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Introduction

This thesis is devoted to the study of nonlinear elliptic equations with homogeneous
Dirichlet boundary conditions, with lower order terms that may be singular where the
solution is zero and with irregular data, as well as of elliptic systems.

As regards singular elliptic equations our starting point is a class of problems whose
simplest model is given by

_Au=2 in Q,
uYy
(1) u >0 in €,
u=>0 on 0f),

where 2 is an open bounded subset of RY (N > 2), p is a nonnegative datum and v > 0.
The equation in (1)) is singular, that is the request of the solution to be zero on the bound-
ary of the domain implies a blow-up of the right hand side.

The pioneering studies concerning problem are contained in [35], [67] and [70]. In
these works the authors consider the case of a smooth datum p, proving the existence of
a unique classical solution u € C2(Q) N C(Q2) to (1). This solution does not belong to
C?(Q) and, in [57], it is proved that v € W,*(Q) if and only if 7 < 3 and that, if y > 1,
the solution does not belong nor to C'(Q2). For further results on the Holder continuity
properties of the solution to (1)) see [52].

As concerns data p merely in L'(€2), we mainly refer to [18], where the authors prove the
existence of a distributional solution to the problem working by approximation, desingu-
larizing the right hand side of the equation. This solution belongs to W,*(Q2) if v = 1 and
it is only in I/Vllocz(Q) if v > 1; finally, if v < 1, it belongs to an homogeneous Sobolev space
larger than W, %(Q). In the case of measure data, we refer to [40], where the existence of a
distributional solution is proved in the more general case of a quasilinear elliptic operator
with quadratic coercivity and of a singular lower order term not necessarily non-increasing.

As one can expect, uniqueness of solutions to (1) is a challenging issue. If a solution
to (I) belongs to W, *(€2), uniqueness holds (see [10]). In [71], one can find a necessary
and sufficient condition in order to have W,*(Q) solutions to (I) if v > 1 and u € L'(Q)
positive. If i is a nonnegative function in LV () and the singular term is non-increasing,
the solution to , defined through a transposition argument, is proved to be unique even
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if it belongs only to W,2(Q2) (see [49, [50]). If v > 1 and the datum is a diffuse measure, in
[65] the authors prove a uniqueness result. Finally, if Q has a sufficiently regular bound-
ary, uniqueness of solutions belonging only to T/Vlicl(Q) is proved by means of a suitable
Kato’s type argument when p is a general measure and H is a general non-increasing
nonlinearity (see [64]).

In this thesis, more precisely in Chapter 3] we will study the following problem with
a nonlinear principal operator

—Apu=H(u)p inQ,
(2) u >0 in €2,
u=10 on 0,

where, for 1 < p < N, Ayu := div(|Vul|P72Vu) is the p-laplacian operator, u is a non-
negative bounded Radon measure on 2 and H(s) is a nonnegative, continuous and finite
function outside the origin, which, roughly speaking, behaves as s~ (v > 0) near zero.

In presence of a nonlinear principal operator the literature is more limited. We refer
to [38| for the existence of a distributional solution when H(s) = s and pu € L'(Q)
while, in case of a general singular nonlinearity H and p € L®)'(Q), we mention [42].
Furthermore, in [27], the uniqueness of solutions which belong to W,-"(Q) is proved if
p € LY(92). This uniqueness result holds true in full generality in case of a star-shaped
domain, while some more regularity on f is needed if v > 1, 1 < p < N and the domain is
more general. Besides uniqueness of solutions belonging to VVO1 P(€2), which can be proved
as in the case of a linear operator, many of the techniques used to prove uniqueness in
the linear case p = 2 can not be extended to the general case p > 1.

We stress that uniqueness for solutions to is an hard issue even if H = 1. Indeed,
in general, having a distributional solution is not sufficient to deduce uniqueness which
holds in the framework of the so-called renormalized solutions (see Definition below,
given in the case of a general H). The notion of renormalized solution formally selects
a particular solution among the distributional ones. We also highlight that the existence
of a renormalized solution for a continuous and finite function H is given in [62] when
p = 2; this solution is also unique if H is non-increasing and g is diffuse with respect to
the harmonic capacity. We refer the interested reader to [37] for a complete account on
the renormalized framework for problems whose model is given by with H = 1 and
the positivity requirement on u is removed (p is not necessarily nonnegative).

Without the aim to be complete, we refer to various works treating different aspects
of problems as in and in . The literature concerning the case of linear operators
is |2, 3B} B, 21, 23, 24, 28|, 33, 34], 44, 47]. For more general operators we refer to
[38], 40, 51], 55|, 63]. Finally, also symmetry of solutions is considered in |25, 26}, [72].



5

Here we show the existence of a distributional solution u to despite a nonlinear oper-
ator, a measure as datum and a general lower order term.

The most interesting fact is that u turns out also to be a renormalized solution to the
singular problem if v < 1. This is strictly related to the fact that, in this case, the trun-
cations of u at any level k, Ti(u), belong to the space of finite energy, differently to the
case 7y > 1, where Tj,(u) is, in general, only in W27 ().

As already stressed, the existence of a renormalized solution is linked to the uniqueness
of the solution to . Indeed, in case of a diffuse measure datum and of a non-increasing
H, without requiring any additional assumption on €2 and on u, we are able to prove that
the renormalized solution is unique even in presence of a principal operator which can be
way more general than the p-Laplacian.

It is worth noting that, at the best of our knowledge, our result is new even in case of
a continuous and finite nonlinearity H (i.e., if v = 0), so that we are also providing an
extension of the results of [62] to the case p # 2.

These results are contained in [39].

Let us observe that, if we consider in it = f a bounded nonnegative function, we can
perform the change of variable
v=—",
v+1
formally transforming (1)) into the quasilinear singular equation with singular and gradient
quadric lower order term

v Vv :
—Av+ —— = in Q,
3) T d
v=20 on 0f2.
Equation (3)) is a particular case of the quasilinear singular equation
Vol _
(4) —AU—FBT—f IHQ,
v=20 on 0,

where B > 0 and p > 0.

One usually says that the quadratic growth in Vv of is natural as this growth is
invariant under the simple change of variable w = F(v), where F' is a smooth function.
Also in this case the equation (4)) is singular since the lower order term is singular where
the solution is zero.

Problem (4]) has been recently studied in [8], [61] and [4], where existence of positive so-
lutions has been proved. More precisely, in [8], 61] existence of solutions is proved for
every B > 0if p < 1, and for B < 1if p = 1, under the assumption that f is nonnegative
in , while in [4] existence is proved for every B > 0 and for every p < 2 under the
assumption that f is strictly positive in 2. Moreover existence of positive solutions in the
same framework of [4], under a weaker assumption on f, that is f strictly positive in a



6 Introduction

neighborhood of 092, it is proved in [29]. In other words, the case B =1and p=11is a
borderline case, requiring stronger assumptions on the datum in order to prove existence
of positive solutions. One wonders whether this stronger assumption is really necessary,
or if it is only technical.

Since the case B = 1 and p = 1 can be seen as the limit case as 7 tends to infinity of
equation , and since this (model) equation is connected to equation , one can try
to study problem , in the borderline case B = 1 and p = 1, through the asymptotic
behavior, as 7 tends to infinity, of the solutions of under the assumption that f is
either nonnegative or strictly positive.

In Chapter 4| we show that if f is strictly positive in €2, then, by our approximation,
letting v tend to infinity we prove that there is no limit equation to and we find a
positive solution to

Vo>
(5) —Av + = in Q,
v=20 on 0f,

recovering the existence result contained in [4].

If we assume f only nonnegative we prove by a one-dimensional example the nonexistence
of positive solutions of obtained by approximation. To our knowledge there are no
results on nonexistence of positive solutions in literature, this implies that the existence
results contained in [61], [4] and [29] are sharp.

These results are contained in [46].

Finally, in Chapter [5, we focus on the following class of elliptic systems

{—div(|Vu|p2Vu) + A u[ 2u = f,  uwe WyP(Q),

6 .
(6) —div(|Vp[P~2Ve) = |u|"¢?, RS WULP(Q)a

where () is an open bounded subset of RY with N > 2, 1 <p < N, A >0, r > 1 and
0<f<p—1.

We have been motivated by the work of Benci and Fortunato [6]. In that work the
authors, investigating the eigenvalue problem for the Schrodinger operator coupled with
the electromagnetic field, studied the existence for the following system of Schrodinger-
Maxwell equations in R3

) {—%Au + pu = wu,

—Ap = 4mu’.
The existence of a solution of is proved by using a variational approach: the equations

of the system are the Euler-Lagrange equations of a suitable functional that is neither
bounded from below nor from above but has a critical point of saddle type.
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Starting from this work, first Boccardo in [9] then Boccardo and Orsina in [20] studied
the related Dirichlet problem with a source term f

(8)

—Au+ Aplu|"?u = f, u e Wy?(Q),
~Ap = [uf", v € Wo*(9),

where € is an open bounded subset of RY with N > 2, A > 0 and r > 1.

In [9] the existence of a weak solution (u, @) in Wy () x Wy?(Q) is proved if f in L™ (1),

with m > N1~ (2*)', where 2* is the Sobolev exponent, using once again that (u, ¢) is

2Nr

N +2+4r’
with » > 2*—1, the second equation of admits finite energy solutions even if tl—i_e d;_tum
|u|” does not belong to the dual space L%(Q)

In [20] the authors improve this result by proving a regularizing effect also on the solution
u of the first equation of (). Existence of a solution (u, ¢) in Wy(Q) x W, ?(Q) is proved
if r > 2* and f belongs to L™(Q2), with m > 7/, Then, in the case ' < m < (2*)', the
authors find a finite energy solution u of the first equation of with data f possibly not
belonging to the dual space.

a critical point of a suitable functional. The author proves that if (2*) < m <

If 9 =0 in @, we show how the regularizing effect proved in [20] can be improved,
proving the existence of a weak solution u in VVO1 P(Q) of the first equation of (6) with
f belonging to L™(2), with (r + 1) < m < (p*)’. Conversely, in the case p = 2 and
0 < 6 < 1 the second equation of the system @ is sublinear. This fact does not allow us
to use the same method as the previous case and we are not able to prove the regularizing
effect on u. However, we prove a regularizing effect on ¢ generalizing the results proved
in [9] (in which we recall that p = 2 and 6 = 0).

Without the aim to be complete, we refer to various developments of the paper [6] in
which the equations are defined in R? and the right hand side of the first equation of
is replaced with a nonlinear function g(z,w) with polynomial growth in u (see e.g. [,
[30], [32], [36], [53], [56], [67]).

As concerns semilinear elliptic systems we refer to [43], where the author proves existence,
multiplicity and symmetry of solutions. In the case of elliptic systems with singular lower
order terms see [19], [41].

These results are contained in [45].

Below a short plan of the thesis, chapter by chapter.

In Chapter [1] we introduce the notations and some well known results concerning the
functional spaces used in the sequel.
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In Chapter [2| we give an overview on the existence, uniqueness and regularity results for
the elliptic equations used in this thesis.

In Section and Section we present well known results for linear and nonlinear
elliptic equations. In Section and we focus on known results for singular elliptic
problems.

In Chapter [3| we show the existence and the uniqueness of a renormalized solution to ([2)).
In Section we provide the assumptions, the notions of solutions we are adopting and
the statements of the existence and uniqueness theorems. In Section [3.2| we prove the ex-
istence theorem when H is bounded. In Section we provide the approximation scheme
and the main tools in preparation of the proof of the theorems when H can blow up at the
origin. In Section we apply all tools of the previous section to deduce the existence
and uniqueness theorems in their full generality. Finally, in Section we provide some
further results concerning the regularity of a solution to (2)) when H(s) can degenerate
(i.e., becomes zero) at some point s > 0.

In Chapter 4| we study the existence and nonexistence of positive solutions to ().

In Section we state the results that will be proved in the chapter. In Section we
prove a priori estimates that allow us to pass to the limit in and as v tends to
infinity. In Section we pass to the limit in (I). In Section we pass to the limit
in (3), in the case f strictly positive, obtaining the existence of positive solutions of .
In Section we show, if f is only nonnegative, the one-dimensional example of nonex-
istence of positive solutions to . To conclude, in Section we present some open
problems.

In Chapter 5| we study the regularizing effect on the existence of solutions to ().
Section [5.1]is devoted to introducing the problem. In Section [5.2] we deal with a regular
datum for the first equation in (6). We define the following functional

N N R KU B

and we prove existence of a saddle point (u, ) of J in Wy (Q) x W, () which is a weak
solution of (@]

In Section we provide the approximation scheme that gives us estimates in the case
0 = 0 and, by these estimates, we prove that there exists a solution in W, (Q)x W, () of
the system @ with f possibly not belonging to the dual space. We give also a summability
result on the solution u of the first equation.

Section is devoted to the case 0 < # < p— 1. Once again by an approximation scheme
we prove estimates that allow us to pass to the limit in the approximate equations and
to prove the existence of a weak solution of (@, with the datum f in the dual space.



CHAPTER 1

Preliminary tools and basic results

We begin by giving some notations and recalling the properties of the topological spaces
that we will use throughout the thesis.

1.1. Notations

Let © be an open and bounded subset of RY, with N > 1. We denote by 95 its boundary,
by |A| the Lebesgue measure of A, where A is a Lebesgue measurable subset of RY | and by
R the set RN{z € R s.t. > 0}. Moreover we define diam(Q2) = sup{|z—y| : =,y € Q}.
By Cy(R) we mean the space of continuous and bounded functions on R, by C.(£2) the
space of continuous functions with compact support in Q and by Cy(£2) the space of
continuous functions in € that are zero on 9. Analogously, if & > 1, C*(Q) (resp.
Ck(€2)) is the space of C* functions with compact support in Q (resp. C* functions that
are zero on 052).

If no otherwise specified, we will denote by C' several constants whose value may change
from line to line and, sometimes, on the same line. These values will only depend on the
data (for instance C' may depend on 2, N) but they will never depend on the indexes of
the sequences we will introduce. Moreover, in order to take into account the order of the
limits, we will denote by €(n,r,v) any quantity such that

limsup limsup limsup e(n, r,v) = 0.
v—0 7—00 n—o0

For a fixed k > 0, we introduce the truncation functions T} and Gy,
Ty (s) = max(—k, min(s, k)),
Gi(s) = (|s| = k)" sign(s),
and we also define the functions 7, : R — R and 6, : R — R
Ti(s — Tk(s))

(1.1) Tr(s) = - %

(1.2) Or(s) =1 — |me(s)]-

From now onwards, when employing functions denoted by 7 or 6, we will mean the
previous functions.
We also mention the definition of the Gamma function

“+o0o
(1.3) r(z) = / et
0
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where z is a complex number with positive real part.
We define ¢, : R — R, with A\ > 0, the following function

(1.4) ox(s) = se™
2

in what follows we will use that for every a,b > 0 we have, if A > 1 that
a

a

agi(s) =blaa(s)l = 5

1.2. Functional spaces and Radon measures

For 1 < p < oo, the Lebesgue space LP({2) is the space of the almost everywhere equiva-
lence classes of Lebesgue measurable functions u : {2 — R such that

1

)
ull e = (/ |ul|? dx) < o0.
Q

L>(€2) consists of the almost everywhere equivalence classes of Lebesgue measurable func-
tions u : 2 — R such that

||| oo () = esssup |u| = inf {M >0: |u(x)] < Ma.e. in Q} < 0.
Q
A function u € LP(Q2) has a weak partial derivative in the direction x; if there exists a
function v; € LP(Q2) such that

Op /
u = — UZ‘,\V/ GC(?OQ
R v, Ve Q)

The function v; is denoted by T If v has a weak derivative in every direction, then we
&

denote the weak gradient as the vector

ou ou
Vu=|—=—,..,— | .
Y <8x1 T 8xN)
By the weak gradient of a LP-function (p > 1) we can define the Sobolev space W?((2)
as follows
WP (Q) = {u € LP(Q) : Vu € (LP(Q)V}.
WhP(Q) equipped with the norm

lullwrr) = [lulle@) + [[Vull @)~
is a Banach space, reflexive for every 1 < p < 400, and separable for every 1 < p < +o0.
Wh2(Q) is a separable Hilbert space.
We define, for 1 < p < +oo, W,7(Q) as the closure of C2°() with respect to the norm
of WhP(Q). W, ™(Q) is the space of the functions belonging to W (Q) N Cy(€).
All these spaces have a local counterpart. For instance, let p > 1, then u belongs to
LP (9) (or to WLP(Q)) if u belongs to LP(w) (or to W?(w)) for all w CC Q. In the same

way we say that a sequence u, converges to u in L¥ (Q) (or in WP(Q)) if u, converges
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to u in LP(w) (or in WP (w)) for any w CC Q.

For p < 1 < 400, the dual space of LP(Q) can be identified with L” (Q), where p' = Ll
p —

is the Holder conjugate exponent of p (if p = 1 then 1’ = oo), while the dual space of

WyP(Q) is denoted by W~=1#(Q).

To be complete, for 0 < p < oo, we introduce the Marcinkiewicz space MP(£2) as follows
MP(Q) = {u : Q — R measurable s.t. [{z € Q:|u(z)| > k}| < é,Vk > 0, for some ¢ > 0} :

MP(Q) equipped with the norm

3=

ullamoy = mf{c S0 {zeQ: jul@)] >k} < é VE > o}
is a Banach space. Moreover the following continuous embeddings hold
LYQ) = M'(Q),

and, if p > 1,
LP(Q) — MP(Q2) — LP75(Q2), Vee (0,p—1].

~

Let f € L, () then z € Q is a Lebesgue point of f if there exists f(z) € R such that

loc
lim — 1 |f — fx)| =0.
p=0 | By()] B,(z)
By the Lebesgue differentiation Theorem, almost every point = € € is a Lebesgue point of
fand f(x) = f(z). We denote as L the set of Lebesgue points of a function f € L},.(Q).

We introduce the space of Radon measures, that is the space of the real valued, additive
and regular set functions defined on the o-algebra of Borel subsets of Q (the smallest
o-algebra that contains all of the open sets). If p is a Radon measure, by the Hahn
decomposition theorem, we know that there exists a unique nonnegative pair (u*, u~) of
Radon measures such that g = u* — p~. The measure pu*, p~ are called respectively
positive and negative part of the measure p. We define |u|(Q) = p*(2) + () as the
total variation of the measure u. We say that p is a bounded Radon measure if |p|(€) is
bounded. We define as M(€2) the space of the bounded Radon measure equipped with
the norm

il = al()
M(Q) is a Banach space which is, by Riesz representation theorem, the dual space of
C.(Q2) with the topology of the uniform convergence.
We say that p is concentrated on a Borel set E, that is p| E, if u(B) = u(ENB), for every
Borel set B in §2. We mean that p is absolutely continuous with respect to A € M(Q) if
A(E) = 0 implies u(E) = 0, for every Borel set E. We denote this property with p < A.
Conversely we say that p is orthogonal to A, that is puL A, if there exists a set E such that
p(E)=0and A = \| E.
We give the following decomposition theorem.
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THEOREM 1.1. Let p, A belong to M(SY). Then there exists a unique pair (po, 1) in
M(2) x M(Q2) such that

W= o+ p1, where pg << X and L.

