structure. Furthermore, standard statistical tests cannot even be

used in validating the behavior of a system dynamics model, because of problems of

autocorrelations and multicollinearity. (Barlas, 1996, p. 186, emphasis in original)

Barlas further justified why most statistical tests are not practical when validating

system dynamics models:

60

The problems involved in using statistical significance tests in validating system dynamics

(and other socio-economic) models are both technical and philosophical. The technical

reasons why statistical significance has little relevance in model validation have to do with

some fundamental assumptions that must hold for statistical tests to be valid. Most

statistical methods presume, at least, that the data are (i) serially independent (not

autocorrelated); (ii) not cross-correlated; (iii) normally distributed. The first two of these

assumptions are almost never met by systems dynamics models. Data generated by systems

dynamics models are autocorrelated and intercorrelated by their very nature. (Barlas, 1996,

p. 196, emphasis in original)

Given this premise, authors have suggested that the focus of the tests should be on

assessing the usefulness of the model and identifying its shortcomings via a systematic process

of experiments and empirical tests designed to refute the proposed dynamic hypothesis. If it is

empirically invalidated, it must be discarded and replaced by a new and more precise theory.

Otherwise, it must be conditionally accepted until it is improved or refuted (Forrester & Senge,

1980; Sterman, 2000).

Among the tests to which the model was submitted, the following stand out:

• Border adequacy test assesses whether concepts important for addressing the

problem are endogenous, whether the behavior is significantly altered when

boundary assumptions are relaxed, and whether recommended policies are changed

when the boundary is expanded;

• Structure evaluation test verifies whether the structure is consistent with the relevant

descriptive knowledge of the system if the level of aggregation is adequate, whether

the model complies with fundamental laws of physics (e.g., conservation of matter),

and whether the rules of decision capture the behavior of the system actors.

• Dimensional consistency test verifies whether the dimensionality of each equation

is consistent without having to use conversion parameters that have no meaning in

the real world;

• Parameter evaluation test certifies that the parameter values are consistent with the

relevant descriptive and numerical knowledge of the system and that each parameter

has a counterpart in the real world.

• Extreme condition test submits each model equation to input data representing

extreme conditions to verify whether the equations still make sense and whether the

model responds plausibly when subjected to extreme policies, conditions and

parameters;

• Integration error test evaluates whether the obtained results are sensitive to the

time-step choices and the numerical integration method.

61

• Behavior reproduction test certifies whether the model reproduces the behavior of

interest and other phenomena (qualitative and quantitative) observed in the system,

and whether the relationship of phase and frequency between the variables are in

agreement with the data;

• Behavior anomaly test changes or removes assumptions from the model to assess

whether anomalous behavior occurs.

• Familiarity test evaluates whether the model can reproduce behaviors observed in

other instances of the same system.

• Emerging behavior test verifies whether the model produces behaviors not observed

or not previously recognized and whether it consistently anticipates a system

response to the new conditions.

• Sensitivity analysis tests the numerical, behavioral, and political sensitivity of the

model when assumptions about model parameters, boundaries, and aggregations are

varied along plausible ranges of uncertainties.

• System improvement test evaluates whether the model has helped change the system

to a better stage.

Barlas (1996) argued that the ultimate objective of system dynamics model test is to

establish the appropriateness of the model’s structure. He suggested that the logical order of

evaluation is first to test the appropriateness of the model’s structure, and then to start testing

the model’s output behavior accuracy (see Figure 11).

62

Figure 11. Logical sequence of formal steps of model evaluation

Source: Adapter from Barlas (1996)

Each of the steps proposed in Figure 11 are aimed to evaluate specific aspects of a

system dynamics model (Barlas, 1996):

• Direct structure tests take each relationship (mathematical equation or any form of

logical relationship) individually and compare it with the knowledge available

without simulating the model.

• Empirical direct structure tests compare the model structure with

quantitative or qualitative information obtained directly from the real system

being modelled (i.e., structure evaluation and parameter evaluation tests).

• Theoretical direct structure tests compare the model structure with

generalized knowledge about the system available in the literature (i.e.,

Model construction
and revisions

Perform empirical
direct structure tests

Perform theoretical
direct structure tests

Perform structure-oriented behavior tests

Perform behavior pattern tests

Communicate the results and start
implementation

Passes

Fails

Fails Fails

Fails

Passes

Passes

Passes

63

dimensional consistency, integration error, extreme condition, structure

evaluation and parameter evaluation tests).

• Structure-oriented behavior tests assess the validity of the structure indirectly, by

applying certain behavior tests on the generated model’s behavior patterns obtained

from the partial or complete model’s simulation output (i.e., border adequacy,

extreme conditions, sensitivity analysis, behavior reproduction, and familiarity

tests). These are strong behavior tests that can provide information on potential

structural flaws.

• Behavior pattern test are deployed once enough confidence has been built in the

model structure, to measure how accurately the model can reproduce the major

behavior patterns exhibited by the real system (i.e., behavior anomaly, emerging,

and improvement tests). Barlas (1996) indicated that the emphasis is on pattern

prediction (periods, frequency, trends, phase lags, and amplitude) rather than point

(event) prediction.

3.3.1.5 Policy formulation and evaluation

According to Sterman (2000), this step is much broader than just changing the parameter

values of a model. The policy formulation stage includes the creation of new strategies,

structures, and decision rules. As the feedback structure of a system determines its dynamic

behavior, its leverage points often involve changing dominant meshes by changing stock and

flow structures, eliminating delays, changing the flow and quality of information available at

decision points, or even recreating decision-making processes.

3.4 Chapter summary

This section summarizes the content presented in this chapter with the purpose of

organizing the decisions taken regarding the methodological approach to achieve the

formulated objective.

The relevant content of this chapter has been:

• Research questions: based on the research purpose of this thesis, three research

questions were elaborated that guide the research to achieve the intended result.

• Research objectives: for each of the three research questions, a specific research

objective was defined. Each objective describes the expected research outcomes of

the research question.

64

• Research process: this section of the chapter presented the research process adopted

for answering each of the proposed research questions and attaining the specific

purpose of the current study. In addition to the research question, an overview of the

system dynamics, which constitutes to a central approach in the research process

used in this study, was provided (a more detailed overview can be found in

“Appendix A”).

65

4. The Dynamical Evaluation Framework

This chapter details the proposed Dynamical Evaluation Framework for evaluating the

impact that different resource allocation policies for maintenance activities have on the software

system’s evolutionary patterns over time in relation to the system’s technical sustainability

(based on the software quality characteristics, previously discussed in Section 2.3, “Software

quality models”) and economic sustainability (based on the technical debt metaphor, previously

discussed in Section 2.4, “Technical debt”).

The proposed framework is informed by the theories presented in Chapter 2

(“Background”) and the materials and methods presented in Chapter 3 (“Materials and

methods”). Figure 12 shows how the previously discussed topics interrelate and how they are

arranged together to build the proposed GQM method’s hierarchical evaluation structure (to be

presented and discussed in Section 4.1, “Hierarchical software sustainability evaluation

structure”).

Figure 12. Theoretical elements of the proposed framework

Economic sustainability Technical sustainability

Technical debt
Quality attributes

(ISO/IEC25000 series)

Principal, asset, and interest
Maintainability, Reliability,
and Functional suitability

Static analysis & simulation output

GOAL

QUESTION

METRIC

DATA

Source: Author

Figure 12 also presents the theoretical elements of the proposed evaluation framework

that were built upon the following levels of abstraction and:

• Goal level contains two trade-off goals dimensions that must be considered in order

to assess the evolutionary outcomes resulting from different resource allocation

policies for maintenance activities: economic and technical sustainability. Usually,

66

they represent conflicting interests. Taken to the extreme, building the perfect

quality software system (without any kind of violations and thus no technical debt)

will demand resources that are usually not available, or the time constraint for

delivering the software increases the likelihood of defects flowing into production

environment. Moreover, Lehman (1989) also argued that all software has latent

defects and that it is a matter of time for them to become known to users; thus, there

is no zero-defect software, but it is possible to minimize the defects by investing in

quality assurance techniques.

• Question level is used to evaluate each of the two defined goals, a set of questions

was elaborated. Economic sustainability’s questions were defined based on the

technical debt metaphor’s elements (shown in Section 4.1.1, “Technical

sustainability evaluation”), while the technical sustainability’s questions were

defined based on the ISO 250nn quality characteristics (shown in Section 4.1.2,

“Economic sustainability evaluation”).

• Metric level contains a set of metrics that were defined to answer each set of

questions, and they are used to evaluate each of the two defined goals. These metrics

were also based on the previously discussed technical debt measurements (Section

2.4) for economic sustainability, and the software quality characteristics (Section

2.3) for technical sustainability.

• Data collection level is used in two different contexts: the first is the data collection

relating to the software static analysis technique to assess a software’s past

conditions; and the second is the data collection relating to the output from the

proposed simulation model in order to evaluate the potential future outcomes

(scenarios) from the different hypothetical resource allocation policies.

Once the hierarchical evaluation structure had been defined, the proposed framework

was assembled, which was inspired by iterative nature of the system dynamics modelling

approach discussed in Section 3.3.1, and illustrated in Figure 9, and the “System Dynamics-

based Project-management Integrated Methodology” (SYDPIM) proposed by Rodrigues

(2000). The SYDPIM framework focuses on the engineering and project management process

of software product development; within this framework it was proposed to integrate the system

dynamics approach with the Program Evaluation and Review Technique (PERT) and the

Critical Path Method (CPM) project management tools.

67

The proposed framework in this study focuses on the software maintenance process,

especially in the resource allocation management of maintenance activities, which can be

considered as a portfolio investment management. In the finance domain, a portfolio enables

the establishment of a specific mix of investments that should generate the highest return for a

given level of risk (Markowitz, 1952). The portfolio theory was later adopted by the project

management community. McFarlan (1981) observed that organizations with risk-unbalanced

project portfolios, could end up with operational disruptions or leave gaps for competitors to

step in.

In the software maintenance context, the portfolio concept was used to represent the

distinct investments (and, consequently, taking the associated risk) that are made in the different

types of maintenance activities previously discussed in Section 2.2 (“Software maintenance”),

namely perfective, corrective, and preventive maintenance activities. The investments are made

by committing resources to these different types of activities, and these investments decisions

were considered the resource allocation policies for the maintenance activities. The return on

the investment strategy is measured by considering the technical and economic sustainability

of the software system.

In summary, the proposed framework integrates the system dynamics approach with the

software source code’s quality measurement (i.e., static analysis techniques), and the GQM

method’s hierarchical structure for evaluating the desired goals related to software’s

sustainability during its evolution.

Figure 13 presents the overall framework structure. The evaluation of the software’s

quality characteristics measurement (𝑚𝑖) at any given time (𝑡) is performed by scanning the

software system’s source code with the support of an automated static analysis tool from a

Software Configuration Management (SCM) tool repository. These measurements are then

categorized and grouped into the ISO/IEC 25010:2011 quality model using the guidelines

provided by the CISQ’s standards of automated quality characteristics measures. These two

steps are represented by the label Data extraction and preparation in Figure 13.

68

Figure 13. Overview of the proposed dynamical evaluation framework

Source: Adapted from Rodrigues (2000)

Next, the categorized and grouped data is evaluated using a hierarchical structure of

goals, following the GQM paradigm (i.e., the Goals evaluation label in Figure 13), which

depicts the current technical and economic sustainability state of the software system under

analysis. The data extraction and preparation, as well as the goal evaluation steps, are iterative,

because, in light of the results of each of these steps, details both of the data extraction and

preparation process and of the hierarchical evaluation structure are prone to revisions and

adjustments based on the knowledge acquired from the real software system’s environment (the

Enhanced evaluation label in Figure 13).

To optimize the investments made in maintenance activities, and thus to move closer to

the desired goals, managers and organizations can evaluate the long-term impacts that the

resource allocation scenarios would have by testing and evaluating them in the virtual

simulation environment (the Simulation analysis and Experimentation and learning labels in

Figure 13). These assessments can be performed before committing a significant amount of

resources that could eventually shorten the software’s lifetime.

The knowledge acquired from the experiments conducted through the execution of

scenarios of interest in the virtual simulation environment can be used to improve the simulation

model’s structures and assumptions (the Enhanced simulation model label in Figure 13), and to

intervene in the maintenance activities for the software system, with the software’s source code

then being stored in the SCM Repository. The proposed framework is a closed loop structure,

in which the information gathered from the software is refined with knowledge acquired

Resources
management

Maintenance
activities

Goals evaluation

Data extraction
and preparation

SCM
Repository

Simulation
analysis

Enhanced
evaluation

Enhanced
simulation model

Experimentation
and learning

69

through the simulation model execution, which, in turn, results in action taken in the real world

that changes the current state of the software system. This cycle repeats throughout the entire

life of the software, only being interrupted when a decision is taken to shut it down and finish

the software’s operating lifetime.

4.1 Hierarchical software sustainability evaluation structure

A hierarchical evaluation structure was developed according to the method previously

described in Section 2.7 (“Goal, Question, Metric method”). The structure contains goals, sub-

goals, questions, and metrics, which were later used to assess both the technical and the

economic sustainability dimensions of a software system.

Section 4.1.1 presents the hierarchical structure used for evaluating technical

sustainability, and Section 4.1.2 presents the hierarchical structure used for evaluating

economic sustainability.

4.1.1 Technical sustainability evaluation

The technical sustainability hierarchical evaluation structure is based on a subset of the

ISO 250nn quality characteristics. The structure was developed following the previously

discussed GQM method (see Section 2.7, “Goal, Question, Metric method”), and the result is

shown in Table 5.

Table 5. Technical sustainability goals question, and metrics structure.

Goal Analyze software product

For the purpose of characterization

With respect to technical sustainability

From the viewpoint of the maintenance team

Sub-goal Analyze software product

For the purpose of evaluating

With respect to reliability

From the viewpoint of the maintenance team

Question How many known violations of reliability rules does it have?

Metric Total number of reliability rules violations (#)

Question What is its functional density of reliability violations?

Metric Total number of reliability rules violations / Size of the software (#/FP)

Sub-goal Analyze software product

For the purpose of evaluating

With respect to maintainability

70

From the viewpoint of the maintenance team

Question How many known violations of maintainability rules does it have?

Metric Total number of maintainability rules violations (#)

Question What is its functional density of maintainability violations?

Metric Total number of maintainability rules violations / Size of the software (#/FP)

Sub-goal Analyze software product

For the purpose of Evaluating

With respect to functional suitability

From the viewpoint of the maintenance team

Question What is the size of the functional requirements backlog?

Metric Functional requirements backlog (function points – FP)

Question What is its functional completeness?

Metric Size of the software / (Size of the software + Functional requirements backlog) (Dmnl8)

Source: Author

The primary evaluated goal was technical sustainability. In order for this to be

evaluated, three sub-goals were defined based on the ISO 250nn quality characteristics:

reliability; maintainability; and functional suitability. For each sub-goal, two pairs of questions

and metrics were proposed. One pair measured the absolute number of occurrences of the

quality dimension, while the other pair measured the relative number to the size of the software

system, which revealed the density when analyzing quality violations, or the completeness when

evaluating the software’s functional suitability.

4.1.2 Economic sustainability evaluation

For assessing the economic sustainability dimension, a second hierarchical evaluation

structure was defined (Table 6). It consists of the base measures, some alternative weighted

measures from on the CISQ standards, and other measures extracted from the software product

and the maintenance process.

Table 6. Economic sustainability goals question, and metrics structure

Goal Analyze software product

For the purpose of Characterization

With respect to economic sustainability

From the viewpoint of the company shareholders

Sub-goal Analyze software product

For the purpose of evaluating

With respect to tangible technical asset

8 Dmnl is assumed as the abbreviation to dimensionless unit.

71

From the viewpoint of the company shareholders

Question What is its size?

Metric Size of the software (function points – FP)

Question What is the estimated effort for the development of the software in the production

library?

Metric Estimated effort (person-month)

Sub-goal Analyze business risk

 For the purpose of evaluating

 With respect to opportunity costs

 From the viewpoint of the company shareholders

Question What is the accumulated cost associated with the lack of business functionality?

Metric Estimated potential effort not spent on business functionality development, due to

technical debt influence when paying the principal of the debt or the maintenance

productivity losses (person-month).

Sub-goal Analyze software product

For the purpose of evaluating

With respect to tangible technical debt

From the viewpoint of the company shareholders

Question What is the reliability violations remediation effort?

Metric Weighted sum of each reliability violation by the effort to fix it (person-month)

Question What is the maintainability violations remediation effort?

Metric Weighted sum of each maintainability violation by the effort to fix it (person-month)

Question What is the total remediation effort to fix all known violations?

Metric Sum of all weighted sums of each violation type (reliability and maintainability) (person-

month)

Question What is the ratio of total tangible technical debt to total tangible technical asset?

Metric Total remediation effort / Estimated development effort (Dmnl)

Sub-goal Analyze software maintenance process

For the purpose of Evaluating

With respect to maintenance process productivity

From the viewpoint of the company shareholders

Question What is the real software maintenance productivity?

Metric Size of the change / Effort to make the change (FP-person/month)

Question What is the influence of the technical debt on the software maintenance process (i.e., the

technical debt’s interest)?

Metric (Nominal productivity − Real productivity) / Nominal productivity (Dmnl)

Source: Author

Analogous to the first evaluation structure shown in the previous section, the primary

goal for the second one is the economic sustainability dimension. Accordingly, four sub-goals

were defined to evaluate the tangible technical asset, the opportunity costs, the tangible

technical debt, and the maintenance process productivity.

72

The tangible technical asset owned by a company relates to the estimate made in the

past for building the available software system functionality in the production library at a given

time. This estimate is calculated by the size of the software system (measured in function points)

and by the product of the sofware’s size and the estimated effort for developing each unit of the

metric (i.e., function points). The result of this product is a hypothetical estimate of the total

effort that would be necessary to develop a new software system of an equivalent size.

On the other hand, there are the liabilities of owning and maintaining a software system

in operation. The tangible technical debt is computed based on the CISQ estimation method.

The principal is the sum of the estimated remediation effort of all the known violations, from

the four different quality characteristics, presented in the software system’s source code

available in the production library.

In addition, another question and metric pair was used for measuring the ratio of the

total technical debt to the total technical asset. This measure enables comparisons of leverage

to be made across different software systems. The higher the ratio, the higher the degree of

leverage and, consequently, the financial risk associated with the maintenance costs.

The maintenance productivity was also monitored to identify the interest component of

the technical debt metaphor. The interest results from the accumulated tangible technical debt

(see Section 2.4). Two pairs of question and metrics were used. One pair measured the

maintenance team’s productivity, and the other pair measured the impact of accumulated

technical debt on maintenance team’s productivity.

4.2 Proposed simulation model

The following sections detail how the iterative steps of the system dynamics approach

(previously discussed in Section 3.3.1, and further detailed in the Appendix A (“System

dynamics tools and elements”) were used to build the proposed simulation model, and thus to

address the specific purpose and research questions proposed in this thesis.

4.2.1 Problem articulation and dynamical hypothesis

Aligned with the specific purpose of the current research study, the proposed simulation

model aimed to investigate why, even after the beginning of its operation, a software system

continuously demands investments to remain useful, thus satisfying its users while also meeting

business needs, and how different resource allocation policies for maintenance activities affect

73

the evolutionary patterns of software system in relation to its technical and economic

sustainability.

In order to understand the dynamical behaviors of the key variables related to the

problem under investigation, these behaviors over time were analyzed based on theoretical and

empirical evidence, and their reference modes were established.

Figure 14 shows how changes in the maintenance cost of a software system are

influenced by the technical debt incurred. If no should-fix violation happened during

development or maintenance activities, there would be no technical debt. Assuming that the

size of the maintenance team remains constant over time, the maintenance cost would remain

stable at an optimum level (Optimal maintenance). This residual cost occurs because, even

without technical debt, perfective and corrective maintenance activities are still needed to meet

new demands and correct latent defects identified during the operation phase of the software

system.

However, as captured by Lehman’s laws of evolution related to complexity growth and

decreasing quality (the second and the seventh laws respectively; see Section 2.1), violations

are an intrinsic part of the software development and maintenance activities. As violations occur

during the software lifetime, the principal component of the technical debt grows, and so does

its Interest, which is measured by the difference between the optimal Maintenance cost and the

actual cost (Maintenance). The maintenance cost also grows due to degradation of the

maintenance activities’ productivity caused by the erosion of the software system’s

maintainability.

