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Summary
In this article we present Mutable Locks, a synchronization construct with the same semantic
of traditional locks (such as spin locks or sleep locks), but with a self-tuned optimized trade off
between responsiveness and CPU-time usage during threads’ wait phases. Mutable locks tackle
the need for efficient synchronization supports in the era of multi-core machines, where the
run-time performance should be optimized while reducing resource usage. This goal should be
achieved with no intervention by the programmers. Our proposal is intended for exploitation in
generic concurrent applications, where scarce or no knowledge is available about the underlying
software/hardware stack and theworkload. This is an adverse scenario for static choices between
spinning and sleeping, which is tackled by our mutable locks thanks to their hybrid waiting phase
and self-tuning capabilities.
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1 INTRODUCTION

Modern multi-core chipsets and the ever-growing adoption of concurrent programming in daily-usage software are posing new synchronization
challenges. Non-coherent cache architectures—such as Intel SCC (Single-chip Cloud Computer) 1—look to be a way for reducing the cost of clas-
sical cache-coherency protocols. However, they significantly impact software design, since hardware-level coherency becomes fully demanded
from software—which needs to rely on explicit message passing across cores to let updated data values flow in the caching hierarchy. Hardware-
Transactional-Memory (HTM)allowsatomic and isolatedaccesses to slices of shareddata inmulti-coremachines. This solution is howevernot viable
in many scenarios because of limitations in the HTM firmware, like the impossibility to successfully finalize (commit) data manipulations in face of
hardware events such as interrupts. For this reason, HTM is often used in combination with traditional locking primitives, which enable isolated
shared-data accesses otherwise not sustainable via HTM.
The Software TransactionalMemory (STM) counterpart avoidsHTM-related limitations. However, STM internalmechanisms (e.g. TL2 2) still rely

on locks to enable atomic and isolatedmanagement of themetadata that the STM layer exploits to assess the correctness (e.g. the isolation) of data
accesses performedby threads. Furthermore, locking is still exploited as a coremechanism in software-based shared-datamanagement approaches
formulti-coremachines like Read-Copy-Update (RCU) 3, where readers are allowed to concurrently access shared datawith respect towriters, but
concurrent writers are anyhow serialized via the explicit usage of locks.
Overall, despite the rising trend towards differentiated synchronization supports, locking still stands as a core synchronization mechanism.

Therefore, optimizing the runtime behavior of locking primitives is a core achievement for software operations carried out on nowadaysmulti-core
hardware.
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Actually,we candistinguish among twomain categories of locks: 1) spin locks, which are basedon threads activelywaiting for theownership in the
access to the target shared resource; 2) sleep locks, whichmake threads not run on any CPU-core until they can acquire the ownership in the access.
As well known, the first category can operate in user-space, while the latter requires the support of the underlying Operating System (OS) kernel.
Spin locks are often preferred in HPC applications—where low or none time-sharing interference is expected in the usage of CPU by threads—

since they ensure the lowest latencywhile acquiring the ownership of the lock. However, they do not care aboutmetrics such as CPU usage. In fact,
CPU cycles wasted in spinning operations because of conflicting accesses to critical sections may result non-negligible, especially at non-minimal
thread counts. Moreover, this might increase the impact of hardware contention on performance, since spin operations typically involve atomic
instructions that trigger the cache-coherence firmware. Conversely, sleep locks save CPU cycles and reduce hardware contention, thus represent-
ing the obvious alternative to spin locks when resource usage (while synchronizing) is a concern. However, they might increase the latency in the
access to a critical section because of delays introduced by theOSwhile awakening and CPU-dispatching threads.
To tackle the limitations of spin and sleep locks, in this article we present a new synchronization support called mutable lock (also denoted as

mutlock). Our solution is based on a non-trivial combination of spin and sleep primitives, which gives rise to a state machine driving the evolution
of threads in such away that sleep-to-spin transitions are envisaged as ameans tomake sleeping threads become ready to quickly enter the critical
section when it is released by another thread. Hence, they do not pay the delay caused by the OS awakening phase. On the other hand, the sleep
phase is retained as ameans for controlling the waste of resources that would otherwise be experiencedwith pure spin locking.
Our mutable locks ship with the support for the autonomic tuning of the transitions between sleep and spin phases—or the choice of one of the

two upon the initial attempt to access the critical section—which is implemented as a control algorithm encapsulated into the locking/unlocking
primitives. The main challenge we had to tackle while devising this algorithm has been the one of avoiding anomalies, such as livelocks, potentially
caused by inaccurate views of threads on the state of other threads (sleeping or spinning) involved in the access to themutable lock.We addressed
this challenge by embedding an ad-hoc management of metadata (based on smart combinations of atomic machine instructions) into the control
algorithm offering the support for the autonomic choices. Furthermore, our solution is fully transparent, and can be exploited by simply redirecting
the API of the locking primitive originally used by the programmer to ourmutable lock library†.
The remainder of this article is structuredas follows. In Section2wediscuss relatedwork.Mutable locks arepresented in Section3. Experimental

results for a comparison with other lock implementations are reported in Section 4.

2 RELATEDWORK

Spin locks have been originally implemented by only relying on atomic read/write instructions 4,5. However, this solution had limited applicability to
scenarios where the number of threads to synchronize was known at compile/initialization time and could not change at runtime. Such a limitation
was overcome thanks to atomic Read-Modify-Write 6 (RMW) instructions, like CAS in modern processors. The main idea behind RMW-based spin
locks is the one of repeatedly trying to atomically switch a variable from a value to another one—the so-called test-and-set operation. If a thread
succeeds in this operation, it can proceed and execute the critical section, otherwise it has to continuously retry the operation. This is the spin phase.
Spin locks are greedy in terms of clock-cycles usage, thus leading to non-minimal waste of resources in scenarios with non-negligible likelihood of
thread conflict in the access to critical sections. This problem is further exacerbated by the fact that RMW instructions make intensive usage of
state transitions in the hardware-level cache coherency protocol. This in turn can impact the cache access latency by other threads, including the
one that is currently owning the critical section. Clearly, themore threads spin at the same time, the worse the scenario becomes.
The test-and-test-and-set (TTAS) spin lock 7 makes challenging threads continuously check the lock variable until it is released and, only in this

case, they try to acquire it via RMW instructions. This allows threads to spin (read the actual value of the lock variable) in cache without disturbing
others, thus generating cache/memory traffic only when strictly needed.
Anderson et al. 8 introduce a simple back-off time before attempting to re-acquire the lock. Anyhow, such a strategy requires some variables to

be set up, such as themaximum andminimum back off time, which cannot be universal across any hardware architecture and/or workload 9.
Since there is no assurance that a given thread wins the challenge eventually, spin locks might lead to starvation. Mellor-Crummey and Scott 10

introduce the queue spin lock, calledMCS, to address this issue. It is a linked list where the first connected node is owned by the thread holding the
lock, while others are inserted in FIFO order by threads trying to access the critical section. These threads spin on a boolean variable encapsulated
in their individual nodes. This guarantees that each spinning thread repeatedly reads a different memory cell and that a releasing thread updates a
cache line owned by a unique CPU-core, which significantly reduces the pressure on the cachemanagement firmware.
In all the above solutions, there is no direct attempt to control the number of threads spinning at each time instant, as insteadwe do in ourmuta-

ble locks thanks to the smart combination of spin/sleep phases and sleep-to-spin transitions. Clearly, such a limitation of the literature approaches
can lead to catastrophic consequences on performance and resource usage when applications are executed (or simply have phases of execution)