We recall that a sequence of measures p,, converges to p in the narrow topology of M(2)
if

n—oo

lim [ @du, = / odp, Yo € Cy().
Q Q

It is possible to prove that p, narrow converges to p if and only if u, *-weakly converges
to u in M(Q) and p,(€2) converges to u(€2).

Finally we define the standard p-capacity of a Borel set £ C (2 as
cap(F, Q) = inf {/ |VulP with u € W,P(Q) : u> 1 a.e. in a neighborhood ofE} .
Q

A function u is said to be cap,-quasi continuous if for every € > 0 there exists an open
set £ C  such that cap(E) < € and ulg, p is continuous in 2\ E.

Moreover for every u € W'P(Q) there exists a cap,-quasi continuous representative @
yielding u = @ almost everywhere in 2 and if @ is another cap,-quasi continuous rep-
resentative of u, then u = @ cap,-almost everywhere in Q. We will always refer to the
cap,-quasi continuous representative when dealing with functions in Whr(Q).

We note that the set function cap, is not a measure on € since it lacks, in general, of
the property of additivity on disjoint sets, but it is an outer measure and the definitions
given for the measures also apply in this case. Thus p € M() is said to be diffuse (or
absolutely continuous) with respect to the p-capacity if for every Borel set B C ) such
that cap,(B) = 0 it results p(B) = 0. Moreover y is said to be concentrated on a set F
of zero p-capacity if u(B) = u(E N B) for every B C €2, with cap,(E) = 0.

We have again a decomposition theorem contained in [48].

THEOREM 1.2. If p € M(R2), then it can be uniquely decomposed as
H= fq + He,

where g 1s diffuse with respect to the p-capacity and p. is concentrated on a set of zero
p-capacity. Moreover, if > 0, then pig, pe > 0.

Furthermore, in [13], is proved the following decomposition result
1€ M(Q) is diffuse if and only if = f — div(F) with f € LY(Q), F € L (Q)V.
The latter decomposition is not unique since L'(Q) N W17 (Q) # {0}.
1.3. Useful basic results

In this section we give some basic results that we will often use in the proofs of our theo-
rems.
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We begin with well known inequalities and convergence theorems for functions belonging
to Lebesgue spaces.

LEMMA 1.3 (Generalized Young’s inequality). Let p > 1 and e > 0. Then

1 |al? /b
lab| < L lal” —I—Epi, Va,beR.
er p p

LEMMA 1.4 (Hélder’s inequality). Let p > 1 and let f be a function in LP(Q) and g a
function in LP (). Then fg belongs to L*(Q) and

1fallre)y < I fllee@) 9l o o) -

/

LEMMA 1.5 (Fatou’s lemma). Let f, : Q2 — R be a sequence of measurable and nonnegative
functions such that f,, converges to f almost everywhere in ). Then

f < hmmf/fn.

n—oo

THEOREM 1.6 (Beppo Levi theorem). Let f, : Q — R be an increasing sequence of
measurable and nonnegative functions such that f, converges to f almost everywhere in

Q. Then
lim fn /f
n—oo Q

THEOREM 1.7 (Vitali’s theorem). Let 1 § p < oo and let {f,} C LP() be a sequence
such that f,, converges to f almost everywhere in Q. If

li n| — 07
iy 15
then f belongs to LP(Q) and f, strongly converges to f in LP(Q)).

THEOREM 1.8 (Lebesgue theorem). Let 1 < p < oo and let {f,} C LP(Q) be a sequence
such that f, converges to f almost everywhere in C2. If there exists a function g belonging

to LP(Q) such that |f,| < g for every n in N, then f belongs to LP(QY) and f, strongly
converges to f in LP(£2).

As consequence of the previous theorems we have the following proposition.

PROPOSITION 1.9. Let p > 1 and let {f,} be a bounded sequence in LP(Q)) such that f,
converges to [ almost everywhere in . Then f, strongly converges to f in L), for
every 1 < q <p.

We recall also the following very well known consequence of the Egorov Theorem.

LEMMA 1.10. Let f, be a sequence converging to f weakly in L*() and let g, be a sequence
converging to g almost everywhere in Q0 and *-weakly in L>°(2). Then

lim / Fagn = / fg.
n—-+o0o Q Q

Now we give some well known results concerning Sobolev spaces.
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THEOREM 1.11 (Poincaré inequality). Let p > 1. Then there exists a positive constant
C =C(N,p,Q) such that

lullrey < ClIVullp@y. Yue Wyt ().

In particular ||Vu|| @)~ is an equivalent norm on Wy (9).
We state two famous embedding theorems.

THEOREM 1.12 (Sobolev embedding theorem). Let p > 1 and 9 be of class C'. Then
there are the following continuous embeddings

* N
i p<N WHQ) < 17 (Q), where g’ = L0
-P
if p=N W"(Q)— LYQ), for every 1 < q < oo,
N

if p>N W"(Q)— C*(Q), wherey=1-—,
p

with C*Y(Q) denoting the space of the Hélder continuous functions of exponent .
THEOREM 1.13 (Rellich-Kondrachov’s theorem). Let p > 1 and 0 be of class C'. Then
there are the following compact embeddings

if p< N W(Q)— LUQ), for everyl < q<p",

if p=N W"(Q)— LYQ), foreveryl<q< oo,

if p>N WH(Q) < C*™(Q).
These theorems are still valid if we replace WP(Q) with W,(Q) and we do not require
any regularity assumption on the boundary of 2.

Finally we give a fundamental result proved by Guido Stampacchia that we will use
continuously in the thesis.

THEOREM 1.14. Let G : R — R be a Lipschitz function such that G(0) = 0. If u belongs
to Wy P(Q), then G(u) belongs to WyP(Q) and VG(u) = G'(u)Vu almost everywhere in
Q.

Now we recall results on the space of Radon measures and concerning the p-capacity.

THEOREM 1.15 (Lebesgue theorem for general measure). Let 1 < p < oo, let u be a
measure in M(Q) and let {f,} C LP(Q2, 1) be a sequence such that f, converges to f
p-almost everywhere in Q. If there exists g in LP(Q, u) such that | f,| < g for every n in
N and p-almost everywhere in §, then f belongs to LP(), u) and f, strongly converges to
fin LP(Q, p).

We collect some results contained in [7] and [37].

LEMMA 1.16. Let A be a nonnegative bounded Radon measure concentrated on a set E
such that capp(E) = 0. Then, for every v > 0, there exists a compact subset K, C E and
a function U, € C°(Q2) such that the following hold

MENK,) <v, 00, <1inQ, ¥, =1inK,, lim||¥,[ 100 = 0.
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In the entire thesis we will denote by ¥, a function with the properties of the previous
lemma.

LEMMA 1.17. Let u : ©Q — R be a measurable function almost everywhere finite on )
such that Ty(u) € WyP(Q) for every k > 0. Then there exists a measurable function
v:Q — RY such that

VT (u) = vx{u<ky for every k >0,

and we define the gradient of u as Vu = v. Moreover, if
/ VTl < Clk+1) Yk >0,
Q

then u is cap,-almost everywhere finite, i.e. cap,{z € Q : |u(x)| = +oo} =0, and there
ewists a cap,-quasi continuous representative @ of u, namely a function @ such that © = u
almost everywhere in Q and U is cap,-quast continuous.

In what follows, when dealing with a function w that satisfies the assumptions of the
previous Lemma, we will always consider its cap,-quasi continuous representative.

LEMMA 1.18. Let 114 be a nonnegative diffuse measure with respect to the p-capacity and let
u € WyP(Q) N L¥(Q) be a nonnegative function. Then, up to the choice of its cap,-quasi
continuous representative, u belongs to L>(S), 1q) and

/Q wdpia < |[ull ey 1a(€).

We conclude this chapter with two results on Banach spaces that we will use to prove the
existence of solutions for our equations and with two technical lemmas that we will use

in Chapter

THEOREM 1.19 (Schauder fixed point theorem). Let X be a Banach space, F : X — X

be a continuous map such that F(C) is compact for every C C X bounded and K be a
convez, closed and bounded subset of X that is invariant for F'. Then F has at least a
fized point in K.

THEOREM 1.20 (Generalized Weierstrass’s theorem). Let X be a reflexive Banach space
and K C X be a weakly closed subset. If J : K — R is a coercive and weakly lower
semicontinuous functional, then

Jue K st J(u) = E}Iél}I{lJ(U)
LEMMA 1.21. Let m(j,r) : [0,400) x [0, Ry) — R be a function such that m(-,r) is
nonincreasing and m(j,-) is nondecreasing. Moreover, suppose that there exist ko > 0,
C,v,6 >0 and p > 1 satisfying

m(k, R)"

) S G =y

Vi>k>ky, 0<r<R<R,g.
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Then, for every 0 < o < 1, there exists d > 0 such that
m(k’() + d, (1 - O)Ro) = O,
2(”+5)ﬁ0m(k‘0, Ro)‘uil
oo R '

Proof. See [69], Lemma 5.1. O

where d¥ =

LEMMA 1.22. Let g : [0,+00) — [0,+00) be a continuous and increasing function, with
g(0) = 0, such that

t o1
t € (0,400) — 9(t) is increasing and
t tg(t)

Then, for any C > 0 and 6 > 0, there exists a function ¢ : [0,1] — [0, 1] depending on
9,C.6 with ¢ € C1([0,1]), /o € C'([0,1]), p(0) = ¢'(0) = 0, p(1) = 1, (o) > 0 for
every o > 0 and satisfying

< +00.

/ 2
1
ﬁ“% < Et‘sg(t)go(a) +1, VO0<o<1, t>0.
90 g

Proof. See |[58|, Lemma 1.1. O



CHAPTER 2

Results on elliptic PDEs

In this chapter, without the aim to be complete, we give some well known results on
existence, uniqueness and regularity of solutions of elliptic PDEs that are the starting
point of our studies.

2.1. Linear and nonlinear equations with irregular data

2.1.1. Linear equations. We begin with linear elliptic equations.
Let M(z) be a matrix which satisfies, for some positive constants 0 < o < 3, a.e. in

r € Q and V¢ € RY the following assumptions:
M(@)&-&>alf]  and  [M(x)| <B.

Let us consider the linear problem

(2.1)

—div(M(z)Vu) = f in Q,
u=20 on 0N).

We give the definitions of weak and distributional solution to (2.1)) that we will recover
also in the nonlinear case.

DEFINITION 2.1. Let f be a function in L%(Q) A function u in Wy 2(Q) is a weak

solution of (2.1)) if
/M(:c)vu-w—/ﬂp, Vo € Wy?(Q).
Q Q

DEFINITION 2.2. Let f = p be a measure in M(Q). A function u in Wy (Q) is a
distributional solution of (2.1)) if

/M(m)Vu~Vg0:/<pdu, Vi € CHQ) .
0 0

Furthermore we have another definition of solution of (2.1) due to Guido Stampacchia.

DEFINITION 2.3. Let f = p be a measure in M(Q). A function u in L*(Q) is a duality

solution of (2.1)) if
/ug = /vdu,
Q Q
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for every g in L*°(Q), where v is the weak solution of

—div(M*(z)Vv) =g inQ,
v=0>0 on 0L,

with M*(x) the adjoint matriz of M (x).

REMARK 2.4. It is possible to prove that if u is a weak solution then is a duality solution,
and if u 1s a duality solution then is a distributional solution.

We have the following existence, uniqueness and regularity results for solutions of (2.1
proved once again by Guido Stampacchia.

THEOREM 2.5. Let f be a function in L™ (). Then the following hold:

i) if m>7% then there exists a unique weak solution u € Wy*(Q) N L=(Q);
i) if 225 § m < X then there exists a unique weak solution u € W, (Q)NL™ (Q);
1113 ifl<m< N+2, then there exists a unique duality solution u € VVO1 e (Q),

iv)if m=1or f = p € M(Q), then there exists a unique duality solution u €
Wy Q) for q < g

PROOF. See [69]. O

REMARK 2.6. If O is of class C' and f € L™(Q) with m > % then the solution u to
[2.1)) belongs to C(Q) and it is such that

lullo@ < CfllLm@) -

We underline that if f belongs to L™(Q), with 1 < m < 25, or f belongs to M(Q),
the uniqueness result obtained in Theorem holds only for duality solutions. Indeed a
distributional solution of (2.1)), in general, may not be unique (see [68]). Unfortunately
the idea of duality solutions is strongly related to the linearity of the problem, so that we
lose this notion and the consequent uniqueness result in the nonlinear case.

2.1.2. Nonlinear equations. Now we study the nonlinear elliptic problem with
Dirichlet boundary conditions.
Fix p > 1. Let a(z,€) : @ x RN — RY be a Carathéodory function satisfying Leray-Lions
structure conditions, that is, for almost every x € Q and for all £,7 € R", there exist
a, 8 > 0 such that

a(,§) - &= alél’,  la(z,&)| < BIEPT,
and
(G(I7€>_a<$77]))'(§_n) >0, f#n

The assumptions on the function a imply that A(u) = —div(a(-, Vu)) is a differential
operator continuous, coercive and monotone acting between W, (€) and W% (Q). The
model case is the p-laplacian operator A,(u) = div(|Vu[P~?Vu), which corresponds to the
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choice a(x, &) = |£[P72¢ (for p = 2 is the classical laplacian operator).
Let f belong to a suitable Lebesgue space. We consider the nonlinear problem

—div(a(z,Vu)) = f in Q,
22) { u=20 on 0N}.

Our notions of solution are a generalization of those given in the linear case.

DEFINITION 2.7. Let f be a function in L) (Q). A function u in WyP(Q) is a weak

solution of if
[atwvw Vo= [ o, voewiro).
Q Q

DEFINITION 2.8. Let f = u be a measure in M(S2). A measurable function u : Q@ — R
such that |Vu|P~' € LL (Q) is a distributional solution of [2.2) if Tx(u) € WyP(Q) for
every k > 0 and

/a(x,Vu)-V@z/godu, Vi € CL(Q).
Q Q

We observe that the condition Ty(u) € W,”(Q) gives meaning to the boundary condition

of (2.2).

We give an existence and uniqueness result for weak solutions duo to Leray and Lions.
THEOREM 2.9 (Leray-Lions theorem). Under the above assumptions on a(z,§), the differ-
ential operator A(u) : WyP(Q) — W1 (Q) is surjective. Hence, for all f in W=7 (Q),
there exists a function u € Wy P(Q) such that A(u) = f, that is there exists a weak solution
of 23

PROOF. See [59]. O
REMARK 2.10. It is easy to prove that if f belongs to W' (), then there ezists a

unique weak solution. Moreover, if p > N then, by Sobolev embedding theorem, M(Q) —
W=Y(Q) and so, if f = p belongs to M(SY), there exists a unique weak solution of ([2.2).

We focus on the case p < V.
Now we give an existence result of distributional solutions of ({2.2)).
THEOREM 2.11. Let f = p be in M(Q). Then there exists a distributional solution of
N(p—1) -
(2.2). Moreover u belongs to M N (Q) and |Vu| belongs to M (Q). In particular,
N(p—1)
N—-1"~
PROOF. See [7], Theorem 6.1. O

1
if 2 — N < p < N, then u belongs to Wi (Q), for every 1 < ¢ <

We have the following regularity results for these solutions.

THEOREM 2.12. Let f € L™(Q) with m > 1. Then

i) if m > %, then the weak solution u, given by Theorem belongs to Wol’p(Q) N
Le=(€2);
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ii) if (p*) < m < % and 1 < p < N, then the weak solution u, given by Theorem
belongs to WP (Q) N L*(2), with s = XD

N—mp ~’
iii) if 1 <m < (p*) and 2 — % < p < N, then the distributional solution u, given by

Theorem belongs to Wol’(p_l)m*(Q).

PROOF. For (i) see [14], Theorem 1; for (ii) see [14], Theorem 5; for (iii) see [12],
Theorem 3. O]

If f does not belongs to W~ (Q), Theorem m guarantees the existence but not the
uniqueness of solutions of . We need a new notion of solution to recover the unique-
ness. In [37] the authors presented the renormalized solution for (2.2)) in four equivalents
definitions. This notion allows to prove uniqueness at least for diffuse measure data. Here
we give only the definition of renormalized solution that we will use in Chapter [3

DEFINITION 2.13. Let f = pu € M(R), uq be its absolutely continuous part with respect
to the p-capacity and p. = pt + p, be its singular part. A function u such that Ty(u) €
WyP(Q) for every k > 0, is a renormalized solution to problem [@2.2) if |Vu|P~! € LI(Q)

or every 1 < g <
J yl<g<y

] and if the following conditions hold:

(i) for every ¢ € Cy(Q2) it results

1
lim —/ a(zx,Vu)-Vup = / odut
n—+00 1 {n<u<2n} Q
1
lim —/ a(m,Vu)-Vuwz/goduC_;
n—=+too N {—2n<u<—-n} Q

(i) for every S € WH®(R) with compact support in R and for every ¢ € WyP(Q)NL>(Q)
such that S(u)p € Wy P(Q) it results

/ a(z,Vu) - Vu S (u)p + / a(z,Vu) - Vo S(u) = / S(u)pdpg .

Q Q Q

THEOREM 2.14. Let f = pu be in M(S2). Then there ezists a renormalized solution u of
(2.2). Moreover, if u is diffuse with respect to the p-capacity, then u is unique.

REMARK 2.15. It is possible to prove that if u is a weak solution then u is a renormalized
solution, and that, if u is a renormalized solution, then u is a distributional solution.

Finally we conclude this subsection with two lemmas that are fundamental to prove the
previous existence results of solutions of (2.2)).

LEMMA 2.16. Assume that {u,} C W, ?(Q) is such that
U, — u weakly W, P(Q),

Up — U a.e. in §,

lim [ (a(z,Vu,) —a(z,Vu)) - V(u, —u) =0.

n—oo 0
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Then
up, — u strongly in W, P(Q).