Figure 14. Maintenance costs behavior over time

Source: Adapted from Nugroho, Visser, and Kuipers (2011)

74

The maintenance cost is defined by the effort required to deliver the demands related to

functional and non-functional requirements, which are in turn defined by the product of the

maintenance team size and its productivity. The maintenance team’s productivity is affected by

should-fix violations accumulated (consisting of the technical debt’s principal component),

which reduces the software product’s maintainability and, consequently, the maintenance

team’s productivity.

The technical debt accumulation over time is depicted in Figure 15. Assuming that the

increment of the effort spent on maintenance activities at each unit of time (𝐸𝑓𝑓𝑜𝑟𝑡 ∆𝑡⁄) and

the violations’ potential (i.e., the approximate number of violations expected to be found during

development or maintenance of the software system) remains constant over time, both the Total

effort and the technical debt (TD) principal should show a linear growth.

Figure 15. Technical debt (TD) principal and maintenance effort behavior overtime

Source: Author

The behaviors observed in the plot shown in Figure 15, can also be described by the

following analytical equations

𝑇𝑜𝑡𝑎𝑙 𝑒𝑓𝑓𝑜𝑟𝑡(𝑡) = ∫ 𝐸𝑓𝑓𝑜𝑟𝑡(𝑡) ∙ 𝑑𝑡̇
𝑡

0

𝑇𝐷 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑡) = 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑜𝑡𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ∙ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ ∫ 𝐸𝑓𝑓𝑜𝑟𝑡(𝑡) ∙ 𝑑𝑡̇
𝑡

0

75

Bakota et al. (2012) identified that there is an exponential relationship between the

software maintainability (M) and the effort applied to the perfective maintenance activities, and

their proposed model was based on two basic assumptions.

The first assumption implies that the changes to a source code do not decrease the

disorder in it (except when modifications explicitly aim at maintainability improvement), which

is coherent with the second law of software evolution. 𝑆(𝑡) represents the size of the software

and 𝜆(𝑡) the change rate of the software code at a time t. Their product results in the size of the

change, and q is the erosion factor representing the amount of the damage inflicted when a line

of code is changed.

𝑑𝑀(𝑡)

𝑑𝑡
= − 𝑞 ∙ 𝑆(𝑡) ∙ 𝜆(𝑡) (𝑞 ≥ 0)

Bakota et al.’s second assumption states that the amount of change to the source code

to add new functionalities (i.e., 𝑆(𝑡) ∙ 𝜆(𝑡)) is proportional to the effort invested and to the

software system’s maintainability 𝑀(𝑡) at a given time t:

𝑑𝐶(𝑡)

𝑑𝑡
=

𝑆(𝑡) ∙ 𝜆(𝑡)

𝑀(𝑡)

In simple terms, if one applies more effort, the code would change faster, and a more

maintainable system would change even faster (and thus more cheaply), when the same effort

is applied. Another interpretation is that the effort necessary for adding new functionalities is

inversely proportional to the maintainability at a time t.

When combining the two assumptions, the authors proposed the following equation for

the software maintainability estimation:

𝑀(𝑡) = 𝑒− 𝑞 ∙ 𝐶(𝑡)

Thus, when applying a constant maintenance effort in each time interval over time,

reproducing the linear growth behavior depicted in Figure 15, the maintainability of the

software product shows the exponential decay behavior presented in Figure 16 (the Real

maintainability line).

76

Figure 16. Changes to software maintainability when the effort employed remains constant

Source: Adapted from Bakota et al. (2012)

Another theoretical scenario can be inferred from the previous equations; in this

scenario, the change rate is to be made constant over time. In order to maintain a constant

change rate, and taking into consideration the previously stated assumptions, it would demand

an exponential growth in the employed effort to develop new functionalities as the

maintainability linearly decreases over time (Figure 17).

Figure 17. Change of effort employed and the software maintainability when change rate is constant

Source: Bakota et al. (2012)

The software’s disorder represented by the maintainability measure is a proxy for

estimating the impact that the technical debt incurred during the development and maintenance

activities performed on a software system has on the maintenance productivity; this effect of

the technical debt on the maintenance productivity is called interest (see Section 2.4). Thus,

when performing changes to the software code, quality violations are intentionally or

77

unintentionally incorporated, which reduces the software maintainability, making it costlier to

change over the time.

Ramasubbu and Kemerer (2014) investigated the functionality growth patterns of a

commercial software system over time, according to different development and maintenance

investment policies, and they found some particularities among the observed patterns.

First, the authors found that, within the analyzed empirical data, the functionality growth

of an ideal and hypothetical software system base version would follow an S-shaped pattern

(also known as the logistic growth model), which they argued is in line with the product growth

model in the broader population; this behavior has been established as an empirical

generalization (Mahajan et al., 2000; Rogers, 2003), that is, as a regularity that repeats over a

variety of circumstances. The S-shaped growth pattern arises from the different demand for

new functionalities over time and how it is addressed (e.g., velocity) to be incorporated in the

software system production baseline.

Moreover, Ramasubbu and Kemerer (2014) identified three distinct transition zones

during the software life cycle takeoff (t) represents the point in time when, after an initial slow

growth, the software’s functionality growth starts to speed up to meet the users’ and business

demands; inflection (i), as in the logistic growth model, is a moment that lies at the half-way

mark of the software’s size at the end of its lifespan; and saturation (s) is defined as the moment

when the software’s functionality growth starts to decline. These three tipping zones are shown

in Figure 18.

Figure 18. Software system’s functionality growth over time

Source: Ramasubbu and Kemerer (2014)

78

Figure 19 illustrates the resulting behaviors from two different and antagonistic resource

allocation policies. The plot on the left shows the functionality growth (a dashed line) of a

policy where decisions were made toward incurring violations, and thus accumulation technical

debt, causing the software maintainability to decrease resulting in the interest growing. This

plot illustrates that this strategy makes the takeoff and the saturation occur much earlier than

the baseline of the S-shaped curve discussed in Figure 18.

The early benefits of debt could be of value so that the development could be faster, and

the software delivered earlier. However, as the software’s lifetime extends and more

maintenance investments become necessary in order for the software to remain useful and

satisfy its users (in accordance with the first and sixth laws of software evolution; see Section

2.1), these initial benefits can be exceeded by the deferred costs of higher debt.

The baseline and the high-debt curves intersect at point c. If the benefits accumulated

before 𝑡𝑐 are higher than the deferred costs after 𝑡𝑐, then the early benefits are higher than the

long-term costs. This makes it a suitable strategy for stakeholders who are mainly interested in

the short-term return on investments associated with a higher rate of business functionality

growth and who are not concerned with the late maintenance costs associated with the low

quality software systems (i.e., low maintainability).

The plot on the right side of Figure 19 shows an opposite strategy: delaying quality

violations and creating opportunity costs of lower debt. After point l, and without compromising

the software maintainability, the maintenance costs remain lower than the previous policy and

create deferred benefits of lower debt.

Analogous to the prior analysis, if the accumulated opportunity costs before 𝑡𝑙 are lower

than the deferred benefits after 𝑡𝑙, then the technical debt avoidance policy benefits exceed the

lack of business functionalities. This strategy is therefore more suitable to contexts where

stakeholders are mainly interested in long-term return on investments associated with lower late

maintenance costs (i.e., high maintainability).

79

Figure 19. Expected growth in higher (left) and lower (right) technical debt scenarios

Source: Ramasubbu and Kemerer (2014)

These evolutionary patterns are in accordance with the analogy made by Sauer (1993),

according to which he compared a software system’s success to the survival goals of a natural

system. Depending on the software system’s goal, both resource allocation policies (high- and

low-debt incurrence) can be valuable. A short-lived software system could benefit from the

high-debt strategy and long-lived software system could benefit from the low-debt strategy.

However, problems arise when choosing a resource allocation policy unsuited to the

desired goal. Examples of such unsuitable policies are the adoption of a high-debt strategy for

a long-lived software system and making it excessively costly to maintain at a late state, or, on

the contrary, the adoption of a low-debt strategy for a short-lived system and not realizing the

business benefits associated with higher delivery rates of new business functionalities during

the early stages.

Another important finding of Ramasubbu and Kemerer’s (2014) study, and one of the

core concepts for establishing the reference mode of the proposed model, was their

identification of six key decision points throughout the software system’s evolution life span.

Three of these decision points are on the high-debt policy’s trajectory (HD1-3), and three are

on the low-debt policy’s trajectory (LD1-3); these are shown in Figure 20.

80

Figure 20. Maintenance policies variations and development investments decisions

Source: Ramasubbu and Kemerer (2014)

According to the Ramasubbu and Kemerer, (2014) the first pair of decision points (HD1

and LD1) pertain to opportunities to alter maintenance investments policies (i.e., resource

allocation policies) as they occur before the takeoff transition zone. Whatever the chosen policy,

any associated costs should be accounted as learning investments.

Once the software system’s functionality growth takes off, it should be possible to get

reliable estimates of the potential technical debt obligation at decision points HD2 and LD2,

which will need to be paid off at some point in the future, as well as estimates of the opportunity

costs due to the lack of business functionalities.

The last two decision points (HD3 and LD3) occur in the late stage of the software

system’s life cycle. When taking a high-debt policy variant, and if the software system is retired

at this point, then the incurred technical debt could be partially written off (not entirely because

the costs related to the higher costs of maintenance due to the software’s lower maintainability

would already be incurred – i.e., the interest amount). However, if the software system has still

to be kept in operation, decision-makers face a debt obligation and resources must be allocated

in preventive maintenance activities in order to reduce the accumulated technical debt.

Similarly, when following a low-debt policy variant, and if the software system is retired

at a late stage, the deferred benefits are lost. However, if kept in operation, the opportunity costs

can be recovered due the higher maintainability (i.e., higher maintenance productivity) and at

a relatively cheaper cost when compared to the higher debt policy variant.

81

When paying the technical debt interest, some authors have proposed two distinct

situations when the technical debt’s interest can manifest itself (Ampatzoglou et al., 2016):

• Interest while performing maintenance activities (IM): The difference between the

necessary effort for performing maintenance in software with accumulated technical

debt and the effort that would be necessary with the same software if it had no

technical debt. This type of interest will occur, and will be simultaneously paid,

when maintenance activities are performed.

• Interest while repaying technical debt (IR): The difference between the necessary

effort for repaying a technical debt’s principal item at any time point t is higher than

the effort that would be needed for repaying it at any time point prior to t. This type

of interest will occur when (and if) the technical debt item is to be paid off.

This distinction adds more details about when these extra costs can occur. Thus, the

interest of each technical debt item (𝐼𝑇𝐷𝐼) should be estimated based on the following formula:

𝐼𝑇𝐷𝐼 = 𝐼𝑅𝑇𝐷𝐼 + 𝐼𝑀𝑇𝐷𝐼

To transform the previous formula from the technical debt item level to the software

system level, an aggregation function is used so that the interest at the software system level (I)

can be calculated as:

𝐼 = ∑ 𝐼𝑅𝑗 + 𝐼𝑀𝑗

𝑗=𝑐𝑜𝑢𝑛𝑡(𝑇𝐷𝐼)

𝑗=1

Further, Ampatzoglou et al. (2016) proposed an interest theory that is presented in

Figure 21, where the x-axis represents the time and the y-axis represents the amount of effort.

The 𝑃0 line represents the initial principal (the money/time borrowed when taking development

shortcuts), and this assumed to be constant over time if no extra should-fix violations occurred.

When the level of should-fix violations (i.e., the technical debt’s principal) remains

constant over time, so too the software maintainability will remain constant. Thus, the

accumulated amount of interest incurred (∑(𝐼𝑀)) during maintenance activities would

continuously increase following an exponential slope (see Figure 17).

82

The intersection point 𝐸0 represents the equilibrium at time stamp 𝑡0, indicating that the

complete amount of effort borrowed from technical debt (e.g., shortcuts to speed up the

maintenance activity) has been spent on extra maintenance effort caused by the incurred

technical debt. It is important to note that this equilibrium point is related only through the

analysis of the effort (both saved and spent). Any other related costs or benefits were not

considered in this formulation.

Therefore, if the expected lifespan of the technical debt item is shorter than the time 𝑡0

(the equilibrium point), then undertaking the debt is a good decision; however, if not, the

incurred debt becomes harmful.

Figure 21. Impact of technical debt interest due to technical debt item’s repayment

Source: Ampatzoglou et al. (2016)

When preventive maintenance is performed to remove a technical debt at a time point

𝑡𝑟, the line representing the accumulated interest ∑(𝐼𝑀) moves up due to the interest paid when

repaying the debt (𝐼𝑅(𝑡𝑟)), while the slope of the curve softens since the maintainability of the

software increases and the interest is expected to lower for future maintenance activity (IM).

This repayment at time 𝑡𝑟 postpones the equilibrium point (𝐸′) to a later time point 𝑡0
′ ,

expanding the benefit period.

83

4.2.1.1 Model’s subsystem diagram

The proposed model was organized into four subsystems: Quality measurement, Goals

evaluation, Software maintenance, and Resource management. Figure 22 presents a diagram of

the model’s subsystems and their main interactions.

Figure 22. Subsystem diagram of the proposed model.

Source: Author

Additionally, Table 7 presents a brief description of each of the proposed model’s four

subsystems.

Table 7. Description of the proposed model’s subsystems

Model subsystem Description

Quality measurement This consists of a set of proxies that are used to mimic the software

quality characteristics related to functional and nonfunctional

requirements and the effects caused by the interaction of the software

system with the external environment throughout its life cycle. The

laws of software evolution also influence the software system’s quality

measurements, such as continuing changes, decreasing quality,

increasing complexity and continuing growth.

Goals evaluation This contains the structures used for evaluating the defined software

system’s goals related to economic and technical sustainability. This

subsystem also contains the structures involved in the reasoning and

Quality
measurement

Software
maintenance

Goals
evaluation

Resource
management

quality measures

workforce

allocation
policyintervention

84

the decision-making processes about the goals’ gaps and the resource

allocation policies for intervening, through the maintenance activities,

in the software’s current operational state.

Resources management This represents the execution of the decisions made about resource

allocation policies (financial, personnel, etc.) for performing activities

related to perfective, corrective, and preventive maintenance. The

availability of the maintenance team is represented as a finite resource

that imposes restrictions on the ability to perform the necessary

interventions, and the decisions made among resource allocation

policies constitutes a trade-off analysis between reducing the technical

debt (preventive maintenance), removing reliability, performance, and

security defects (corrective maintenance), and meeting the demands

for new or modified functionalities (perfective maintenance).

Software maintenance This includes elements related to the execution of software

maintenance activities performed to meet the business demands

(represented by the functional requirements backlog) of the software’s

users. In addition, this subsystem is also responsible for performing

preventive maintenance activities to reduce the level of technical debt

and to preserve the software product maintainability (i.e., repaying

technical debt to reduce the interest), and the corrective maintenance

activities for fixing reliability, security and performance defects.

Source: Author

4.2.1.2 Model boundary chart

Table 8 shows the model boundary chart with the variables considered endogenous,

exogenous, or excluded.

Table 8. Boundary chart of the proposed model

Endogenous Exogenous Excluded

Functional requirements backlog

Production library (functional

requirements available)

Maintainability violations (TD

principal)

Maintenance team

Maintenance team productivity

Software product growth rate

Refactoring effort necessary

Refactoring overhead

Schedule

Adaptive maintenance activities

Data quality

Intangible assets

Liability risks

Software infrastructure

(hardware, operation system,

network, etc.).

85

Perfective, corrective and

preventive maintenance

activities

Reliability violations

Resource allocation policies

Software product

maintainability

Violation rates

Violation potentials

Violation density

Tangible asset

Interest rate

Software overall attractiveness

Support services (training,

helpdesk etc.)

User satisfaction levels

Technology evolution

Source: Author

4.2.1.3 Model’s causal loop diagrams

The following sections present and describe the causal loop diagram, which is one of

the elements for formulating the dynamical hypothesis tested in the present work. The

hypothesis consists of the feedback structures presented in the following sections being

responsible for reproducing the behaviors over time previously discussed in Section 4.2.1

(“Problem articulation and dynamical hypothesis”).

For simplicity and in order that the proposed causal loop structure is better understood,

a bottom-up presentation has been adopted whereby the diagram will be shown incrementally.

4.2.1.3.1 Continuing growth – Lehman’s sixth law (R1)

As previously stated by Lehman (1996b) in his sixth law of software evolution, every

software system must continuously grow to remain useful and fulfill the needs of its

stakeholders.

This phenomenon is represented by the reinforcing loop R1 – Continuing growth, shown

in Figure 23. This loop is composed by the software “Production library”, which, when

increased (measured as the number of function points in operation), will increase the software’s

Functional suitability (the ratio of the actual software features in operation and the desired

software size, both measured in lines of code). When this ratio changes, the Overall software

attractiveness will move in the same direction (it will increase or decrease), causing the

86

Functional requirements backlog’s increase rate to follow the same trend (when attractiveness

increases, it will increase faster; when it decreases, it will increase more slowly than would be

expected if nothing has changed).

Figure 23. Continuing growth feedback loop

Source: Author

When the Functional requirements backlog increases, it will demand more resources to

be allocated to the software’s perfective maintenance activities (increasing the effort and

investments made) to transform functional requirements items into running operational

software code, which will then increase the software’s Production library and close the R1

feedback loop.

4.2.1.3.2 Increasing complexity – Lehman’s second law (B1)

If nothing limits the dynamic produced by the interacting elements of the loop “R1”, the

software’s “Production library” would theoretically grow indefinitely, producing an observed

behavior that goes against what Lehman (1996b) previously observed during his empirical

studies at IBM, and later captured in his second law of software evolution, namely the law of

“increasing complexity”.

One of the forces that limits the continuous growth of the software system size stems

from the constant changes made to the code from perfective maintenance and the fact that the

software maintenance activities are error prone. Consequently, every line of code changed

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Resources allocated to
perfective maintenance

Continuing
Growth

(6th law)

Functional
suitability

+

+

+

87

increases the probability of introducing violations of reliability, performance, security, and

maintainability (the latter making the software harder and more costly to modify).

This behavior is illustrated by the balancing feedback loop B1 – Increasing complexity

(Figure 24) and captured by the second software evolution law: increasing complexity. When

the Perfective maintenance effort is employed to develop a new software’s functional

requirements (i.e., resources are allocated), Maintainability violations are also incurred due to

process failures, human errors, and so on. Violations of maintainability are the basis of the

software technical debt metaphor, corresponding to its principal (see Section 2.4 for more

details). If the violations are not removed, they will hinder the maintenance productivity team

(i.e., Current maintenance team productivity), which will, in turn, cause the Perfective

maintenance productivity to follow this trend and be negatively impacted.

Figure 24. Increasing complexity feedback loop

Source: Author

The closed feedback structure formed by the closed loops R1 and B1 follow the system

archetype “limits to growth” proposed by Senge (2006). System archetypes are similar to the

software engineering concept of “design patterns” (Gamma et al., 1994), where they capture

the software engineering community’s knowledge and good practices in relation to commonly

used structures and the contexts of problems.

Senge describes the “limits to growth” archetype as follows:

A process feeds on itself to produce a period of accelerating growth or expansion. Then the

growth begins to slow (often inexplicably to the participants in the system) and eventually

comes to a halt, and may even reverse itself and begin and accelerating collapse.

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Resources allocated to
perfective maintenance

Continuing
Growth

(6th law)

Increasing
Complexity
(2nd law)

Functional
suitability

+

+

+

88

The growth phase is caused by a reinforcing feedback process (or by several reinforcing

feedback processes). The slowing arises due to a balancing process brought into play as a

“limit” is approached. The limit can be a resource constraint, or an external or internal

response to growth. The accelerating collapse (when it occurs) arises from the reinforcing

process operating in reverse, to generate more and more contraction. (Senge, 2006, p. 354)

4.2.1.3.3 Requirements “gold plating” (B2)

Besides the constraint to the software system’s growth imposed by the Increasing

complexity feedback structure, McConnell (1996) pointed out that software projects commonly

have more requirements than needed (either by the project team or by the client) right from the

beginning, which can unnecessarily lengthen the software project’s development schedule.

In order to capture this in the model, there is a negative link between Functional

requirements backlog and the Functional suitability. Functional suitability is calculated as a

ratio between the overall desired software functionality and the functionality deployed in the

Production library.

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑏𝑟𝑎𝑟𝑦

(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 + 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑎𝑐𝑘𝑙𝑜𝑔)

Thus, when requirements start to accumulate in the backlog because they are not

developed and deployed in the Production library, the Functional suitability diminishes, thus

reducing the Software overall attractiveness, which in turn reduces the desire for new features

for the operating system (Figure 25).