†Code available at https://github.com/HPDCS/libmutlock

https://github.com/HPDCS/libmutlock
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with more threads than cores. Furthermore, when recurring to FIFO spin locks an anti pattern emerges. The FIFO semantic imposes that, when a
thread releases the lock, one specific thread has to acquire it—the one standing at the head of the FIFO queue. It follows that delays (for example
a CPU de-scheduling) affecting that thread impact all its successors in the queue. This increases considerably the residence time (queue time plus
critical section execution time) and, consequently, the overall application performance can be impaired. Spin locks anyhow suffer from the problem
ofwaste of resources in face of conflicting accesses to the critical section. Ourmutable locks copewith both these problems, since the smart combi-
nation of spin and sleep phases avoids the anti-patternwhere a thread running a long critical section is de-scheduled in favor of one simply spinning
for the access to the same critical section.
As hinted, sleep locks—based onOS blocking services—represent the opposite solution to synchronization, and are aimed at avoiding the waste

of resources (which would take place with spin locks) during wait phases preceding the access to the critical section. OS implementations offer
sleep locks since their very beginning, and various improvements in these synchronization constructs have been devised in order to enable flexible
synchronization schemes, involving awake conditions resulting as the combination of the state of multiple sleep locks. Examples are the System
V semaphores offered by Posix 11 or the wait-for-multiple-object primitive offered byWinAPI 12. In any case, all the sleep locks based on blocking
OS services share the common drawback that, as soon as a critical section is released, there is no guarantee that a thread willing to access the
critical section is already CPU-dispatchable (or dispatched). In fact, it might have gone sleeping, thus needing to undergo a wake-up phase bringing
it back onto the OS run-queue. Overall, we may experience a delay in the access to the critical section by this thread, which in turn may hamper
performance, especially when the critical section is short—a problem exacerbated at higher concurrency.
A lock implementationwhich copeswith the issue of choosing at runtimebetween spinning and sleeping is themutexofferedby the glibc pthread

library 13. This lock canworkwith two different configurations, i.e. default and adaptive.With the default configuration, a thread tries to acquire the
lock by performing an atomic test-and-set operation. If this operation fails, the thread goes sleeping. The adaptive configuration is based on the idea
of attempting to spin for a while before going to sleep. Such an approach is known as spin-then-sleep. In the adaptive mutex, the time after which a
thread transits from spinning to sleeping is established by a threshold, which is computed at runtime based on the length of the critical section, and
is bounded by the estimated context-switch time.
The spin-then-sleep approach has been in-depth studied by Karlin et al. 14 and then by Lim et al. 15. In the former study, the authors explore

various strategies for determining whether and how long to spin before sleeping. Their experimental results show the potential advantages of
the spin-then-sleep approach compared to the pure sleep or pure spin approaches, and demonstrate that algorithms which adaptively tune the
spinning threshold generally perform better than static ones. The study by Lim et al. claims that, in large scale multiprocessor systems, statically
determining the spinning threshold should be preferred, due to the high run-time overhead that may be required to find its optimal value. Thus,
the authors propose static methods to choose good values of the threshold depending on the properties of thewait-time distribution, and estimate
their competitive factors with respect to the optimal off-line algorithm.
One disadvantage of the glibc pthread mutex (in both configurations), and generally of various locks based on the spin-then-sleep approach

described above, is that they pay along the critical path the wake-up latency of sleeping threads that access to the critical section. Also, they may
suffer from an excessive amount of sleep/wake-up calls.
Some literature studies focus on the selection of the best synchronization algorithm depending on the level of contention. As an example, the

proposal by Beng-Hong Lim et al. 16 investigates how to dynamically switch between TTAS and MCS locks. The proposed approach has been later
extended by Eastep et al. 17 to specifically address asymmetries in multi-core machines. The authors designed a synchronization framework that
dynamically switches between five different spin-lock implementations with the objective of maximizing an application performance metric. GLS
(Generic Locking Service) 18 is an adaptive scheme that automatically selects the lock algorithm depending on the workload features. With low
contention, GLS uses a simple spin-lock scheme, while with high contention it switches to queue-based locks or, under high system load, to sleeping
locks. All these proposals rely on an orthogonal approach compared to our mutable locks, since they use one individual lock implementation at a
time, and donot explore the opportunities offered by hybrid approaches. Conversely,mutable locks aimat combining spin locks and sleep locks such
that they can coexist at the same time. Nevertheless, we note that mutable locks could be used in the context of the above-mentioned solutions as
a candidate lock implementation among the ones that are dynamically selected. This also underlines the fact that mutable locks and the approach
taken in these solutions can be considered complementary.
Johnson et. al 19 explore a solution based on the idea of decoupling the scheduling of threads from lock contention management, and show

the potential advantages of their approach, which is based on a load control mechanism. Moreover, they discuss some major aspects to tackle,
such as obtaining accurate statistics on resource usage by threads and improving OS support for optimizing the communication between OS and
application. Themain difference between this solution andmutable locks is that the former is essentially built around the concept of load control. It
introduces adaemon thread thatmaintains systemstatistics anddecideswhen to (de)schedule application threads. This threadhas tobeperiodically
woken-up, and relies onOS facilities to collect statistics (e.g. the time spent by a thread onCPUandwaiting in run-queues). Scheduling decisions are
basedon the intuition that threads should be removed fromCPU in the caseof high load, and re-scheduledwhen the loaddrops down.Mutable locks
donot rely on any load control schemebasedon system statistics, and they donot rely on any daemon thread tomake scheduling decisions.Mutable
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FIGURE 1Different time-lines related to different lock specifications

locks represent an algorithmic solution completely distributed among the application threads. The adaptive policy of mutable locks exclusively
observes what happens when a sleeping thread is woken-up and tries to acquire the lock.
Mutexee 20 is a lock implementation that attempts to reduce the delay in the access to the critical section. It has been designed considering

energy efficiency as a primary goal. Mutexee spins using low-energy-footprint instructions, and exploits a bimodal threshold for spin-to-sleep tran-
sitions. Also, it introduces a wait phase during the lock release operation in order to increase the probability that an incoming new lock request
by another thread can immediately successfully complete, thus saving a pair of sleep/wake-up calls. This favors throughput and energy efficiency
against fairness.
Another lock falling in the family of spin-then-sleep locks is called malthusian lock 21. It is a modified version of theMCS lock where spin phases

are replacedwith spin-then-sleepwaits, and is pairedwith an additional list of threadswhich sleep longer than the ones in themain queue of locking
requests. Again, this behavior favors throughput against fairness.
One limitation of both mutexee and malthusian locks is that they do not attempt to pro-actively wake-up a sleeping thread that must access

the critical section upon the lock release by another thread. In fact, in these approaches, a sleeping thread is woken-up only upon the lock release
operation. Hence, like for pure sleep locks, the access to the critical section might be delayed because of the latencies due to OS-level awaken-
ing operations. Further, in both of these solutions there is no fine-grain self-tuning mechanism to optimize the mix of spin and sleep phases, with
the inclusion of sleep to spin transitions, across different threads. All these limitations are tackled by our mutable locks, which provide a more
articulated combination of spin and sleep phases based on a self-tuning mechanism that transparently adapts the lock behavior to the application
workload.
Recently, a study that compares a wide range of lock implementations has been presented by Guerraoui et al. 22. The study clearly shows that

no single lock is systematically the best, and that choosing the best one on basis of the hardware and workload characteristics may be not simple.
Also, the authors propose a practical selection procedure that can help the developer to choose a good locking algorithm depending on various
factors, such as the number of cores/threads, the scheduler load and the lock contention level. As a concluding remark, the authors highlight that
the observations from their study call for further research on optimized/dynamic lock algorithms, like the onewe propose.