PROOF. See [16], Lemma 5. O

LEMMA 2.17. Let {u,} C Wol’p(Q) be a sequence of solutions to the following problem

—div(a(z, Vu,)) = g, in Q,
Up =0 on 0S),
where {g,} is bounded in L}, (Q). If we assume that {u,} is bounded in W,o"(Q) and that
u, converges almost everywhere to a function u belonging to VVZ}Jf(Q), then Vu,, strongly
converges to Vu in L] (Q)N, for every 1 < ¢ < p.

loc

PROOF. See [15], Theorem 2.1. O

2.2. Nonlinear equations with "sublinear" right hand side
In this section we give existence, uniqueness and regularity results for a particular class

of nonlinear elliptic equations. These results will be used in Chapter [}

Let p : 2 — R be a measurable function, and suppose that there exists a positive constant
po and an open subset Q' in €, with Q' CC €, such that

(2.3) p(z) > po >0 almost everywhere in (',
Let g : RTU{0} — RTU{0} be a continuous, increasing function such that g(0) = 0, and
t A
(2.4) 36>0,0<0<p—1st. gt)<st? ¥t>0, and lim w > 2
t—0+ tP—1 00

where \; is the first eigenvalue of —A, on €. We are focused on the following problem
—Ayu=pg(u) inQ,
(2.5) u>0 in
u=20 on 0f2.

The model case of this type of equations is exactly g(t) = t. If p = 2 the problem (2.5
is called sublinear.
Our notion of weak solution for (2.5) is the following:

DEFINITION 2.18. Let p be a function in L(%) (Q). A nonnegative function u in W, 7 (Q)

is a weak solution of (2.5)) if
[1vur29u- Vo= [ patue, o e W@ 1x(@).
Q Q

We give the existence and regularity result of a weak solution due to Lucio Boccardo and
Luigi Orsina.
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THEOREM 2.19. Let g be a function satisfying (2.4) and let p be a function satisfying
% /
(2.3). Let p be in L5(2), with s > (Qp ) . Then there exists a weak solution u of

+1
/
* N Ns(p—1-—460
(2.5). Moreover, if <9i 1) <s< P then u belongs to L1(Y) with q = S(]]\D] o )
N
If s > —, then u belongs to L>°(£2).
p
PROOF. See [17|, Theorem 5.5. O

REMARK 2.20. If p is nonnegative and belongs to L>(Y), then, by the strong mazimum
principle, we have that u > 0 in €.

Once again we ask when a weak solution is unique.
We assume that p # 0 belongs to L>(Q2) and we define f(z,t) = p(x)g(t). Then we have
that f(z,t) : Q x [0,00) — R is a function such that

t— f(x,
f(z,t)
(2.6) t— =
x +— f(z,t) belongs to L>(Q) for each s > 0.

t) is a continuous function on [0, 00) for almost every x € 0,

is decreasing on (0, 00) for almost every z € Q,

We have the following uniqueness result by Brezis and Oswald.

THEOREM 2.21. Let p = 2 and let f be a function satisfying (2.6). Then there exists at
most one weak solution u in Wy () N L®(Q) of

—Au = f(x,u) inQ,
u >0 in
u=20 on 0N2.

PROOF. See [22], Theorem 1. O

For our purposes we need a similar result in the general case p > 1 and for p nonnegative,
hence for f nonnegative. We state the following proposition:

PROPOSITION 2.22. Let f be a nonnegative function satisfying (2.6). Then there exists
at most one weak solution u in W,P(Q) N L¥(Q) of

—Apu = f(z,u) inQ,
(2.7) u>0 in Q,
u=>0 on 0S).

PROOF. We suppose that there exist u, v in Wy () N L>®(Q) weak solutions of (2.7).

Fix € > 0. If we define
(u+e)P —(v+e)P

(u+e)p—t

Y
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and
(u+e)P —(v+e)P

v = (v+e)pt
then ¢, 1 belong to W,*(Q) N L>(Q) and

p—1 P
V¢:Vu—p(v+g> VU+(p—1)(U+E) Vu,

Y

U+ e U+ e
and )
u+e\" u+e\?
V¢——VU+p<U+€) Vu_(p_l)(v—i-a) Vou.

We choose ¢ as test function for (2.7) with solution u and v as test function for (2.7)
with solution v, then, subtracting the equation for v to that for u, we obtain

j2 p—1
/ivaw— —p<“+5> |v0w4vm-(vu—“+fvw)}
Q v+ v+e v—+te
v+e

P p—1
+/ {\VUV’ - —p (U+€) |VulP*Vu - <VU - U+6Vu>}
Q u—+e u+e€ u+e€

:L{{f@”>_.f“”>1mufy—@+@ﬂ}.

(ute)p~t  (v+e)pt

As a consequence of the strict convexity of the function w + |w|P acting between R and
R, the left hand side of the previous equality is strictly positive, hence we deduce that

/Q { [(uff;;?)—l B (Ufj_w;;))—l:|[<u +e)f —(v+ 6)”]} >0.
We define for almost every z in €

| f@w) )
he(w) = {(u +ept  (v+e)p?!

o) <f<x,u> ) f<x,v>)(up o

up~1 pp—1

u+e
Vv

€

Vu

ey - wern

and

so that, recalling that u, v are positive in {2, we have that h. converges to h almost
everywhere in (). The assumptions on f imply that A < 0. Therefore we can decompose

(2.8) Oﬁ/hs :/th{h5>0}_/<_h€) X{he<0}-
Q Q Q

Since h < 0, letting ¢ tend to 0", we obtain that A, X {h.>0} converges to 0 and —h. X (n.<0
converges to —h almost everywhere in 2. Moreover, using that f,u,v are nonnegative
and belong to L>(€), we have h. xn.>0y < C, so, by Lebesgue theorem,

lim ha X{hs>0} =20.

e—0t Q
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As regards the second term on the right hand side of (2.8)), we can apply Fatou’s lemma
to obtain

—limsup/hg X{h.<0} = liminf/(—hs)x{hgm} > /—h,
Q - 0 B Q

e—0t e—07F

Oglimsup/h8 = limsup/hax{hsq)} < /h.
e—=0t  JQ =0t  JQ B Q
Recalling that h < 0, we deduce that

(f(f,_?) B f<fif))(up —) =0,

almost everywhere in . If we assume that u # v, by (2.6) we deduce that

hence

T, u T,
fw) @)
up—1 Pl
so that there is a contradiction and, hence, u = v almost everywhere in Q. 0

As a consequence of Theorem and Proposition we have the following theorem:

THEOREM 2.23. Let p be a nonnegative function in L*(S2). Then there exists a unique

weak solution of (2.5)).

2.3. Semilinear equations with singular lower order terms

In this section we give known results on semilinear elliptic equations with lower order terms
that are singular where the solution is zero. The starting point of the weak existence’s
theory of solutions for this type of problems is the paper [18] due to Lucio Boccardo and
Luigi Orsina. We underline that this work has greatly influenced this thesis.

Let M(x) be a matrix which satisfies, for some positive constants 0 < o < 3, a.e. in
r € Q and V¢ € RY the following assumptions:

(2.9) M(x)&-€ > alé)? and |M(z)] < 3.

Let v > 0 be a real number. We consider the following semilinear elliptic problem with a
singular nonlinearity

: Y
—div(M (z)Vu) = 5 m Q,
u >0 in Q,
u=20 on 0f).

(2.10)

As always we give the definition of solution for (2.10)).

DEFINITION 2.24. Let f be a function in L*(Q). A function u in W2 (Q) such that

ue W, '(Q) if v < 1,
uT e WtQ) ify =1,
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is a distributional solution of (2.10) if the following conditions are satisfied:
Vw CCQ Jewy 1 U > cuy >0 inw,

and

_ [y 1
/QM(x)Vu-Vgo—/QW, VoeC.(9).

We underline that, if v > 1, the condition u'r e W,y?(Q) gives meaning to the boundary

condition of ({2.10)).

In [18], existence results for distributional solutions of (2.10)) have been proved. To be
more precise, we have the following theorem in the case v > 1, which is relevant to our
purposes in Chapter

THEOREM 2.25. Let v > 1, and let f be in L*>(Q2), with f > 0 in Q, f not identically
zero. Then there exists a distributional solution u of ([2.10), with u in W5>(Q) N L®(Q).
Moreover we can extend the class of test functions in the sense that

(2.11) / M(x)Vu -V = / J;—f, Yo € W,2(Q) with compact support.
Q Q

Sketch of the proof of Theorem [2.23 Let m in N and consider the approximated prob-
lems

—div(M(z)Vu,,) = ﬁ in Q,
U, ™
(2:12) > 0 in 0,
Uy, = 0 on 0f).

The existence of a solution u,, can be easily proved by means of the Schauder fixed

(s+5)
estimates imply that the sequence {u,,} is increansling, so that u,, > u;, and there exists
the pointwise limit u of u,,. Since (by the maximum principle) for every w CC €2 there
exists ¢, , > 0 such that u; > ¢, in w, it then follows that u,, (and so u) has the same
property.

Choosing u;, as test function in we obtain, using , that

point theorem. Since the sequence g,,(s) = is increasing in m, standard elliptic

dary / oo / —1 / Juy, /
—— [ [Vu, |° < M(z)Vuy, - Vupu) " = | ——5— < :
(y+1)2 Q‘ unt [P < Q (#)Vu fm Q (Um‘f'%)7 Q d

i
Therefore, {u:n2 } is bounded in W,*(€2). Choosing u, ¢ as test function in (2.12)), with
¢ in C3(€), we obtain, using again (2.9),

a/|Vu |2g02+2/ M(z)Vu,Veu gp</ M
o m o m m¥ = 0 (um_i_L)v

m
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Hence, if w = {¢ # 0}, recalling that u,, > ¢, > 0 in w, we have, by Young’s inequality,

1 fe2 o
/IVum|290 <@ /\wmm +c/ Vl? 2, + @) /m
Q

way
+1

Since u,, is bounded in L*(Q) (recall that umT is bounded in W,?(Q), so that u?! is
bounded in L'(Q) by Poincaré inequality, and that v > 1), we thus have

/ Vun|>¢* < C,

so that the sequence {u,,} is bounded in W,>*(Q). Let now k > 1, choose Gy (u,,) as test
function in (2.12). We obtain, using (2.9),

/\VGkum\z /%_m/fckum,

a/ﬂ VG (um)|? < /Q fGr(un), Vk>1.

Starting from this inequality, and reasoning as in [69], we can prove that u,, is bounded
in L>(2), so that u belongs to L*(2) as well.

Once we have the a priori estimates on u,,, we can pass to the limit in the approximate
equation with test functions ¢ in I/VO1 2(Q) with compact support; indeed

so that

lim M(x)Vum-Vgo:/M(a:)Vu-Vgo,
Q

m——+00 Q

. . . 1.2
since u,, is weakly convergent to w in W, 7 (€2), and

. fe [ [fe

1m iy | T

n—+0o o (um —+ E)W 0 u”

by the Lebesgue theorem, since u,, > c{y20y,, > 0 on the support of . 0

To be complete we give the existence result also in the case v < 1. The proof is very
similar to the previous one.

THEOREM 2.26. Let [ be a nonnegative function in L™(Q) with m > 1. Then there exists
a distributional solution u of (2.10) such that
i) if vy =1 then u € W,*(Q);
!/ /
i) if y <1 and m > <%) then u € WOI’Q(Q), otherwise if 1 < m < <%) then

1
Nm(y+1)

ue W, = 7(Q).
PROOF. For i) see [18],Theorem 3.2; for ii) see [18], Theorem 5.2 and Theorem 5.6. O

As regards the uniqueness results we refer to [10] where the authors prove the following
theorem:
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THEOREM 2.27. Let u in W,2(Q) be a distributional solution of ([2.10). Then u is the
unique weak solution in the sense that
1o c ). ve ew?),

¥
and

/M(x)vu~w = /f—“o, Ve W,2(Q).
0 o u

PROOF. See [10]|, Theorem 2.2 and Theorem 2.4. O

We observe that, if we consider (2.5) with p = 2, p = f nonnegative and g(t) = ¢, then
the problem becomes
—Au=fu’ in Q,
(2.13) u>0 in 2,
u=20 on 0f,
where 0 < # < 1. Hence we can unify the existence and uniqueness theorems of weak

solutions for the sublinear problem (Theorem and Theorem [2.23)) and for the singular
problem with v < 1 (Theorem and Theorem [2.27)) under a unique theorem.

THEOREM 2.28. Let —1 < 0 < 1. Let f be a nonnegalive function (not identically zero)

% /

in L™(QY), with m > 3 (if 6 = —1 we define (00)' = 1). Then there exists a weak

solution u of (2.13)). Moreover, if —1 <0 <0 orif 0 < 0 < 1 and f belongs to L*>(Q),
then u is unique.

REMARK 2.29. If we suppose formally that u is a classical solution of (2.10), by the
v+1

, we have
+1

change of variable v =

Vv = u"Vu,
and, using that u is a solution of , we deduce
div(M(2)Vv) = yu" ' M(2)Vu - Vu + wdiv(M (2)Vu) = yu'*M(2)Vu-Vu — f.
Observing that
M(z)uw’Vu-u'Vu v M(z)Vv- Vo
uytt v+1 v

yu T M (2)Vu - Vu = v

)

we conclude that (V0¥
) v M(x)Vv-Vov
— M = f.
div(M (z)Vv) + po 5 f

Thus, formally, v is a solution of

—div(M (z)Vv) + bw =f inQ,

v=20 on 052,
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fy
where b = ——— belongs to (0,1).
po gs to (0,1)
Remark leads us to study in the next section this type of elliptic equations.

2.4. Quasilinear equations with singular and gradient quadratic lower order
terms

Here we are focus on the existence of solutions for quasilinear elliptic problems with sin-
gular lower order terms that have natural growth with respect to the gradient.

Let M(z,s) = (m4(x,s)), fori,j =1, ..., N, be a matrix whose coefficients m;; : @ xR —
R are Carathéodory functions (i.e., m;;(-,s) is measurable on Q for every s € R, and
m;;(z,-) is continuous on R for a.e. x € ) such that there exist constants 0 < o < 3
satisfying

(2.14) M(z,s)¢-€ > alé)* and |M(z,s)| < B, forae x€Q,V(s,&) € RxRY.

Let b > 0 and p > 0 be real numbers. We consider the following quasilinear elliptic
problem with singular and gradient quadratic lower order term

2
—div(M (z,u)Vu) + b |V1:| =f inQ,
u

u=0~0 on 0f).

(2.15)

We give the definition of weak solution for (2.15]).

DEFINITION 2.30. A function u in W, >(Q) is a weak solution of ([2.13) if the following
conditions are satisfied

i) u > 0 almost everywhere in €,

2
ii) \V;:\ belongs to L*(Q),

iii) it holds

2
/M(x,u)Vu-VgO-l—b/ [Vl gpz/fcp, Ve W, (Q) N Le(9Q).
Q o uf v

Even if we are interested only in weak solutions of (2.15)), to be complete we give the
definition of distributional solution.

DEFINITION 2.31. A function u in Wy (Q) is a distributional solution of ([2.15) if the
following conditions are satisfied

i) u > 0 almost everywhere in €Q,

2
ii) @ belongs to L*(9),

u
iii) it holds

[Vul?
p

/M(x,u)Vu-Vg0+b/ SDZ/fSOa Ve ClQ).
Q Q u Q
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During recent years the existence and nonexistence of a weak solution for has been
widely studied. We can summarize these results in the following three theorems.

THEOREM 2.32. Let 0 < p < 1, b > 0 and let f be a nonnegative function in L™ (), with

24\’
m > (—) . Then there exists u weak solution of (2.15)).
p

PROOF. See [8], Theorem 3.1. O
THEOREM 2.33. Let p = 1, 0 < b < «a (where « is given by (2.14) ) and let f be a

nonnegative function in L™(Q), with m >
@.15).

Then there exists u weak solution of

PROOF. See [61], Theorem 1.1 or, if b < %, see [8], Theorem 4.1. O

N
THEOREM 2.34. Let [ be a nonnegative function in L™(Q)), with m > 5 Suppose that

for every w CC Q there exists ¢, > 0 such that f > ¢, in w. Then there exists a weak
solution of (2.15)) if and only if 0 < p < 2. Moreover, let Ay be the first eigenvalue of the
Laplacian in the N-dimensional unit ball, assume f € L>®(Q), M(x,s) =1, b =1, and
either

A
p>2 or p:2 and ”fHLOO(Q) < m
Then the sequence {u,} of solutions of
|V, |2 _
—Aun + m = f m Q,
u=>0 on 052,
|V, |2

tends to 0 in W,2(Q), and the sequence { } converges to [ in the x-weak

(un +3)”

topology of measures.

PROOF. See [4], Theorem 1.5. O

So, in the case f only nonnegative and p = 1, if b = a we lack theorems on existence or
nonexistence for weak solutions of (2.15). Chapter {4]is devoted to fill this big hole.






CHAPTER 3

Existence and uniqueness for nonlinear elliptic equations with
possibly singular right hand side and measure data

In this chapter we are concerned with the existence of a distributional solution and of a
renormalized solution for a singular elliptic problem modelled by

—Apu=H(u)p in(,
u >0 in Q,
u=>0 on 0f2,

where, for 1 < p < N, Ayu := div(|VulP~2Vu) is the p-laplacian operator, 4 is a non-
negative bounded Radon measure on 2 and H(s) is a nonnegative, continuous and finite
function outside the origin, which, roughly speaking, behaves as s~ (v > 0) near zero.

The idea to deal with this type of singular problems is first to approximate these prob-
lems with nonsingular ones, truncating the singular lower order term, and to find a priori
estimates on the sequence of approximate solutions; then passing to the limit of the ap-
proximations to obtain at least a distributional solution.

There are two main difficulties with this method.

The first is that we have a nonlinear left hand side so that the weak convergence of the
approximating solutions is not sufficient to pass to the limit in the distributional formu-
lation.

The second is that we look for positive solutions in the domain to give sense to the right
hand side, so that we need a property of uniform local positivity of the approximations
which also holds to the limit.

We overcome these problems and we show the existence of a distributional solution and
then, if v < 1, we prove the existence of a renormalized solution. As noted in the
Introduction the existence of a renormalized solution implies that this solution obtained
by approximation is unique.

3.1. Main assumptions and results

We will consider the following problem

(3.1) {—diV(a(x, Vu)) = H(u)p ing,

u=2>0 on 0,
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where a(z, &) : Q x RY — RY is a Carathéodory function satisfying the classical Leray-
Lions structure conditions for 1 < p < N, namely

(32) a(x7£) ' 5 Z a|£‘p’ o > 07
(3.3) la(z, &) < BIEP, B >0,
(3.4) (a(z,8) —a(z,€)) - (£—€)>0

for every € # ¢ in RV and for almost every z in €.

Moreover p is a nonnegative bounded Radon measure on {2 uniquely decomposed as the
sum fig + p., where pg is a diffuse measure with respect to the p-capacity and . is a
measure concentrated on a set of zero p-capacity. We underline that (see Remark
below) we will always assume

(3.5) pa Z 0.