Figure 25. Requirements gold plating feedback structure

Source: Author

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Resources allocated to
perfective maintenance

Continuing
Growth

(6th law)

Increasing
Complexity
(2nd law)

-

Requirements
Gold Plating

Functional
suitability

+

+

B2

+

89

This feedback loop (B2) indicates that if the organization is unable to manage user

expectation for fast delivery of new operational functionality and to keep assuming new

commitments for new developments, the Software overall attractiveness would inevitably be

harmed as the organization would not be able to deliver the desired new functionalities within

the expected time frame.

4.2.1.3.4 Declining quality – Lehman’s seventh law (B3)

However, it is not only from broken promises (which impact functional suitability) and

increasing complexity that the maintained software system suffers along its operational

lifetime.

Lehman’s (1996b) seventh law states that a software system will also appear to face a

continuous degradation of quality, and he observed that a software system that has previously

performed satisfactorily may over time suddenly exhibit unexpected, and previously

unobserved, unsatisfactory behavior.

Lehman argued that this phenomenon can be explained by the Principle of Uncertainty:

Even if the outcome of past executions of an E-type program have been satisfactory, the

outcome of further executions is inherently uncertain; that is, a program may display

unsatisfactory behavior or invalid results. (Lehman & Ramil, 2002, p. 185)

Although this principle statement makes no reference to the source of the uncertainties,

the proposed model incorporate them as the Reliability violations that are introduced by the

Software perfective maintenance rate, which, with some time delays, increases the Reliability

violation density gap, thus reducing the Software overall attractiveness.

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑔𝑎𝑝

=
∑ 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑏𝑟𝑎𝑦
− 𝐴𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

These interactions are represented by the balancing feedback loop B3, which is

illustrated in Figure 26.

90

Figure 26. Declining quality feedback structure

Source: Author

4.2.1.3.5 Continuing changes – Lehman’s first law (B4)

In order to mitigate the effects of the declining quality captured by the seventh law of

software evolution, a countermeasure is necessary so that the software system constantly adapts.

During the life cycle of the software system, unexpected and unsatisfactory behaviors emerge,

and they are caused by violations that were previously introduced during its development and

the maintenance activities made during its lifetime, which were not properly identified and

removed before deploying the modified software code in the operational environment.

This countermeasure is captured in Figure 27 by the balancing feedback loop B4,

consisting of the Reliability violations level, which, when increased, also increases the

Reliability violation density gap (calculated as the difference between the Acceptable reliability

violation density) that will trigger the decision-making to move towards allocating resources in

corrective maintenance activities for removing theses violations (i.e., Resources allocated to

corrective maintenance).

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Reliability violations

+
+

Resources allocated to
perfective maintenance

Continuing
Growth

(6th law)

Declining
Quality (7th law)

Increasing
Complexity
(2nd law)

B3

-

Requirements
Gold Plating

Functional
suitability

+

+

B2

Acceptable reliability
violation density

Reliabiility violation
density gap

-

-

+

91

 Figure 27. Continuing changes feedback structure

Source: Author

4.2.1.3.6 Work harder (R2)

From the Increasing complexity balancing feedback loop (Section 4.2.1.3.2), there is a

degenerative effect that erodes the perfective maintenance team’s productivity over time as the

maintainability violations level builds up and causes the software system’s maintainability to

decrease.

Repenning and Sterman (2001) found that it was rare to find processes performing

above expectations within the studied organizations. They identified that, due to high and rising

demands, team members and decision-makers usually faced performance gap (i.e., productivity

shortage), and when falling behind schedule, they usually start searching for opportunities to

improve and close the performance gap.

Still, organizations are usually reluctant to hire new employees and increase their fixed

overhead costs. Hence, team members and decision-makers must either extend their working

time (i.e., work overtime) or take shortcuts by neglecting standard routines (code quality

standard, documentation, good practices, tests, and so on), capturing the idea that the throughput

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Reliability violations

+
+

Resources allocated to
perfective maintenance

Resources allocated to
corrective maintenance

Continuing
Growth

(6th law)

Declining
Quality (7th law)

Increasing
Complexity
(2nd law)

-

B3

-

Requirements
Gold Plating

Functional
suitability

+

+

B2

Acceptable reliability
violation density

Reliabiility violation
density gap

-

-

+

B4

Continuing
Changes (1st law)

+

92

gain, by cutting corners and reducing the time spent on each activity, comes at the expense of

leaving behind the organization’s good practices.

Figure 28 illustrates this causal relationship through the reinforcing loop Work harder

(R2).

Figure 28.Work harder feedback structure

Source: Author

The Desired maintenance productivity is computed by the work still to be done in the

Functional requirements backlog and by the company’s Batch lead time. The Batch lead time

defines the company interval for delivering new increments for deploying the new

functionalities in the Production library (the software system’s new releases).

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑎𝑐𝑘𝑙𝑜𝑔

𝐵𝑎𝑡𝑐ℎ 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒

The Perceived maintenance productivity gap is then calculated as the difference

between the Desired maintenance productivity and the Perceived maintenance productivity,

which is perceived with some time delay in the Current maintenance productivity.

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Reliability violations

+
+

Resources allocated to
perfective maintenance

Resources allocated to
corrective maintenance

Perceived
maintenance

productivity gap

Desired
maintenance
productivity

+

-

Continuing
Growth

(6th law)

Declining
Quality (7th law)

Increasing
Complexity
(2nd law)

-

B3

-

Requirements
Gold Plating

Functional
suitability

+

+

B2

Time spent per
maintenance task

-

-

Work
Harder

R2

Batch lead time

+

-

Acceptable reliability
violation density

Reliabiility violation
density gap

-

-

+

B4

Continuing
Changes (1st law)

+

93

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑔𝑎𝑝

= 𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

− 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

The higher the Perceived maintenance productivity gap, the shorter will be the Time

spent per maintenance activity, which will, in turn, increase the Software perfective

maintenance rate.

4.2.1.3.7 Haste makes waste (R3)

The delivery throughput gain achieved by the shortcuts and overtime working of the

maintenance team (obtained from the Work harder reinforcing feedback structure, discussed in

Section 4.2.1.3.6) comes at a cost.

As the maintenance team starts taking shortcuts they will, for example, start leaving

behind the organization development quality norms; delivering inappropriate software quality

code; begin skipping the development and running the unit tests; have insufficient time to

prepare and update the software system’s documentations; and so on (Abdel-Hamid, 1990;

Abdel-Hamid & Madnick, 1991).

All these shortcuts, if not adequately addressed, will in the long term become manifest

as they will increase the Maintainability violation potential. This will increase the propensity

of the maintenance activities to incur more maintainability violations, which will be

accumulated in the Maintainability violations (TD principal) level; this, in turn, will then hinder

the Software maintainability, thus decreasing the Current maintenance team productivity again.

94

 Figure 29. Haste makes waste feedback structure

Source: Author

Depending on the dynamics interactions, the effect caused by the reinforcing loop Haste

makes waste (R3) can easily overcome the short-term throughput gains obtained from the

reinforcing loop Work harder (R2); hence, the software system’s lifetime will be shortened, as

maintaining it becomes costlier over time.

The interactions captured by these two feedback structures (R2 and R3) show that both

technical and economic sustainability are intertwined and co-dependent, which is in accordance

with what was previously discussed in Section 2.5 (“Software sustainability”).

In addition, this phenomenon is also in accordance with Lehman’s fourth law of

software evolution (i.e., the “Conservation of Organisational Stability”; see Section 2.1):

By and large it is still generally believed that the effort expended on system growth and

evolution is determined by managerial decision. To some degree corporate and local

management certainly do control activity targets and resource allocation to a project,

system or activity. Their ability to do this is, however, constrained by external forces, trade

unions or the availability of personnel with appropriate skills for example. But as suggested

by the third law the effort usefully expended, that is to achieve satisfactory results, is also

determined by system attributes, complexity for example, that are analogous to attributes

such as inertia and momentum in mechanical systems. (Lehman, 1996b, p. 2)

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Reliability violations

+
+

Resources allocated to
perfective maintenance

Resources allocated to
corrective maintenance

Perceived
maintenance

productivity gap

Desired
maintenance
productivity

+

-

Continuing

Growth (6th law)

Declining
Quality (7th law)

Increasing
Complexity (2nd

law)

-

B3

-

Requirements
Gold Plating

Functional
suitability

+

+

B2

Time spent per
maintenance task

-

-

Work Harder

R2

Batch lead time

+

-

Reliability violations
potential

-

Maintainability
violation potential

-

+

+

Acceptable reliability
violation density

Reliabiility violation
density gap

-

-

+

B4

Continuing
Changes (1st law)

+

R3

Haste Makes

Waste

95

4.2.1.3.8 Work smarter (B5)

Lehman’s second law of software evolution states that “As a program is evolved its

complexity increases unless work is done to maintain or reduce it”, which correlates with the

entropy principle of thermodynamics.

The “limits to growth” archetype is closely related to a second system thinking

archetype, namely the “growth and underinvestment”, with which it is usually correlated,

although the final outcomes differ from each other.

Senge stated that this common system structure happens when the following dynamics

occur:

Growth approaches a limit which can be eliminated or pushed into the future if the firm, or

individual, invests in additional “capacity”. But the investment must be aggressive and

sufficiently rapid to forestall reduced growth or else it will never get made [emphasis

added].

Oftentimes key goals or performance standards are lowered to justify underinvestment.

When this happens, there is a self-fulfilling prophecy where lower goals lead to lower

expectations, which are then born out by poor performance caused by underinvestment.

(Senge, 2006, p. 365)

In the software maintenance context, investing in capacity is also related to paying the

technical debt, although not only to this (i.e., investments can be made to improve processes,

acquire new technologies, hire and train staff, etc.). This research study focuses on the technical

debt influence on the maintenance productivity because, despite the process, technology and

better training of teams, it will only be a matter of time for the impact caused by technical debt

to become manifest, and it will eventually risk the continuing operation of the software system

and its ability to adapt to new scenarios.

Incurring technical debt hinders the maintenance team’s productivity. Repaying it

means, in accordance with Lehman’s second law of software evolution, that the organization is

investing in order to restore the productivity to its desired level and close the trade-off decision

between further investing in new business functionalities or improving the software system’s

maintainability.

Both Lehman and Senge, besides discussing different contexts, captured the trade-off

decision of further exploiting short-term benefits and the consequences this brings to the long-

term horizon.

96

Figure 30 shows the technical debt repaying structure. When the Perceived perfective

maintenance productivity falls behind the Desired perfective maintenance productivity (with

some time delay), decisions are made toward moving Resources allocated to preventive

maintenance and repaying the incurred technical debt violations, and thus, restoring the desired

maintenance team’s productivity, which closes the balancing feedback structure Work smarter

(B5).

 Figure 30. Work smarter feedback structure

Source: Author

4.2.1.3.9 Self-regulation – Lehman’s third law (B6)

The amount of resources that an organization can commit over time to investment in

maintenance activities for a software system, to keep it operating as well as to satisfy its

stakeholders, is limited.

In relation to his third law of software evolution (i.e., “Self-regulation”; see Section

2.5), Lehman argued that

The evolution of industrially produced E-type software is implemented by a technical team

operating within a larger organisation. The interests and goals of the latter extend far

beyond completion of the system in question. Checks and balances will have been

established by corporate and local management to ensure that operational rules are followed

and organisational goals at all levels are met. The positive and negative feedback controls

Production library

Functional
requirements backlog

Overall software
attractiveness

Software perfective
maintenance rate

+

+

+

+

R1

Current maintenance
team productivity

Maintainability
violations (TD

principal)+

+
Software

maintainability

-

+

B1

Reliability violations

+
+

Resources allocated to
perfective maintenance

Resources allocated to
preventive maintenance

Resources allocated to
corrective maintenance

Perceived
maintenance

productivity gap

Desired
maintenance
productivity

+

-

-

Continuing

Growth (6th law)

Declining
Quality (7th law)

Increasing
Complexity (2nd

law)

-

B3

-

Requirements
Gold Plating

Functional
suitability

+

+

B2

Time spent per
maintenance task

-

-

+

Work
Smarter

B5

Work Harder

R2

Batch lead time

+

-

Reliability violations
potential

-

Maintainability
violation potential

-

+

+

Acceptable reliability
violation density

Reliabiility violation
density gap

-

-

+

B4

Continuing
Changes (1st law)

+

R3

Haste Makes

Waste

97

that implement these checks and balances provide one example of feedback driven growth

and stabilisation mechanisms. (Lehman, 1996b, p. 2)

The organization’s goals, which extend far beyond the software system’s goal, are

represented by Overall investment made in the software maintenance activities, which consists

of the sum of the TD interest amount and the Total maintenance effort employed.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

= 𝑇𝐷 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 + 𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑖𝑛𝑣𝑒𝑠𝑡𝑒𝑑

= ∑ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

+ ∑ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

+ ∑ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

98

 Figure 31. Self-regulation feedback structure

Source: Author

99

The Overall investments made during the software’s lifetime in maintenance

activities negatively influence the Software overall attractiveness, which, in turn, closes the

balancing feedback structure Self-regulation (B5) by moving the Functional requirements

backlog increase rate in the same direction.

4.2.1.3.10 Feedback system – Lehman’s eighth law

The eighth law proposed by Lehman, although the last to be formulated, arguably

should have been the first to be stated as its concepts pervade and underlies the behaviors

encapsulated by the other seven laws. The eighth law recognizes that the software evolution

process, which starts as soon as the software system has been deployed, consists of a set of

complex feedback loops whose effects must be carefully considered (Godfrey & German,

2014).

Lehman (1996b) argued that the role of feedback was recognized almost from the

start of detailed studies on the software process and was also present in his early empirical

observations of software evolution phenomena. Later, when discussing the importance of

understanding the involved feedback structure, Lehman pointed out:

The behaviour of feedback systems is not and cannot, in general, be described directly

in terms of the aggregate behaviour of its forward path activities and mechanisms.

Feedback constrains the ways that process constituents interact with one another and

will modify their individual, local, and collective, global, behaviour. According to the

eighth law the software process is such a system. This observation must, therefore, be

expected to apply. Thus, the contribution of any activity to the global process may be

quite different from that suggested by its open loop characteristics. If the feedback nature

of the software process is not taken into account when predicting its behaviour,

unexpected, even counter-intuitive, results must be expected both locally and globally.

For sound software process planning, management and improvement the feedback

nature of the process must be mastered. (Lehman & Ramil, 2001, p. 35)

Within the proposed causal loop diagram presented in Figure 31, the eighth law is

captured by the set of the single feedback structures discussed so far and their corresponding

interactions that produce emergent behaviors, which are presented and discussed in sections

4.2.1.1 (“Model’s subsystem diagram”) and 4.2.3 (“Model testing”).

100

4.2.2 Model formulation

The following sections present each of the four subsystems of the proposed

simulation model, consisting of their stock and flow diagrams, their underlying reasoning,

and their main equations.

The simulation model was developed using version 7.3.4 of the Vensim Professional

software (Ventana System, 2018). Its complete documentation, containing the model’s

source code, is available in Appendix B (“Model documentation”) of the present thesis.

4.2.2.1 Maintenance process subsystem

The design and implementation of the maintenance process subsystem was further

divided into two distinct smaller subsystems. This decision was taken due to the

particularities of the inner dynamic interactions and characteristics of the different types of

maintenance activities (perfective, corrective, and preventive). Separating them would enable

their differences to be modeled without creating unnecessarily complicated structures.

Therefore, the maintenance process subsystem was modeled as being composed of

two different smaller subsystems that were named “Perfective maintenance subsystem” and

“Corrective and preventive maintenance subsystem”, which are described in the following

sections.

4.2.2.1.1 Perfective maintenance subsystem

This subsystem of the model was inspired by previous works published by Taylor and

Ford (2006, 2008), in which the authors investigated the impact that reworking had on the

performance of individual development projects. They proposed an aging chain structure to

model the observed behaviors. An aging chain structure consists of a sequence of levels that

are interconnected with conserved flows (i.e., there is no loss or addition from the

intermediate stages), in which the levels depict the contents of the chain in different

conditions (Sterman, 2000).

The levels contained in the structure presented in Figure 32 show that the functional

requirements accumulated in Functional requirements backlog items are transformed over

time in to Developed but not checked items according to a Perfective maintenance rate.

101

These developed but unchecked items go through a quality inspection process, and,

after a delay represented by Time to check, they are released into the Production library. Due

to process performance and maturity, however, some of the developed functional

requirements items are flawed and need to be reworked. The fraction of rework items is

defined by the Fractional of flawed functional requirements; thus, the release and rework

rates are computed according to the following equations:

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒(𝑡)

=
𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑐ℎ𝑒𝑐𝑘𝑒𝑑(𝑡)

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘

∙ (1 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑓 𝑓𝑙𝑎𝑤𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠)

𝑅𝑒𝑤𝑜𝑟𝑘 𝑟𝑎𝑡𝑒(𝑡)

=
𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑐ℎ𝑒𝑐𝑘𝑒𝑑(𝑡)

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘

∙ 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑓 𝑓𝑙𝑎𝑤𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

102

 Figure 32. Perfective maintenance activities subsystem’s stock and flow diagram

Source: Author

Simultaneously, new functional requirements are added to the Functional

requirements backlog according to the New requirements rate, thereby closing the previously

discussed reinforcing feedback structure representing the sixth software evolution law

relating to continuing growth (see Section 4.2.1.3.1).

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑎𝑐𝑘𝑙𝑜𝑔(𝑡)

= 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑏𝑎𝑐𝑘𝑙𝑜𝑔(𝑡 − 1)

+ 𝑁𝑒𝑤 𝑟𝑒𝑞𝑢𝑖𝑒𝑚𝑒𝑛𝑡𝑠 𝑟𝑎𝑡𝑒(𝑡) − 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒(𝑡)

Functional

requirements backlog

Developed but not

checked

Perfective maintenance

rate

Rework rate

Production library

Release rate

New

requirements rate

Desired fractional

growth rate

Nominal perfective
maintenance
productivity

Time to
check

Fractional of flawed

functional requirement

Fractional

requirement creep

<Resources allocated to

perfective maintenance>

<TIME STEP>

Functional
suitability

Current perfective

maintenance productivity

Effect of maintainability in
perfective maintenance

productivity

Software overall

attractiveness

Perceived functional

suitability adj. time

<Violation

density>

103

The New requirements rate is influenced by the current software size (Production

library) and its current overall attractiveness, which can be defined by the following

equation:

𝑁𝑒𝑤 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑟𝑎𝑡𝑒(𝑡)

= 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑏𝑟𝑎𝑟𝑦(𝑡) ∙ 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒

∙ 𝑓(𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑡))

The perfective maintenance rate is calculated by the following equations:

𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒(𝑡)

= 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡)

∙ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒(𝑡)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡)

= 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

∙ 𝑓[𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡)]

4.2.2.1.2 Corrective and preventive maintenance subsystem

The corrective and preventive maintenance subsystem was also implemented as an

aging chain but detached from the previous perfective maintenance subsystem. The structure

of this subsystem, which is presented in Figure 33, contains a set of three levels, attached to

conserved flows that represent how the software system’s violations are handled.

104

Figure 33. Corrective and preventive maintenance subsystem’s stock and flow diagram

Source: Author

The new violations are introduced into the software system according to the Violation

generation rate, and they are initially accumulated in the Undiscovered violations level. Over

time, some of these Undiscovered violations are identified (i.e., Early defect detection rate)

and removed (i.e., Violation removal rate) before the maintained code is released to the

production environment (i.e., the Release violations level).

The Violation generation rate is proportional to the probability of introducing

violations while performing changes to the software code, which is represented by the

Current violation potential and Bad fix rate auxiliary variables.

Undiscovered

violations

Released

violations

Violation

release rate

Late defect

detection rate

Violation

generation rate

Current violation

potential

<Perfective

maintenance rate>

Discovered

violations

Early defect

detection rate

Current violation

removal efficiency

Time to discover

operational violations

Violation potential

according to

software size

<Production

library>

Violation removal

rate

Violation removal
efficiency according to

software size

<TIME STEP>

<TIME STEP>

<Resources allocated to

corrective maintenance>

<Resources allocated to

preventive maintenance>

Nominal violation

removal productivity

Current violation

removal productivity

Initial

violations

Effect of maintainability on
violation removal

productivity

<Reference

backlog library>

Bad fix rate

<Production

library>

105

𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡)

= 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒(𝑡) ∙ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(𝑡)

+ 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑟𝑎𝑡𝑒(𝑡) ∙ 𝐵𝑎𝑑 𝑓𝑖𝑥 𝑟𝑎𝑡𝑒

The efficiency of identifying the violations introduced by the perfective maintenance

activities is defined by Current violation removal efficiency. Once a violation is identified, it

becomes a known violation that has to be addressed, and it flows to the Discovered violations

level.