3 MUTABLE LOCKS

Let us slide towards the description of our mutable locks through the help of an example where three threads running on different CPU-cores
compete for accessing the same critical section. Figure 1 shows the same execution scenario with three different lock specifications. For simplicity,
but with no loss of generality, we consider the case where all critical-section durations and the times required to wake-up and reschedule a thread
are equal, each one requiring one time slot in the representation in Figure 1. The time-line at the bottom (marked asCS) shows the projection of all
critical sections executed by threadsT1,T2 andT3 on a single time axis, helping the reader to appreciate the overall critical section execution rate.
Figure 1a) represents a possible execution resulting by using spin locks (e.g. a TTAS spin lock). As we can see, threads that have lost the challenge
of acquiring the lock are always ready to immediately acquire it when it is released by another thread. This makes the critical sections executed at
maximum rate (see the CS timeline). The drawback is that the CPU time in three time slots is “wasted” due to spin operations.
Figure 1b) shows the effects with sleep locks, where threads immediately go to sleepwhen the lock acquisition fails—this is the strategy adopted

by the pthreadmutex in the default configuration. A sleeping thread is woken up only upon the lock release operation by the thread that previously
acquired the lock. Consequently, the awakening latency delays the access to the critical section. In this scenario, the critical section execution rate
is significantly reduced. In fact, 5 time slots are required to execute 3 critical sections, with respect to 3 time slots required by the spin locks, thus
leading to a slowdownof40%.On theotherhand, only2 slots ofCPUtime insteadof3arewasted for threadawakeandCPU-rescheduleoperations.
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FIGURE 2 Logical representation of a lock with a spinning window

Finally, Figure 1c) shows an ideal scenario where we achieve the best of the two cases: the minimum amount of wasted slots as ensured by the
sleep locks (2 slots), and themaximum execution rate of critical sections as provided by spin locks (3 time slot for executing 3 critical sections). This
would be possible if we were able to decide which thread has to go to sleep and which one to spin, and to proactively start the wake-up phase of a
sleeping thread to let it timely acquire the lock upon its release by another thread. In this scenario, the latency of awakening a thread (T3) is masked
by the critical section execution of the spinning thread (T2). This behavior is the target of ourmutable lock algorithm,which encapsulates the ability
tomix spin and sleep phases in an optimizedmanner, with the inclusion of sleep to spin transitions which are driven by a self-tuning scheme.

3.1 TheNotion of SpinningWindow
Mutable locks rely on the notion of spinning window (SW). SW identifies the set of threads, among those contending for the lock access, that are
allowed to spin. The other contending threads (if any) need to undergo a sleep phase. The maximum cardinality of the set of spinning threads is
bounded by the spinningwindow size (SWS). Thus, when a thread tries to acquire the lock, if the number of spinning threads is less than SWS then the
thread starts spinning, otherwise it goes to sleep. An example representation is shown in Figure 2, where we have eight contending threads, five of
which are spinning and three are sleeping. When a new threadT tries to acquire the lock, it takes the first available slot in the array and, according
to its index i, it chooses if it has to spin or sleep. In particular:i ∈ [0, SWS) T goes spinning

i ∈ [SWS,+∞) T goes sleeping
Upon the lock release operation, one random spinning thread accesses the critical section and one sleeping thread wakes up and takes the just
freed slot of the SW. The latter is the sleep to spin transition we include in our mutable lock logic. Then, the array cell that is left empty outside the
spinning window by the woken up thread will be occupied by shifting the threads associated with larger indexes. This complies with a specification
that does not ensure a FIFO policy while serving threads—which can be instead obtained by left-shifting all threads in the array exactly by one
position. It follows that this approach allows to control the exact number of spinning threads—including those transiting from the sleep to spin
state—bymanipulating the value of SWS.
Since we are interested in pursuing two goals, maximizing performance and reducing the waste of clock cycles caused by spin operations, SWS

should adapt to the workload peculiarities and changes—e.g. to the duration of the critical section and the actual incidence of conflicts in its access.
The larger SWS, the lower theaccess latency is—although if toomany threads spin,wegetCPU-interferenceon theone running the critical section—
and, at the same time, more computational power is wasted due to spinning cycles. Conversely, a lower value of SWS tends to reduce clock cycles
usage, but increases the probability that threads experience late wake ups, stretching the critical section access latency. Overall, a suited value for
SWS should ensure that the number of spinning threads is low and the latency of awakening threads ismasked by critical sections executed by other
threads.
Dynamically adapting the value of SWS at runtime is not a trivial task since the newly chosen value must be correctly reflected onto the actual

state of the threads (sleeping or spinning). In more detail, increasing the value of SWS with no other action could make one or more threads to be
considered as falling within SW (thus spinning) even if they are currently sleeping (case 1). Consequently, no one will ever try to wake them up and
theywill sleep unboundedly unless SWS is eventually restored to the original value. On the other hand, reducing the value of SWS,whichmight lead
some spinning thread to fall outside SW (case 2), does not hamper progress. However, it makes a number of threads larger than SWS spin for an
unknown period of time, diverging from the desired behavior.
Cases 1 and 2 can occur only under specific conditions. Let ∆ be the variation of the value of SWS to be applied at runtime, sws be the value

of SWS before the variation is applied, and thc (thread count) be the number of threads waiting to access the lock. Case 1 can occur if and only if
∆ > 0 ∧ thc > sws (C1) while case 2 can occur if and only if∆ < 0 ∧ thc > sws + ∆ (C2).
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Algorithm 1Mutable LockOperations
A1: procedureACQUIRE(mutlockm)A2: ∆← 0A3: slept← falseA4: lstate−← FAD(m.lstate, +1) . Increase thread countA5: thc−← lstate−.thcA6: sws← lstate−.swsA7: if thc− ≥ sws then .Check room in the SWA8: slept← trueA9: m.slp_obj.sleep()A10: end ifA11: spun←m.spn_obj.lock() . Take the lockA12: ∆← EvalSWS(spun, slept,m) .Consult the oracleA13: if sws 6= m.lstate.sws then . SWS concurrently updatedA14: return . Ignore oracle and go to CSA15: end ifA16: ∆← sws + ∆ < 1 ? sws− 1 :∆A17: ∆← sws + ∆ > m.max ?m.max−sws :∆A18: if∆ 6= 0 thenA19: tmp← (∆ « 32);A20: lstate−← FAD(m.lstate, tmp) .Apply deltaA21: thc← lstate−.thcA22: sws−← lstate−.swsA23: tmp←+∞A24: sign←∆/|∆|A25: if sign < 0∧ thc> sws+ then .Condition C2A26: tmp← thc− sws+ . #spinning threads not in SWA27: else if sign > 0∧ thc> sws− then .Condition C1A28: tmp← thc− sws− . #sleeping threads in SWA29: elseA30: tmp← 0 . No other actions are requiredA31: end ifA32: tmp← sign ·min(|∆|, tmp)A33: m.wuc←m.wuc + tmp .Update wake-up counterA34: end ifA35: end procedure