Finally, if not otherwise specified, H : (0,+00) — (0,400) is a continuous function,
possibly blowing up at the origin, such that the following properties hold true

(3.6) 3 lim H(s) := H(o0) < 00
§—00
C .
(3.7) 3C,50>0,7>0 s.t. H(s)gs—7 if s < so.

We emphasize that, since we are allowing v to be zero, we are taking into account also the
case of a bounded H. Moreover the assumption on the strict positivity of H is a technical
one needed to handle the case in which the singular part of the measure is not identically
zero, as widely explained in Section [3.5]

First of all it is worth to clarify what we mean by solution to problem (3.1)). We provide
two different notions of solution.

DEFINITION 3.1. Let a satisfy , 7 (3.4), let u be a nonnegative bounded Radon
measure and let H satisfy and ((3.7). A positive function u, which is almost ev-
erywhere finite on €, is a renormalized solution to problem (3.1) if Ti(u) € Wy (Q) for
every k > 0 and if the following hold

H(u)S(u)p € L'(, pg) and

(3.8) / a(xz,Vu) - VeS(u) + / a(z, Vu) - VuS' (u / H(u)S(u)pdug
Q Q
VS € WHe(R) with compact support and Y € W,P(Q) N L¥(9Q),

1
(3.9) lim — a(x,Vu) - Vup = H(o0) / wdpe Yo € Cp(Q).
t=oo b ) cu<or) Q
DEFINITION 3.2. Let a satisfy (3.2)), (3.3), (3.4), let pn be a nonnegative bounded Radon
measure and let H satisfy (3.6) and (3.7). A positive and measurable function u such that
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|VuP~t € L}, .(Q) is a distributional solution to problem (3.1)) if H(u) € L}, (2, pa), and

loc loc

the following hold

T—1+p
(3.10) T, 7 (u) € WP(Q) Yk >0, where 7=max(1,7),
and
(3.11) / a(z,Vu) - Vo = / H(u)pdpg + H(oco) / odu. Vo € CHQ).
Q Q 0

The notion of renormalized solution is way more general than the distributional one.
Indeed, if v < 1, it results that the former implies the latter one.

LEMMA 3.3. Let v < 1 and let u be a renormalized solution to (3.1). Then u is also a
distributional solution to (3.1)).

PROOF. It follows from the definition of renormalized solution that (3.10]) holds. Tak-
ing as test functions in (3.8) S = 6;, where 6, is defined in (1.2, and ¢ = Ty (u), with
so < k < t, we obtain

k
/a(x,Vu) VT (u)b(u) < —/ a(xz,Vu) - Vu+ / H(u)Ty(u)0: (u)dpg.
Q {t<u<2t} Q
Using (3.2)) and (3.7), we find

ok
oz/Q |VTi(uw)]? < n /{t<u<2t} a(xz,Vu) - Vu —I—/ H(u) T, (u)0: (u)dpg

{u<so}

k
' /{ L HOTp e < § /{ a(z, Vu) - Vu

t<u<2t}
1—
+ Csy " pall vy + EIH || oo (50,4000 | 1l M)

so that, passing to the limit as ¢t — oo, we find that there exists a constant C' > 0 such
that

(3.12) / VTP < Ck+1), k> 0.

By (3.12)), using Lemma we deduce that u is cap,-almost everywhere finite and cap,-
quasi continuous and, using Lemma 4.2 of [7], we deduce moreover that |Vul[P~! € L'(1).
Now taking ¢ € C}(Q2) and S = 6, in (3.8) we obtain

(3.13) /Qa(x, Vu) - Vb (u) = %/{KK%} a(z, Vu) - Vup + /QH(U)ath(u)d,ud.

By (3.8) it results H(u)0;(u)e € L'(Q, 114), and so, using Lemma we find

/Q |H (w)pldpg = /{  HOlplda+ / H ()| ldua

{ux1}

< /QH(U)91(U)|SO|de+ | H || oo (11,4000 |2l 2o () [ | M) < C,
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that implies H(u) € L} (Q, pg). Letting ¢t go to infinity in (3.13)) we obtain, applying

Lebesgue’s Theorem for general measures and (3.9)), that (3.11) holds. Hence u is a
distributional solution to (3.1)). OJ

We will prove the following results.

THEOREM 3.4. Let a satisfy (3.2), (3.3), (3.4), and let  be a nonnegative bounded Radon
measure which satisfies (3.5). If H satisfies (3.6) and (3.7) with v < 1, there exists a
renormalized solution u to problem (3.1). Moreover,

i) if p>2— + thenu € Wy () Vg < %7’

ii) if 1l <p<2—+ thenu’™' € LY(Q) Vg < Ni_p and |VulP™' € LY(Q) Vg < 5.
Finally, if H is non-increasing and p. = 0, u s unique.
THEOREM 3.5. Let a satisfy (3.2), (3.3)), (3.4), and let 1 be a nonnegative bounded Radon

measure which satisfies (3.5)). If H satisfies (3.6) and (3.7), there exists a distributional
solution u to problem (3.1)) such that

wt e LT () Vg < N and |VulP™' € L] (Q)Vq< o1
REMARK 3.6. From Theorems and Lemma we deduce that, for any nonlin-
earity H satisfying and with v < 1, we are able to find a renormalized solution
that is also a distributional one. Otherwise, if H blows up too fast at the origin (i.e. v > 1
m ), the solution loses the weak trace in the classical Sobolev sense and we are only
able to prove the existence of a distributional solution. We underline that the renormalized
framework seems to be the natural one associated to this kind of problems, since it is well
posed with respect to uniqueness, at least in case of a non-increasing nonlinearity H.

REMARK 3.7. As concerns the assumption , we underline that, if H(0) < oo, we can
prove the existence of a renormalized solution to even if it results ug = 0, since we
never use that pg Z 0 in the proof of Theorem (cf. Section . If instead H(0) = oo,
we do not treat the case g = 0 to avoid nonexistence results (in the approrimation sense)
analogous to the ones of Section of [40]. Furthermore, in case uq =0, our notions of
solution formally lead us to the following problem with linear lower order term

—div(a(z, Vu)) = H(co)pe nf,
u=>0 on 052,

which could be analyzed using classical tools.

3.2. Proof of existence in case of a finite H

We start proving the existence of a renormalized solution in case of a finite nonlinearity
H, namely assuming v = 0 in (3.7)).
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We introduce the following scheme of approximation

(3.14) —div(a(z, Vun)) = H(un)ptn  inQ,
up =0 on 052,

where p, = pina + tine = fo — div(EF},) + fin.. Following [13] we suppose that:
0< f,€L®1), f.— fweaklyin L'(Q),

(3.15) E, e W>Q)N, F,— Fin L”(Q)V,
0 < fine € L>(Q),  fine — pe in the narrow topology of M().

Moreover it results that ||t 1) < C.

Since H is a continuous function satisfying and with v = 0 and a satisfies (3.2),
(3.3) and with 1 < p < N, the existence of a weak solution u, € Wy*(Q) N L>(Q)
is guaranteed by [59]. Furthermore, since H and pu, are nonnegative functions, we also
have that u, is nonnegative. Taking S(u,)y as test function in the weak formulation of
(3.14) where S € W'>°(R) and has compact support and ¢ € Wy*(Q)NL>(Q) we obtain

(3.16) /Qa(a:, Vu,) - VoS(u,) + /Q a(z, Vuy) - Vu,S (u,)p = /QH(Un)S(Un)SOMn~

Moreover, since a(z, Vu,) - Vu, € L(Q), we deduce
1
(3.17) lim — a(z,Vu,) - Vu,p =0 Yo e Cy(Q),

t=oo t Jiycu, <20}

namely wu,, is also a renormalized solution to (3.14]). We need some a priori estimates on
U,

LEMMA 3.8. Let u, be a solution to (3.14). Then Tj(uy) is bounded in Wy (Q) for every
fized &k > 0. Moreover:

i) ifp>2— %, Uy, 48 bounded in Wol’q(Q) for every q < %;
i) if 1 <p<2—, ub™" is bounded in LU(Q) for every ¢ < 5 and |[Vu, [P~ is

bounded in LY(QY) for every ¢ < .

Finally u, converges almost everywhere in ) to a function u, which is cap,-almost every-
where finite and capy-quasi continuous.

PROOF. We take Tj(u,,) in the weak formulation of (3.14) obtaining
/a(x,VTk(un)) VT (uy,) = / H ()T (un) .
Q 0
Then, using (3.2) and (3.15)), we find

(3.18) @ [ IVTu(un)? < K Hl oo il 20y <
Q
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namely Ty (u,) is bounded in W, (Q) with respect to n.
Then, if p > 2 — %, by the computations of Subsection I1.4 in [11], it follows that w,
N(p—1)

is bounded in Wy %(Q) for every ¢ < =71+ So there exists a nonnegative function u

N=1) gych that U, converges to u almost everywhere

N-1
in Q and weakly in W,(Q) for every ¢ < %.

Otherwise, if 1 < p < 2 — %, it results that 0 < % < 1 and we cannot proceed as

before. Anyway, from (3.18]), using Lemma 4.1 and Lemma 4.2 of [7] we deduce that
N(p—1)

U, is bounded in the Marcinkiewicz space M ~-» () and that |Vu,| is bounded in the

N(p—1)
Marcinkiewicz space M ¥-1 (). In particular u?~! is bounded in L?(Q) for every ¢ < Nl_p

and |Vu, [P~ is bounded in L%(Q) for every ¢ < ~5. Furthermore, by we deduce
that T (u,) is a Cauchy sequence in LP(Q) for all k£ > 0, so that, up to subsequences, it is
a Cauchy sequence in measure for each £ > 0. Then, using the Marcinkiewicz estimates
on u,, we find that u,, is a Cauchy sequence in measure. To prove this property we begin
by observing that for all k£, > 0 and for all n, m € N, it results that

(3.19) {lun = um| >0} € {lun| = k} U{|um| = k} U{[T5(un) = Ti(um)| > o}

Now, if € > 0 is fixed, the Marcinkiewicz estimates imply that there exists a & > 0 such
that

belonging to W,4(Q) for every ¢ <

€
[{lunl > B}l <

while, using that T (u,) is a Cauchy sequence in measure for each k > 0 fixed, we deduce
that there exists 7. > 0 such that

» | > K} < %‘v’n,m €N, Vk > F,

[T () — To(u)| > o}| < g Vn,m > 1., Yo > 0.

Thus, if k > k, from (3.19)) we obtain that
H|un - um| > U}| <& VYn,m=>mn., Vo >0,

and so that u, is a Cauchy sequence in measure. Then, in case 1 < p < 2— %, there exists
a nonnegative measurable function u : 2 — R to which wu,, converges almost everywhere
in Q. Since u?~! is bounded in L4(Q) for every q < Ni_p, thanks to the almost everywhere

convergence and Vitali’s Theorem, we find that u?~! € L(Q) for every q < Ni_p. This
implies that the limit function u is almost everywhere finite.
Hence, in all cases, it results

(3.20) Ti(up) — Ti(u) weakly in W, P(Q) for every k > 0 and a.e. in €.
Finally, thanks to (3.18), by weak lower semicontinuity we deduce
/ VT (u)P <C(k+1) VE>D0,
Q

and so, by the previous and Lemma [1.17} we conclude that the function u is cap,-almost
everywhere finite and cap,-quasi continuous. O
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The previous lemma guarantees only the weak convergence of Tj(u,) towards Ty (u) in
WyP(Q). In the next lemma we prove the strong convergence of truncations in W, ”(Q),
which, in turn, will assure the almost everywhere convergence of Vu, to Vu in €.

LEMMA 3.9. Let u,, be a solution to (3.14). Then Ty(uy) converges to Ty(u) in Wy(Q)
for every fized k > 0.

PROOF. We follow the lines of Step 2 of the proof of Theorem 2.10 in [62]. We want
to show that

(3.21) lim (a(m, VTi(u,)) — a(z, VTk(u))) -V (Tk(uy) — T (u)) =0

n—0o0 0

in order to apply [16, Lemma 5| and to conclude the proof.
In (3.16) we take ¢ = (T)(u,) — Tk (u))(1 — ¥,) and S = 6,, where r > k and ¥, is as in
Lemma obtaining

| e ITi0,)) - VTi) = Tiw)) 1 = 0,)

- /{k< <2 }a(x, Vug) - V(Ti(un) — Ti(u))0,(u,)(1 = ¥,)  (a)

1

(3.22) + . /{ o }a,(x,Vun) -V (T (un) — Ti(uw)(1 —W,) (b)

+ /Q H ()0, (wn)(Th(un) — Ti(u))(1 = ¥y )pn (c)
+ /Q a(x, Vuy,) - VU, (Ti(tn) — Ti(u))0r (u,).  (d)
For (a), we note that the term {a(x, Vu,)0,(u,)} is bounded in L” (Q)N with respect to

n. Moreover we have that |VTj(u)|x{u,>k} converges to zero in LP(2), which allows us to
deduce that

(3.23) (a) < C /Q (2, V)0, (1) |V T () [ X 5y = €(n).

In the same way, we observe that {a(z, Vu,)- VV,0,(u,)} is bounded in L”'(Q) and that,
by (3.20)), Tx(u,) strongly converges to Ty (u) in LP(2), and so we arrive to

(3.24) (d) < / la(x, Vuy,) - VU0, (u)||(Ti(u,) — Te(uw))| = €(n).
Q
Now we focus on (c), finding, by (3.15)), that

(©) < | H e / T (1) — T () i
(3.25) ¢

n /Q H ()0 (11 ) (T (1) — T () (1 = 0, ) .
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Since Ty (uy) — Tx(u) is bounded in W, ?(Q) N L>®(Q) and converges to zero almost every-
where in , by Lemma the first term of the right hand side of (3.25) converges to
zero as n goes to infinity. As regards the second term we have that

AH(un)Hr(un)(Tk(un) = Te(u) (1 = Wy Jpne < 2K H [ oo (m) /Q(l = W) in,e;
which, through the narrow convergence of i, . to yi. and Lemma [I.16] implies
(3.26) (c) < e(n,rv).

Gathering (3.23), (3.24), (3.26) in (3.22) we deduce

/Q 0z, V(1)) - ¥ (Ti(itn) — Ti(u))(1 — 0,)

2k

(3.27)
<e(n,r,v)+ —/ a(z,Vuy,) - Vu,(1 —¥,).
{r<un<2r}

r

Let us take ¢ = m,(u,)(1 — ¥,) and S = 6, in (3.16), where r, k,t € N, r > k, and m,(s)

is given by (L.1)). Tt results
1
—/ a(xz, Vuy) - Vu,0(u,)(1 —,)
r {r<un<2r}

1
- _/ a(z, V) - Vi, (un)(1 = ¥,) - (a')
{t<un, <2t}

(3.28) !

+/§2H(un)ﬁr(un)9t(un)(l—‘I’u)ﬂn (b")

—|—/Qa(as,Vun)~V‘I’V7Tr(un)9t(un)' (')

As regards (c), thanks to Lebesgue Theorem, it results

lim [ a(z,Vu,) - VU, (u,)0(u,) = / a(z, Vuy,) - VU, (u,).
Q

t—00 Q

Recalling that supp(m,.(s)) = {|s| > r}, that u is almost everywhere finite and |Vu,|P~!
is bounded in L9(Q2) for each ¢ < NL, then it follows from the Holder inequality with

-1
exponents ¢ and ¢, where ¢ < % is fixed, that

1
a 1
< [V, [0 ( / |wnr<p-”q) {un > 1}

< C {up, > r}[7 = e(n,7),

/Q a2, V) - VO, ()

which implies

(3.29) () < e(t,n,r).
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As concerns (b') we have
(3.30)

H ()7 (n )0 (wn) (1 = W) (Hna + fine) < ||HHL°°(R) / T (Un) (1 = W,,) (fnd + fne)-
Q Q

Finally we consider (a’). Letting ¢ go to infinity and recalling (3.17), we obtain

1
tlim n a(x, Vuy,) - Vu,m,(u,)(1 — W)
—00
(3.31) 1{t<un<2t}
< lim - a(z,Vuy,) - Vu, = 0.
t=oo b Jeicu, <2t}

As t goes to infinity in (3.28)) and, by (3.29), (3.30), (3.31)), we obtain

1
- / a(z, Vuy) - Vup(1 =V,) < €e(n,r) + || H|| Lo ®) / T (Un) (L — W) (fnd + fine)-
r {r<un<2r} Q

Since m,(u,) converges to its almost everywhere limit weakly* in L>°(€2) and weakly in
WyP(Q), we deduce, by Lemma m, that

lim [ 7 (u,)(1 =V, pina = / mr(u) (1 — W, )dpug.

As u is cap, almost everywhere finite, m.(u) converges to zero jig-almost everywhere as
r — o0; then, using Lebesgue Theorem for general measure, we obtain that

/ (u) (1 — W) dug = e(r,v).
0

Moreover it follows from the narrow convergence of 1, . to . and from Lemma that

lim [ 7 (u,)(1 =V pine < lim [ (1 — W), = /(1 —U,)du. < Cu.
Q Q

n—oo 0 n—oo

Thus we obtain

1

(3.32) —/ a(x,Vuy) - Vu,(1 —W,) <e(n,rv),
r {r<un<2r}

and then, going back to (3.27)), we conclude that

/Qa(a:, VTi(un)) - V(Tr(un) — Te(u)(1 — ¥,) < e(n,r,v).
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Now we reason as follows

(a(z, VTi(u,)) — a(z, V() - V(Ti(uy) — Ti(u))

S~

_ /Q (ale, VTk(un)) — aler, VTo(w))) - V(Tk(un) — Th(u))T,
(3.33) +AM%Vme-Wﬂww—EWDH—%)
_ /Q a(2, VTy(w)) - V(Te(un) — To(u))(1 — 0,)

<C [ (I9Tw)P + VL)) ¥, + el o).
Q
Now choosing as test function (k — u, )T ¥, in the weak formulation (3.14) we have

_ /Q a(z, V() - V(1) T, + / a(z, V(1) - VU, (k — up)*

(9]
_ / H () (k — ) Wopina + / H () (k — )" Ty i
Q Q

which implies, using i, 4 > 0 and (3.2),
(3.34

)
o [ 9T, + /Q H(u)(k — ) Uy o < /Q a(2, V(1)) - VO, (k — 1)

Moreover, since Tj(u,) is bounded in W, P(€), it follows by an application of the Holder
inequality and by Lemma that

(3.35) /Qa(xaVTk(Un)) VW (k= un) " < K| T (n) Ly o) | Polly 2 < €(n, v).

By (3.34) and (3.35) we obtain

(3.36) /Q |VTi(u,) PV, = e(n,v)
and
(3.37) H(up)(k — up) W, = €(n,v).