The remaining Undiscovered violations that are not addressed (i.e., “1 – Current

violation removal efficiency”) are released to the production library (i.e., Released violations)

and become latent until the violations are discovered during the software’s operation; thus,

they also become Discovered violations.

𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡)

= 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡 − 1) + 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒(𝑡)

− 𝐿𝑎𝑡𝑒 𝑑𝑒𝑓𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡)

where

𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡)

= 𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡)

∙ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑡)

and

𝐿𝑎𝑡𝑒 𝑑𝑒𝑓𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡) =
𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡)

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠

The elements contained in the corrective and perfective maintenance subsystem were

implemented as arrays (i.e., subscripts in Vensim software). When using arrays, each element

can represent a number of different concepts (i.e., it can contain data relating to corrective or

preventive violation types). The behavior over time of the three previously described

violation levels can generally be described by the following equation:

106

𝑇𝑜𝑡𝑎𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡)

= 𝑇𝑜𝑡𝑎𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑡 − 1) + ∑(∆𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡)

+ ∆𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡) + ∆𝑈𝑛𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝑡))

The preventive and corrective maintenance subsystem is modeled as a coflow of the

perfective maintenance subsystem structure. A coflow structure is used to keep track of the

attributes of various items as they move through the stock and flow structure of the system

(Sterman, 2000). In the proposed simulation model, the attributes of the coflow structure

consist of the software system’s quality attributes relating to reliability, security, and

maintainability violations (i.e., rework) that go through the aging chain described in this

section and shown in Figure 33.

4.2.2.2 Resource management subsystem

The resource management subsystem is illustrated in Figure 34. This subsystem is

responsible for managing the resource allocation within the different maintenance activities

types. The allocation policy depends on how much work has to be done on each of the

different maintenance types (perfective, corrective, and preventive), the resources available

for performing the maintenance activities, and the defined business priorities. The available

resource is represented by the Maintenance team level.

The fractions of the available resources allocated to each of the different maintenance

activities types are represented by the three levels named Actual preventive maintenance

fraction, Actual corrective maintenance fraction, and Actual perfective maintenance fraction.

Each of these allocation fractions is computed as the ratio between the necessary

effort to address each specific maintenance type (i), compared to the total sum of all the

necessary maintenance effort, according to the following equation:

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑𝑖(𝑡) =
𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑒𝑓𝑓𝑜𝑟𝑡𝑖(𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑(𝑡)

The changes to the allocations of resources do not happen immediately; rather, they

occur after a time delay. These delays are represented by the three levels presented in Figure

107

34 (Actual preventive maintenance fraction, Actual corrective maintenance fraction, and

Actual perfective maintenance fraction), and the auxiliary variable Resource allocation

adjustment time.

108

 Figure 34. Resource management subsystem’s stock and flow diagram

Source: Author

Maintenance team

hiring rate

Necessary resources for

preventive maintenance

Necessary resources for

corrective maintenance

Necessary resources for

perfective maintenance

<Functional requirements

backlog>

Preventive
maintenance

backlog

Corrective
maintenance

backlog

Total resources

needed

Average productive

working monthly time

Actual perfective

maintenance fraction

Actual corrective

maintenance fraction

Actual preventive

maintenance fraction

Resources allocated to

perfective maintenance

Resources allocated to

corrective maintenance

Resources allocated to

preventive maintenance
Change preventive

fraction

Change corrective

fraction

Change perfective

fraction

Perfective maintenance

monthly productivity

Fraction of preventive

resources needed

Fraction of corrective

resources needed

Fraction of perfective

resources needed

Resource allocation

adjustment time

<Preventive
maintenance

attractiveness>

<Corrective
maintenance

attractiveness>

<Perfective

maintenance

attractiveness>

<Production

library>
Average amount each

person can handle

Necessary

maintenance team size

Average hiring

delay

<Discovered

violations>

<Nominal violation

removal productivity>

109

The resource allocation fractions for each maintenance activities type (i) are

computed according to the following equation:

𝐴𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖(𝑡)

= 𝐴𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖(𝑡 − 1)

+
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑𝑖(𝑡) − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡 − 1)

𝑅𝑒𝑠𝑜𝑢𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

The resources fraction for each maintenance type i is the product of the necessary

resources for maintenance type i and its corresponding attractiveness (a scalar number

representing how much stakeholders favor each maintenance type), divided by the total

necessary resources for all maintenance types (perfective, corrective, and preventive):

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑐𝑒𝑖(𝑡)

=
𝑁𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑓𝑜𝑟 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑖(𝑡)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑡)

4.2.2.3 Goal evaluation subsystem

The third subsystem of the proposed model is responsible for evaluating the

sustainability goals according to the previously proposed hierarchical evaluation structure

(shown in Section 4.1, “Hierarchical software sustainability evaluation structure”).

Essentially, all the structures contained in this subsystem are proxies for other elements of

the model for computing the key metrics of interest. Their formulation can be seen in

Appendix B – Model documentation, and their graphical notations are shown in Figure 35.

110

Figure 35. Goal evaluation subsystem stock and flow diagram

Source: Author

<Production

library>

<Nominal perfective

maintenance productivity>

Current

tangible asset

Relative debt to

asset

Opportunity costs

Opportunity

costs rate

<Resources allocated to

corrective maintenance>

<Resources allocated to

preventive maintenance>

Total effort
Investment rate

<Maintenance

team>

Corrective
maintenance
attractiveness

Preventive
maintenance
attractiveness

Time available

<Time>

<TIME STEP>

<FINAL TIME>

Time perceived still

needed

<Functional

requirements backlog>

<Current perfective

maintenance productivity>

<Resources allocated to

perfective maintenance>

Schedule's

shortage

Schedule pressure

% adjustment in planned
fraction of manpower to

rework

Actual fraction of
manpower to

rework

Violation

density

Total

violations

<Released

violations>
<Discovered

violations>
<Undiscovered

violations>

<Production

library>

Total technical

debt

<Production

library>

<Nominal perfective

maintenance productivity>

Interest amount

Perceived tangible

asset

Relative current vs

perceived asset

<Fraction of perfective

resources needed>

<Total violations>

<Nominal violation

removal productivity>
Technical debt

principal

111

4.2.3 Model testing

After the model was designed and implemented, it was subject to a set of tests to

assess its adequacy. The procedures used for each test on the model, were previously

described in Section 3.3.1.4. They are listed, along with the results, in Table 9.

Table 9. Summary of the tests performed on the model

Test Major purpose of test Procedure conducted in this

research study

Results

1. Boundary

adequacy

Ensures that important

concepts and elements

are considered and

included into the model

Extant literature review was

thoroughly reviewed and the

model’s causal diagram and

subsystem diagram were checked

against existing published

literature

Model was improved

based on feedback

received

2. Structure

assessment

Ensures that the model

structure is consistent

with the relevant

descriptive available

knowledge of the

system

Major relationships, input

variables, and output variables

were reviewed. The Vensim

“Model Check” was also used for

assessing the model structure

against semantic errors.

Passed, no error was

identified.

3. Dimensional

consistency

Checks if each equation

is dimensionally

consistent

Used the Vensim “Units Check”

dimensional utility and manually

inspected all of the model’s

equations.

Passed, no error was

identified.

4. Parameter

assessment

Checks if parameters

values are consistent

with relevant descriptive

and numeric knowledge

of the system

Evaluated each variable in the

model to make sure that each of

them has a corresponding real-

life meaning. The values of the

variables are based on 1) a

careful and detailed analysis of

the literature, and 2) judgmental

estimation.

Passed

112

5. Extreme

conditions

Ensures that each

equation makes sense on

extreme input values

Inspected each equation

Tested the model’s response to

extreme values of each input

Passed, model’s

equations made sense

when extreme values

were used.

6. Integration

error

The model outputs are

sensitive to the time step

The time step used in the

proposed model was one month

long and integration step to

0.0625.

Passed, the integration

step “dt” was set as

small as no furthers

significant changes

were observed in the

model’s outputs.

7. Behavior

reproduction

Checks if the model

reproduces the behavior

captured by the stated

reference modes.

Compared model behavior with

secondary real project behavior

sets (using published data from

previous published studies).

The reproduction of the

reference modes shown

in Section 4.2.1 are

discussed in Section

5.1.

8. Behavior

anomaly

Establishes the

significance of

important relationships

by examining whether

anomalous behavior

arises when the

relationship is deleted or

modified

When different maintenance

closed loops are removed from

the model, the output from the

model’s simulation

exhibits anomalous behavior.

Passed

9. Family

member

Ascertain whether the

model can generate the

behavior of other

instances in the same

class as the system the

model was built to

mimic

Three different resource

allocation policies were

simulated, and the results are

discussed in Chapter 5.

Performed well and the

results are discussed in

Chapter 5.

10. Surprise

behavior

Evaluates unexpected

behavior

The model did not show

behaviors that were significantly

different from what was expected

Performed well as the

model was able to

reproduce the expected

behaviors, and the

113

results are discussed in

Chapter 5.

11. Sensitivity

analysis

Assesses the impact of

changing the model’s

assumptions

Univariate sensitivity analysis

was performed on several of the

model’s element (e.g., violation

potential, maintenance

productivity, initial conditions)

Passed. The model

demonstrated behavior

sensitive to reasonable

variations in parameters

(numerical sensitivity)

and alternative

structures (behavior

mode sensitivity).

Source: Adapted from Sterman (2000)

4.2.4 Policy formulation and evaluation

The final step of the iterative model development process, as proposed by Sterman

(2000), is policy formulation and evaluation. The results obtained from the scenario

simulations, including the analysis of the model’s capacity to reproduce the reference modes

formulated in Section 4.2.1 (“Problem articulation and dynamical hypothesis”), are presented

in Chapter 5 (“Results and discussion”).

4.3 Chapter summary

This section summarizes the content presented in this chapter with the purpose of

organizing the knowledge acquired with the development of the proposed dynamical

evaluation framework and the simulation model for evaluating resource allocation policies

in maintenance activities.

The relevant contributions of this chapter have been:

• It has presented the dynamical evaluation framework proposed for evaluating and

supporting decision-making in maintenance investments.

• It has developed and discussed two hierarchical software sustainability

evaluation structures that were used to evaluate, from technical and economic

perspectives, how difference resource allocation scenarios behaved over time.

114

• It has detailed the steps taken to build the proposed simulation model following

the system dynamics approach and it has shown the corresponding artifacts

produced to document the model’s decisions and assumptions.

115

5. Results and discussion

This chapter presents and discusses the results obtained from the simulation of the

proposed model, according to pre-defined software maintenance scenarios.

5.1 Model evaluation

After the proposed model had been developed and tested, and according to the

iterative development process adopted (described in Section 3.3, “Research process”), the

“policy formulation and evaluation” phase began. In this phase, the model was assessed

against previous preselected and predefined resource allocation scenarios.

The following sections describe three different scenarios, depicting different resource

allocation policies on software maintenance activities, and then discuss the obtained outcome

behaviors according to the hierarchical evaluation structure of the software’s technical and

economic sustainability, which was previously discussed in Section 4.1 (“Hierarchical

software sustainability evaluation structure”).

5.1.1 Scenario #1: Perfective maintenance focus

The first evaluated scenario was named the “Perfective maintenance focus”. It

represents the context in which the stakeholders’ mindsets are mainly focused on the delivery

of functional requirements, thereby neglecting the long-term effects of the productivity

hindrances due to the increasing density of software quality violations (especially the

maintainability violations), which directly impact the productivity of the different types of

maintenance activities (perfective, corrective, and preventive).

To simulate the first proposed scenario, the initial conditions of several of the model’s

elements must be defined. The values shown in Table 10 are the defined values, which were

obtained from published literature on productivity and quality of software measurement

(Abdel-Hamid & Madnick, 1991; Jones, 2008), available online data repositories containing

software metrics and benchmarking related to software development and maintenance from

116

the International Software Benchmarking Standards Group9 (ISBSG), and the existing

empirical data available online at the SonarQube10. These used data are available in Appendix

C – Secondary data used.

Table 10. Model’s initial conditions for Scenario #1

Model’s element Initial value

Desired fractional annual growth rate 12% per year

Initial delivered defects 0.55 per function point (Jones, 2008)

Fractional requirement creep Non-linear function that depends on the Production

library size and was estimated by Jones (2008), see

Appendix B – Model documentation.
Violation potential

Violation removal efficiency

Production library 1.000 function points

Functional requirements backlog 200 function points

Initial maintenance team size Two people, which is the production library divided by

the average size a maintenance team member can handle,

which is 500 function points (Jones, 2008).

Nominal perfective maintenance productivity 5.68 function points / person / month

Nominal corrective maintenance productivity 1

0.36 𝑝𝑒𝑟𝑠𝑜𝑛−𝑑𝑎𝑦
∙ (5 𝑑𝑎𝑦𝑠 ∗ 4 𝑤𝑒𝑒𝑘𝑠) ≅ 55,56

corrective violations / person / month (Abdel-Hamid &

Madnick, 1991).

Nominal preventive maintenance productivity 1

0.54 𝑝𝑒𝑟𝑠𝑜𝑛−𝑑𝑎𝑦
∙ (5 𝑑𝑎𝑦𝑠 ∗ 4 𝑤𝑒𝑒𝑘𝑠) ≅ 21.85

preventive violations / person / month (Abdel-Hamid &

Madnick, 1991).

Number of corrective violations Based on the defect removal efficiency identified by

Jones (2008) of 91% related to the software size

calculated in function points, the initial value was

estimated for corrective violations.

Number of preventive violations Based on the defect removal efficiency identified by

Jones (2008) of 91% related to the software size

9 http://www.isbsg.org

10 http://sonarcloud.io

117

calculated in function points, the initial value was

estimated for preventive violations.

Perfective maintenance attractiveness 0.8

Preventive maintenance attractiveness 0.1

Corrective maintenance attractiveness 0.1

Source: Author

The time horizon adopted for the model simulation was 120 months (i.e., 10 years),

representing the average age of software applications still in use (Jones, 2008). The outputs

obtained after the simulation, according to the first scenario model’s setup, are shown in

Figure 36.

The graph in Figure 36 compares the behavior over time of the model’s two variables

of nominal and current perfective maintenance. The obtained result resembles the

productivity exponential decay depicted in the reference mode and shown in Figure 16. The

initial gap between both productivities is due to the existing initial preventive violations that

are present in the software at the beginning of its operation.

Figure 36. Nominal versus current perfective maintenance productivity for Scenario #1

Source: Author

8

6

4

2

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

F
P

/(
P

er
so

n
*

M
o

n
th

)

Nominal perfective maintenance productivity : perfective_focus

Current perfective maintenance productivity : perfective_focus

118

Figure 37 relates the behavior presented on the left side of Figure 19 (i.e., the higher

technical debt context), where the software size rapidly grows in its early life stage (the

takeoff phase) and slows almost to a halt in the saturation phase. It is possible to see the

functional requirements backlog (blue line) slowly building up until month 18, and then the

functional requirement backlog starts to build up with an increased rate.

These changes in the behavior over time of the functional requirements backlog and

the production library can also be seen in the functional suitability attribute. Over time the

software becomes less attractive to its stakeholders as their desired functional requirements

do not get into the operational production environment (represented by the production

library).

Figure 37. Functional requirements growth pattern for Scenario #1

Source: Author

 Figure 38 shows how the resource allocation fractions for each of the maintenance

types unfold over time.

900 FP

2000 FP

.9 Dmnl

450 FP

1450 FP

.75 Dmnl

0 FP

900 FP

.6 Dmnl

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

Functional requirements backlog : perfective_focus FP

Production library : perfective_focus FP

Functional suitability : perfective_focus Dmnl

119

Figure 38. Resource allocation fractions for Scenario #1

Source: Author

As expected, the majority of the resources were allocated to the perfective

maintenance activities. The growth in the allocation fraction to corrective and preventive

maintenance activities at the beginning of the simulation was due to the growing number of

quality violations, but their growth was limited to the attractiveness shown in Table 10.

After the perfective maintenance fraction reaches its lowest value (near month 24), it

started rising up again as the functional requirements backlog also started to accumulate due

to the loss in the perfective maintenance productivity due to the preventive violations

(technical debt) previously shown in Figure 36.

Figure 39 shows that the density (i.e., the number of violations divided by the

software’s production library) of both preventive and corrective violations rapidly grew until

near saturation.

1

.75

.5

.25

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

Fraction of corrective resources needed : perfective_focus

Fraction of perfective resources needed : perfective_focus

Fraction of preventive resources needed : perfective_focus

120

 Figure 39. Preventive and corrective violations density for Scenario #1

Source: Author

This halt on the rapidly growing rates of the density of violations is related to the

perfective maintenance productivity erosion and to the declining functional suitability, which

directly impacts the software’s attractiveness and thus the desire for new functionalities to be

added to the functional requirements backlog. Violations are introduced into the software by

the changes made to it, independently of the type of modification (perfective, preventive, or

corrective – according to the auxiliary variables defect potential and bad fixes rates that are

shown in the stock and flow diagram in Figure 33).

Next, the metrics related to the economic sustainability were plotted and then

analyzed. The first set of variables comprehended the current tangible asset (computed as the

effort to develop from scratch the available functionalities in production debt according to

the nominal productivity), the perceived tangible asset (corresponding to the sum of effort

spent during the software development and the effort spent in perfective maintenance

activities), and the opportunity costs, which are the effort allocated to other maintenance

types. The results of these variables when simulating the first scenario are illustrated in Figure

40.

It is easy to notice the gap between the current and the perceived tangible asset, where

the latter reaches almost four times the real current value of the estimated effort to develop

2

1.5

1

.5

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

V
io

la
ti
o

n
/F

P

Violation density[corrective] : perfective_focus

Violation density[preventive] : perfective_focus

121

the software running in the production library. This gap can be justified based on the previous

discussions in this section. Moreover, the allocation fraction in perfective maintenance

remains within a stable range over time (see Figure 38), and the productivity of the perfective

maintenance activities exponentially decay very quickly (see Figure 36).

The perceived tangible asset became greater than the current tangible asset because

the rising preventive violation density (see Figure 39) eroded the perfective maintenance

productivity and the stakeholders no longer perceived the results of their investment in the

software production library size. At the end of the simulation timeframe, the ratio between

the current and the perceived tangible asset reached almost 0.431. This indicates that only

43.1% of the investments made in perfective maintenance activities (resources allocated)

turned into real tangible assets (i.e., functional requirements developed and deployed in the

production library).

Figure 40. Tangible and perceived asset, and opportunity costs for Scenario #1

Source: Author

The green line shown in Figure 40 represents the opportunity costs that build up over

time, as resources are allocated to other activities rather than to perfective maintenance. As

the simulated resource allocation policy for the first scenario prioritized the allocation to

perfective maintenance, the opportunity costs remained lower than 25 person-month until the

simulation reached the 120 months’ time horizon.

500 Month*Person

50 Month*Person

250 Month*Person

25 Month*Person

0 Month*Person

0 Month*Person

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

Current tangible asset : perfective_focus Month*Person

Perceived tangible asset : perfective_focus Month*Person

Opportunity costs : perfective_focus Month*Person

122

Figure 41 depicts how technical debt’s principal and interest evolves over time. This

graph shows when the equilibrium point was reached, which was previously illustrated in

Figure 21. This point is represented by the intersection between the principal and the

accumulated interest lines, and it shows the moment when the amount of effort borrowed

from technical debt’s principal has been spent on extra maintenance effort due to the

software’s decreased maintainability.

Figure 41. Technical debt's principal and interest for Scenario #1

Source: Author

Figure 42 illustrates how the ratio between technical debt (i.e., the sum of technical

debt’s principal and interest) and the current tangible asset evolves over time. In finance this

metric is usually known as the debt-to-equity ratio and it indicates how much of the software

maintenance is leverage (i.e., it measures the degree to which a company is financing its

maintenance plan through debt). At month 64, the total asset owned by the company is equal

to the total technical debt (liability) it has accumulated over time. The total technical debt

comprises the principal plus the interest.

300

225

150

75

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

P
er

so
n

*
M

o
n

th

Technical debt principal : perfective_focus

Interest amount : perfective_focus

123

Figure 42. Relative debt to current asset for Scenario #1

Source: Author

The final conditions of the model’s elements, when simulated in the perfective

maintenance focus scenario, are shown and discussed in Section 5.2 (“Scenarios

comparison”), where it is also compared to the other simulated scenarios according to the

proposed GQM hierarchical evaluation structure (described in Section 4.1, “Hierarchical

software sustainability evaluation structure”).