R1: procedureRELEASE(mutlockm)R2: ifm.wuc ≥ 0 then .Multiple threads should enter the SWR3: Rwuc←m.wucR4: m.wuc← 0R5: else . Skip onewake up at a timeR6: Rwuc←−1R7: m.wuc←m.wuc+ 1R8: end ifR9: lstate−← FAD(m.lstate, -1) .Decrease thread countR10: m.spn_obj.unlock() .Release lockR11: ifRwuc < 0 thenR12: returnR13: end ifR14: thc−← lstate−.thcR15: sws← lstate−.swsR16: if thc− > sws then .One thread should enter the SWR17: Rwuc←Rwuc + 1R18: end ifR19: whileRwuc> 0 do .Make threads enter the SWR20: cnt←m.slp_obj.wake_up(Rwuc)R21: Rwuc←Rwuc − cntR22: endwhileR23: end procedure

E1: procedure EVALSWS(bool spun, bool slept, mutlockm)E2: m.cnt←m.cnt+ 1 .Count critical sectionsE3: ∆← 0E4: if slept∧¬spun then . Late wake-up eventE5: ∆←m.sws . Suggest to double the SWSE6: m.cnt← 0E7: else ifm.cnt= K then .No late wake ups for K acquisitionsE8: ∆←−1 . Suggest to decrease the SWS by 1E9: m.cnt← 0E10: end ifE11: return∆E12: end procedure

The SWspecification tackles case 1 bywaking up a number of sleeping threads equal tomin(|∆|, thc− sws) instead of 1 as in normal lock release
operations. Case2 is tackled by assigning to threadswhich are spinning outside the just shrinked SWhigher priority in the access to SWwith respect
to threads that transit from the sleep to the spin state. This can be obtained by simply waking no thread up for a number of release phases equal to
min(|∆|, thc− (sws + ∆)).
This mutable lock algorithm, described in Section 3.2, is de-facto a new thread synchronization algorithm grounded on the notion of locking

primitive. At the same time, the change of SWS, in order to adapt its value to the workload, needs to be actuated via some other algorithm, which
implements a kind of oracle for optimizing the runtime dynamics under mutable lock-based synchronization. Clearly, different oracles for adapting
the SWS value at runtime could be devised, andwe provide one of them in Section 3.2. In any case, themutable lock algorithm is independent of the
selected SWS adaptation oracle. This opens to the possibility of studying further variations of thread synchronization dynamics built around the
notion of mutable lock.

3.2 TheMutable Lock Algorithm
A mutable lock is a spin lock, denoted as spn_obj, plus other five variables: sws, which stores the current SWS; thc, which keeps the thread count,
i.e. the total number of contending threads (including the one holding the lock); wuc, which keeps the wake-up count, i.e. number of threads to be
woken up during amutable lock release phase; slp_obj, which is an object thatmakes threads sleep until a certain condition becomes true (such as
a semaphore or amemory structuremanaged via the futex Linux system call); max, which is themaximum SWS set to the number of cores.
In our design, sws and thc are 32 bits long and are stored in a unique 64-bit word, denoted as lstate (lock state), such that lstate = 〈sws, thc〉.

This arrangement allows threads to update one field, get its old value and retrieve the actual value of the other field at once by using an atomic
Fetch&Add (FAD)machine instruction, commonly supported by off-the-shelf processors.
The operations used to acquire or release the mutable lock are shown in Algorithm 1. Let x be an atomic register (a variable) supporting atomic

FADoperations, in our notation x− and x+ are the values of x respectively before and after a FADexecution on it. During an acquire phase, a thread
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T increases thc via FAD (line A4) and checks whether there is room in SW. If the condition thc− ≥ sws holds (line A7)—no room is available in
SW—it goes to sleep on slp_obj (line A9). Otherwise it invokes the acquire API of spn_obj (line A11).
As soon as a thread owns the spn_obj, it determines if sws should be updated by invoking EVALSWS. This function, whose parameters will be

explained later, implements the SWS adaptation oracle and returns the signed variation ∆ to be applied to sws. A thread applies the adaptation
suggested by the oracle if and only if the SWS has not been changed while it was sleeping or acquiring the spin lock (lines A13-A15). This prevents
concurrent SWS adaptations from overlapping.
The SWS update is performed via FAD on the most 32 significant bits of the lstate field (line A20). Based on the values of∆, thc, sws− and

sws+, we know that some countermeasures have to be taken in order to ensure progress of each thread and that the number of spinning threads
will be bounded by sws eventually. In particular, if condition C1 occurs, we set the variable wuc to the number of additional threads to be woken
up. Conversely, when condition C2 holds, wucwill be set to the number of threads in the spinning state, which are outside the SW, multiplied by -1.
Finally, if none of the above conditions holds, no countermeasure is needed at all (line A30). At this point, the computed value will be simply added
to wuc (line A33), and the lock acquire phase is completed.
Upon a lock release operation, if wuc ≥ 0 holds (line R3), its value is copied into a local variable Rwuc and then is set to 0, otherwise (line R6) it is

incremented by 1 and Rwuc is set to -1. Now, thc can be decremented by 1 via FAD and the spn_obj release API allows another thread to get the
lock (lines R9 and R10). In order to complete the release operation, we have to ensure that the number of non-sleeping threads is compliant with
the current value of sws. Thus, the releasing thread first checks ifRwuc is lower than 0. In this case, it can simply return since a previous reduction of
sws has made some thread spinning outside SW and, consequently, no additional wake up is required. This is because sws updates and decrements
of thc are performed in mutual exclusion (via FAD) and it is ensured that more than sws threads are spinning. If Rwuc is greater than or equal to 0,
we need to check if an additional thread should be awakened in order to keep the number of spinning threads equal to the current value of sws. In
this case (line R16), Rwuc is incremented by 1. Finally, the thread can awake Rwuc threads by relying on the slp_obj API (line R20). Thanks to these
algorithms, the shared variables (thc, sws,wuc) used to keep the state of the lock are updated consistentlywithout resorting to additional locks that
could lead to other challenges such as choosing the proper lock implementation.
We designed a SWS adaptation oracle that targets the objective of keeping SWS close to the minimum value required to mask the wake-up

latency of sleeping threads, so that threads can promptly access the critical section and the overall wasted CPU time for spinning is reduced. The
oracle uses a strategy similar to the one adopted by the TCP congestion control mechanism 23, which is quite simple but effective in practice. It
is implemented by the procedure EvalSWS in Algorithm 1. The oracle design is based on the following observation. When a sleeping thread A is
awakened and there are no other threads executing the critical section, it means that SWSmay be not large enough tomask thewake-up latency of
A. In fact, since Awas sleeping, it means that when A tried to acquire the lock there were sws threads spinning (i.e. the condition thc− ≥ sws held
true), and that whenAwas awakened all spinning threads had already terminated the execution of the critical section.When this occurs, the oracle
doubles SWS. Conversely, if this condition does not occur forK consecutive critical section executions, the oracle tries to decrease SWSby 1, where
K is a configuration parameter. The late wake-up event can be detected very efficiently using two flags, slept and spun, which are updated during
the acquisition phase. The first one indicates whether or not the thread has gone to sleep, and the second one indicates whether or not the thread
has found the lock owned by another thread. To compute the spun value, the lock procedure (line A11 of Algorithm 1) checks if the lock is not free
before entering the spin phase, and returns true in the positive case. We note that this check is required only by our adaptation oracle, not by the
basic mutable lock algorithm.
Consider a scenario where, along a give phase of the execution,V + 1 is theminimum value of SWS that ensures no late wake up, andwhen SWS

is set to V then late wake ups occur. We can show that our oracle keeps the percentage of late wake-up events bounded by a function of K. We
know that the oracle doubles SWS as soon as a late wake up occurs, i.e. when SWS reaches the valueV. After this event, SWS is set to 2V, followed
by a phase where the oracle starts reducing SWS by 1 every K critical section completions. This phase ends when SWS reaches again the value V.
Consequently, SWS repeatedly varies from 2V to V. Since K critical sections complete for each value of SWS in [V + 1, 2V] and 1 critical section
completes when SWS is equal toV, we have thatK ·

∣∣[V + 1, 2V]
∣∣+ 1 critical sections complete, and one late wake up occurs. Hence, the number of

late wake-up events over the total number of critical section completions is:
1

K ·
∣∣[V + 1, 2V ]

∣∣+ 1
=

1

KV + 1
.