Q
Finally, by (3.33) and (3.36]), we have
/ (a(z, VTi(uy)) — a(z, V() - V(Ti(uy) — Ti(u)) < e(n,r,v),
Q

which is (3.21)) as desired. In conclusion it holds
Ti(tn) — Ti(u) strongly in W, P(Q) for every fixed k > 0,

yielding also that Vu,, converges almost everywhere in (2 to Vu. 0
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REMARK 3.10. It follows from Lemma and Lemma that, if p > 2—%, Uy, CONVETges

to u strongly in Wol’q(Q) for every q < %. Otherwise, if 1 <p < 2— %, uP~1 converges
to uP~ strongly in LI(Q) for every q < Ni_p and |Vu,|P~! converges to |VulP~! strongly

in LI(QY) for every q < % In all cases we have

(3.38) a(x, Vuy,) — a(x, Vu) strongly in LYY for every q < N1

Now we are ready to prove Theorem in case v = 0, namely when H(0) < oc.

PROOF OF THEOREM IN CASE v = 0. In order to prove the existence part of the
theorem we only need to show that wu, almost everywhere limit of the solutions u, to

(3.14), is a renormalized solution to (3.1)). Indeed we already know, by Lemma that
Ti(u) € WyP(Q). If S € Wh(R) with supp(S) C [-M, M] and ¢ € W, 7(Q) N L>(),
taking S(u,)e as test function in the weak formulation of (3.14) we obtain

(3.39) /(Za(w,Vun)‘vSOS(Un)""/

[ a(e. V) V') = /Q H () S () 11

It follows from Lemma [3.9 that we have

lim [ a(z,Vu,)  Vu,S (u,)p = lim [ a(x, VI (u,)) - VT (un)S (Th(un))e

= /Qa(x, VT (w)) - VT (u)S' (Tar(u))p

= / a(z, Vu) - VuS'(u)p,
Q
and

lim [ a(z,Vu,) VeS(u,) = lim | a(x, VI (u,)) - VoS(Th(uy))

= /Qa(x, VTu(u)) - VoS(Th(u))

_ /Q a(z, V) - VoS (u).

Hence, in order to deduce (3.8)), we need to pass to the limit the right hand side of (3.39).
We split it as follows

(3.40) / H (1) )t = / H (1) (1) o1t g + / H (1) S (1) i

treating the two terms in the right hand side of the previous separately.
Let H;(s) be a sequence of functions in C*(R™) such that

1

Hi e L*(RT)NLYRY), ||H; — H||pow+) < i
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Since u is capp quasi Continuous H, H; and S are continuous and finite functions on R,
then H;(u)S(u)p and H(u)S(u)y are ud—measurable Then we have

/Q (I (1) — (1)) (1) Pt

/Hun (tn sound—/H w)pdpa| <

(3.41) +

Q(Hj(U) — H(u))S(u)edpa

" \ [ ) St — B0 )

C
< —+

[ ) )t~ Hia)S (o

Now, thanks to the assumptions on the functions H;, S and ¢ and to (3.18)), it is easy to
verify that H,;(u,)S (u,)p is bounded in Wy () N L®(Q) with respect to n € N and its
almost everywhere limit is given by H;(u)S(u)¢. Then, by Lemma [1.10] and (3.15), we
get

lim [ () S () ot d = / H; (w)S () pdia

n—o0 o)

Now, using the Lebesgue Theorem for general measures and the assumptions on the
sequence H;, we are able to pass to the limit also with respect to j, concluding that

lim lim | H; (un)S(un)gpun,d:/QH(u)S(u)gpdud

Jjmoon—00 Jo

and that H(u)S(u)p € L' (2, ug). As regards the second term in the right hand side of
(3.40), we first observe that, since S has compact support, there exist k£ > 0 and ¢, > 0
such that S(s) < ¢,(k — s)™ for every s € R. Then we have

/Q H (1) () Pt e = / H (1) (1)U i + / H ()8 () o1 — W, )i

< lollzm@er / H () (k = ) Wy tine + | H |l o0 1l oy / (1= 0 )i

So, by Lemma and (3.37), letting first n go to infinity and then v go to zero, we
obtain

lim [ H(un)S(un)otine =0,

n—o0 [¢)

which proves (3.8]), as desired.
Now we want to prove that (3.9) holds true.

First we need to prove that u is a distributional solution of (3.1). If ¢ € C}(Q2), we have
(3.42) / a(x,Vu,) Vo = / H (uy)@pin,g + / H () @pin.c-

0 0 Q
For the left hand side of the previous, by (3.38) we deduce

lim [ a(z,Vu,) Ve = / a(z, Vu) - V.
Q

n—oo QO
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Concerning the first term on the right hand side of (3.42]), we reason as in (3.41)) yielding

[t [ e <

(H () = Hj(un) ) ptin.a

|| ()~ H )

/H (Un)Pting — Hj(u)pdpg

— + /QHJ‘(Un)SDMn,d — Hj(u)pdpg| -

To prove that the last term in the previous formula goes to zero with respect to n, it is suffi-
cient to show that H;(u,)e is bounded with respect to n, with j fixed, in W, * ()N L® ().
Clearly H;(u,)p is bounded, with respect to n, in L*°(£2). To show the boundedness in

Wy P(Q) of Hj(uy)p, we take 04 (u,) fOTQ'“(u") |H/(s)|ds as test function in the weak for-
mulation of (3.14). Then we find

Tor (un)
/Qa(a:,Vun) - Vi (un) | H (Tor ()| O (un) = /QH(un) <0k(un)/0 |Hj(s)] ds) o

1 T2k(un) ,
+ E/ a(x,Vuy,) - Vuy, / ‘Hj(s)‘ ds
{k<un <2k} 0

< Nl @1 L= @) 2 n ) + (k)
< C+elh),

since H; € L'(R*) and (3.17) holds. Then, by (3.2), we deduce
[ 19T )P | 1) ) < € ()
Q

namely
[ 19l )] 1) < O+ ().
Q

Letting k — oo in the previous and using Fatou Lemma, we find
|VH un) | < |Vun|p‘H' u,)| < C,
|H/ P 1

which implies that H;(u,)p is bounded in Wy (Q) with respect to n.
Now we go back to the second term on the right hand side of (3.42). By (3.15)), recalling
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< /H(UN)‘Pﬂn,c_/H(OO)SOMn,c
Q Q

OO)SD,Un,c_/QH(OO)SOdNC

that ¢ € C1(Q), it results

/H Uy, wnc—/H(OO)soduc

(3.43)

<llll ey / |H (1) — H(00)|tme + ().

By (3.6)), for every n > 0 there exist s, > 0 and L, > 0 such that

(3.44) |H(s) — H(c0)| <, Vs > s,
and, using that H(s) > 0 for s > 0, we have
(3.45) |H(s) — H(co)| < H(s)Ly(2s, — s)", Vs € [0, s,).
It follows from (3.44)), (3.45), (3.15) and applying (3.37) with k = 2s, that
V@) = B0 = [ [H () = B Ve + [ [Hlw) = H(o)|(1 = By
0

/ \Ijl/,un ct L / H(un)(an - un)—i—\lluun,c
{un>sn} {un<sn}

2 Hlpmge) [ (1= W
0
<e(n,v,1).
Hence, by (3.43), we have

/Q H (up)phin,e — /Q H (o0)pde

(3.46) lim H(un)gp,unc = H(oo)/gpd,uc,
Q

S 6(”7 l/? 77)7

which implies that

n—oo

then (3.11)) is proved.
Now taking S = 6; and » € C}(Q2) in (3.8) we obtain

1
—/ a(z,Vu) - Vup = — / H(u)0(u)pdug + / a(z, Vu) - Vb, (u).
U J t<u<aty Q Q

Now, using that 6, belongs to C,(R) and that u is cap,-almost everywhere defined, by
Lebesgue’s Theorem for general measures we obtain

1
lim — a(z,Vu) - Vup = —/ H(u)pdpg + / a(z,Vu) - Vo,
Q

t=oo b J 1 cu<ar) Q
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which implies, by (3.11]), that
1
(3.47) lim — a(xz,Vu) - Vup = H(c0) / odu. Vo e CHQ).
t=oo b Jpcu<aty Q

By the density of C}(Q2) in C.(Q2), (3.47) is true when ¢ € C.(Q).
Now, if p € Cy(92), we have p¥, € C.(2) and then

1
(3.48) lim — a(x,Vu) - VuV,p = H(c0) / oV, dp, Vo € Cyp(Q2).
=00 U Jrpcu<at) Q
Applying (3.32)) with r» = ¢, and letting n go to infinity, we find
1
(3.49) lim — a(z,Vu) - Vu(l = U,)p = €(v) Vo € Cyp(2).
t=oo t Jiicucaty
Then, by (3.48) and (3.49), we deduce
1
lim — a(z, Vu) - Vup = H(c0) / oV, dp. + €(v) Vo € Cp(9).
t=oo b Jipcu<aty Q

Letting v go to zero, by Lemma [1.16] we obtain (3.9).

Now we further ask that H is non-increasing and that p. = 0 and we prove the uniqueness
of a renormalized solution to (3.1]).

Let u and v be two renormalized solutions of ([3.1). We can choose S = 6; and ¢ =
0,(v) Ti,(u — v) in the equation of u, and S = 0; and ¢ = 0;(u) Tx(u — v) in the equation
of v to obtain, subtracting the equations, that

350 [0t 90) o, 90 - T )00

1

- ; /{t<u<2t} a(x’ Vu) -Vu Tk (u - U)et(v)
1

ot /{t<v<2t} a(z, Vv) - Vo Ti(u — v)6(u)
1

+ t /{t<v<2t} a(x, Vu) - Vo Ti(u — v)6(u)
1

_ _/ a(x, Vv) - Vu Ty (u — v)0,(v)
13 {t<u<2t}

+ [ () = H@) Talu = o) 0w)6u(0) dia.

It follows from the definition of renormalized solution and by the assumption u. = 0 that
1
‘—/ a(z, Vu) - Vu Ty (u — v)0(v)
{t<u<2t}

k
; < lim — a(z,Vu)-Vu =0,

t=oo T Jeicu<or)

lim
t—o0
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and, in the same way, that

1

lim ‘— / a(x,Vv) - Vo Ti(u — )0 (u)
{t<v<2t}

t—oo | t

k
< lim — a(x,Vv)-Vuv = 0.

t=oo b Jricpaony

Now we focus on the third term on the right hand side of (3.50). Using Holder inequality,
the definition of 6;, (3.2)) and (3.3]), we obtain
1
‘— / a(xz,Vu) - Vo T (u —v)0(u)
tJ ft<v<at)

< kﬁ/ la(x, Vu) - V|
{

t<v<2t}n{u<2t}

1 N7 (1 >
k (—/ \a(m,Vu)\p) (—/ \Vv\p>
U J fu<aty b J ft<v<at)
1 v /1 v
<Ck (—/ |Vu|p> (—/ a(z,Vv) - Vv)
t {u<2t} t {t<v<2t}

As a consequence of the definition of renormalized solution with p. = 0 we have that

1 1
{; |V T (u) |p} is bounded in L(2) with respect to ¢ and that {Z a(z,Vv) - VU} strongly

IN

converges to 0 in L'(Q2). Thus we have
1
lim — a(z,Vu) - VoTi(u —v)0(u) = 0,
t=oo b Jcpcan
and, interchanging the roles of v and v, that
1
lim — a(z,Vv) - VuT(u —v)0;(v) = 0.

t=oo b Jrrcu<aty

Moreover, by the assumption that H is nonincreasing, we obtain that
(H(u) = H(v)) Ti(u — ) 6:(u)b:(v) <0,
cap,-almost everywhere. So that we deduce from (3.50) that

lim sup/g(a(a:, Vu) — a(z,Vv)) - VIi(u—v) 0 (u)b(v) < 0.

t—o00

Applying Fatou’s lemma we have
/(a(x,Vu) —a(z,Vv)) - VI (u—v) <0,
Q

for every k > 0. So that, by (3.4) and letting & tend to infinity we obtain Vu = Vv and
then v = v almost everywhere in 2.

This concludes the proof of Theorem [3.4]if v = 0. O
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3.3. The approximation scheme if H is singular

In this section we collect some properties of the solutions to the scheme of approximation
which will be the basis to prove Theorems [3.4] [3.5]in case v > 0, namely when the function
H can blow up at the origin.

We will find a solution to the problem passing to the limit in the following approximation

_diV(CL(CC’VUn m)) = Hn(un m)(ﬂd +Mm) in Q,
(3.51) , ,
Un,m = 0 on 0f).

where H,, = T,,(H) and u,, is, once again, a sequence of nonnegative functions in L>((2),
bounded in L'(), that converges to . in the narrow topology of measures. We recall
that H satisfies (3.6) and (3.7) with v > 0 and that a is a Carathéodory function such

that (3.2), (3.3) and (3.4) with 1 < p < N hold true.

The existence of a nonnegative renormalized solution u, ,,, to problem (3.51)) is guaranteed
by the result proven in Section [3.2 Moreover it follows from Lemma [3.3] that uy, », is also
a distributional solution to (3.51))

For the sake of simplicity, since until the passage to the limit it will be not necessary
to distinguish between n and m, we will consider the following approximation in place of
(13.51])

(3.52) {— div(a(z, Vuy)) = Hy(un)(pa + pn)  in €,

U, =0 on Of).

The first step is proving the local uniform positivity for u,, which will assure that the
possibly singular right hand side is locally integrable with respect to fi4.

LEMMA 3.11. Let u, be a solution to (3.52). Then
(3.53) VwCCQ Fe,>0:u, >c, capy-a.e. in w, Yn > no,
for some ng > 0.

PROOF. The proof is similar to the one of Lemma 3.4 in [40] given for p = 2. For
this reason we just sketch it. For some ng € N, it is possible to construct a non-increasing
function h € Cy(R) such that h(s) < Hy(s) for every n > ng and for all s > 0.

Then we can consider the following problem
{— div(a(z, Vo)) = h(v)pg inQ,

3.54
( ) v=20 on 0f),

for which the existence of a nonnegative renormalized solution v # 0 follows once again
from Section . It can be proven that there exists 7 > 0 such that 14| (<7 0 and that
h(v)ug is a diffuse measure respect to p-capacity. Then, from Definition 2.29 and Remark
2.32 in [37], we deduce that Tx(v) € W, () solves the following

—div(a(z, VIH(v))) = h(v)pta| vy +A7 > 0 in Q,
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where A is a nonnegative diffuse measure concentrated on the set {v = 7}. Hence we can

apply the strong maximum principle (see, for instance, Theorem 1.2 of [73]), obtaining
VwcCcCQ FC,7>0:0v>T(v)>c,:=Cuhz>0 ae. in w.

Now we consider the renormalized formulations of (3.52) and of (3.54), taking S = 6y

in both equations and ¢ = 0, (v)T,.(v — u,) " in (3.52)), ¢ = O (u,)Tr(v — uy,)™ in (3.54),

where r > 0 is fixed.

We have

(3.55)

/Q (a(z, Vv) — a(z, Vu,)) - VT, (0 — u,) T 05,(0) 05 (u,)

1 1
= E/ a(z, Vo) - Vu, T, (v — u,) T 0r(v) — %/ a(z, V) - VoI, (v — up,) 0 (uy,)
{k<un<2k} {k<v<2k}

+ l/ a(z, Vo) - VoT,(v — up,) 0 (u,) — l/ a(z, V) - Vu, T (v — uy,) T 0(v)
k {k<v<2k} k {k<un<2k}

+ /Q (h(v) = Hp(un)) T (v — ) 0r(v) Ok (un ) dpra — /QHn(un)Tr(v — ) T 0: () 0r (U, -

Since the concentrated part of the datum is zero both in and in (3.54), from the
definition of renormalized solution we obtain that the third and the fourth term of the
right hand side of go to zero as k goes to infinity. With the same argument, after
an application of the Holder inequality, we deduce that the first and the second term of
the right hand side of the previous go to zero as k goes to infinity. Since the last term of
(13.55)) is nonpositive and A is non-increasing, we deduce that

/Q (a(:p, Vo) —a(x, Vun)) VT (v — uyp) T 0k(v)0 (uy)
< / (h(v) — Ho(tn)) Ty (0 — 1) 00 (0)00 ()i
{v>un}

< / (h(utn) — Ho (1)) Ty (0 — 10) 00 (0)00 (1) s
{Uzun}

Since h < H,, for every n > ng, h and H,, are continuous and u,, is cap,-almost everywhere
defined, we have (h(u,) — Hy,(u,)) < 0 cap,-almost everywhere in Q if n > ny. Moreover,
applying in the previous the Fatou Lemma first in £ and then in r, we deduce

/Q (a(x, Vv) — alx, Vun)) V(v = up)Xfozun <0,

which, by ‘ , implies
X{v>un} = 0 if n > ng.

Hence we have proved that (3.53]) holds almost everywhere in €.
Now, if w CC Q and k., > ¢, then

(3.56) Ty, (uy) > ¢, a.e. in w.
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Using the definition of the set of Lebesgue points of a function f applied with the choice
f = Ty, (u,)|, and Lebesgue differentiation Theorem, we deduce that

Tkw (Un) > Cy in ‘CTIW (un)|

Since Ty, (u,) € W'P(w), using Proposition 8.6 of [66] we obtain that cap,(w\L, (u,)_) =
0. In particular (3.56) holds cap,-almost everywhere on w and, since u, > Ty, (u,), we
conclude that (3.53)) holds cap,-almost everywhere in w. 0]

Now we are interested in providing some a priori estimates up to the boundary in order
to give a weak sense to the Dirichlet datum.

T—1+4p
LEMMA 3.12. Let u, be a solution to (3.52). Then T, * (uy) is bounded in Wy (Q) for
every fized k > 0 where 7 = max(1, 7).

PROOF. We take as test functions in the renormalized formulation of (3.52)) S = 0,
and ¢ = T] (u,) where r > k. We let 7 — oo and use that the concentrated part of the
datum in (3.52) is zero. Then we obtain the following

(3.57)
T—1+4p
/ VT, 7 (un)]” < ng‘”/ (dpa + pn) + CkT\IHHLoo<[sO,+oo)>/ (dpa + pin)
Q {un<so} {un>s0}
< C(k™+1),
as desired. O

REMARK 3.13. Let us underline that, in case v > 1, Ty(uy) is bounded in WLP(Q) with

respect to n € N for n large enough and for every fired k > 0 . Indeed, it follows from
Lemma and Lemma that for every w CC it results

(=) [9ngr = (P2 [ e 9T

p p
- / VTi(wa) 7 I < C(L+K7).
Q

We prove local a priori estimates for u,,.

LEMMA 3.14. Let u, be a solution to (3.52). Then:

1) if p>2— %, u, is bounded in WLa(Q) for every q < N]E/?:ll);
i) if l<p<2-— %, ub~t is bounded in L] () for every q < Nlﬂ) and |V, [P~ is
bounded in L (Q) for every ¢ < <25.