5.1.2 Scenario #2: Preventive maintenance focus

The second evaluated scenario focuses on investment in preventive maintenance

activities, that is, on improvements to the software’s maintainability and thus to improving

or maintaining the software’s maintenance productivity over the software’s lifetime.

The initial conditions for simulating the second scenario were the same as those

shown in Table 10, except for the maintenance types attractiveness, the adopted values of

which are shown in Table 11. Within this simulation setup, the resource allocation policy

favors the demand for preventive maintenance activities and thus the technical debt

repayment.

2

1.5

1

.5

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

Relative debt to asset : perfective_focus

124

Table 11. Model’s initial conditions for Scenario #2.

Model’s element Initial value

Perfective maintenance attractiveness 0.1

Preventive maintenance attractiveness 0.8

Corrective maintenance attractiveness 0.1

Source: Author

Figure 43 shows how the current perfective maintenance evolves over time in the

simulation of the second scenario. Contrary to the behavior seen in the simulation of the first

scenario (Figure 36), the productivity increases with the preventive maintenance focus until

almost month 24, when the preventive violations are removed from the software, thereby

increasing the software’s maintainability.

Figure 43. Nominal versus current perfective maintenance productivity for Scenario #2

Source: Author

As the behavior of the perfective maintenance’s productivity unfolds differently in

the two simulated scenarios, it is expected that the growth patterns of the production library,

functional requirements backlog, and functional suitability behave differently over time. The

time series for these three variables are shown in Figure 44.

8

7.25

6.5

5.75

5

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

F
P

/(
M

o
n
th

*
P

er
so

n
)

Nominal perfective maintenance productivity : preventive_focus

Current perfective maintenance productivity : preventive_focus

125

Figure 44.Functional requirements growth pattern for Scenario #2

Source: Author

The production library line show in Figure 44 presents a growth pattern that resembles

the previously discussed one on the right side of Figure 19 (lower technical debt strategy). It

consists of a slower growth of the software size in the early states that can eventually be paid

off due to faster growth rate in later stages. The decrease in the functional suitability at the

beginning can be justified by the initial focus on preventive rather than perfective

maintenance activities, which are shown in Figure 45. After month 30, the allocation fraction

of these two maintenance types almost reaches a near stable level, causing the software’s

functional suitability also to remain stable after month 24.

400 FP

2000 FP

1 Dmnl

250 FP

1450 FP

.5 Dmnl

100 FP

900 FP

0 Dmnl

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

Functional requirements backlog : preventive_focus FP

Production library : preventive_focus FP

Functional suitability : preventive_focus Dmnl

126

Figure 45. Resource allocation fractions for Scenario #2

Source: Author

The time behavior of the accumulated number of corrective and preventive violations

are shown in Figure 46.

 Figure 46. Preventive and corrective violations density for Scenario #2

Source: Author

1

.75

.5

.25

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

Fraction of corrective resources needed : preventive_focus

Fraction of perfective resources needed : preventive_focus

Fraction of preventive resources needed : preventive_focus

2

1.5

1

.5

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

V
io

la
ti
o

n
/F

P

Violation density[corrective] : preventive_focus

Violation density[preventive] : preventive_focus

127

As was expected from a preventive maintenance policy, the removal of preventive

violation was prioritized, thus making the preventive violation density decrease until

reaching a stable level near month 24. This behavior supports the productivity pattern shown

in Figure 43, where the perfective maintenance increases until also reaching a stable value

near month 24.

 The gap between the current and perceived tangible assets shown in Figure 47 is

smaller when compared to the first scenario, where their ratio reaches 0.654 at the end of the

time horizon simulation. This bigger ratio is again justified by the lower erosion of the

perfective maintenance productivity due to the removal of preventive violations to preserve

the software’s maintainability.

Figure 47. Tangible and perceived asset, and opportunity costs for Scenario #2

Source: Author

However, the opportunity costs line shown in Figure 47 reaches a value more than

for times greater than in Scenario #1. These higher opportunity costs are caused by a

purposeful decision taken to allocated resources to preventive maintenance (to pay technical

debt’s, thereby reducing the preventive violation) instead of allocating them to perfective

maintenance, which focuses in delivering new functional requirements to the production

library.

400 Month*Person

200 Month*Person

200 Month*Person

100 Month*Person

0 Month*Person

0 Month*Person

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

Current tangible asset : preventive_focus Month*Person

Perceived tangible asset : preventive_focus Month*Person

Opportunity costs : preventive_focus Month*Person

128

The patterns of the technical debt’s principal and interest amount for Scenario #2 are

shown in Figure 48. It is possible to note the decrease in the technical debt’s principal value,

as the preventive maintenance does some preventive violation removals. These removals

change the slope of the interest amount, thereby reducing the amount incurred at the end of

the simulation time horizon, according to behavior previously shown in Figure 19.

Figure 48. Technical debt's principal and interest for Scenario #2

Source: Author

Figure 49 shows the total technical debt (principal plus interest amount) to asset ratio

for Scenario #2. Conversely, the results for Scenario #2 show that the total asset owned by

the company in the production library was always bigger than the liability of the technical

debt, indicating that it was still cheaper to maintain operation of the current software rather

than to develop an alternative software from scratch.

However, when comparing the behavior shown in Figure 21 and Figure 48, it is

possible to notice a difference between the two technical debt curves depicted. In Figure 21,

which represents a theoretical context, the technical debt principal remained constant over

time (represented by 𝑃0), regardless that some refactoring efforts were employed towards

repaying some of the incurred technical debt. On the other hand, Figure 48 showed that after

repaying part of the incurred debt, the technical debt principal level decreased.

200

150

100

50

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

M
o

n
th

*
P

er
so

n

Technical debt principal : preventive_focus

Interest amount : preventive_focus

129

As the technical debt principal level decreased when simulating Scenario #2, the

equilibrium point was reached before then it was in Scenario #1 (Figure 41). This obtained

behavior was different from the depicted in Figure 21, where after making part of the debt

repayment, the equilibrium would occur after then making no repayment at all (equilibrium

points 𝐸0 and 𝐸′). Hence, the different slopes from the interest rates shown in Figure 21

comparing the impact of repaying part of the technical debt (∑(𝐼𝑚) and ∑(𝐼𝑚)′
) were

reproduced by the proposed simulation model, and it can be seen in Figure 41 and Figure 48.

Figure 49. Relative debt to current asset for Scenario #2

Source: Author

The final conditions of the model’s elements, when simulated to the preventive

maintenance focus scenario, are shown and discussed in Section 5.2 (“Scenarios

comparison”), where this scenario is also compared to the other simulated scenarios

according to the proposed GQM hierarchical evaluation structure (described in Section 4.1,

“Hierarchical software sustainability evaluation structure.

5.1.3 Scenario #3: Corrective maintenance focus

The third analyzed scenario focuses on investing in corrective maintenance activities

in order to reduce the reliability violations incurred during the development and maintenance

activities.

.6

.45

.3

.15

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

Relative debt to asset : preventive_focus

130

The initial conditions for simulating the third scenario were the same as those shown

in Table 10, except for the maintenance types attractiveness, the adopted values of which,

are shown in Table 12. Within this simulation setup, the resource allocation policy favors the

demand for corrective maintenance activities.

Table 12. Model’s initial conditions for Scenario #3.

Model’s element Initial value

Perfective maintenance attractiveness 0.1

Preventive maintenance attractiveness 0.1

Corrective maintenance attractiveness 0.8

Source: Author.

As with the perfective maintenance productivity in the second scenario, the

productivity erosion in Scenario #3 was smaller than in the first scenario; however, it was

higher than in the second scenario, as can be seen in Figure 50.

Figure 50. Nominal versus current perfective maintenance productivity for Scenario #3

Source: Author

Hence, as was expected, the values for the functional requirements backlog,

production library and functional suitability were between the values previously obtained for

the first two simulated scenarios as shown in Figure 51.

8

7

6

5

4

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

F
P

/(
M

o
n
th

*
P

er
so

n
)

Nominal perfective maintenance productivity : corrective_focus

Current perfective maintenance productivity : corrective_focus

131

Figure 51. Functional requirements growth pattern for Scenario #3

Source: Author

Unlike what happened in the first scenario, but like what happened in the second

scenario, the gap between the functional requirements backlog and production library

remained almost constant after month 24. This caused the functional suitability also to remain

almost stable.

The equilibrium of this gap, and also the functional suitability, can be justified by the

behavior seen in Figure 52. Until month 24, there were oscillations between the allocation

fractions among the different maintenance types. However, after month 24, they remained,

albeit with different levels, at a stable allocation for maintaining the behaviors of the time

series, as shown in Figure 51.

500 FP

2000 FP

1 Dmnl

250 FP

1450 FP

.5 Dmnl

0 FP

900 FP

0 Dmnl

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

Functional requirements backlog : corrective_focus FP

Production library : corrective_focus FP

Functional suitability : corrective_focus Dmnl

132

Figure 52. Resource allocation fractions for Scenario #3

Source: Author

As the third simulated scenario focused on corrective maintenance activities, it was

expected to see the patterns shown in Figure 53.

 Figure 53. Preventive and corrective violations density for Scenario #3

Source: Author

1

.75

.5

.25

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

Fraction of corrective resources needed : corrective_focus

Fraction of perfective resources needed : corrective_focus

Fraction of preventive resources needed : corrective_focus

.9

.675

.45

.225

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

V
io

la
ti
o

n
/F

P

Violation density[corrective] : corrective_focus

Violation density[preventive] : corrective_focus

133

Figure 53 shows a fast rate of corrective violations removal, but it also shows a

smaller density of preventive violations. Both perfective and corrective violations were

introduced in the software through manipulations of the software’s source code (maintenance

activities).

As the production library grew at a slower rate at the beginning of the simulation time

horizon, as shown in Figure 54, the rate of preventive violation introduction remained slower

too, thereby causing the gap between current and perceived tangible assets to end up with a

value of 0.591, which was between the values for the first and second simulated scenarios.

Figure 54. Tangible and perceived asset, and opportunity costs for Scenario #3

Source: Author

Figure 55 shows that the equilibrium point was reached later in the third scenario

simulated, occurring near month 24.

400 Month*Person

200 Month*Person

200 Month*Person

100 Month*Person

0 Month*Person

0 Month*Person

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

Current tangible asset : corrective_focus Month*Person

Perceived tangible asset : corrective_focus Month*Person

Opportunity costs : corrective_focus Month*Person

134

Figure 55. Technical debt's principal and interest for Scenario #3

Source: Author

This was because there was no focus on repaying the technical debt, and hence on

reducing its principal, and also because the rate of accumulation of interest was lower than

in Scenario #1, but higher than in Scenario #2.

As with the second scenario, in Scenario #3 the total liability did not reach the total

tangible asset owned by the company, as shown in Figure 56.

200

150

100

50

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

M
o
n
th

*
P

er
so

n

Technical debt principal : corrective_focus

Interest amount : corrective_focus

135

Figure 56. Relative debt to current asset for Scenario #3

Source: Author

The final conditions of the model’s elements, when simulated to the corrective

maintenance focus scenario, are shown and discussed in Section 5.2 (“Scenarios

comparison”), where the scenario is also compared to the other simulated scenarios according

to the proposed GQM hierarchical evaluation structure (described in Section 4.1,

“Hierarchical software sustainability evaluation structure.

5.2 Scenarios comparison

The final conditions of the model’s elements when simulated according to the three

previously discussed maintenance resource allocation scenarios are summarized in

Table 13. The structure of the table resembles the hierarchical evaluation structure

previously defined in Section 4.1 (“Hierarchical software sustainability evaluation

structure”), regarding technical and economic sustainability.

The table’s cells that are highlighted in bold against a gray background indicate the

best values obtained at the end of the simulation for each of the model’s elements.

.9

.675

.45

.225

0

0 12 24 36 48 60 72 84 96 108 120

Time (Month)

D
m

n
l

Relative debt to asset : corrective_focus

136

Table 13. Final conditions of the model’s elements for the three simulated scenarios (120 months)

Sustainability

dimensions

Model’s elements Final conditions

Scenario #1 Scenario #2 Scenario #3

Technical Production library size (FP) 1305.08 1607.51 1512.76

Functional suitability (Dmnl) 0.6925 0.804692 0.769665

Number of preventive violations (#) 2494.13 288.022 1270.44

Density of preventive violations (Dmnl) 1.72581 0.179173 0.839819

Number of corrective violations (#) 2466.97 1656.11 218.251

Density of corrective violations (Dmnl) 1.70702 1.03023 0.144274

Economic Technical debt’s principal (person-month) 67.3415 7.7766 34.302

Total interest amount (person-month) 259.909 116.248 142.672

Total technical debt (person-month) 327.251 124.025 176.974

Perceived tangible asset (person-month) 457.071 335.554 349.051

Current tangible asset (person-month) 197.162 219.306 206.379

Relative debt to asset (Dmnl) 1.65981 0.565534 0.85752

Maintenance productivity (FP-

person/month)
1.00492 6.67333 4.25206

Opportunity costs (person-month) 41.4081 180.964 149.037

Equilibrium point (month) 12 14 23

Source: Author

Analyzing the values from

Table 13, it can be noticed that, in general, Scenario #2 performed better than the

other two simulated scenarios in the technical and economic sustainability dimensions. There

were only two variables in which it was outperformed: opportunity costs, where Scenario #1

was better as fewer resources were allocated to other activities and more to the perfective

maintenance; and equilibrium point, where Scenario #3 was better due to the repayment of

the technical debt’s principal in Scenario #2.

Long lived systems benefit from higher perfective maintenance productivity over

time, but it takes some time for the investments made in preventive and corrective

maintenance to pay off (these investments are represented by the opportunity costs graph).

The preventive maintenance strategy displayed a higher perfective maintenance productivity

137

over time, indicating that the maintenance of software under these circumstances would be

cheaper in the long run.

Conversely, when reducing the simulation’s time horizon from 120 to 60 months, the

resulting final conditions of the model’s elements presented some changes, which are shown

in Table 14. If the software system terminates its operational lifetime by the end of the fifth

year, Scenario #1 (perfective maintenance focus) would have delivered the largest production

library size, and thus the largest tangible asset.

However, the number of preventive and corrective violations remains higher at the

end of the simulation in Scenario #1 when compared to Scenario #2 and Scenario #3, thereby

also making Scenario #1 to have the highest violations’ density.

Table 14. Final conditions of the model’s elements for the three simulated scenarios (60 months)

Sustainabilit

y dimensions

Model’s elements Final conditions

Scenario #1 Scenario #2 Scenario #3

Technical Production library size (FP) 1278.99 1250.71 1224.8

Functional suitability (Dmnl) 0.813745 0.806356 0.79079

Number of preventive

violations (#)
1790.15 221.665 944.877

Density of preventive

violations (Dmnl)
1.39966 0.177231 0.771454

Number of corrective

violations (#)
1760.24 1163.29 165.525

Density of corrective

violations (Dmnl)
1.37627 0.930098 0.135144

Economic Technical debt’s principal

(person-month)
48.3339 5.98495 25.5117

Total interest amount (person-

month)
111.072 50.7728 61.8997

Total technical debt (person-

month)
159.406 56.7578 87.4114

Perceived tangible asset

(person-month)
285.559 221.402 228.994

Current tangible asset (person-

month)
174.487 170.63 167.094

Relative debt to asset (Dmnl) 0.913569 0.332637 0.523127

Maintenance productivity (FP-

person/month)
2.20026 6.68045 4.50262

138

Opportunity costs (person-

month)
26.9907 80.0371 69.3412

Equilibrium point (month) 14 14 23

Source: Author

Software with a shorter lifetime tends to benefit from focusing on short term results

(i.e., focusing on perfective maintenance activities to deliver functional requirements to its

end users). The danger arises when, after incurring technical debts, the software remains in

operation after the moment in time where it becomes more expensive to maintain.

Further, the behavior over time of the key variables from the three simulated scenarios

are shown in Figure 57. The growth pattern of the current tangible assets shows that the

perfective maintenance focus (Scenario #1) performed better until a certain point in time near

month 60, ratifying what was previously discussed in Table 14 and indicating that this

strategy (represented by Scenario #1) could be better suited for short-lived systems, such as

end users, web, and commercial applications, as was shown in

Table 1.

139

Figure 57. Comparisons of the results of the simulated scenarios

Source: Author

5.3 Chapter summary

This chapter has depicted the results obtained from the simulation of the proposed

model according to four predefined scenarios. The contributions of the chapter are

summarized as follows:

• Perfective maintenance focus: this scenario depicted a context in which the

stakeholders’ decisions regarding resource allocation were focused on delivering

functional requirements to the end users and thus increasing the size of the

production library. The end condition of the simulated scenario showed a

completely different situation, since it contained the lowest number of functional

requirements available in the production library among the three scenarios.

• Preventive maintenance focus: next, a scenario representing the focus on

preventive maintenance was analyzed. Counter intuitively, this scenario, in

general, performed better than the perfective maintenance scenario. In the long

140

run, the software’s production library was bigger than it was with the strategy that

focused on delivering functional requirements.

• Corrective maintenance focus: the final simulated scenario presented the

maintenance strategy that focused on reducing the corrective violations. This

scenario performed better than the perfective focus scenario, but worse than the

preventive focus scenario regarding the two sustainability dimensions. This

strategy could be better suited when the maintenance context involves a software

with a high density of corrective violations.

All three simulated maintenance resource allocation scenarios were compared

according to the previously defined technical and economic sustainability hierarchical

evaluation structure.

141

6. Conclusions

The following sections discuss how the results presented in the previous chapter

(“Results”) address the research questions (RQs) formulated in Section 3.1 (“Research

questions”), along with the conclusions obtained from the current thesis, the contributions

obtained from this research, and proposals for areas of future research.

6.1 Addressing the proposed research questions

(RQ1) How should the dynamical behavior of a software product’s quality attributes,

due to maintenance activities, be characterized throughout its evolution?

In order to address the first proposed research question, this thesis followed the

system dynamics iterative model development approach presented in Section 3.3 (“Research

process”), with results application are presented in Section 4.2 (“Proposed simulation

model”).

Characterization of the software quality attributes’ dynamical behavior was achieved

via the following process:

• Problem articulation: The key variables and concepts responsible for the problem

involving software maintenance and technical debt management were identified

and summarized in Table 8 (“Boundary chart of the proposed model”) and in

Section 4.1 (“Hierarchical software sustainability evaluation structure”). In

addition, a dynamical definition of the research problem, based on past and future

patterns of behavior of the key variable and concepts, was elaborated via a set of

reference modes and equations described in Section 4.2.1 (“Problem articulation

and dynamical hypothesis”).

• Dynamical hypothesis: A theory containing a set of causal relationships among

the variables and concepts (discussed in Section 4.2.1.3, “Model’s causal loop

diagrams”) was developed, which accounted for the problematic behavior

previously captured as time series plots (reference modes). The developed theory

142

was built based on existing published literature as detailed in Chapter 2

(“Background”).

• Model formulation: Based on the proposed theory, a fully specified simulation

model was developed following the system dynamics’ stock and flow notation,

with the results from this discussed in Section 4.2.2 (“Model formulation”). The

developed simulation model was then subjected to a set of tests, where it was able

to reproduce the proposed reference modes (Section 5.1, “Model evaluation”).

More importantly, the model was used to try to refute the developed dynamical

hypothesis by employing the set of tests listed in Table 9 (“Summary of the tests

performed on the model”). As discussed in Section 3.3.1.4, since it was not

possible to refute the current proposed theory via a systematic process, the focus

of the evaluation shifted to assessment of model’s usefulness and shortcomings

(Section 5.1, “Model evaluation”).

By following the systematic process above, the first research question was addressed

and the influence of maintenance activities on the dynamical behavior of software’s quality

attributes was characterized.

(RQ2) How do different resource allocation policies in software maintenance

activities affect the dynamical behaviors of these quality attributes?

In order to address the second research question, three different scenarios were

simulated; their results were discussed in Chapter 5 (“Results and discussion”). These

scenarios represented three different resource allocation policies on maintenance activities,

which were named: Scenario #1 – perfective maintenance focus; Scenario #2 – preventive

maintenance focus; and Scenario #3 – corrective maintenance focus.