This number reaches the maximum value when V = 1. Thus, the upper bound of the number of late wake-up events over the number of critical
section completions is 1/(K + 1). In conclusion, the value of K can be selected on the basis of the desired maximum percentage of late wake-up
events.
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4 EXPERIMENTAL STUDY

In this section, we present the results of an experimental studywhere we evaluate ourmutable locks and compare themwith other lock implemen-
tations under variousworkloads. In thefirst part of this study,we focus on abehavioral analysis, showing experimental results thatweachievedwith
a synthetic benchmark, configured to give rise to different and antipodal contention scenarios. In particular, these results show how the mutable
lock takes advantage from its ability to dynamically adapt between sleeping and spinning phases compared to most common lock implementation
strategies, i.e. an always-spinning strategy (queue based or not), an always-sleeping strategy, and an adaptive spin-then-sleep strategy. In the sec-
ond part of the experimental study, we present an extended comparative analysis we carried out with additional benchmarks and a larger set of
state-of-the-art lock implementations. All the test-bed applications we used in our experiments are written for Linux using the C/C++ language,
and are compiled with GCC 8.2.1. The implementation of our mutable lock ‡ (denoted as mutlock) uses a traditional TTAS spin lock as spn_obj and
a semaphore as sleeping object. To carry out the experimental comparison with the other lock implementations, we used LiTL 22, an open-source
POSIX compliant library that allows executing programs that use pthreadmutex locks also with different lock implementations, andwe integrated
our mutable lock implementation in LiTL. In our experiments, we set the parameterK of the oracle equal to 10, to keep the expected percentage of
late wake-up events below 10%.

4.1 Mutable Locks Behavioral Analysis
We used a synthetic benchmark, that we name LOCKBENCH§, which can run an arbitrary number of threads, each one repeatedly executing a
critical section protected by a lock, followed by a non-critical section. The length CS of the critical section and the length NCS of the non-critical
section are uniformly distributed within the two parametric intervals [CSL,CSU) and [NCSL,NCSU), respectively. We show the results achieved
with mutlock and with four commonly used lock implementations, specifically a TTAS spin lock (that we denote as ttas), the pthreadmutex with
the default configuration (denoted as pt-mutex), the pthreadmutex with the adaptive configuration (denoted as pt-adaptive), and theMCS lock
(denoted as mcs). The description of these lock implementations has been given in Section 2. We ran the experiments on a ThinkMate GPX XT10-
2260V4-4GPUmachine, equipped with 2 Intel Xeon E5-2640 v4, 20 physical cores total, 64GB memory, arranged in 2 NUMA nodes, and CentOS
Linux 7.6. As in other comparative experimental studies on locks, we disabled Intel Hyperthreading.
We ran the synthetic benchmark with four different combinations of the intervals [CSL,CSU) and [NCSL,NCSU) in order to analyze comple-

mentary contention scenarios. We selected the ranges of values of these intervals on the basis of the minimum and maximum execution times, as
we observed on themachinewe used in our experiment, of typical operations executed on common data structures (such as the one offered by Syn-
chrobench 24) protected by locks, while varying the data structure size. Then, we selected the interval for the length of the non-critical section in
order tomimic different ratios with respect to the length of the critical section. Finally, we varied the number of threads between 1 and 40.
We considered two basic metrics, i.e. the throughput and the CPU time required for synchronization. The former is measured as the number

of critical sections executed per second. The latter is the total time spent by the CPU to execute the code required to synchronize the accesses to
critical sections. In other words, it represents the cost, in terms of wasted CPU time, spent for thread synchronization.
We show the results in Figure 3. The left column shows the throughput, while the right column shows the CPU time spent for synchronization.

Figure 3(a) shows the throughput when both the intervals [CSL,CSU) and [NCSL,NCSU) are set to [0µs, 3.7µs). When the thread count is lower
than (or equal to) the number of cores (i.e. 20), mcs has the highest throughput. This result is expected because the mcs design best fits the NUMA
arrangement of memory. In fact, each thread spins on its own cache line and the thread holding the lock touches a single line (the one owned by the
next thread in the FIFOqueue) for signaling the lock release. mutlock has slightly lower throughput than ttas, showing up to 8%of overhead for its
management. Conversely, pt-mutex (pt-adaptive) gives rise to 25% (12%) drop in performance and shows its benefits only in case of time-sharing
(i.e. when the number of threads is larger than the number of cores), where going to sleep is a smart choice to reduce hardware contention. How-
ever, for the time-sharing scenario, mutlock is superior to all the other solutions, especially when observing the average behavior across different
thread counts. Also, thanks to its self-tuning strategy—that provides at any time a suited combination between the number of spinning and sleep-
ing threads—it definitely contrasts the excessivewaste of CPU time required for synchronizationwith mcs, which also shows a drop in performance
with time-sharing due to its FIFO semantic (see Figure 3(b)).
In the second set of experiments we varied the upper bound of the critical-section length, setting it to 366µs. Essentially, we incremented the

size of the critical section by increasing CSU by a factor of 100, thus moving to a scenario with high contention. The throughput results, presented
in Figure 3(c), show that spinning (potentially for a very long time) is convenient only with low thread counts (up to 4). Conversely, pt-mutex
and pt-adaptive show their advantages having a maximum and stable throughput with thread count larger than 4. mutlock maintains a stable

‡The source code is publicly available at https://github.com/HPDCS/libmutlock
§The source code is publicly available at https://github.com/HPDCS/lockbench

https://github.com/HPDCS/libmutlock
https://github.com/HPDCS/lockbench
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FIGURE3Tests consist in repeatedly executing critical and non-critical sections, whose lengths are uniformly distributed in the interval [CSL,CSU)

and [NCSL,NCSU) respectively. Left charts show throughput (the higher the better), while right charts show CPU time spent in synchronization
(the lower the better)—pt-exp refers to themean of ttas and pt-mutex values.
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throughput, a bit lower than pt-mutex and pt-adaptive, since it continues to keep a few threads spinning to mask the wake up latency. However,
since critical sections are very long, such latencies are negligible and going to sleep allows to reduce hardware contention. Finally, mutlock reduces
the CPU time spent for synchronization of an order of magnitude w.r.t. spin locks for large thread counts (beyond 10) as shown in Figure 3(d).
In the third set of experiments, we consider a short critical section and a long non-critical section. Specifically, [CSL,CSU) is set to [0µs, 3.7µs)