Moreover there exists an almost everywhere finite function u such that u, converges al-
most everywhere to w in S, u s locally cap,-almost everywhere finite, locally capy,-quasi
continuous and such that

(3.58) VwCCQ Fe, >0:u>c¢, capy-a.e. inw,
H(u) € L®(w; pg) Yw CC Q.
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PROOF. By Lemmaand Remark we have that Ty (u,) is bounded in W.7(Q)
with respect to n € N for each k£ > 0 fixed and for all v > 0. Then, localizing the proof
Lemma [3.8] we deduce immediately that i) and ii) hold true and that there exists an
almost everywhere finite function u such that wu,, converges almost everywhere to v in 2.

Moreover, using (3.57)), once again Remark and localizing Lemma we obtain
that wu is locally cap,-almost everywhere finite and locally cap,-quasi continuous. Now,

letting n — oo in (3.53)), we deduce that
(3.59) VwcCcQ Je,>0:u>¢, ae in w,
and, since Tj(u) € WLP(Q), we can proceed as at the end of the proof of Lemma m

loc
to conclude that (3.59) holds also cap,-almost everywhere in w, that is (3.58). Using
(3.58) and the fact that H(s) is finite if s > 0, we deduce H(u) € L*®(w;puq) for every

w CC Q. O

REMARK 3.15. Recalling Lemma in the case v < 1 we can improve the previous
Lemma obtaining that i) and i) hold true globally in Q0 and that u is cap,-almost every-
where finite and cap,-quasi continuous.

The next Lemma is a strong convergence result for the truncations, this time (compare
with Lemma [3.9] see also [40] for p = 2) in the local space W,.7(Q).

LEMMA 3.16. Let u, be a solution to (3.52). Then Ty(uy) converges to Ti(u) in WEP(Q)
for every k > 0.

PROOF. The proof is similar to the one of Lemma[3.9} It suffices to take ¢ = (Tj(u,)—
Ti(u))(1 — ¥, )Y and S = 0, (r > k) in the renormalized formulation of (3.52) where
Y € CHQ) such that for w CC Q we have

0<vy¥<1lonQ,
Y=1lonw CC Q.

Hence, through the local estimates and proceeding in an analogous way as to prove the
strong convergence of truncations in Lemma |3.9] we obtain

lim [ (a(z,VTi(u,)) — a(z, VTi(w))) - V(Te(un) — Ti(w))y = 0,

n—o0 Q

so that, by [16 Lemma 5|, we have that Ty (u,) converges to T (u) strongly in W,L7(Q)
for every £ > 0 and Vu, converges to Vu almost everywhere in (2. This concludes the
proof. O

REMARK 3.17. Analogously to Remark[3.10, from Lemma[3.14 and Lemma(3.16| we deduce
that if p > 2 — % then u,, converges to u strongly in W'licq(Q) for every q < %.

Otherwise if 1 < p < 2 — % then uP=1 converges to uP~t strongly in Ll _(Q) for every

q< Nl_p and |Vu,|[P~1 converges to |Vul|P~! strongly in L] (Q) for every q < % In all

cases we have

(3.60) a(x, Vuy,) — a(x, Vu) strongly in L (Q)N for every q <

loc

N-—-1
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3.4. Proof of the existence and uniqueness results

In this section we first prove Theorem [3.5 and then Theorem [3.4]in full generality, namely
for v > 0.

Indeed, in order to prove Theorem we need that the scheme of approximation actually
takes to a distributional solution to (3.1]), which is the content of Theorem .

PROOF OF THEOREM 3.5 Let u,,,, be a renormalized solution to (3.51). We need to
prove that its almost everywhere limit u, whose existence is guaranteed by Lemma [3.14
is a distributional solution to (3.1)).

It follows from Lemma [3.12]that (3.10)) holds. Hence we just need to show (3.11)), namely
we have to pass to the limit first in m and then in n the following weak formulation

(3.61) /a(x,Vun,m)-Vsoz/Hn(un,m)sodud+/Hn(un,m)soum, Vo € CH(Q).
Q Q Q

Thanks to (3.60]), we are able to pass to the limit the first term on left hand side of the
previous as n,m — co. Now we pass to the right hand side of (3.61). For n € N fixed
and proceeding as to deduce ([3.46[), we find that

s, | Holtnn)tin = Holo6) [ o
Q

m—00

and, since for n € N large enough it results H,(c0) = H(o0), we get

lim lm | H,(tpm)@ts = H(c0) / odie.
For the first term on the right hand side of we observe that, by Lemma [3.16] it
yields that Ty (u,, ) strongly converges to Tj,(u) in W,5?(€2). This implies (see Lemma 3.5
of [54]) that Ty (uy ) converges to Ty (u) cap,-almost everywhere in w for each & > 0 fixed
and for w CC Q. Being u,,, and u capy,-almost everywhere finite functions, we deduce
that w, ., converges cap,-almost everywhere to u in w for each w CC Q. Hence H,, (s m)
converges to H(u) cap,-almost everywhere in supp(y). Thus we are in position to apply
the Lebesgue Theorem for general measures since

| Ho ()] < NH 25 ey 000 [ 2l oo () € L, p1a),

where we have used that, by Lemma [3.11} Uy m > Coupp(p) Capp-almost everywhere on
supp(p) for n and m large enough. Hence we have proved that it results

lim H, (tnm) gpdud—/H Yodpig,

n,Mm—00 0

and then u is a distributional solution to (3.1]). This concludes the proof. O
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PROOF OF THEOREM IN CASE v > 0. Let u,,, be a renormalized solution to (3.51)),
then it follows from the proof of Theorem that its almost everywhere limit v is a dis-

tributional solution to (3.1)). We have that w,, is such that

(3.62) / a(z, Vpm) - VoS (Unm) + / a(z, Vigm) - Vg mS (Unm)e
Q

Q
:/QHn(un,m)S(un,m)gpd/de'f—/QHn(un,m)S(un,m)(p:uma

where S € W (R) with supp(S) C [-M, M] and ¢ € C}(Q).
As regards the left hand side of (3.62)), since, by Lemma|3.16| T/ (ty, ) strongly converges
to Tar(u) in W,2P(Q), by (8.3) and Vitali’s Theorem, we obtain

lim lim < / a(z, Vigm) - VoS (tnm) + /
Q

n—o0 Mm—0o0 0

a(x, VUn,m) : vun,msl(un,m)‘p)

_ / a(z, Vu) - VoS(u) + / a(z, Vu) - VuS'(u)e.
Q Q

For the first term on the right hand side of (3.62)) we observe that, using once again
Lemma [3.11] it results

Hyy () S ()9 < N H || 2% (egupoy 0o [l o @) S| e ) € LH(Q, pra)-

Then, thanks to the cap,-almost everywhere convergence of u, ,, to u, we can apply the
Lebesgue Theorem for general measures, obtaining

lim lim Hn(un7m)S(un7m)godud:/H(u)S(u)@d,ud.
Q

n—oo m—oo 0

For the second term on the right hand side of (3.62) we have, proceeding as in the
proof of Theorem 3.4 in the case v = 0, that there exist £ > 0 and ¢; > 0 such that
S(s) < c(k —s)T for every s € R and

Hn(un,m)s(un,m)¢ﬂm S CkHQO”LOO(Q) / Hn(“n,m)(k - un,m)+qjuﬂm
(3.63) ¢ @

1 H oo 1S 2 el 2y / (1— W)

Using S(s) = (k — |s|)* and ¢ = ¥, in the renormalized formulation of (3.51) and
dropping positive terms we obtain

/ Hn(“n,m)(k - un,m)+\111/ﬂm S / @(.Z', ka(un,m)) : V\I]l/<k - un,m)Jr
(3.64) 0 Q
< K| T (tt,m) llwrp supp 0, ) W0 1.2 -
Then, from (3.63) and (3.64), we deduce, applying Lemma [1.16] Lemma Remark
3.13 and letting v — 0, that

lim lim H, (Un,m ) S (Unm ) ppem = 0.

n—00 Mm—oQ 0
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Hence we have proved

(3.65) /Qa(x, Vu) - VpS(u) + /Qa(x, Vu) - VuS' (u)p = /QH(u)S(u)gpd,ud,

for every S € WH*(R) with compact support and for every ¢ € C}(Q), namely (3.8) for
a smaller class of test functions ¢ € C}(2). Note that (3.65) holds true also if v > 1.
Now we take S = 6 in (3.65) and we obtain

1
—/ a(z,Vu) - Vup = — / H(u)0:(u)pdug + / a(z, Vu) - Vb, (u).
U J (t<u<aty Q Q
We pass to the limit in ¢ obtaining
1
lim — a(z,Vu) - Vup = —/ H(u)pdpg + / a(z,Vu) - Vo,
t=oo b ) cucar) Q Q

which implies, since u is a distributional solution to (3.1)), that
1
(3.66) lim — a(x,Vu) - Vup = H(o0) / odie Y € CH(Q).
t—00 {t<u<2t} Q

By the density of C}(Q2) in C.(2), (3.66) is true when ¢ € C.(Q). Now, if p € Cy(Q), we
have VU, € C.(2) and then

1
(3.67) lim — a(z,Vu) - Vul,p = H(c0) / oW, dp. VYo € Cp(Q).
t=oo b ) cucon) Q
We want to prove that
1
(3.68) lim — a(z,Vu) - Vu(l = V,)p = €(v) Vo € Cy(2).
t=oo b [ cu<ar)

Choosing in the renormalized formulation of (3.51) ¢ = m(upm)(1 — ¥,) and S = 6,,
with ¢ > 1, we obtain

1

! / a2, Vi) - VitgO (1t ) (1 — W)
U Sft<un m<2t}

1
:—/ a(z, Vigm) - Vg mTi(Unm) (1 —¥,)  (a)
r {r<un,m<2r}
(3.69 ot et )0 ) (L= W ) (8
Q

+ /Q H () T () O (W ) (1 — W ) i (€)

+/Qa(x,Vun7m)-V\I’uﬂt(un,m)er(“n,m)' (d)

As concerns (d), thanks to the Lebesgue Theorem, we deduce

lim [ a(x, Vugm) - VY1 (U m)0r (Unm) = / a(x, Vigm) - VY, (tUnm)-

r—00 QO o)
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Recalling that u is almost everywhere finite, that |Vu,, ,,[P~" is bounded in L9(w) for each
q< % where w :=supp(V,), using (3.3) and Holder inequality with exponents ¢ and ¢/,

with 1 < ¢ < % fixed, we find

1
q 1
< 19ty [ 190mnl#7) o €02 i) 2 )

<Oz €w: tupm(x) > tH7 = e(m,n, t).

/ a(x, Vg m) - VU, (U m)
Q

Then

(3.70) (d) < e(m,n,t).

Concerning (b) and (c), once again by Lebesgue Theorem, we deduce that
(3.71)

/QHn(un,m)ﬁt(un,m)er(un,m)(1 - \Pu)d,ud S ”H||L°C([1,+oo)) /g;ﬂ-t(un,m)(l - \Ijl/)dﬂd

= ¢e(m,n,t),
and that
li}m Hn(“n,m)ﬂt(un,m)er(un,m>(1 - ‘Py)/flm = / Hn(un,m>ﬂt<un,m)(1 - qju),“m
r—=00 Jo Q

By the narrow convergence of u,, and Lemma [1.16] we obtain
B [ o)l (U= Bt < [ Hli e, [ (1= W)t = )

Finally, by (3.17), we obtain

1
;/ a(x, Vigm) - Vg, (tnm) (1 —¥,)
<373) ;r<un,m<27‘}
< —/ a(z, Vg m) - Vg m = €(r).
T J{r<un,m<2r}

Letting r go to infinity in (3.69) and using (3.70), (3.71)),(3.72) and (3.73)), we get

1

—/ a(z, Vigm) - Vigm(l —V,) =e(m,n, t,v).
t {t<un,m<2t}

Then, by Vitali’s Theorem, letting m, n and ¢ go to infinity we deduce (3.68). As a

consequence of (3.67)) and (3.68)), letting v go to zero, by Lemma we have

(3.74) lim E a(z, Vu) - Vup = H(c0) / wdie,

t=oo b Jcu<aty Q
for all ¢ € Cp(2). Hence holds and, in order to deduce that w is a renormalized
solution, we just need to show that holds for a larger class of test functions, namely
for o € WyP(Q) N L=(Q).
It follows from Remark [3.15| that T (u) € W, (), for every k > 0. Now let ¢, € C}(Q)
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be a sequence of nonnegative functions that converges in I/VO1 () to a nonnegative v €
W,y ?(Q) N L®(52) and let p, be a smooth mollifier. We take ¢ = p, * (v A ¢,,) € C1(Q) in
(3.65) where v A ¢, := inf(v, ¢,,), obtaining

/a(aj, V) - Vo, * (0 A 60))S () + / o, V) - VuS' (w)py * (v A )
(3.75) @ @

= [ H@S @, (0 7 dn))d

We assume that supp(S) C [—M, M] and we analyze the three terms in (3.75]) separately.
As concerns the first term on the left hand side of (3.75)), using that

a(z, Vu)S(u) = a(z, VI (u)S(Ty(u) € LP (Q)Y,

that p, * (v Ab,) strongly converges to v A ¢, in Wy(Q) as 7 — 0 and that vA ¢, strongly
converges to v in W, ?(Q) as n — oo, we deduce

(3.76) /Q 0, V) - V(py # (0 A ) S(u) = / a(z, V) - VoS(u) + e(n, n).

Q
We consider now the second term on the left hand side of (3.75). Since

a(x, Vu) - VusS' (u) = a(z, VI (v)) - VI (w)S' (Ta(u)) € LH(Q)

and p, * (v A ¢,) converges to v weakly™ in L>(Q) as n — 0 and n — oo, we have that
(3.77) / a(z, Vu) - VuS' (u)p, * (v A ¢p) = / a(z, Vu) - VuS' (u)v + €(n, n).
Q Q

Finally we consider the right hand side of (3.75)). Since p, * (v A ¢,,) converges to v A ¢,
cap,-almost everywhere as n — 0 and the following inequality holds true cap,-almost
everywhere

H(u)S(u)(pn * (v A ¢n)) < IH || 2o (esuppon o) S| @[ A dnll (@) € LN, p1a)

by Lebesgue’s Theorem for general measure we find

(3.78) [ H@S@o, < (0 6.)dna = | H@S)(w A 62)dna + e

Hence, putting together (3.76)), and (3.78)), we find

(3.79) /Qa(x,Vu)-VvS(u)—l—/Qa(x,Vu)-VuS’(u)v:/QH(u)S(u)(v/\gzﬁn)dud—i-e(n,n)
Now, since we can write S as ST — S~, where ST and S~ are the positive and the

negative part of S, we can assume, without loss of generality, that S > 0. In particu-
lar, H(u)S(u)(v A ¢,) is a sequence of nonnegative and pg-measurable functions (recall
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that ¢, has compact support for each n € N) that converges cap,-almost everywhere to
H(u)S(u)v. Hence we can apply Fatou’s Lemma in (3.79) obtaining

/QH(U)S(u)vdud < hﬁﬂi{if/QH(“)S(“)(” A ¢p)dpig

= / a(x,Vu) - VoS (u) + / a(z, Vu) - VuS' (u)v + e(n,n).
0 Q

The latter one implies that
H(uw)S(uw)v € LY(Q, pg) Yo € WyP(Q) N L¥(Q) s.t. v > 0.

Then, since
Huw)S(w)(vA¢n) — Hu)S(uw)v  pg-ae.

and
Hw)S(u)(vAép) < Huw)S(u)v  pg-a.e.
by Lebesgue’s Theorem we deduce that
lim [ H(u)S(u)(vA ¢n)dpg = / H(u)S(u)vdpg.
Q

n—oo 0]

In conclusion, passing to the limit first as 7 — 0 and then as n — oo in (3.79)), we obtain

(3.80) /ﬂ o(z, Vi) - VoS(u) + /

a(z, Vu)VuS' (u)v = / H(u)S(u)vdpg

Q )

for every S € WH°(R) with compact support and for every nonnegative v € W,"(Q) N
L>(Q). Since it is possible to write each v € Wy*(Q) N L=(Q) as the difference between
its positive and its negative part (as done before for the test function S), we trivially
deduce that holds for all v € W,?(Q) N L=(Q). Hence, recalling also (B.74), we
conclude that v is a renormalized solution to (3.1J).

Once again, if H is non-increasing and p. = 0, it follows with the same proof given in
case of v = 0 that the renormalized solution is unique. This concludes the proof. U

3.5. Some remarks when H degenerates

It is worth to analyze more in depth what kind of phenomena could appear in case of a
nonnegative function H, namely if we remove the request of strict positivity for H.
We recall that the problem is given by

{— div(a(z,Vu)) = H(u)p inQ,

81
(3.81) u=>0 on 0f2.

Here we assume that p is a nonnegative bounded Radon measure on €2 such that p. =0
and that the function a satisfies (3.2)), and (3.4). Concerning the function H :
(0, +00) — [0, +00), we will assume that is continuous, such that and hold and
that it is zero for some s > 0.

We will prove that, under these assumptions on the lower order term, there exists a
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solution to (3.81)) that is bounded and that belongs, at least locally, to the energy space.
This kind of remark has already been done in [42] for more regular data. We state the
results and give just a brief idea of the proofs.

THEOREM 3.18. Let us assume that . =0 and that 0 < v < 1. If s; > 0 is the smallest
positive value such that H(s1) = 0, then there exists a renormalized solution u to (3.81)
with w € WyP(Q) N L=(Q) and |Jul| L) < 1.

THEOREM 3.19. Let us assume that pu. = 0. If s; > 0 is the smallest positive value
such that H(s1) = 0, then there exists a distributional solution u to (3.81) with u €
WEP(Q) N L®(Q) and ||ul|pe) < s1-

loc

Our first observation is that the assumption H(s) > 0 for all s > 0 is used in the proof of
Theorems and [3.5] only to show that the solution blows up on the support of p. (see
B.45)).

Hence, if y. = 0, the proofs of Theorems and remain valid even if H is just
nonnegative and, in order to prove Theorems and we only need to show the
improvement in the regularity of the solution.

Precisely, we will show that, under these assumptions on the lower order term, the schemes
of approximation and (i.e. the approximations that led us to the existence
results, respectively, in case v = 0 and v > 0), admit a sequence of solutions that is,
respectively, bounded in Wy *(Q) N L=(Q) if v < 1 and in W,2P(Q) N L=(Q) if v > 1.