These three simulated scenarios produced different behaviors for the model’s

elements during the simulated time horizon. The results obtained from the simulations

indicate that, based on decisions made during the software’s lifetime regarding the allocation

of resources among various maintenance activities (perfective, preventive, and corrective),

different conditions arise when analyzing the technical and economic sustainability

dimensions.

143

(RQ3) How should the resource allocation in maintenance activities be managed to

improve the technical and economic sustainability of a software product?

The results obtained showed that for long-lived software systems (in this research

represented by simulating the proposed model for a time horizon of 120 months), policies

that mainly focus on delivering functional requirements (i.e., perfective maintenance focus)

yield the smallest production library and the highest number of violations (both preventive

and corrective).

Likewise, Scenario #1 accumulated the highest technical debt over time. Thus, it

became the most expensive scenario to maintain and to continue operating due to its low

productivity at the end of the simulation when compared to the other two scenarios

(preventive and corrective maintenance focuses).

Scenario #2, although not focusing on delivering functional requirements, had the

most extensive production library at the end of the time horizon, thereby representing the

most valuable tangible asset to the organization. Moreover, the preventive focus maintained

the lowest level of preventive violations (i.e., lowest technical debt and interest rate), keeping

the highest perfective maintenance productivity. The policy in this scenario was to invest in

preventive maintenance; thus, even though it incurred the highest opportunity costs, these

costs were justified in the long term as the scenario also delivered the lowest maintenance

cost compared to the other two scenarios.

However, when reducing the time horizon of the simulation from 120 to 60 months,

the gains obtained by the preventive maintenance focus did not overcome the opportunity

costs. Hence, the perfective maintenance focus represented by Scenario #1 ended up

delivering the highest tangible asset to the organization. If the organization decided to shut

down the software operation it had been operating for the past five years, the investment in

preventive maintenance would not have worth it.

These results obtained from simulating different scenarios show that the analysis used

to addressed RQ3 is context-dependent, relying on several inputs and variables to decide how

to allocate the resources to maintenance activities. These variables include initial conditions,

the organization’s plans for its software assets (short- or long-lived software systems), and

144

the organizations’ objectives related to the software’s technical and economic sustainability.

The resource allocation decisions must be continuously adapted to take into consideration

the current software’s characteristics, the maintenance process performance, and the

organization’s goals.

6.2 Contributions

This thesis investigated the effects of resource allocation policies on maintenance

activities on the evolutionary path of a software system, in terms of its technical and

economic sustainability, and also how technical debt management through the software’s

lifetime can determine its capacity to adapt and evolve.

The proposed dynamical evaluation framework demonstrates how a software’s

source code metrics, obtained from static analysis tools, can be used in a simulation model

to support decision making regarding software maintenance based on the organization’s goal

for technical and economic sustainability.

The proposed framework contains a hierarchical structure for evaluating how the

software product and the maintenance process performance evolved over time. This

evaluation uses data extracted from both the software source code analysis (when defining

initial conditions for use in the simulation model) and the simulation model output (when

evaluating possible future scenarios on how to prioritize maintenance activities before

committing any resources in the real world).

Furthermore, the formulation of the proposed model extends previous research that

has used simulation techniques to explore the phenomenon of software evolution. The

proposed model incorporates the dynamic interactions captured by most of the Lehman’s

(1996b) eight formulated laws, describing based on causal relations, and on an endogenous

point of view, how problematic behaviors emerge over time. The proposed simulation model

was then used to evaluate how different resource allocation policies could unintentionally

produce different outcomes.

This work also supports the idea that system dynamics is a suitable approach for

modeling and simulating problems related to the software maintenance process, phenomena

145

pertaining to the software evolution, and technical debt management practices. The thesis

also contributes to the scarce literature on using system dynamics in these areas, as few

previous publications have been identified on the topic, and those found have mainly focused

on software development and the early stages of a software’s lifetime. This work shows that

the system dynamics approach is capable of incorporating both technical and economic

dimensions involved in decision making regarding software maintenance investment

policies.

Finally, the research methods used, which were based on the system dynamics

approach, made it possible to leverage current knowledge available in the field of software

maintenance and technical debt management by formulating graphical representations of

several of the causal relationships that exist during software operation and maintenance, and

the impact therefore on software quality characteristics and costs. This knowledge represents

a step toward better for explicating, describing, and justifying how long-term dynamical

results emerge as a result of past decisions made. The findings can be used as a starting point

for future research interested in investigating software evolution.

6.3 Areas of future research

Alongside the contributions made by this research there are several areas related to

software maintenance and technical debt management that require further investigation.

These include various interesting and relevant problems and challenges that represent

opportunities for extending the present research. An outline of future directions is provided

below.

The current model takes into account only a subset of the SQuaRE software quality

model characteristics; this could be extended to include other quality characteristics and

attributes (e.g., performance efficiency, compatibility, usability, and more complex

functional suitability constructs). The model also did not take into consideration the type of

adaptive maintenance activity that, would inevitably have to be prioritized among the three

considered (i.e., perfective, preventive, and corrective).

Further tests should also be carried out to increase the confidence in the proposed

model; these tests could provide additional empirical data to verify whether the model is

146

capable of reproducing other real-world contexts. In addition, future research could assess

whether the model’s conceptualization and formulation excluded other important elements.

Different resource allocation policies should also be evaluated, including more

complex decision-making strategies aimed at to improving long-term results. The software

maintenance process concept used in the model’s formulation was a simplification of the

classical waterfall model. The model could be reviewed in order to simulate and evaluate

other lifecycle process approaches (e.g., iterative and incremental, spiral, agile).

 The selected constructs and metrics for composing the economic sustainability

hierarchical evaluation structure could also be extended in order to consider broader and

deeper investment analysis to better support decision making; for example, future work could

include analyses focusing on areas such as return on investment, valuation analyses that

include not only tangible but also intangible assets and liabilities, or software cost estimation

models (e.g., COCOMO, COCOMO II, SLIM, PRICE).

The overall structure of the dynamical evaluation framework shown in Figure 13 can

be subject to automation regarding data extraction from SCM repositories using static

analysis tools, and the extracted data could be automatically imported into the simulation

model, enabling it to be used as a decision support system that could be easily integrated into

existing static analysis tools (as discussed in Section 2.6). This would turn the simulation

model into a unified and integrated application that could be used to support decisions related

to resource allocation in software maintenance, and also to technical debt management.

147

References

Abdel-Hamid, T. (1984). The Dynamics of Software Development Project Management - An

Integrative System Dynamics Perspective. Massachusetts Institute of Technology.

Abdel-Hamid, T. (1990). Investigating the cost/schedule trade-off in software development.

IEEE Software, 7(1), 97–105. https://doi.org/10.1109/52.43055

Abdel-Hamid, T., & Madnick, S. (1982). A model of software project management

dynamics. The 6th International Computer Software and Applications Conference

(COMPSAC).

Abdel-Hamid, T., & Madnick, S. (1989). Software productivity: Potential, actual, and

perceived. System Dynamics Review, 5(2), 93–113.

https://doi.org/10.1002/sdr.4260050202

Abdel-Hamid, T., & Madnick, S. (1991). Software Project Dynamics: An Integrated

Approach (First edit). Prentice Hall.

Ahsan, K., & Gunawan, I. (2010). Analysis of cost and schedule performance of international

development projects. International Journal of Project Management, 28(1), 68–78.

https://doi.org/10.1016/j.ijproman.2009.03.005

Ali, N. Bin, Petersen, K., & Wohlin, C. (2014). A systematic literature review on the

industrial use of software process simulation. Journal of Systems and Software, 97, 65–

85. https://doi.org/10.1016/j.jss.2014.06.059

Allman, E. (2012). Managing Technical Debt. Queue, 10(3), 10.

https://doi.org/10.1145/2168796.2168798

Ampatzoglou, A., Ampatzoglou, A., Avgeriou, P., & Chatzigeorgiou, A. (2016). A Financial

Approach for Managing Interest in Technical Debt. In B. Shishkov (Ed.), Business

Modeling and Software Design. BMSD 2015. Lecture Notes in Business Information

Processing (pp. 117–133). Springer. https://doi.org/10.1007/978-3-319-40512-4_7

Bakota, T., Hegedus, P., Kortvelyesi, P., Ferenc, R., & Gyimothy, T. (2011). A probabilistic

software quality model. 2011 27th IEEE International Conference on Software

148

Maintenance (ICSM), 243–252. https://doi.org/10.1109/ICSM.2011.6080791

Bakota, T., Hegedus, P., Ladanyi, G., Kortvelyesi, P., Ferenc, R., & Gyimothy, T. (2012). A

cost model based on software maintainability. 2012 28th IEEE International

Conference on Software Maintenance (ICSM), 316–325.

https://doi.org/10.1109/ICSM.2012.6405288

Barlas, Y. (1996). Formal aspects of model validity and validation in system dynamics.

System Dynamics Review, 12(3), 183–210. https://doi.org/10.1002/(SICI)1099-

1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4

Basili, V. R., Caldiera, G., & Rombach, H. D. (2002). Goal Question Metric (GQM)

Approach. In Encyclopedia of Software Engineering. John Wiley & Sons, Inc.

https://doi.org/10.1002/0471028959.sof142

Basili, V. R., & Weiss, D. M. (1984). A Methodology for Collecting Valid Software

Engineering Data. IEEE Transactions on Software Engineering, SE-10(6), 728–738.

https://doi.org/10.1109/TSE.1984.5010301

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N., &

Venters, C. C. (2015). Sustainability Design and Software: The Karlskrona Manifesto.

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 467–

476. https://doi.org/10.1109/ICSE.2015.179

Belady, L., & Lehman, M. (1971). Programming System Dynamics or the Metadynamics of

Systems in Maintenance and Growth. Research Report RC3546, IBM.

Belady, L., & Lehman, M. (1972). AN INTRODUCTION TO GROWTH DYNAMICS. In

Statistical Computer Performance Evaluation (pp. 503–511). Elsevier.

https://doi.org/10.1016/B978-0-12-266950-7.50030-X

Belady, L., & Lehman, M. (1976). A model of large program development. IBM System

Journal, 15(3), 225–252.

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution: A roadmap.

Proceedings of the Conference on The Future of Software Engineering - ICSE ’00, 73–

87. https://doi.org/10.1145/336512.336534

149

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business

strategy: toward a next generation of insights. MIS Quarterly, 37(2), 471–482.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., Macleod, G. J., & Merrit, M. J. (1978).

Characteristics of Software Quality (1st editio). Elsevier Science Ltd.

Bosch-Rekveldt, M., Jongkind, Y., Mooi, H., Bakker, H., & Verbraeck, A. (2011). Grasping

project complexity in large engineering projects: The TOE (Technical, Organizational

and Environmental) framework. International Journal of Project Management, 29(6),

728–739. https://doi.org/10.1016/j.ijproman.2010.07.008

Cao, L., Ramesh, B., & Abdel-Hamid, T. (2010). Modeling dynamics in agile software

development. ACM Transactions on Management Information Systems, 1(1), 1–26.

https://doi.org/10.1145/1877725.1877730

Carr, N. G. (2003). IT Doesn’t Matter. Harvard Business Review, 81(5).

Carvalho, M. M., & Rabechini Junior, R. (2015). Impact of risk management on project

performance : the importance of soft skills. International Journal of Production

Research, 53(2), 321–340. https://doi.org/10.1080/00207543.2014.919423

Carvalho, M. M., & Rabechini Junior, R. (2017). Can project sustainability management

impact project success? An empirical study applying a contingent approach.

International Journal of Project Management, 35(6), 1120–1132.

https://doi.org/10.1016/j.ijproman.2017.02.018

Cavano, J. P., & McCall, J. A. (1978). A framework for the measurement of software quality.

Proceedings of the Software Quality Assurance Workshop on Functional and

Performance Issues -, 133–139. https://doi.org/10.1145/800283.811113

Cecez-Kecmanovic, D., Kautz, K., & Abrahall, R. (2014). Reframing Success and Failure of

Information Systems: A Performative Perspective. MIS Quarterly, 38(2), 561–588.

Chatters, B. W., Lehman, M., Ramil, J. F., & Wernick, P. (2000). Modelling a software

evolution process: a long-term case study. https://doi.org/10.1002/1099-

1670(200006/09)5:2/3<91::AID-SPIP123>3.0.CO;2-L

Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: from

150

big data to big impact. MIS Quarterly, 36(4), 1165–1188.

Cook, S., Harrison, R., Lehman, M. M., & Wernick, P. (2006). Evolution in software

systems: foundations of the SPE classification scheme. Journal of Software

Maintenance and Evolution: Research and Practice, 18(1), 1–35.

https://doi.org/10.1002/smr.314

Cunningham, W. (1993). The WyCash portfolio management system. ACM SIGPLAN OOPS

Messenger, 4(2), 29–30. https://doi.org/10.1145/157710.157715

Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the Principal of an Application’s

Technical Debt. IEEE Software, 29(6), 34–42. https://doi.org/10.1109/MS.2012.156

Deißenböck, F. (2009). Continuous Quality Control of Long-Lived Software Systems.

Technical University Munich.

DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the

Dependent Variable. Information Systems Research, 3(1), 60–95.

https://doi.org/10.1287/isre.3.1.60

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information

Systems Success : A Ten-Year Update. Journal of Management Information Systems,

19(4), 9–30.

Drnevich, P. L., & Croson, D. C. (2013). Information technology and business-level strategy:

toward an integrated theoretical perspective. MIS Quarterly, 37(2), 482–509.

Dwivedi, Y. K., Wastell, D., Laumer, S., Henriksen, H. Z., Myers, M. D., Bunker, D.,

Elbanna, A., Ravishankar, M. N., & Srivastava, S. C. (2014). Research on information

systems failures and successes: Status update and future directions. Information Systems

Frontiers, 17(1), 143–157. https://doi.org/10.1007/s10796-014-9500-y

Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015). Measure it? Manage

it? Ignore it? software practitioners and technical debt. Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2015, 50–60.

https://doi.org/10.1145/2786805.2786848

Eveleens, J. L., & Verhoef, C. (2010). The rise and fall of the Chaos report figures. IEEE

151

Software, 27(1), 30–36. https://doi.org/10.1109/MS.2009.154

Ferenc, R., Hegedűs, P., & Gyimóthy, T. (2014). Software Product Quality Models. In

Evolving Software Systems (pp. 65–100). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-45398-4_3

Forrester, J. (1961). Industrial Dynamics (1st ed.). The MIT Press.

Forrester, J. (1969). Urban Dynamics (1st ed.). The MIT Press.

Forrester, J. (1971). World Dynamics (1st ed.). The MIT Press.

Forrester, J., & Senge, P. (1980). Tests for building confidence in system dynamics models.

TIMS Studies in the Management Sciences, 14, 209–228.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving

the Design of Existing Code (1st editio). Addison-Wesley Professional.

Franco, E. F., Hirama, K., & Carvalho, M. M. (2017). Applying system dynamics approach

in software and information system projects: A mapping study. Information and

Software Technology. https://doi.org/10.1016/j.infsof.2017.08.013

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software (1st ed.). Addison-Wesley Professional.

Georgantzas, N. C., & Katsamakas, E. G. (2008). Information systems research with system

dynamics. System Dynamics Review, 24(3), 247–264. https://doi.org/10.1002/sdr.420

Geraldi, J. G., Maylor, H., & Williams, T. (2010). Now, let’s make it really complex

(complicated): A systematic review of the complexities of projects.

https://doi.org/10.1108/01443571111165848

Glass, R. (2001). Frequently forgotten fundamental facts about software engineering. IEEE

Software, 18(3), 112–111. https://doi.org/10.1109/MS.2001.922739

Glass, R. (2005). IT Failure Rates - 70% or 10-15%? IEEE Software, 22(3), 112, 110–111.

https://doi.org/10.1109/MS.2005.66

Glass, R. (2006). The Standish report: does it really describe a software crisis?

Communications of the ACM, 49(8), 15. https://doi.org/10.1145/1145287.1145301

152

Godfrey, M. W., & German, D. M. (2014). On the evolution of Lehman’s Laws. Journal of

Software: Evolution and Process, 26(7), 613–619. https://doi.org/10.1002/smr.1636

Godfrey, M. W., & German, D. M. (2008). The past, present, and future of software

evolution. 2008 Frontiers of Software Maintenance, 129–138.

https://doi.org/10.1109/FOSM.2008.4659256

Halstead, M. H. (1977). Elements of Software Science. Elsevier Science Inc.

Heitlager, I., Kuipers, T., & Visser, J. (2007). A Practical Model for Measuring

Maintainability. 6th International Conference on the Quality of Information and

Communications Technology (QUATIC 2007), 30–39.

https://doi.org/10.1109/QUATIC.2007.8

Herraiz, I., Rodriguez, D., Robles, G., & Gonzalez-Barahona, J. M. (2013). The evolution of

the laws of software evolution: A discussion based ona systematic literature review.

ACM Computing Surveys, 46(2), 1–28. https://doi.org/10.1145/2543581.2543595

Hong, K.-K., & Kim, Y.-G. (2002). The critical success factors for ERP implementation: an

organizational fit perspective. Information & Management, 40(1), 25–40.

https://doi.org/10.1016/S0378-7206(01)00134-3

INCOSE. (2015). Systems Engineering Handbook: A Guide for System Life Cycle Processes

and Activities (D. D. Walden, G. J. Roedler, K. J. Forsberg, R. D. Hamelin, & T. M.

Shortell (eds.); 4th ed.). Wiley.

ISO/IEC 14764:2006. (2016). Software Engineering — Software Life Cycle Processes —

Maintenance (p. 44). International Organization for Standardization.

ISO/IEC 25010:2011. (2011). Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — System and software quality models

(p. 34). International Organization for Standardization.

ISO/IEC 25012:2008. (2008). Software engineering — Software product Quality

Requirements and Evaluation (SQuaRE) — Data quality model (p. 13). International

Organization for Standardization.

ISO/IEC 25022:2016. (2016). Systems and software engineering — Systems and software

153

quality requirements and evaluation (SQuaRE) — Measurement of quality in use (p.

41). International Organization for Standardization.

ISO/IEC 25023:2016. (2016). Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — Measurement of system and

software product quality (p. 45). International Organization for Standardization.

ISO/IEC 25024:2015. (2015). Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — Measurement of data quality (p.

45). International Organization for Standardization.

ISO/IEC 9126:1991. (1991). Software enginnering — Product quality (p. 13). International

Organization for Standardization.

Johnson, S. B. (2013). Technical and institutional factors in the emergence of project

management. International Journal of Project Management, 31(5), 670–681.

https://doi.org/10.1016/j.ijproman.2013.01.006

Jones, C. (2008). Applied Software Measurement: Global Analysis of Productivity and

Quality (3rd editio). McGraw-Hill Education.

Jørgensen, M., & Moløkken-Østvold, K. (2006). How large are software cost overruns? A

review of the 1994 CHAOS report. Information and Software Technology, 48(4), 297–

301. https://doi.org/10.1016/j.infsof.2005.07.002

Kahen, G., Lehman, M. M. M., Ramil, J. F. F., & Wernick, P. (2001). System dynamics

modelling of software evolution processes for policy investigation: Approach and

example. Journal of Systems and Software, 59(3), 271–281.

https://doi.org/10.1016/S0164-1212(01)00068-1

Kellner, M. I., Madachy, R. J., & Raffo, D. M. (1999). Software process simulation

modeling: Why? What? How? Journal of Systems and Software, 46(2–3), 91–105.

https://doi.org/10.1016/S0164-1212(99)00003-5

Kemerer, C. F., & Slaughter, S. (1999). An empirical approach to studying software

evolution. IEEE Transactions on Software Engineering, 25(4), 493–509.

https://doi.org/10.1109/32.799945

154

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical Debt: From Metaphor to Theory

and Practice. IEEE Software, 29(6), 18–21. https://doi.org/10.1109/MS.2012.167

Lehman, M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE, 68(9), 1060–1076. https://doi.org/10.1109/PROC.1980.11805

Lehman, M. (1989). Uncertainty in computer application and its control through the

engineering of software. Journal of Software Maintenance: Research and Practice,

1(1), 3–27. https://doi.org/10.1002/smr.4360010103

Lehman, M. (1991). Software engineering, the software process and their support. Software

Engineering Journal, 6(5), 243. https://doi.org/10.1049/sej.1991.0028

Lehman, M. (1996a). Feedback in the software evolution process. Information and Software

Technology, 38(11), 681–686. https://doi.org/10.1016/0950-5849(96)01121-4

Lehman, M. (1996b). Laws of software evolution revisited. EWSPT ’96 Proceedings of the

5th European Workshop on Software Process Technology, 1149, 108–124.