and [NCSL,NCSU) is set to [0µs, 366µs), thus leading to very low lock contention. In such a scenario, all lock implementations have generally similar
performance (see the throughput curves in Figure 3(e)) and CPU times (see Figure 3(f)), except for the time-shared case with ttas, where the
throughput drops down, and the configuration with 40 threads and mcs, where the CPU time notably increases.
The last casewe investigated, namely the onewith both critical section and non-critical section uniformly distributed in [0µs, 366µs), represents

a scenario where critical sections are very long, but moderately accessed. This reduces the differences between the pure spinning strategy (see
ttas) and mutlock, as shown by the throughput results in Figure 3(g). On the other hand, it exacerbates the benefits ofmaking a controlled number
of threads spinning in order to save CPU time, reducing hardware contention and not paying wake up latencies. Clearly, the higher throughput of
mutlock over mutexes comes at a price in terms of CPU time spent for synchronization (see Figure 3(h)). However, mutlock still has two orders of
magnitude lower waste of CPU time compared to mcs, and one order of magnitude lower waste of CPU time compared to ttas.
To carry out an overall evaluation of themutable lock behavior, we analyzed the observed results also fromanother perspective. Let us assume to

have an ideal lock implementation (that we denote as best_lock) that for each thread count is able to automatically select the best lock implemen-
tation among all those of our tests. We calculated, for each lock implementation, its average throughput over a given range of thread counts, and
thenwe calculated the ratio between it and the average throughput of best_lock over the same range. Such ametric gives ameasure of howmuch
the behavior of a lock implementation is close to best_lock.We calculated thismetric for the four different configurations of LOCKBENCHand for
three different ranges of thread counts: a) no time-sharing (namelywith thread count between 1 and 20), b) time-sharing (with thread count between
21 and 40), and c) overall (with thread count between 1 and 40). Figure 4 reports the results. The value 1 represents the best performance achiev-
able by a lock implementation, i.e. its throughput is the same as best_lock. By observing the overall behavior, in 6 out of 12 cases the performance
of mutlock is not less than 99% compared to best_lock, and in the other 6 cases it is between 93% and 97% compared to best_lock. Accordingly,
in theworst case (the case of no time-sharing in Figure 4(a)) mutlock achieves 93% of the performance of best_lock. None of the other lock imple-
mentations shows better overall results. In fact, among them, the best one is pt-adaptive. Compared to best_lock, its performance is no less than
99% in 6 out of 12 cases, below 90% in 4 cases, and below 80% in the other two cases.
In Figure 4 we also add a bar, denoted as pt-exp, which is the mean between the values of ttas and pt-mutex. When the pt-exp bar appears

lower than mutlock, it means that if we have no any a-priori knowledge about the performance achievable with a given workload using ttas or
pt-mutex (sowemighthave chosenoneof the twowithequal probability),mutlock represents abetter choice.Compared topt-exp,mutlock shows
better performance in 11 out of 12 tested scenarios, with a maximum gain of about 23%. This makes mutlock a good candidate when operating
with uncertain conditions because of an unpredictable (or difficult to be reasoned) workload and/or possible interference by virtualized hardware
on, e.g., the length of critical sections.

4.2 Extended Comparisonwith Alternative Solutions
In this section, we present an extended experimental study of our mutable locks. The objective of this study is to carry out an overall evaluation of
our solution in terms of achievable performance compared to a wider range of lock implementations taken from the literature, and with respect to
different workloads. To this aim, in addition to the lock implementations that we used in the behavioral analysis in Section 4.1, we include recent
state-of-the-art lock proposals that, similarly to mutable locks, have been designed to take advantage of the combination of spinning and sleep-
ing. Specifically, in this study we include: 1) MCS with the spin-then-sleep policy (denoted as mcs-sts) 22, i.e. an MCS lock where spinning threads
go to sleep after a given time, 2) Malthusian locks (denoted as malthusian) and 3) Mutexee (denoted as mutexee). The details about these lock
proposals can be found in Section 2. We used the implementations offered by LiTL. As suggested by the authors of LiTL, we set the variable SPIN-
NING_THRESHOLD (that establishes the time after which a spinning thread transits to the sleeping phase) based on the duration of a round-trip
context switch 14, whichwemeasured using LMBench 25.We ran all the experiments of this study on anAWSEC2m5.metalmachine, equippedwith
2 Intel Xeon Platinum 8260 Processor, 48 physical cores total, 384GBmemory, arranged in 2 NUMAnodes, and Ubuntu Server 18.04 LTS.
In this study, we extended the set of benchmarks including, in addition to our synthetic benchmark LOCKBENCH, two largely used micro-

benchmarks taken from Synchrobench 24, and a well know high-performance key/value database that makes an extensive use of locks for thread
synchronization, i.e. Upscaledb 26. Synchrobench is a micro-benchmark suite designed to evaluate synchronization techniques on common data
structures. Among the data structure implementations offered by Synchrobench, we selected the ones designed for the C languagewhich use locks
as synchronization construct, i.e. a hashtable (thatwedenote asHASHTABLE) and a linked list (LAZYLIST). As input parameters,weused thedefault
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FIGURE 4 Bars represent the ratio between the average throughput of a given lock implementation and the average throughput of the lock
implementation offering the best performance for each thread count (the higher the better)— pt-exp refers to the mean of ttas and pt-mutex
values.

values as defined in their source code release ¶. We used four different values for the parameter initial size, i.e. 4096, 8192, 16386 and 32768,
respectively. This parameter establishes the initial size of the data structure, thus affecting (in inverse proportion) the lock contention level.We set
the parameter range equal to the value 65536. As for Upscaledb 26 (that we denote as UPSCALEDB), we ran Ups_Bench 27, using four different con-
figurations of the mix of insert/find/remove operations, i.e. 40%/20%/40%, 30%/40%/30%, 20%/60%/20% and 10%/80%/10%, respectively. Such a
set of configurations generate very differentworkload profiles. As for the other input parameters, we used the default values of the benchmark, and
set the inmemorydb option active.
For each benchmark, we ran the experiments varying the thread count between 1 and 96 (we remark that we used a machine with a total of

48 physical cores). Again, we consider three different ranges of thread counts: a) no time-sharing (thread count between 1 and 48), b) time-sharing
(thread count between 48 and 96), and c) overall (thread count between 1 and 96). The results are shown in Figure 5 - 8. Each bar represents the
ratio between the average throughput of a given lock implementation and the average throughput of mutlock over the specific thread count range.
The results with LOCKBENCH (Figure 5) in the case of no time-sharing show that there are configurations where some lock implementations

are subject to a non-minimal performance loss compared to mutlock. In particular, this happens for the first configuration (left-most one in
the chart) with mcs-sts, malthusian, pt-adaptive and mutexee. As for the other lock implementations, there is no relevant difference com-
pared to mutlock. In any case, it is possible to notice that, for one configuration mutlock is the best performing one, and for the other three
configurations its performance is very close to the best one. In the worst case, the performance of mutlock is exceeded only by mcs of no
more than 7,6%. In the case of time-sharing, a noticeable performance loss with respect to mutlock is experienced by various lock implementa-
tions, which is more evident for some configurations with mcs, mcs-sts and malthusian. mutlock appears not to be affected by time-sharing

¶Available at https://github.com/gramoli/synchrobench
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FIGURE 5 Performance comparison of mutlock and other lock implementations with LOCKBENCH. Bars represent the ratio between the average
throughput of a given lock implementation and the average throughput of mutable locks (the higher the better).
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FIGURE 6 Performance comparison of mutlock and other lock implementations with HASHTABLE (Synchrobench). Bars represent the ratio
between the average throughput of a given lock implementation and the average throughput of mutable locks (the higher the better).