We recall that the scheme of approximation (3.14]), used in the case v = 0, is given
by

—div(a(z, Vu,)) = H(uy)p, in§,
.82
(3.82) {un =0 on 0,

where H is bounded and p, = p,q € L>(Q) is bounded in L'(2) and such that (3.15)
holds.
We define on [0, +00) the continuous function H ™ as follows

" H(s) if s < s4,
3.83 H =
( ) () {0 if s > sq,

and we consider the following problem

*

(3.84) le( (z, Vu)) = H (u))p,  inQ,
=0 on Of).

The latter problem has a weak solution uy € WOIP(Q) that is also nonnegative. Now
taking G, (u};) as test function in ([3.84)), we immediately find

/ VG () =
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which implies u} < s; almost everywhere in Q. Hence, recalling (3.83), we conclude that
u’ solves also (3.82)). Moreover, having in mind the L*-estimate for u and taking u’

itself as test function in the weak formulation of (3.82]), we deduce that u} is bounded in
W,y (Q). This is sufficient to deduce Theorem if v=0.

The scheme of approximation introduced to prove Theorems [3.4] and in the case
~v > 0 is instead given by

{— div(a(z, Vuy,)) = Hy(up)pg  in £,

3.85
( ) Uy, =0 on 051,

where H, = T,,(H). In this case we consider the following problem

{— div(a(z, Vur)) = H (u")pg  inQ,

n n

3.86
(3.86) uy =0 on 02,

with H, (s) = T,,(H (s)) for each n € N. Applying Theorem in the case v = 0, we
deduce that, if n € N is fixed, there exists a renormalized solution u* € W, (Q)N L>(Q)
to (3.86]).

To prove the positivity of the sequence w), proceeding as done to deduce , it is
sufficient to construct on [0,400) a nonnegative function h that is not identically zero,
non-increasing, continuous, bounded and such that

h(s) < H,(s) for all s > 0 and for n large enough.

Since H(s) is continuous for each s > 0 and sy, with s; > so > 0, is the smallest zero of
H, there exists s* € [0, so| such that

H(s") =min H(s) > 0.
[0,s0]

A good candidate for h is then the following function
H(s*) if 0 <s < s*,
H(s*)

(s0 — s%)
0 if s > 5.

h(s) = (so — s) if s* < s < s,

From this point onwards, we can proceed as in Lemma to prove that

VwcCcQ de¢,>0:u, >c, capp-a.e. in w for n large enough.

*

Since, once again taking G, (u}), it is possible to prove that u) < s; almost everywhere
in €, the function w; turns out to be a solution to ([3.85)).
Now we take as test function in the renormalized formulation of (3.85) the following ones

S=0, p=u; if v <1,
S =0, ¢=(u) ifvy>1,
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where r > 0.
In case v < 1, as r — oo we find

a/ |V P g/a(w, Vu;) - Vu, :/ Hn(u;)u;idud—i-/ H, () )urdpg
Q Q {7, <so}

{U:LZSO}
1_
< (Csy "+ [1H|| oo (1s0,51))51) lall mceys

namely that u is bounded in W, ().
If v > 1, we find instead

e [ 190 < [ ate.Vug) - Vg g
w Q

< (C+ |H | Lo (50,157 l1tall e,

i.e. that u; is bounded in VV;?(Q) From now on, we can proceed as in the proof of
Theorems and in order to obtain Theorem for v > 0 and Theorem [3.19






CHAPTER 4

Existence and nonexistence for quasilinear elliptic equations with
singular quadratic growth terms

In a recent paper [18], existence and regularity of the nonnegative solution of the following
semilinear singular problem was studied:

. .
—div(M (z)Vu) = - Q,
u=10 on 0f),

(4.1)

where €2 is an open bounded subset of RN, N > 2, M is a uniformly elliptic and bounded
matrix, f is a nonnegative function belonging to some Lebesgue space, and v > 0. In
particular, existence of positive solutions for every v > 0 (see Theorem was proved.
This problem with M (z) = I, as shown in the Introduction, is strictly connected, setting

u'y+1
v = , with the following problem
v+ 1
v [Vo)? :
—A = Q
(4.2) U+7+1 v s
v=20 on 0f).
Formally, letting 7 tend to infinity, the equation (4.2) becomes
Vol
(4.3) —Av + = f in Q,
v=20 on Of).

In this chapter we show how, if we let v tend to infinity in (4.1)) and (4.2)), the assumptions
f strictly positive or f only nonnegative influenced the existence of a limit equation for
the first problem and of positive solutions for (4.3]).

More precisely, thanks to a priori estimates from below and from above for the distribu-
tional solution of (4.1)), we prove the existence of a limit equation for if f is zero in
a neighborhood of the boundary of the domain, and the nonexistence of a limit equation
if f is strictly positive.

Moreover, if f is strictly positive, we recover the existence of positive solutions for (4.3)
given in Theorem [2.34] If f is zero in a neighborhood of the boundary we present a one-
dimensional example in which the solution of obtained as limit of our approximation
is zero where f is zero, so that we have a nonexistence result of positive solutions for (4.3)).
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4.1. Main assumptions and statement of the results

We will study first the behaviour of the sequence {u,} of solutions of

f(z)

—div(M (x)Vu,) = n €,
Up,
(4.4) Uy > 0 in Q.
u, =0 on 02,

as n tends to infinity. Here Q) is an open bounded subset of RN, N > 2, f a fixed non-
negative L>°(€2) function and M (z) a matrix which satisfies, for some positive constants
0<a<p ae inzcQand V¢ € RY the following assumptions :

(4.5) M(z)€-¢Zalg® and  [M(z)] <5,
n+1
Then we fix M(xz) = I and we study the sequence {Un = uz_ 1} of solutions of
n
n |Vu,[* ,
(4.6) —Avn+n+1 o = f(z) in €,
v, =0 on Of).

Our results are the following:

THEOREM 4.1. Let f be a nonnegative L>(Q2) function. Suppose that there exists w CC §2
such that f =0 in Q \ w, and such that for every ' CC w there exists ¢, > 0 such that
f>cy ind. Let {u,} be a sequence of solutions, given by Theorem of

f(z)

(4.7) —div(M (x)Vu,) = e in €,

n

uy, =0 on 0f).

Then {u,} is bounded in L*>°(2), so that it converges, up to subsequences, to a bounded
function u which is identically equal to 1 in w. Furthermore, the sequence of right hand
sides { f(z)/u"} is bounded in L*(S2), and if ju is the x-weak limit in the sense of measures
of the right hand sides f(x)/u®, p is concentrated on dw, and u in W, *(Q) is the solution
of

(4.8)

—div(M(x)Vu) = p in Q,
u=>0 on 0f).

THEOREM 4.2. Let f be a nonnegative L>°(2) function. Suppose that for every w CC €
there exists ¢,, > 0 such that f > ¢, inw. Let {w,} be an increasing sequence of compactly
contained subsets of ) such that their union is €2, and let u,, be the solution of

. . f(:L’) Xwn .
(4.9) —div(M (x)Vu,) = —ur in Q,

U, =0 on 0f).



4.1 Main assumptions and statement of the results 63

Then {u,} is bounded in L*>(2), so that it converges, up to subsequences, to a bounded
function u, which is identically equal to 1 in ). Furthermore, the sequence of right hand
sides {f(x)Xuw, /u™} is unbounded in L'(§2), and there is no limit equation for u.

Starting from these results and considering the sequence {v,} of solutions of (4.6) we
prove the following existence theorem for (4.10) in the case f strictly positive.

THEOREM 4.3. Let f be a nonnegative L>=(82) function. Suppose that for every w CC
there exists ¢, > 0 such that f > ¢, in w. Then {v,} is bounded in Wy*(Q) N L®(Q), so
that it converges, up to subsequences, to a bounded nonnegative function v. Moreover v
15 a weak solution of

Vol
(4.10) —Av + = in €,
v=>0 on 0f).

On the other hand, if f is nonnegative, more precisely if f is zero in a neighborhood of
012, we show, with a one-dimensional explicit example, nonexistence of positive solutions
for obtained by approximation.

We prove the following result:

THEOREM 4.4. Let Q = (—=2,2) and w = (=1,1). Let u, in Wy*((—=2,2)) be the weak
solution, given by Theorem [2.25, of

) —uy(t) = X in (<2,2),
u,(£2) = 0.
n+1
Let v, = ——— be a weak solution of
n+1
" |vp|? .
(4.12) Tt T, T e i (52:2),
v (£2) = 0,

then v, weakly converges to a function v in Wy*((=2,2)) and v, belonging to C3°((—1,1)),
15 a classical solution of

(4.13) BT

2

Moreover v(t) = —2C082 (gt) in (—1,1) and v(t) =0 in [-2,—-1] U[1,2].
7r

As a direct consequence of Theorem we have that the assumption f strictly positive

is necessary (and not only technical) to have positive solutions on the whole 2. Hence

the results contained in [4] and [29] are sharp.
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4.2. Estimates from above and from below

Since the formulation of distributional solution for ({.1)) given in Section [2.3]is not suitable
for our purposes, we are going to better specify the class of test functions which are
admissible for the problem to obtain estimates from above for u. We start with the
following theorem:

THEOREM 4.5. The solution u of (4.1 given by Theorem is such that:

i) u'*! belongs to W,*(Q);
ii) w is such that

U’YH 1,2
(4.14) /M VU</fv Yo e Wy (), v>0;
iii) u is such that
1
for some constant C' > 0, independent on .

Proof. We begin by observing that, using the boundedness in L>°(2) of the sequence

U, of solutions of (2.12)), and the boundedness of u;%l in Wy*(Q), the sequence u?, is
bounded in W, %(Q) for every p > 2L In particular, {u}F'} is bounded in Wy *(Q). This
yields that u7*! belongs to W,2(Q) as well; i.e., i) is proved.

We now fix a positive ¢ in Cj(Q) and take u], ¢ as test function in (2.12). We obtain

’y/M(x)Vum-Vumu?n_1¢+/M(x)Vum.V¢u7nS/fgp,
Q Q Q

Dropping the first term (which is positive), we obtain

/M UVH Vo < /fso

Letting m tend to infinity, and using the boundedness of u7;' in W, ?(Q), we obtain

u'erl
/M ) Vi < /fso, Y e C5(Q), ¢ >0.

Since u? ! belongs to W’ (Q) we obtain by density

/M Vv</fv Yo e Wy (Q), v>0,

which is . We now choose

U:Gk<u7+l>7
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as test function in (4.14) (recall that u > 0, so that v > 0 as well). We obtain, setting
Ay (k) = {1 > (y+ 1)k} = {v > 0},

+1 +1 +1
/Mk) M(x)V(;L:_ ) -VGk<;L:_ e /Am ka(;i oF

Recalling (4.5) we therefore have
2 7+1
<[ sa(s).
A (k) v+1

+1
@/ch) )VG’C(;H‘F 1)

From this inequality, reasoning once again as in [69], we obtain that there exists C' > 0
such that

W
<C
H7+ 1HL°°(Q) - ”f||L°°(Q) ’

which then yields (4.15)). O

REMARK 4.6. We observe that if we also assume that w = {f > 0} is compactly contained

in Q in Theorem [2.25, then u belongs to W,*(Q) and iw belongs to L'(Q)). As a matter
u

of fact, taking u,, as test function in (2.12]), we have

11,
O[/ |Vum|2§/ fuml S Lfl(Q) )
Q Q (’U/m—i—g)'y CZ,’Y

so that u belongs to VVO1 2(Q). Moreover, using the Lebesgue theorem and that u,, > Corys

we deduce that — strongly converges to = in LY(Q)). As a consequence we can extend
u u

the class of test functions for (2.11) to Wy*(Q).

REMARK 4.7. Under the assumptions of the Remark[4.6, thanks to the results contained
in [10], it follows that u is the unique weak solution of (4.1)).

From now on, 7 = n, and we will denote by wu,, be the solution of (4.7)); therefore, by the
results of Theorem , we have that u”! belongs to Wy *(Q2) N L>®(Q), and that

_1
ftll ey < (CO+ DI )7
which in particular implies that
(4.16) linrgigop [nll ooy =1

We now turn to the estimates from below on the sequence {u,,}.

THEOREM 4.8. Let u, be the solution of (4.7)), and let w CC 2 be such that for every
w' CC w there exists ¢, > 0 satisfying f > ¢, in w'. Then there exists M,, > 0 such
that

1 M,

(4.17) Up > (4 1)ntTle nil inw'.
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Proof. Let w”’ CC W' CC w, by the assumptions we have that
(4.18) my = inf f(x) >0.

TEW

Let n in C}(€2) be such that

0 inQ\w.

We consider the function ¢ € C1([0,1]) given by Lemma in correspondence of
g(t) =e"— 1,5 =1 and of an arbitrary constant C' > 0. Define

£(x) = Ve(n(z) € Cy(Q),

zn = —lo ,
& n+1

1 in W,
n(r) = {

and, for £ > 0,

U,
Note that v, > 0 is well defined, since where 2z} > k one has u,, # 0. We have

()
(4.19) \%S N V.
Since
Ve — (n+1)Vu,
U,
we obtain
Vv, = —Vu;in Gre(z) + uinvzn Xank)y = _Vu_gn Gr(zy) — %x&lm ’

where A, (k) = {zF > k} = {Gi(2) # 0}. Therefore, since u, belongs to W,L*(Q) N
L>®(2) and it is locally positive, z, and v, belong to W,.*(Q). So that the positive function
vy, €2 belongs to WOM(Q), has compact support and can be chosen as test function in (2.11)),
with v = n, to obtain
2 2
- M (x)Vu, - Vu, % - M (x)Vu, - Vu, w
An (k) U, An (k) Uy

+ + 2
+2/ M(a:)vun.vng/ %
An (k) Up, An(h) ur

Since
n+1 B

n+1
Up

Zn

Y
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the previous identity can be rewritten as

n+1/ M(2)Vzp - Van Gr(z7) € —/ M(2)V 2, - Vz, &

-2 M(z)Vz, - VEGR(2)) € = er" Gr(zh) e,
An (k) An (k)

Since the first term is negative, we have, using (4.5) and (4.18)), as well as the fact that
Gi(sT) < sT, that

a/ |Vzn|2§2+mwr/ Gy (2) €2 < 25/ IV 2, || VE|Gr(z) €.
An(k) An(k) An (k)

Using Young’s inequality in the right hand side, we have

a 232
26 [ WalvdaEe<y [ vaPer It [ veran®,
An(k) An(k) & JAL(K)

so that we have
«

2 2
5/ |VG/§(Z:)|2 §2 +mw'/ eGk(Z;DGk(Z;—) 52 < i / |V€|2 Gk(Z;L)2
An (k) An(k) & J A (k)
Observing that
o'
VGO <

oo

VG(=)P € + SIVEP Gul ),
we obtain
o 4632 + a?

S NGEDOP rm [ G e < T [ we G
4 Ja, ) An(k) 2a An (k)
Using that £ = \/¢(n) and ([(£.19), we deduce

(0%

S INGEDOP s [ oSG el)
4 Janm) Au(k)

4% + o? ' (n)°
<N [ G S
8a D J A, k) ©(n)
Applying Lemma with ¢ = Gi(z;), and choosing the constant C' as
c=P Y g2
4o, I n”LOO(Q)
we have
4% + o
C 8a @ (77)
At 48% + a?
/ Gl () = 1) o) + |Vl [ Aa(b) 0]
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where |A,,(k) Nw'| is the Lebesgue measure of A, (k) Nw’. Hence, we obtain

T RGO [ G )
4 S 2 Janm
My 432 + o?
= Gzt < —|IVnl? An (k) Nw'|.
R G L s LT ER O

Dropping the positive terms in the left hand side, we have

/ VGDep < e
An (k)

2002

Moreover, denoting with S the constant given by the Sobolev embedding theorem and
recalling that £ = 1 in w”, we deduce, for j > k£ > 0, that

G — K2 AnG) N % < ( [ e )
An(j) Nw”

V91 o An () 1 .

2

“\* 46° + o?
< +\¢ |2 g2 T 9 An I "N
< (/An(k)w |Gr(z1)¢| ) <S8 — ]|Vn||LOO(Q)| (k) N o]

2 4 2 2
Defining ¢" = 82%, we have, for all W’ CC W' CC w, that
[0
IVnllZ, [An(k) 0 w'|%
(4.20) 14,(7) N "] < e (&)

(7 —k)*
Now we consider Ry = dist(w”,w). Define
w, ={z € Q : dist(z,w") < r}
and
m(k,r) = |An(k) N w,|,
for every 0 <7 < Ry and k > 0. Choosing 0 <7 < R < Ry and n such that [|[Vn]| (

<
C1

and taking w” = w, and w’ = wg in (4.20)), we deduce
—r

, m(k, R)%
m(]7T)§C2 . ( ) o* )

(G — k) (R—r)

where ¢y = cyc?’. From this inequality it follows, applying Lemma that there exists
M,, > 0 (independent on n) such that

< M, .

18 ey <

Recalling the definition of z, in terms of u,, we therefore have

1 = 1 My
Up = (N4 1)ntTe n41 > (n 4 1)ntle »+1  in W',

which is (4.17)). O
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We conclude this section with the following remark:

REMARK 4.9. As a consequence of the estimates (4.16|) and (4.17), we thus have

lim w, =1 uniformly in w'.
n—-+00

Repeating this argument for every w’' contained in w, we have that u, converges to 1 on
w.

4.3. Proofs of Theorems and

We start with the proof of Theorem [4.1] in which we recall that w = {f > 0} is compactly
contained in €.

Proof of Theorem [4.1l We have already proved that
(4.21) < (O + VIl ey

so that u,, is bounded in L>°(€2). This implies that there exists u in L>(£2) such that w,
*-weakly converges to u in L>((2) and, by Remark [1.9) u =1 in w. We are now going to
prove that the right hand side of is bounded in L!(Q) uniformly in n. As a matter
of fact, if u, is the solution of (4.7)), from Theorem and Remark [4.6] it follows that

u, € Wy (), un > ¢ > 0in w and - belongs to L®(€). Then we have, by the results
Uy
in [69], that

)

wio) = [ 6oy 2

where G(z, -) is the Green function of the linear differential operator defined by the adjoint
matrix M*(z) of M(z), i.e., the unique duality solution of
—div(M*(x)VG(z,-)) = d, in Q,
G(x,-)=0 on 0f),

dy, VreQ,

where 0, is the Dirac delta concentrated at x in . It is well-known (see for example
[60]), that for every w’ CC Q there exists K > 0 such that

K
(422) G(.CE, y) > m s V.T, Y € o

Fix now T in Q \ @, let w” CC Q be such that w C w” and T belongs to w”, and let K be
such that (4.22) holds. We then have

7 > (@) = [ Gy LY

(Cn+ DI~ g g o) Y
K f@)y

“Jo T —yN T un(y)
K ﬂwd

> .
= diam(Q)N2 J, un(y) Y
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Therefore, there exists M > 0 such that

(4.23) Jo) I gy

n n
Uy, Q Uy

w

i.e., the right hand side of (4.7) is bounded in L'(2). Observe now that for every ' CC w
there exists M, such that

1 M,

Un(x) > (n+ 1)+ e w1, in W

Therefore,
nM
/ niw
f(l') < |(’u |e + HfHLoo(Q)
v u T (1)
so that
(4.24) T G
n—-+00 roupy

i.e., the right hand side converges to zero in L{ (w). Let now u be the bounded Radon
measure such that

f(x)

Uy
Clearly, by the assumption on f, ul_ (2 \ @) = 0, and, by (4.24), pL_w = 0, so that
p = plOw. Moreover, by Remark [4.6] we can take u, as test function in (£.7) and we

obtain, using (4.5)), (4.21)) and (4.23)), that
Q o Up =@ Jo up

then w,, weakly converges to u in W, () as n tends to infinity. Recalling that, by Remark
|, is the (unique) weak solution of (4.7), that is

— i, in the x-weak topology of measures.