Lehman, M., Kahen, G., & Ramil, J. (2002). Behavioural modelling of long-lived evolution

processes? Some issues and an example. Journal of Software Maintenance and

Evolution: Research and Practice, 14(5), 335–351. https://doi.org/10.1002/smr.259

Lehman, M., Perry, D., & Ramil, J. (1998). On evidence supporting the FEAST hypothesis

and the laws of software evolution. Proceedings Fifth International Software Metrics

Symposium Metrics, 84–88. https://doi.org/10.1109/METRIC.1998.731229

Lehman, M., & Ramil, J. (2001). Rules and Tools for Software Evolution Planning and

Management. Annals of Software Engineering, 11(1), 15–44.

https://doi.org/10.1023/A:1012535017876

Lehman, M., & Ramil, J. (2002). Software Uncertainty. In D. Bustard, W. Liu, & R. Sterritt

(Eds.), Soft-Ware 2002: Computing in an Imperfect World (Lecture No, pp. 174–190).

Springer. https://doi.org/10.1007/3-540-46019-5_14

Lehman, M., & Ramil, J. (2003). Software evolution—Background, theory, practice.

Information Processing Letters, 88(1–2), 33–44. https://doi.org/10.1016/S0020-

0190(03)00382-X

155

Lehman, M., & Ramil, J. C. (2006). Software Evolution. In Software Evolution and Feedback

(pp. 7–40). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470871822.ch1

Lehman, M., & Ramil, J. F. (1999). The impact of feedback in the global software process.

Journal of Systems and Software, 46(2–3), 123–134. https://doi.org/10.1016/S0164-

1212(99)00006-0

Letouzey, J.-L., & Coq, T. (2010). The SQALE Analysis Model: An Analysis Model

Compliant with the Representation Condition for Assessing the Quality of Software

Source Code. 2010 Second International Conference on Advances in System Testing

and Validation Lifecycle, 43–48. https://doi.org/10.1109/VALID.2010.31

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt and

its management. Journal of Systems and Software, 101, 193–220.

https://doi.org/10.1016/j.jss.2014.12.027

Lin, C. Y., Abdel-Hamid, T., & Sherif, J. S. (1997). Software-Engineering Process

Simulation model (SEPS). Journal of Systems and Software, 38(3), 263–277.

https://doi.org/10.1016/S0164-1212(96)00156-2

Madachy, R. J. (2008). Software Process Dynamics (1 edition). Wiley-Blackwell.

Mahajan, V., Muller, E., & Wind, Y. (2000). New-Product Diffusion Models: From Theory

to Practice. In V. Mahajan, E. Muller, & Y. Wind (Eds.), New-Product Diffusion Models

(1st ed., p. 355). Springer US.

Markowitz, H. (1952). PORTFOLIO SELECTION. The Journal of Finance, 7(1), 77–91.

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Markus, M. L., Tanis, C., & van Fenema, P. C. (2000). Enterprise resource planning:

multisite ERP implementations. In Communications of the ACM (Vol. 43, Issue 4, pp.

42–46). https://doi.org/10.1145/332051.332068

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering,

SE-2(4), 308–320. https://doi.org/10.1109/TSE.1976.233837

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Microsoft

Press.

156

McFarlan, F. (1981). Portfolio Approach to Information Systems. Harvard Business Review,

59(5), 142–150.

McKinsey & Company. (2011). A rising role for IT: McKinsey Global Survey results.

http://www.mckinsey.com/insights/business_technology/a_rising_role_for_it_mckinse

y_global_survey_results

Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Information technology and

organizational performance: An integrative model of IT business value. MIS Quarterly,

28(2), 283–322.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., & Jazayeri, M. (2005).

Challenges in Software Evolution. Eighth International Workshop on Principles of

Software Evolution (IWPSE’05), 13–22. https://doi.org/10.1109/IWPSE.2005.7

Mitchell, M. (2011). Complexity: A Guided Tour (1st editio). Oxford University Press.

Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., & Ducasse, S. (2013).

Software quality metrics aggregation in industry. Journal of Software: Evolution and

Process, 25(10), 1117–1135. https://doi.org/10.1002/smr.1558

Morecroft, J. D. (1982). A critical review of diagramming tools for conceptualizing feedback

system models. Dynamica, 8(1), 20–29.

Müller, R., & Turner, R. (2007). The Influence of Project Managers on Project Success

Criteria and Project Success by Type of Project. European Management Journal, 25(4),

298–309. https://doi.org/10.1016/j.emj.2007.06.003

Nan, N. (2011). Capturing Bottom-Up Information Technology Use Processes: A Complex

Adaptive Systems Model. MIS Quarterly, 35(2), 505–532.

Nugroho, A., Visser, J., & Kuipers, T. (2011). An empirical model of technical debt and

interest. Proceeding of the 2nd Working on Managing Technical Debt - MTD ’11, 1.

https://doi.org/10.1145/1985362.1985364

Oman, P., & Hagemeister, J. (1992). Metrics for assessing a software system’s

maintainability. Proceedings Conference on Software Maintenance 1992, 337–344.

https://doi.org/10.1109/ICSM.1992.242525

157

OMG. (2016a). Automated Source Code Maintainability Measure (ASCMM) (Object

Management Group (ed.)). http://www.omg.org/spec/ASCMM/1.0/

OMG. (2016b). Automated Source Code Performance Efficiency Measure (ASCPEM).

http://www.omg.org/spec/ASCPEM/1.0/

OMG. (2016c). Automated Source Code Reliability Measure (ASCRM).

http://www.omg.org/spec/ASCRM/1.0/

OMG. (2016d). Automated Source Code Security Measure (ASCSM).

http://www.omg.org/spec/ASCSM/1.0/

OMG. (2018). Automated Technical Debt Measure (ATDM).

https://www.omg.org/spec/ATDM/

Orlikowski, W. J., & Robey, D. (1991). Information technology and the structuring of

organizations. Information Systems Research, 2(2), 143–169.

https://doi.org/10.1287/isre.2.2.143

Parnas, D. L. (1994). Software aging. Proceedings of 16th International Conference on

Software Engineering, 279–287. https://doi.org/10.1109/ICSE.1994.296790

Petter, S., DeLone, W., & McLean, E. R. (2013). Information Systems Success: The Quest

for the Independent Variables. Journal of Management Information Systems, 29(4), 7–

62. https://doi.org/10.2753/MIS0742-1222290401

Ramasubbu, N., & Kemerer, C. (2014). Managing Technical Debt in Enterprise Software

Packages. IEEE Transactions on Software Engineering, 5589(c), 1–1.

https://doi.org/10.1109/TSE.2014.2327027

Repenning, N. P., & Sterman, J. D. (2001). Nobody Ever Gets Credit for Fixing Problems

That Never Happened: Creating and Sustaining Process Improvement. California

Management Review, 43(4), 64–88. https://doi.org/10.2307/41166101

Rodrigues, A. G. (2000). The application of system dynamics to project management: an

integrated methodology. University of Strathclyde.

Rogers, E. (2003). Diffusion of Innovations (5th ed.). Free Press.

Royal Academy of Engineering. (2004). The Challenges of Complex IT Projects: The Report

158

of a Working Group from the Royal Academy of Engineering and the British Computer

Society. The Royal Academy of Engineering.

Ruiz, M., Ramos, I., & Toro, M. (2004). An integrated framework for simulation-based

software process improvement. Software Process: Improvement and Practice, 9(2), 81–

93. https://doi.org/10.1002/spip.198

Sauer, C. (1993). Why Information Systems Fail: A Case Study Approach. Alfred Waller.

Seddon, P. B., Graeser, V., & Willcocks, L. P. (2002). Measuring organizational IS

effectiveness. ACM SIGMIS Database, 33(2), 11.

https://doi.org/10.1145/513264.513270

Senge, P. M. (2006). The Fifth Discipline: The Art & Practice of The Learning Organization

(2nd ed.). Crown Business.

Shenhar, A. J., Dvir, D., Levy, O., & Maltz, A. C. (2001). Project success: A

multidimensional strategic concept. Long Range Planning, 34(6), 699–725.

https://doi.org/10.1016/S0024-6301(01)00097-8

Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M., Mcdermid,

J., & Paige, R. (2012). Large-scale complex IT systems. Communications of the ACM,

55(7), 71. https://doi.org/10.1145/2209249.2209268

Standish Group International. (2013). CHAOS MANIFESTO 2013: Think Big, Act Small. 52.

Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex

World. McGraw-Hill/Irwin.

Stoyenko, A. (1995). Engineering complex computer systems: a challenge for computer

types everywhere. I. Let’s agree on what these systems are. Computer, 28(9), 85–86.

https://doi.org/10.1109/2.410170

Taylor, T., & Ford, D. (2006). Tipping point failure and robustness in single development

projects. System Dynamics Review, 22(1), 51–71. https://doi.org/10.1002/sdr.330

Taylor, T., & Ford, D. (2008). Managing Tipping Point Dynamics in Complex Construction

Projects. Journal of Construction Engineering and Management, 134(6), 421–431.

https://doi.org/10.1061/(ASCE)0733-9364(2008)134:6(421)

159

Turski, W. M. (2002). The reference model for smooth growth of software systems revisited.

IEEE Transactions on Software Engineering, 28(8), 814–815.

https://doi.org/10.1109/TSE.2002.1027802

Ventana System. (2018). Vensim Professional for Windows (7.3.4 Single Precision (x32)).

Ventana Systems Inc. https://vensim.com/

Venters, C., Jay, C., Lau, L., Griffiths, M., Holmes, V., Ward, R., Austin, J., Dibsdale, C., &

Xu, J. (2014). Software Sustainability: The Modern Tower of Babel. CEUR Workshop

Proceedings. RE4SuSy: Third International Workshop on Requirements Engineering

for Sustainable Systems, 7–12. http://eprints.whiterose.ac.uk/84941/

Waeselynck, H., & Pfahl, D. (1994). System Dynamics Applied to the Modeling of Software

Projects. Software-Concepts and Tools, 15(4), 162–176.

http://www.mendeley.com/research/system-dynamics-applied-modeling-software-

projects/

Wagner, S., Lochmann, K., Heinemann, L., Kläs, M., Trendowicz, A., Plösch, R., Seidl, A.,

Goeb, A., & Streit, J. (2012). The quamoco product quality modelling and assessment

approach. ICSE ’12 Proceedings of the 34th International Conference on Software

Engineering, 1133–1142.

Weaver, W. (1948). Science and Complexity. American Scientist, 36, 536.

Wernick, P., & Hall, T. (2003). Simulating Global Software Evolution Processes by

Combining Simple Models: An Initial Study. https://doi.org/10.1002/spip.159

Wernick, P., & Lehman, M. . (1999). Software process white box modelling for FEAST/1.

Journal of Systems and Software, 46(2–3), 193–201. https://doi.org/10.1016/S0164-

1212(99)00012-6

Whitney, K. M., & Daniels, C. B. (2013). The Root Cause of Failure in Complex IT Projects:

Complexity Itself. Procedia Computer Science, 20, 325–330.

https://doi.org/10.1016/j.procs.2013.09.280

Wiederhold, G. (2006). What is your software worth? Communications of the ACM, 49(9),

65–75. https://doi.org/10.1145/1151030.1151031

160

Woodside, C. M. (1979). A mathematical model for the evolution of software. Journal of

Systems and Software, 1, 337–345. https://doi.org/10.1016/0164-1212(79)90035-9

Yeo, K. T. (2002). Critical failure factors in information system projects. International

Journal of Project Management, 20(3), 241–246. https://doi.org/10.1016/S0263-

7863(01)00075-8

Zhang, H., Kitchenham, B., & Pfahl, D. (2008). Reflections on 10 Years of Software Process

Simulation Modeling: A Systematic Review. In Q. Wang, D. Pfahl, & D. M. Raffo

(Eds.), Making Globally Distributed Software Development a Success Story (Vol. 5007,

pp. 345–356). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79588-9

Zhang, H., Kitchenham, B., & Pfahl, D. (2010). Software Process Simulation Modeling: An

Extended Systematic Review. New Modeling Concepts for Today’s Software Processes,

6195, 309–320. https://doi.org/10.1007/978-3-642-14347-2

Zhang, H., Raffo, D., Birkhöltzer, T., Houston, D., Madachy, R., Münch, J., & Sutton, S. M.

(2014). Software process simulation at a crossroads? Journal of Software: Evolution

and Process, 26(10), 923–928. https://doi.org/10.1002/smr.1694

161

Appendix A – System dynamics tools and elements

This appendix complements the brief description presented in Section “3.3.1” and

provides some examples of the elements used by the system dynamics approach.

A.1 Elements and notations

Table 15 presents the elements and notations used for the formalization of models

based on the system dynamics approach. These notations refer to the Vensim Professional

tool (Ventana System, 2018) used in this work for the construction and simulation of the

model.

Table 15. System dynamics model's elements

Element Notation Description

Level/Stock

A stock represents an accumulation over time, also called

“level” or “state variable”. It can serve as a storage for

material, energy, or information. Its content moves through

the stocks by incoming or outcoming flows (or “rates”).

Stocks represent the state variables (i.e., the system’s

memory) and are a function of previous accumulations of

rates.

Some examples are:

• Software tasks (measured in function points, lines

of code, use cases, modules, components, etc.)

• Number of defects

• Team size

• Effort spent

Source/Drain

Sources and drains indicate that flows originate or terminate

somewhere outside the process. Their presence means that

accumulation in the real world occurs outside the

boundaries of the modeled system. They represent infinite

sources or repositories that are not specified in the model.

Examples include:

• Sources of requirements;

162

• Software delivered to the consumer;

• Sources for hiring or dismissing employees.

Rate/Flow

Flows are also called “rates”, and they represent the

“actions” in the system. They make changes in stocks and

can represent decisions or policy statements. Flows are

computed as a function of the stocks, constants, and

auxiliary variables.

Examples include:

• Development productivity rate

• Defect generation rate

• Team members hiring rat

• Learning rate

Auxiliary

variable

<<Variable name>> Auxiliary variables are input-to-output converters and help

to incorporate details of the stocks and flow structure

explicitly. An auxiliary variable must be associated with an

information link, which connects stocks and flows. They

often represent goal maintenance variables (i.e., they are

goal-seeking).

Examples include:

• Percentage of completion of a job

• Quantitative goals or planned values

• Constants, such as average delay times

• Defect density

Information

link

Information links are used to represent information flows

(as opposed to material flow). Flows, such as control

mechanisms, often require connectors of other variables

(stocks or auxiliaries) for decision making. Links can

represent feedback loops between the elements.

Examples include:

• Progress information for decision making

• Knowledge of defect levels to allocate resources

for rework

• A link between process parameters, flows, stocks,

and other variables

Source: Adapter from Madachy (2008)

163

A.2 Mathematical formulation

System dynamics modeling tools allow, in large part, systems to be described in a

visual way, without having to formulate and calculate differential equations. The tools

themselves make numerical calculations of integrations, and it is up to the modeler to define

the rate equations and auxiliary variables.

The mathematical structure of a simulation model constructed according to the

system dynamics approach corresponds to a coupled nonlinear set of first order differential

equations. This structure can be described by a vector of levels (x), a set of parameters (p)

and a nonlinear vector function (f), according to the representation:

𝑥′(𝑡) = 𝑓(𝑥, 𝑝)

The use of numerical integrations occurs because, in general, it is not possible to solve

even small models analytically, since they correspond to high-order and non-linear systems.

The order of a dynamic system, or a mesh, is defined by the number of state variables, or

levels, that it has. A first-order system has only one level. Linear systems are systems in

which the rate equations correspond to linear combinations of state variables and other

exogenous inputs (Sterman, 2000).

The rate of change of a level is the sum of all its entries subtracted from all its outputs.

The stocks, in turn, accrue flows. Mathematically, the levels integrate their rates and the rates

are the one-level derivatives.

In the simulations performed in the modeling tools, as the simulation time progresses,

all model rates are calculated and integrated to define the levels using numerical integration

methods (e.g., Runge-Kutta, Euler).

To determine the level of a given stock at a given time t based on input and output

rates, the following numerical integration is used:

𝑆𝑡𝑜𝑐𝑘(𝑡) = 𝑆𝑡𝑜𝑐𝑘0 + ∫ [𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑜𝑢𝑡𝑝𝑢𝑡(𝑡)] ∙ 𝑑𝑡
𝑡

𝑡0

164

The parameter dt corresponds to the time increment defined for execution and can be

solved by the equation (assuming 𝑆𝑡𝑜𝑐𝑘0 equals zero):

𝑆𝑡𝑜𝑐𝑘(𝑡) = 𝑆𝑡𝑜𝑐𝑘(𝑡 − 𝑑𝑡) + [𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑜𝑢𝑡𝑝𝑢𝑡(𝑡)] ∙ 𝑑𝑡

Equivalently, the rate of change of a given level, its derivative, corresponds to the

difference between the input and output flows, defining the differential equation:

𝑑𝑆𝑡𝑜𝑐𝑘(𝑡)

𝑑𝑡
= 𝑖𝑛𝑝𝑢𝑡(𝑡) − 𝑜𝑢𝑡𝑝𝑢𝑡(𝑡)

Table 16 summarizes, with examples, the symbolic representation of causality

between elements, their polarity, their interpretation, and the mathematical concepts

involved.

Table 16. Polarity of relations and definitions, with examples.

Symbol Interpretation Mathematics Examples

All else equal, if X

increases (decreases),

then Y increases

(decreases) above

(below) what it would

have been.

In the case of

accumulations, X adds to

Y.

𝜕𝑌 𝜕𝑋⁄ > 0

In the case of

accumulations,

𝑌 = ∫ (𝑋+. .)𝑑𝑠 + 𝑌𝑡0

𝑡

𝑡0

All else equal, if X

increase (decreases), then

Y decreases (increases)

below (above) what tf

would have been.

In the case of

accumulations, X

subtracts from Y.

𝜕𝑌 𝜕𝑋 < 0⁄

In the case of

accumulations,

𝑌 = ∫ (−𝑋+. .)𝑑𝑠 + 𝑌𝑡0

𝑡

𝑡0

Source: Adapted from Sterman (2000)

165

A.3 Common behaviors and their corresponding feedback structures

Table 17 shows examples of common modes of behavior (as time series data) and the

corresponding feedback structure responsible for producing them.

Table 17. Common modes of behavior and their feedback structures

Common mode Feedback structure

Exponential growth

Positive feedback

Goal-seeking

Negative feedback

Oscillation

Negative feedbacks with time delays

166

S-shaped growth

Interactions of the fundamental modes

Growth with overshoot

Interactions of the fundamental modes

Overshoot and collapse

Interactions of the fundamental modes

Source: Adapted from Sterman (2000)

A.4 Basic patterns and equations

The following sections present some examples of basic patterns and equations used

when formulating a system dynamics model.

167

A.4.1 Constant flow and one stock

One of the most straightforward structures used in modeling consists of the equation

that defines a given rate by multiplying a constant and a level.

Figure 58 shows a simple software production structure, where the development rate

is defined by the multiplication of the constant productivity and the team level.

Figure 58. Example of software development framework

Source: Adapted from Madachy (2008)

For the example shown in Figure 58, the productivity constant was set at 4.65 function

points per person per month, and the team variable was set to 5 people. With this

configuration, the level Tasks developed presents a linear growth that can be described by

the equation:

𝑇𝑎𝑘𝑠 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑(𝑡 + 1) = 𝑇𝑎𝑠𝑘 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑(𝑡) + 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒

And the development rate can be defined as:

𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑡𝑒𝑎𝑚

A.4.2 Variable flow and one stock

This structure is similar to the one presented in the previous section, but it replaces

the constant (in the case of productivity) with an auxiliary variable. This structure can model

168

situations closer to reality when, for example, productivity is not constant over time due to

the team’s learning curve, training, etc.

A.4.3 Reinforcing loop

The reinforcement (or positive) loop amplifies the dynamic pattern of a system and

can produce growth or decline behavior. By changing the structure presented in the Section

A.4.1 (“Constant flow and one stock”) by adding the feedback of the state of the stock as an

input to the flow rate, the behavior presented by the stock ceases to be linear and becomes

exponential growth.

The structure presented in Figure 59 represents the phenomenon described by the

sixth law of software evolution, which concerns “Continuous growth”. The Production

software level refers to the number of functionalities available in the software product in

operation; its unit of measure is function points and it has the initial value of 1,000. The rate

of addition of new functionalities in operation is defined by the multiplication of the growth

index (7% per year) and the status of the Production software level.