Marotta ET AL 13

4096 8192 16384 32768

R
a
t
i
o
 
w
.
r
.
t
.
 
m
u
t
l
o
c
k
s

 
p
e
r
f
o
r
m
a
n
c
e

Set size

LAZY LIST - NO TIME-SHARING

ttas mcs mcs-sts malthusian pt-mutex pt-adaptive mutexee mutlock

1
.
0
1
7

0
.
9
8
0

0
.
9
8
5

1
.
0
0
8

1
.
0
1
7

1
.
0
1
5

1
.
0
2
1

1
.
0
0
0

1
.
0
1
6

1
.
0
1
4

1
.
0
1
2

1
.
0
2
6

1
.
0
1
6

1
.
0
1
5

1
.
0
1
6

1
.
0
0
0

1
.
0
1
2

1
.
0
1
9

1
.
0
2
2

1
.
0
2
4

1
.
0
1
9

1
.
0
1
4

1
.
0
1
9

1
.
0
0
0

1
.
0
1
7

1
.
0
1
4

1
.
0
1
0

1
.
0
2
0

1
.
0
1
8

1
.
0
1
9

1
.
0
1
9

1
.
0
0
0

4096 8192 16384 32768

R
a
t
i
o
 
w
.
r
.
t
.
 
m
u
t
l
o
c
k
s

 
p
e
r
f
o
r
m
a
n
c
e

Set size

LAZY LIST - TIME-SHARING

ttas mcs mcs-sts malthusian pt-mutex pt-adaptive mutexee mutlock

0
.
6
5
2

0
.
4
2
4

0
.
6
1
6

0
.
6
2
7

1
.
0
4
1

1
.
0
4
1

1
.
0
4
3

1
.
0
0
0

0
.
7
5
0

0
.
4
9
2

0
.
6
3
7

0
.
6
4
0

1
.
0
3
2

1
.
0
3
0

1
.
0
3
3

1
.
0
0
0

0
.
7
7
8

0
.
5
9
5

0
.
6
4
8

0
.
6
5
1

1
.
0
3
3

1
.
0
2
7

1
.
0
3
0

1
.
0
0
0

0
.
8
8
7

0
.
6
4
5

0
.
6
7
1

0
.
6
7
5

1
.
0
2
2

1
.
0
3
0

1
.
0
2
4

1
.
0
0
0

4096 8192 16384 32768

R
a
t
i
o
 
w
.
r
.
t
.
 
m
u
t
l
o
c
k
s

 
p
e
r
f
o
r
m
a
n
c
e

Set size

LAZY LIST - OVERALL

ttas mcs mcs-sts malthusian pt-mutex pt-adaptive mutexee mutlock

0
.
7
9
4

0
.
6
3
9

0
.
7
5
9

0
.
7
7
5

1
.
0
3
2

1
.
0
3
1

1
.
0
3
4

1
.
0
0
0

0
.
8
5
2

0
.
6
9
3

0
.
7
8
1

0
.
7
8
8

1
.
0
2
6

1
.
0
2
5

1
.
0
2
6

1
.
0
0
0

0
.
8
6
9

0
.
7
5
9

0
.
7
9
3

0
.
7
9
5

1
.
0
2
7

1
.
0
2
2

1
.
0
2
6

1
.
0
0
0

0
.
9
3
7

0
.
7
8
5

0
.
7
9
9

0
.
8
0
5

1
.
0
2
1

1
.
0
2
5

1
.
0
2
2

1
.
0
0
0

FIGURE 7 Performance comparison of mutlock and other lock implementations with LAZY-LIST (Synchrobench). Bars represent the ratio between
the average throughput of a given lock implementation and the average throughput of mutable locks (the higher the better).

40%/20%/40% 30%/40%/30% 20%/60%/20% 10%/80%/10%

R
a
t
i
o
 
w
.
r
.
t
.
 
m
u
t
l
o
c
k
s

 
p
e
r
f
o
r
m
a
n
c
e

INSERT/FIND/REMOVE

UPSCALEDB - NO TIME-SHARING

ttas mcs mcs-sts malthusian pt-mutex pt-adaptive mutexee mutlock

1
.
0
9
7

0
.
8
7
0

0
.
4
8
3

0
.
6
5
5

0
.
7
5
8

0
.
8
4
4

0
.
7
4
6

1
.
0
0
0

1
.
1
2
1

0
.
9
6
7

0
.
4
6
0

0
.
6
0
6

0
.
7
6
2

0
.
8
4
6

0
.
7
5
3

1
.
0
0
0

1
.
1
2
4

0
.
9
4
8

0
.
4
4
6

0
.
5
7
0

0
.
7
8
4

0
.
8
7
4

0
.
7
7
6

1
.
0
0
0

1
.
1
3
2

0
.
9
4
1

0
.
4
3
9

0
.
5
3
6

0
.
8
1
3

0
.
9
4
2

0
.
7
8
8

1
.
0
0
0

40%/20%/40% 30%/40%/30% 20%/60%/20% 10%/80%/10%

R
a
t
i
o
 
w
.
r
.
t
.
 
m
u
t
l
o
c
k
s

 
p
e
r
f
o
r
m
a
n
c
e

INSERT/FIND/REMOVE

UPSCALEDB - TIME-SHARING

ttas mcs mcs-sts malthusian pt-mutex pt-adaptive mutexee mutlock

0
.
9
5
8

0
.
0
3
0

0
.
3
8
1

0
.
8
0
9

0
.
8
6
1

0
.
9
9
5

0
.
8
3
0

1
.
0
0
0

0
.
9
3
6

0
.
2
4
2

0
.
2
8
5

0
.
7
2
5

0
.
8
1
9

0
.
9
4
9

0
.
7
8
0

1
.
0
0
0

0
.
9
3
7

0
.
2
4
2

0
.
2
7
8

0
.
6
8
8

0
.
8
7
3

1
.
0
0
3

0
.
8
3
1

1
.
0
0
0

0
.
9
3
7

0
.
2
3
4

0
.
3
4
4

0
.
6
3
5

0
.
9
1
1

1
.
0
8
3

0
.
8
6
5

1
.
0
0
0

40%/20%/40% 30%/40%/30% 20%/60%/20% 10%/80%/10%

R
a
t
i
o
 
w
.
r
.
t
.
 
m
u
t
l
o
c
k
s

 
p
e
r
f
o
r
m
a
n
c
e

INSERT/FIND/REMOVE

UPSCALEDB - OVERALL

ttas mcs mcs-sts malthusian pt-mutex pt-adaptive mutexee mutlock

1
.
0
3
5

0
.
4
9
6

0
.
4
3
8

0
.
7
2
4

0
.
8
0
4

0
.
9
1
1

0
.
7
8
4

1
.
0
0
0

1
.
0
3
5

0
.
6
3
0

0
.
3
7
9

0
.
6
6
2

0
.
7
8
9

0
.
8
9
4

0
.
7
6
6

1
.
0
0
0

1
.
0
4
1

0
.
6
1
0

0
.
3
9
5

0
.
5
8
2

0
.
8
5
9

1
.
0
0
8

0
.
8
2
4

1
.
0
0
0

1
.
0
3
7

0
.
6
2
1

0
.
3
6
8

0
.
6
2
5

0
.
8
2
6

0
.
9
3
4

0
.
8
0
1

1
.
0
0
0

FIGURE 8 Performance comparison of mutlock and other lock implementations with UPSCALEDB. Bars represent the ratio between the average
throughput of a given lock implementation and the average throughput of mutable locks (the higher the better).
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TABLE 1Average values of the ratio between the average throughput of a given lock implementation and the average throughput of mutable locks.
The average is calculated over the four configurations of each benchmark. The different colors help the reader to immediately identify the favorable
and unfavorable cases for mutlock, as indicated in the legend.

NO TIME-SHARING TIME-SHARING OVERALL
LOCK
BENCH

HASH
TABLE

LAZY
LIST

UPSCALE
DB

LOCK
BENCH

HASH
TABLE

LAZY
LIST

UPSCALE
DB

LOCK
BENCH

HASH
TABLE

LAZY
LIST

UPSCALE
DB

TTAS 1.00 1.06 1.02 1.12 0.75 0.48 0.77 0.94 0.87 0.78 0.86 1.04
MCS 1.00 0.33 1.01 0.93 0.14 0.17 0.54 0.19 0.54 0.53 0.44 0.59

MCS-STS 0.79 0.68 0.66 0.46 0.62 0.46 0.38 0.32 0.69 0.55 0.50 0.39
MALTHUSIAN 0.85 0.69 0.66 0.59 0.74 0.46 0.39 0.71 0.77 0.56 0.50 0.65
PT-MUTEX 0.90 1.04 1.04 0.78 0.93 1.04 1.07 0.87 0.91 1.04 1.05 0.82
PT-ADAPTIVE 0.93 1.03 1.04 0.88 0.98 1.04 1.07 1.01 0.95 1.04 1.06 0.94
MUTEXEE 0.90 1.04 1.04 0.77 0.92 1.05 1.07 0.83 0.91 1.04 1.06 0.79

Legend (0, 0.90] (0.90, 0.95] (0.95, 1.05) [1.05, 1.10) [1.10,+∞)

in any configuration, unlikemost of the other lock implementations. The scenario overalldemonstrates that mutlock is the best performing one for 2
out of 4 configurations (thefirst one and the last one in the graph). For the configurationwithminimal contention level (the third one), the difference
between mutlock and the best performing one (i.e. pt-adaptive) is negligible (0.5%). For the second configuration, the performance of the best
lock implementation (i.e. pt-mutex) oversteps the performance of mutlock by only 6%.
The results with HASHTABLE (Figure 6) show that, independently of whether time-sharing is used or not, it is possible to clearly distinguish a

group of lock implementations that generally show good performance for all the benchmark configurations, showing values that are always quite
close to 1. This group includes mutlock, pt-mutex, pt-adaptive and mutexee. Conversely, the other lock implementations suffer, at least in one
case, from a significant performance degradation. The case overall confirms that mutlock falls in the group of the best performing solutions. In the
worst case, mutlock is surpassed by a performance surplus of 9.4% achieved by pt-adaptive.
The results with LAZY LIST (Figure 7) and no time-sharing show that there are no relevant performance differences between the various lock

implementations. This is mainly caused by the reduced contention level of this benchmark due to the optimistic lock acquisition, which makes
threads compete only for modifying the data structure and not for traversing it. On the other hand, in the time-sharing case, the performance of
half of them is remarkably affected. The set of lock implementations that appearmore robust against the thread scheduling/descheduling dynamics
caused by time-sharing, and the consequent lock contention dynamics, includes again mutlock, pt-mutex, pt-adaptive and mutexee. The case
overall shows that mutlock, in the worst case, is surpassed only by mutexee by nomore than 3.4%.
Finally, the results with UPSCALEDB (Figure 8) show that the various lock implementations behave quite differently. With no time-sharing, only

ttas offers better results than mutlock, with a performance improvement of about 10-12%. However, mutlock clearly provides higher perfor-
mance than all the other lock implementations for all the configurations. With time-sharing, the performance of ttas falls below the performance
of mutlock, and the performance of mcs noticeable drops down. For 2 out of 4 configurations, mutlock achieves the best performance, and for
the other two configurations it is surpassed only by pt-adaptive. However, the difference between pt-adaptive and mutlock is non-minimal
only with one configuration, while being still bounded by 8.3%. The case overall shows that mutlock is surpassed only by ttas, with a maximum
performance difference limited to 4.1%, and by pt-adaptive only for one configuration with a difference of about 0.8%. None of the other lock
implementations shows better results than mutlock.
To carry out an overall assessment of the results of our extended experimental study, we report in Table 1 the average values calculated over

the four configurations of each benchmark. The cells of the table are marked with different colors that allow to easily identify the favorable and
unfavorable cases for mutlock. Green cells identify the favorable cases for mutlock, i.e. caseswhere the average ratio between the throughput of a
given lock implementation and the throughput of mutlock is below 0.9 (dark green cells) or in the interval (0.9, 0.95] (light green cells). White cells
identify the caseswhere the performance difference is less relevant, i.e. caseswhere the average ratio is in the interval (0.95, 1.05). Finally, red cells
identify the unfavorable cases for mutlock, i.e. cases where the average ratio is in the interval [1.05, 1.1) (light red cells) or larger than 1.1 (dark red
cells).
By observing the cell colors in Table 1, it is possible to easily notice that the majority of cells is marked as dark green. This holds true for the

case of no time-sharing and also time-sharing, and, consequently, overall. Furthermore, various values of these cells show that mutlock achieves an
average throughput which is 2 times (up to 7 times in the best case) higher than the other lock implementations. In a minority of cases the cells are
marked as white. A smaller number of cells aremarked as light green or light red. More important, only one cell is marked as dark red, i.e. with ttas
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and UPSCALEDB in the no time-sharing case, which is the worst case for mutlock. However, we note that the performance improvement of ttas is
limited to 12% in this case, and it is reduced to 4%when considering the case overall of the same benchmark.
Overall, the results of our experimental study show that mutable locks can offer noticeable performance advantages with various work-

loads compared to several state-of-the-art lock implementations. At the same time, they show that, with workloads for which some other lock
implementations offer better performance, mutable locks are generally more resilient to performance degradation compared to the other lock
implementations, and achieve results which are close to the best one. We believe that these advantages come from the novel way introduced by
mutable locks to combine sleeping and spinning phases with respect to the other solutions, and from the possibility offered by mutable locks to
adapt the size of the spinning window depending on the workload.We remark that the spinning window adaptation strategy is decoupled from the
mutable lock implementation, and is freely customizable. This paves the way for future work to improve mutable locks through the exploration of
alternative adaptation strategies.

5 SUMMARY

In this article, we presented a synchronization construct called mutable lock, a locking mechanism that uses a new approach to combine spin and
sleep locks. It is based on the concept of spinning window, that allows to adaptively control the number of threads enabled to spin before accessing
a critical section to guarantee responsiveness.We showed the potential advantages of this new approach through experimental data achievedwith
workloads which give rise to different lock contention scenarios. By the results, mutable locks can ensure better performance than other state-
of-the-art lock implementations with different workloads and a reduced performance loss in the most adverse cases. Also, they allow a significant
reduction of the waste of CPU usage compared to spin-lock based solutions. All these benefits are achieved with no intervention by the applica-
tion programmer, also thanks to the possibility offered by mutable locks to adapt the spinning window to the workload. Finally, the possibility to
customize the adaptation of the spinning window offers further possibilities for additional investigations.
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