Figure 59. Example of a reinforcement loop for continuous software growth

Source: Author

The equation of the flow development rate of this structure is defined by the equation:

𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒(𝑡) = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒(𝑡) ∙ 𝑔𝑟𝑜𝑤𝑡ℎ𝑖𝑛𝑑𝑒𝑥

169

The graph on the right of Figure 59 shows the exponential growth of the

functionalities of the software product in operation over the years and the reinforcement mesh

is represented by R. The behavior of the Production software stock is described by the

following equation:

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒(𝑡 + 1) = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒(𝑡) + 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒(𝑡)

A.4.4 Balancing loop

This type of structure tries to bring the system to a state close to the desired goal. It

exhibits goal-seeking behavior, where the change is faster at the beginning and decreases as

the discrepancy between the perceived state of the system and the desired state decreases.

Figure 60 presents an example of this type of structure. Starting from a team size

(Project team stock), initialized with 10 people, the model seeks to reach the desired team

size of 20 people.

The hiring of people does not occur instantly, and it takes time to complete the

processes of recruitment, selection and effective hiring of new employees. In this example,

this period was established as 4 months (auxiliary variable hiring delay).

Figure 60. Example of balancing mesh for hiring people

Source: Author

The current state of the system (Project team stock) is negatively feedbacked in the

hiring rate, which is defined by the equation:

170

ℎ𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒(𝑡) =
(𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑒𝑎𝑚 𝑠𝑖𝑧𝑒 − 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑒𝑎𝑚(𝑡))

ℎ𝑖𝑟𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦

The graph on the right of Figure 60 shows the behavior over time of the Project team

stock, which represents the current state of the system, and the balancing mesh is represented

by B. The behavior of the Project team stock is described by the following equation:

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑒𝑎𝑚(𝑡 + 1) = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑒𝑎𝑚(𝑡) + ℎ𝑖𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒(𝑡)

A.4.5 Delay

Delays are present in most processes, and they may involve delays in materials and

information. They constitute an essential structural component of feedback systems.

Figure 61 shows a delay structure regarding the time of assimilation of new

employees hired by a company. These employees, represented by the level Newly hired, need

to acquire the productivity of the oldest employees, the Experienced stock (e.g., they need to

undergo training). The mean time of assimilation is represented by the auxiliary variable

assimilation delay, which in this example was defined as 6 months.

Figure 61. Structure of delay in the assimilation of new employees

Source: Author

171

The two stocks in the structure (Newly hired and Experienced) have the initial

condition of 10 employees each. Figure 61 corresponds to a first-order delay, and the

equations of the stocks and flows involved can be defined by:

𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡 + 1) =
𝑁𝑒𝑤𝑙𝑦 ℎ𝑖𝑟𝑒𝑑(𝑡)

𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑(𝑡 + 1) = 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑(𝑡) + 𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡)

𝑁𝑒𝑤𝑙𝑦 ℎ𝑖𝑟𝑒𝑑(𝑡 + 1) = 𝑁𝑒𝑤𝑙𝑦 ℎ𝑖𝑟𝑒𝑑(𝑡) − 𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒(𝑡)

These equations generate the behavior observed in the graph on the right of Figure

61, where the two stocks start with 10 employees, with employees flowing from Newly hired

to Experienced over time.

A.4.6 Table function

A table function represents a convenient way of specifying relationships between

variables, and a plot is an easy way to visualize the relationships. These tools are useful for

formulating nonlinear relationship effects in a model.

The construction of a table function involves defining the slope, its general

configuration, a set of reference lines and some guidelines. It is recommended to normalize

the data as a function of the input ratio by the reference value.

Figure 62 shows an example of a table function that represents the effect of work

productivity on working hours. This effect is observed when the work team is asked to extend

their regular workday to, for example, reduce or eliminate the schedule delays.

The plot shows the relation between the multiplier coefficient of over-day workout

(input) and the independent variable referring to the ratio between the desired productivity

and the nominal (output). This means that when a worker begins to extend his working time,

it may gain productivity. However, if he extends for long periods, the effect becomes less

efficient.

172

Figure 62. Example of table function related to working hours vs. productivity

Source: Adapted from Madachy (2008)

The limits of the graph are established when the desired productivity is equal to

nominal, and the coefficient multiplier has no effect (i.e., is equal to 1). Assuming that people

can at most extend the working week from 40 to 60 hours, the right limit is established where

the multiplier coefficient saturates to 1.5, even when the pressure to extend the workday

increases (desired productivity). It is important to note that if the working period is extended

even further, the productivity of the team would certainly drop due to exhaustion and fatigue.

A.5 Example

The model presented in Figure 63 represents a simplified view of the software

development process, where a set of requirements (represented by the Requirements backlog

stock) is transformed into developed functionalities (represented by the Developed

requirements stock) according to the development rate, which is defined by the team size and

its productivity.

173

Figure 63. Example of the software development process

Source: Author

174

Appendix B – Model documentation

The following sections contain the model’s documentation extracted from the Vensim

software (Ventana System, 2018) for each of the four of the model subsystem discussed in

Section 4.2.1.1 (“Model’s subsystem diagram”).

B.1 Perfective maintenance subsystem

Current perfective maintenance productivity=

 Nominal perfective maintenance productivity*Effect of

maintainability in perfective maintenance productivity

 (Violation density

 [preventive]/Reference perfective violation density)

 Units: FP/Month/Person

Developed but not checked= INTEG (

 Perfective maintenance rate-Rework rate-Release rate,

 0)

Units: FP

Effect of maintainability in perfective maintenance productivity(

 [(0,0)-(1,1)],(0,1),(1,0))

Units: Dmnl

Fractional of flawed functional requirement=

 Fractional requirement creep(Production library/Reference backlog

library)

Units: Dmnl

Fractional requirement creep(

 [(0,0)-

(100000,1)],(0,0.063),(100,0.063),(1000,0.168),(10000,0.336),(100000

,0.504))

Units: Dmnl

Estimates from Jones (2008), page 293.

175

Functional requirements backlog= INTEG (

 Rework rate+New requirements rate-Perfective maintenance rate,

 200)

Units: FP

Functional suitability=

 Production library/(Developed but not checked+Functional

requirements backlog

+Production library)

Units: Dmnl

New requirements rate=

 Production library*Nominal growth rate*Software overall

attractiveness

Units: FP/Month

Nominal growth rate=

 0.07/12

Units: 1/Month

Nominal perfective maintenance productivity=

 4.65

Units: FP/Month/Person

"Perceived functional suitability adj. time"=

 12

Units: Month

Perfective maintenance rate=

 MIN(Current perfective maintenance productivity*Resources allocated

to perfective maintenance

,Functional requirements backlog

 /TIME STEP

)

Units: FP/Month

Production library= INTEG (

176

 Release rate,

 1000)

Units: FP

The size of the software product in operation.

Reference backlog library=

 1

Units: FP

Reference perfective violation density=

 1

Units: Violation/FP

Release rate=

 Developed but not checked/Time to check*(1-Fractional of flawed

functional requirement

)

Units: FP/Month

Resources allocated to perfective maintenance=

 Actual perfective maintenance fraction*Maintenance team

Units: Person

Rework rate=

 Developed but not checked/Time to check*Fractional of flawed

functional requirement

Units: FP/Month

Software overall attractiveness=

 DELAY1(Functional suitability , "Perceived functional suitability

adj. time"

)

Units: Dmnl

TIME STEP = 0.0625

Units: Month

Time to check=

177

 3

Units: Month

Defines how long it takes to a developed functional requirements

 to goes through the quality assurance process.

Violation density[violation]=

 Total violations[violation]/Production library

Units: Violation/FP

B.2 Corrective & preventive maintenance subsystem

Current violation potential[violation]=

 Violation potential according to software size(Production

library/Reference backlog library

)

 Units: Violation/FP

Current violation removal efficiency[violation]=

 Violation removal efficiency according to software

size[violation](Production library

/Reference backlog library)

Units: Dmnl

Current violation removal productivity[violation]=

 Nominal violation removal productivity[violation]*Effect of

maintainability on violation removal productivity

[violation]

Units: Violation/(Month*Person)

Discovered violations[violation]= INTEG (

 Early defect detection rate[violation]-Violation removal

rate[violation]+Late defect detection rate

[violation],

 0)

Units: Violation

Early defect detection rate[violation]=

 (Undiscovered violations[violation]*Current violation removal

efficiency[violation

])/TIME STEP

Units: Violation/Month

Effect of maintainability on violation removal productivity[corrective]=

 1

Effect of maintainability on violation removal productivity[preventive]=

 1

 Units: Dmnl

Initial violations[preventive]=

 0

178

Initial violations[corrective]=

 0

 Units: Violation

Late defect detection rate[violation]=

 Released violations[violation]/Time to discover operational

violations

Units: Violation/Month

Nominal violation removal productivity[preventive]=

 12

Nominal violation removal productivity[corrective]=

 20

 Units: Violation/(Month*Person)

Perfective maintenance rate=

 MIN(Current perfective maintenance productivity*Resources allocated

to perfective maintenance

,Functional requirements backlog

 /TIME STEP

)

Units: FP/Month

Production library= INTEG (

 Release rate,

 1000)

Units: FP

The size of the software product in operation.

Reference backlog library=

 1

Units: FP

Released violations[violation]= INTEG (

 Violation detection rate[violation]-Late defect detection

rate[violation],

 0)

Units: Violation

Resources allocated to corrective maintenance=

 Actual corrective maintenance fraction*Maintenance team

Units: Person

Resources allocated to preventive maintenance=

 Actual preventive maintenance fraction*Maintenance team

Units: Person

TIME STEP = 0.0625

Units: Month

Time to discover operational violations=

 12

Units: Month

Undiscovered violations[preventive]= INTEG (

 Violation generation rate[preventive]-Early defect detection

rate[preventive

179

]-Violation detection rate[preventive],

 Initial violations[preventive])

Undiscovered violations[corrective]= INTEG (

 Violation generation rate[corrective]-Early defect detection

rate[corrective

]-Violation detection rate[corrective],

 Initial violations[corrective])

 Units: Violation

Violation detection rate[violation]=

 (Undiscovered violations[violation]*(1-Current violation removal

efficiency

[violation]))/TIME STEP

Units: Violation/Month

Violation generation rate[violation]=

 Current violation potential[violation] * Perfective maintenance

rate

Units: Violation/Month

Violation potential according to software size(

 [(0,0)-(100000,10)],(100,4),(1000,5),(10000,6),(100000,7.25))

Units: Violation/FP

According to Jones (2008)

Violation removal efficiency according to software size[violation](

 [(0,0)-

(100000,10)],(100,0.92),(1000,0.85),(10000,0.81),(100000,0.65))

Units: Dmnl [0,1]

Quantity of violations found during test / Total number of bugs

Violation removal rate[preventive]=

 MIN(Discovered violations[preventive]/TIME STEP , Current

violation removal productivity

[preventive] * Resources allocated to preventive maintenance

)

Violation removal rate[corrective]=

 MIN(Discovered violations[corrective]/TIME STEP , Current

violation removal productivity

 [corrective] * Resources allocated to corrective maintenance

)

 Units: Violation/Month

B.3 Resource allocation sector

Actual corrective maintenance fraction= INTEG (

 Change corrective fraction,

 1/3)

 Units: Dmnl

Actual perfective maintenance fraction= INTEG (

180

 Change perfective fraction,

 1/3)

Units: Dmnl

Actual preventive maintenance fraction= INTEG (

 Change preventive fraction,

 1/3)

Units: Dmnl

Average effort to fix violation[preventive]=

 50

Average effort to fix violation[corrective]=

 25

 Units: Violation/Month/Person

Average productive working monthly time=

 0.6

Units: Dmnl

Change corrective fraction=

 (Fraction of corrective resources needed-Actual corrective

maintenance fraction

)/Resource allocation adjustment time

Units: 1/Month

Change perfective fraction=

 (Fraction of perfective resources needed-Actual perfective

maintenance fraction

)/Resource allocation adjustment time

Units: 1/Month

Change preventive fraction=

 (Fraction of preventive resources needed-Actual preventive

maintenance fraction

)/Resource allocation adjustment time

Units: 1/Month

Corrective maintenance attractiveness=

181

 Actual fraction of manpower to rework*0+0.1

Units: Dmnl

Corrective maintenance backlog=

 Total violations[corrective]/Average effort to fix

violation[corrective]

Units: Person*Month

Fraction of corrective resources needed=

 Necessary resources for corrective maintenance/Total resources

needed

Units: Dmnl

Fraction of perfective resources needed=

 Necessary resources for perfective maintenance/Total resources

needed

Units: Dmnl

Fraction of preventive resources needed=

 Necessary resources for preventive maintenance/Total resources

needed

Units: Dmnl

Functional requirements backlog= INTEG (

 Rework rate+New requirements rate-Perfective maintenance rate,

 200)

Units: FP

hiring rate=

 0

Units: Person/Month

Maintenance team= INTEG (

 hiring rate,

 5)

Units: Person

Necessary resources for corrective maintenance=

182

 (Corrective maintenance backlog/Average productive working monthly

time)*Corrective maintenance attractiveness

Units: Person*Month

Necessary resources for perfective maintenance=

 (Functional requirements backlog/Perfective maintenance monthly

productivity

)*Perfective maintenance attractiveness

Units: Person*Month

Necessary resources for preventive maintenance=

 (Preventive maintenance backlog/Average productive working monthly

time)*Preventive maintenance attractiveness

Units: Person*Month

Perfective maintenance attractiveness=

 0.8

Units: Dmnl

Perfective maintenance monthly productivity=

 4.2

Units: FP/Month/Person

Preventive maintenance attractiveness=

 Actual fraction of manpower to rework*0+0.1

Units: Dmnl

Preventive maintenance backlog=

 Total violations[preventive]/Average effort to fix

violation[preventive]

Units: Person*Month

Resource allocation adjustment time=

 4

Units: Month

The amount of time needed to change the resources allocation

 from their current activity to the new one.

183

Resources allocated to corrective maintenance=

 Actual corrective maintenance fraction*Maintenance team

Units: Person

Resources allocated to perfective maintenance=

 Actual perfective maintenance fraction*Maintenance team

Units: Person

Resources allocated to preventive maintenance=

 Actual preventive maintenance fraction*Maintenance team

Units: Person

Total resources needed=

 Necessary resources for preventive maintenance+Necessary resources

for corrective maintenance

+Necessary resources for perfective maintenance

Units: Person*Month

Total violations[violation]=

 Discovered violations[violation]+Released

violations[violation]+Undiscovered violations

[violation]

Units: Violation

B.4 Goal evaluation sector

"% adjustment in planned fraction of manpower to rework"(

 [(0,-0.5)-(0.5,0)],(0,0),(0.1,-0.025),(0.2,-0.15),(0.3,-

0.35),(0.4,-0.475

),(0.5,-0.5))

 Units: Dmnl

Actual fraction of manpower to rework=

 1+"% adjustment in planned fraction of manpower to rework"(Schedule

pressure

)

Units: Dmnl

184

Corrective maintenance attractiveness=

 Actual fraction of manpower to rework

Units: Dmnl

Current perfective maintenance productivity=

 Nominal perfective maintenance productivity*Effect of

maintainability in perfective maintenance productivity

(Violation density

 [preventive]/Reference perfective violation density)

Units: FP/Month/Person

Current tangible asset=

 Production library/Nominal perfective maintenance productivity

Units: Person*Month

Discovered violations[violation]= INTEG (

 Early defect detection rate[violation]-Violation removal

rate[violation]+Late defect detection rate

[violation],

 0)

Units: Violation

FINAL TIME = 120

Units: Month

Functional requirements backlog= INTEG (

 Rework rate+New requirements rate-Perfective maintenance rate,

 200)

Units: FP

Interest amount=

 Perceived tangible asset-Current tangible asset

Units: Month*Person

Investment rate=

 Maintenance team

Units: Person

185

Maintenance team= INTEG (

 hiring rate,

 5)

Units: Person

Nominal perfective maintenance productivity=

 4.65

Units: FP/Month/Person

Opportunity costs= INTEG (

 Opportunity costs rate,

 0)

Units: Month*Person

Opportunity costs rate=

 Resources allocated to corrective maintenance+Resources allocated

to preventive maintenance

Units: Person

Perceived tangible asset= INTEG (

 Investment rate,

 Production library/Nominal perfective maintenance

productivity)

Units: Month*Person

Perfective maintenance attractiveness=

 1

Units: Dmnl

Preventive maintenance attractiveness=

 Actual fraction of manpower to rework

Units: Dmnl

Preventive maintenance backlog=

 Total violations[preventive]/Average effort to fix

violation[preventive]

Units: Person*Month

186

Production library= INTEG (

 Release rate,

 1000)

Units: FP

The size of the software product in operation.

Relative debt to asset=

 Total technical debt/Current tangible asset

Units: Dmnl

Released violations[violation]= INTEG (

 Violation detection rate[violation]-Late defect detection

rate[violation],

 0)

Units: Violation

Resources allocated to corrective maintenance=

 Actual corrective maintenance fraction*Maintenance team

Units: Person

Resources allocated to perfective maintenance=

 Actual perfective maintenance fraction*Maintenance team

Units: Person

Resources allocated to preventive maintenance=

 Actual preventive maintenance fraction*Maintenance team

Units: Person

Schedule pressure=

 MAX(MIN(ZIDZ((Time perceived still needed-Time available),Time

available),

0.5),0)

Units: Dmnl

Schedule's shortage=

 MAX(Time perceived still needed-Time available,0)

Units: Month

187

Technical debt principal=

 Preventive maintenance backlog

Units: Person*Month

Time available= DELAY FIXED (

 FINAL TIME-Time,TIME STEP,0)

Units: Month

Time perceived still needed=

 Functional requirements backlog/(Current perfective maintenance

productivity

*Resources allocated to perfective maintenance)

Units: Month

TIME STEP = 0.0625

Units: Month

Total technical debt=

 Interest amount+Technical debt principal

Units: Month*Person

Total violations[violation]=

 Discovered violations[violation]+Released

violations[violation]+Undiscovered violations

[violation]

Units: Violation

Undiscovered violations[preventive]= INTEG (

 Violation generation rate[preventive]-Early defect detection

rate[preventive

]-Violation detection rate[preventive],

 Initial violations[preventive])

Undiscovered violations[corrective]= INTEG (

 Violation generation rate[corrective]-Early defect detection

rate[corrective

]-Violation detection rate[corrective],

 Initial violations[corrective])

 Units: Violation

188

Violation density[violation]=

 Total violations[violation]/Production library

Units: Violation/FP

189

Appendix C – Secondary data used

Table 18. Software defects per function point by industry segment

Source: Jones (2008)

Table 19. Software defect origin percent by industry segment

Source: Jones (2008)

190

Table 20. Approximate U.S. productivity ranges by of applications (data expressed in function

points per staff month)

Source: Jones (2008)

Table 21. Approximate productivity rates by size of application (data expressed in terms of function

points per staff month)

Source: Jones (2008)

191

Table 22. U.S. average productivity in function points per staff month

Source: Jones (2008)

Figure 64. Maintenance productivity variance due to size of base system and cyclomatic complexity

Source: Jones (2008)

192

Table 23. Application probable requirements “creep” (data expressed in percentage of original

requirements)

Source: Jones (2008)

Table 24. Average rate of annual enhancements (data is based on percentage change of application

function points)

Source: Jones (2008)

193

Table 25. Defect repairs time by defect origins

Defect origins Find hours Repair hours Total hours

1 Security defects 11.00 24.00 35.00

2 Errors of omission 8.00 24.00 32.00

3 Hardware errors 3.50 28.00 31.50

4 Abeyant defects 5.00 23.00 28.00

5 Data errors 1.00 26.00 27.00

6 Architecture defects 6.00 18.00 24.00

7 Toxic requirements 2.00 20.00 22.00

8 Requirements defects 5.00 16.50 21.50

9 Supply chain defects 6.00 11.00 17.00

10 Design defects 4.50 12.00 16.50

11 Structural defects 2.00 13.00 15.00

12 Performance defects 3.50 10.00 13.50

13 Bad test cases 5.00 7.50 12.50

14 Bad fix defects 3.00 9.00 12.00

15 Poor test coverage 4.50 2.00 6.50

16 Invalid defects 3.00 3.00 6.00

17 Code defects 1.00 4.00 5.00

18 Document defects 1.00 3.00 4.00

19 User errors 0.40 2.00 2.40

20 Duplicate defects 0.25 1.00 1.25

Average 3.78 12.85 16.63

Source: Jones (2008)

194

Table 26. U.S. average for delivered defects per function point

Source: Jones (2008)