(4.25) / M(2)Vuy, - Vi = / e voewrr ),
we obtain, letting n tend to infinity, that
(4.26) / M(x)Vu -V = / wdu, Vi € Cy(Q),
so that u is a distribut?onal solution with fsi)nite energy of the limit problem (4.8]). O
REMARK 4.10. We observe that u,, is also the unique duality solution of , ie.
(4.27) /ung:/ inv, Vg e L>(Q),

Q Q Uy

where v € Wy*(Q) N L>(Q) is the unique weak solution of

(4.28) —div(M*(x)Vv) =g in Q,
v=20 on 0f2.
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This implies, letting n tend to infinity in (4.27) and using the standard results contained
in [69], that u is the unique duality solution of (4.8).

Now we prove Theorem [4.2] Here let us recall that for every w CC Q there exists ¢, > 0
such that f > ¢, in w and that {w,} is an increasing sequence of compactly contained
subsets of (2 such that their union is 2.

Proof of Theorem [4.2. Let be u, the solution of (4.9). It follows, from the fact that
f(2) Xw, () has compact support in 2 and using Remark , that u, belongs to W, ()
) v ()

Uy,
have that {u,} is bounded in L*°(£). Then there exists u in L*({2) such that wu, *-
weakly converges to u in L>°(2). Moreover, by Remark , we deduce that wu, uniformly
converges to 1 in w, for every w CC €2, hence u = 1 in (). If we assume that the sequence
{f (%) Xuwn (7)

Uy

measure. Repeating the same argue contained in Remark we obtain

/ugz/vdu, Vg € L>(Q),
Q Q

where v in W,?(Q) is the weak solution of (4.28). Then u in L>(Q) is the duality
solution of (4.8)), so that u belongs to W' (Q). Since u = 1 in Q, there is a contradiction.
Hence, the right hand side of is not bounded in L'(Q) and there cannot be any limit
equation. [

belongs to L'(2). Once again as a consequence of Theorem 4.5 we

is bounded in L*(€), then it *-weakly converges to u in the topology of

4.4. One-dimensional solutions and Proof of Theorem [4.3]

First we prove a result that makes the link between a distributional solution of (4.4)) and
a finite energy solution of (4.6)) rigorous.

PROPOSITION 4.11. Let f be a nonnegative function belonging to L>®(Q). If u, is a

n+1

solution of (@A) given by Theorem |2.28, then v, = u’; - is a distributional solution of
n
([4.6) with finite energy.

PROOF. We already know, by Theorem that u"*! belongs to Wy*(Q2), so that v,
belongs to W, (). With the same argument we have that u” belongs to W,(Q). Let ¢
be a function in C(Q), we have that u"¢ is a function in W, *(Q) with compact support
(w = supp(p)). Then we can take u”p as test function in (2.11)) and we obtain that

(4.29) /Vun-VgouZ—f—n/Vun-VunuZ_1g0:/fg0
Q Q Q

If we rewrite (4.29), using that u, > ¢, in w, we have

V UZ—H V V 2 U’?ln
/Q (n+1)- 90+n/9| Up| ugﬂw—/gfsa
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Hence, by definition of v,,, we deduce that

Vu,|?
/an-Vso+ n /’ U'so:/fso,
Q n+1 /g v Q

that is v, is a distributional solution with finite energy of (4.6). O

REMARK 4.12. We note that for every w CC Q we know, by Theorem[2.25], that u, > ¢,
n+1

m w. Then v, > in w. Using this property and that v, has finite energy we can

n+1
extend the class of test functions for (4.6) from C1(Q) to Wol’Q(Q) with compact support.

Now we study (4.4)) in the one-dimensional case to better understand what happens, if f is
strictly positive, to u, and to the related v,, by passing to the limit for n tending to infinity.

Fix n in N. We consider (4.7) with Q = (=R, R), R >0, M(z) = [ and f = 1in (—R, R).
So that we have
1

—ul = — in (=R, R),
(4.30) o ( )
up(£R) = 0.
In order to study (4.30) we focus on the solutions ¥, of the following Cauchy problem
1
!
—yn(t) = ——= fort >0,
) Y= 5w
' yn(o) = Oy,
y;L(O) =0,

where «,, is a positive real number that we will choose later. Defining w,, = y—n, we can
«

rewrite (4.31)) as

n

1
" .
—w (t) T (1) for ¢t > 0,
w! (0) =0
Since ——— is Lipschitz continuous near s = 1, then there exists a unique solution w,

qntlgn
locally near ¢ = 0. It is easy, by a classical iteration argument, to extend the definition
interval of w,, to [0,7,,), where T,, < 400 is the first zero of w,, (i.e. w,(T,) = 0) when
it occurs, otherwise T,, = +o00. Hence w, is concave (w!(t) < 0), decreasing (w/,(t) < 0)
and 0 < wy(t) < 1fort € [0,7,) and it belongs to C*((0,7},)).
Now multiplying the equation by w/,(t) we have
[w (O] wi(t)

2 aptup(e)
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hence, integrating on [0, s], with 0 < s < T,,, and recalling that w/,(0) = 0, we have

/ 2 2 wl—n s) —
’LUn(S) - (n—l)OéZJrl( n ( ) 1)

Since w),(s) < 0 we deduce

! _ 2 wl—n s) — %
(433) wh(5) = | o gy (08 7) = D,

therefore we can divide (4.33)) by (w. "(s) — 1)% and integrate on [0,t], with 0 <t < T,,,
to obtain

t w! (s) L 2
(4.34) /0 T e (e

Setting r = w,(s) in the first integral of (4.34) and recalling that w,(0) = 1, we have

/1 I 2y
— _dr = -
waty (1 —771)3 (n = Do+t

Once again we can perform the change of variable h = 1 — r"~! to deduce

n—1

Imwn™ (1) 1 2(n—1
(4.35) / : _dn=y 2Dy
0 h2 (1 — h)72(n71) oy
1—wy, (t) 1
Define I,,(t) := / —— dh for t > 0, then [,(0) = 0 and I, is a
0 hi(1— h)2eD

continuous positive and increasing function in [0,7},), so that [,(¢t) < I,(7},). It is a well
known result that

o 1 M
(4.36) In(Tn)—/o hi(1— h)ZD dh = r(5)

where I'(s) is defined in (1.3). Thus we can extend I, (¢ ) [ ,T,] and it is uniformly
bounded for every n € N and ¢ € [0, T},]. Moreover, from and computing (4.35) for
t =1T,, we have

[zt T (3+ )
(4.37) T, = 1) T ()

We observe that T;, and «,, are such that if «,, tends to infinity also 7}, tends to infinity.
Recalling that we want a solution for (4.30) that is zero if ¢ = R, imposing T,, = R for
every n in N we find that

(4.38) o (2]—22 (n—1)T? (-2 ) a
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Hence, with this value of ,, w,(R) = 0 for every n in N and w, belongs to C?((0, R)).
Thanks to the initial condition w/,(0) = 0, we can extend w, to an even function w, on
[—R, R] in the following way

(t) = {wn(t) for t € [0, R]

wy(—t) fort e [-R,0).

So w,, belongs to CZ((—R, R)) and is the classical solution of

1
—wl(t) = ——— fort >0
(4.39) at) aan(h) T
W, (£R) =0.
Setting u,(t) = o, w,(t) for ¢ in [—R, R] we have that u,, belongs to CZ((—R, R)) and is
" t n—+1
the classical solution of (4.30). This implies that v, (t) = % is a classical solution
n
(in CF((—R, R))) of
L /A
— =1 —-R, R
(4.40) R R in (-8, R),
v, (£R) =0,

that is in the one-dimensional case. Multiplying the equation (4.40) by v, and
integrating by parts on (—R, R) we obtain that {v,} is bounded in W,”((—R, R)). By
definition of v,, this implies that {#"*'} is bounded in W, *((—R, R)). Using the Rellich-
Kondrachov’s theorem we deduce that there exist a subsequence, still indexed by w"*!,
and a function g : (—R, R) — [0,1] in Cy((—R, R)) such that @™ uniformly converges
to g in (—R, R). We want to make g explicit.

By definition of w,, it follows that

n—1

: n—1 1 n+1 nFl
Tim wp™i () = lim (wy ™ (2) " = g(t),

uniformly in (0, R). Combining (4.35)) and (4.38]) we obtain

1—wi =l () i+ L
(4.41) / . ! —— dh = J—%Mt.
0 h (1 — h)rn R T (%)

Computing (4.41)) as n tends to infinity we obtain the explicit expression of g. Indeed we

have, by Lebesgue theorem and from well known result of integral calculus, that
1—wp = (t) 1 (L4 L

ah— i VLGt )

s
2arcsin(4/1 —g(t)) = lim — t=—1t.
( ( )) n—oo [o h% (1 _ h) 2(n—31) n—oo IR r (#) R

n—1

It follows that
g(t) = 1 — sin? (% t) = cos? (%t) :
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So that g is an even C* function defined on R, in particular on [—R, R).
Fix now ¢ in (=R, R). We want to prove that w0, (t) tends to 1 as n tends to infinity. We
assume, by contradiction, that

lim w,(t) =8 < 1.

n—oo
: 1-p _
Defining ¢ := 5 we deduce, for n large enough, that w,(t) <1 —e. So that

wn—‘rl(t) S (1 o €)n+17

n

and, letting n tend to infinity, we obtain cos® <% t) = 0. Since t # £R, we find a

contradiction, then @, (t) tends to 1, as n tends to infinity, for every ¢ in (—R, R).
Now we return to problem (4.30)) recalling that u,(t) = a, w,(t). From (4.38)) and using
that 0, (t) tends to 1, as n tends to infinity, for ¢ in (=R, R), it follows that

lim w,(t) =1, Vt € (—R, R).

n—r00
This result is exactly the one-dimensional version of Remark From (4.38)), we deduce
that

2R? — T2 (=2
(TL ) - (nll) wz—&—l(t)’
m(n+1)T? (§+ﬁ>

so that we have that there exists a limit function v : [-R, R] — R such that

vy (t) =

. 2R? o [ T
v(t) = nh_)rrolovn(t) =3 cos (5% t) :

After a little algebra we obtain that v is a classical solution of
v’ 2
L

= 1 in (=R, R),
v, (£R) =0,

that is (4.10). Thus we have proved Theorem [4.3|in the one-dimensional case.
Finally we prove Theorem in the N-dimensional case, here we recall that f is strictly
positive.

Proof of Theorem [4.3. Tet w, be the solution of (4.4) given by Theorem It
follows from Proposition m that v,, are distributional solutions of .
By assumption for every w CC €2 there exists a positive constant ¢, such that f > c,.
This implies, by Theorem [£.8] that

1 My,

w2 (n+ 1) A
then
(4.42) v, > e Mo Vw CC 1,
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with M, a positive constant depending only on w. So that v, is locally uniformly positive.
Moreover, by Theorem , we have that v, belongs to W, () and

where C' is a positive constant.
Choosing a nonnegative ¢ belonging to C}(2) as test function in (4.6) and dropping the
nonnegative integral involving the quadratic gradient term, we deduce that

(4.43) /Qan-ng/Qfgp.

As a consequence of the density of C1(Q) in W, *(Q) we can extend ([@.43) for every

nonnegative ¢ in Wy (). Choosing v, as test function and using Holder’s inequality
and the Sobolev embedding theorem, we obtain

2
J19ol < [ ron <181 ) Nonll ey < ST g2 gy Tl

where S is the Sobolev constant. Hence {v,} is bounded in W,*(©2). Thus, up to a
subsequence, it follows that there exists v belonging to Wy"*(2) N L>°(Q) such that

(4.44) v, — v weakly in Wy *(Q) and weakly-* in L>(Q),

v, — v strongly in L9(Q2), Vg < +o0, and a.e. in €.

In order to pass to the limit in (4.6) we first prove that v, strongly converges to v in
WL2(Q), that is

loc

(4.45) lim / IV (v, — )2 =0, Ve CHQ) with ¢ >0.
Q

n——+o00

We consider the function ¢,(s) defined in (L.4) and, choosing ¢, (v, —v)¢ as test function
in (4.6), we obtain

/ Vo - V(vn — v) (v — 0) o + / Vo - Vg (v — v)
Q Q

n Vo, |? B
w2 [P —ve = [ 7 s -0e
It follows from (4.44]) and using Lebesgue theorem that
lim Vu, - Voor(v, —v) =0 and lim / f édr(v, —v)p=0.
n—-4o00 Q n——+o0o Q
Thus

Vu,|?
416) [ Fou- o= o) o b+ [ gy, — o) = o)
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Moreover, setting w, = supp(y) and using (4.42), we deduce that

n |V, |2 n Vv, |?
_ > _
n+1 /Q Up, Or(Un = v)p 2 n+1 /Q Up, [@2(vn =)l

> oMo / V0al? 62 (vn — )] ¢,
Q

so that
(4.47) /Qan YV (vn — v) §h (v, — V) — eMee /Q |V, |2 [or(vn — V)] @ = €(n).
We can add to (4.47))

—/ V- V(v, —v) ¢\ (v, —v)
to obtain, noting that this quans‘zity by tends to 0 letting n go to infinity, that
@48) [ IV =0 — 0o = e | (90 or(w =)o = o)

Since, by Young’s inequality and using once again (4.44)), we have
/ V02 |62 (0 — )] ¢ < 2 / 1V (0 — ) |62 (00 — )]
0 0
T 2/ Vol [ér(v — v)] @ = 2/ V(0 — )2 |éa(tn — )| @ + €(n),
Q Q

we deduce that

/Q V(0 — 0)[2 {640 — v) — 2™ (v — 0)[} @ = e(n).

1
Choosing A > e?M~e we have that {¢}(v, — v) — 2e™¢|@) (v, — v)|} > 3 hence (4.45)
holds and

(4.49) v, — v strongly in W,22(Q).

Now we pass to the limit in (£.6) with test functions ¢ belonging to Wy?() N L®(Q)
with compact support. We have, by (4.45)), that

lim Vo, - Vo = / Vv -V,
Q

n——+o00 Q

and, using (4.49)), (4.42) with w = supp(¢) and Lebesgue theorem, we deduce

_ n /|an|2 /|VU|2
lim = — p,
n—toon+1 Jo v, Q v
so that

2
(4.50) /Vv~Vg0+/|vv| goz/fgo,
Q Q v Q
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for all o in W, *(Q) N L*®°(Q) with compact support.

Let ¢ be a nonnegative function in Wy*(Q) N L®(Q). Let {¢,} in C1(Q) be a sequence
of nonnegative functions that converges to ¢ strongly in WOI’Q(Q). Taking ¢,, A ¢, which
belongs to Wy () N LOO(Q) with compact support, as test function in ([4.50), we obtain

(4.51) /’ Pm A p) Z/Qf(som/\w)—/QVv-V(wm/\so)-

Since ¢, A @ strongly converges to ¢ in Wy*(€) we have
(4.52) lim {f(som/\cp)—/W-V(som/\@)}z/fso—/Vv-W-
m=toe Jo Q Q Q

° Vol

Moreover (om A @) is a nonnegative function that converges to

v v
everywhere in ). Applying Fatou’s lemma on the left hand side of (4.51]) and using (4.52))
we deduce that

Vol? Vol?
/| il g0<hmlnf/&(g0m/\(p):/fg0—/VU‘VQD,
Q v m=+0 Jo U 0 Q

© almost

2 2 Vo2
so that [VoF ¢ belongs to L'(€). Since [Vol® (emNp) < | :| by Lebesgue theorem,
we have

. [Vol? / Vol
453 1 CAQ) =
(4.53) pim f s emhe) = | e
As a consequence of (4.52)) and (4.53)) we obtain

Vol? .
(4.54) /vu-w+ /| :' = /fgo, Vo >0in W, 2(Q) N L¥(Q).
Q Q Q

T-(v
Furthermore, taking é as test function in (4.54) and dropping a positive term, we

deduce

Applying respectively Fatou’s lemma on the left hand side and Lebesgue theorem on the
right hand side of (4.55) we have

2 2
/ﬂglimif/’vv| /f
v m——+00

so that [Vl " belongs to L'(Q). Since we can write each ¢ € Wy*(Q) N L®(Q) as the

difference between its positive and its negative part, we trivially deduce that (| - ) holds
for all p € Wy*(Q) N L>®(Q), so that v is a weak solution of (£.10). O
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REMARK 4.13. We note that we can also consider test functions only belonging to W01’2(Q)
in P Indeed let ¢ be in Wy2(Q), then Ti(¢™) is a positive function belonging to

)N L°(Q) that strongly converges to ¢ in Wo (Q) as k tends to infinity. Taking
Tk(gp ) as test function in (4.54) and letting k tend to infinity, by Lebesgue theorem and
Beppo Levi theorem, we deduce

(4.56) /vu Vit +/|V oF /fso

In the same way we obtain

(4.57) /Vv Ve~ +/’W|2 /fso :

so that subtracting (4.57) to we have that - ) holds for every ¢ belonging to
Wy ().

REMARK 4.14. To prove that {v,} is bounded in W,>(Q) and ([&.44) we only used that f
is nonnegative and belongs to L>(2).

4.5. Nonexistence of positive solutions

Here we prove Theorem As a consequence, if f is only a nonnegative function, it
follows a nonexistence result for positive solutions obtained by approximation of (4.10)).

Proof of Theorem [4.4. First we study the behaviour of u, weak solution, given by
Theorem [2.25 of (4.11)), that is in the case N =1, Q = (-2,2), M(z) = [ and
[ = X(1,)- In order to study u, We use the construction of one-dimensional solutions
done in the previous section, in which we have proved that there exists a function w, in
C?((0,T,)) classical solution of

1
" o .
—w(t) = WD) in (0,7,),
w! (0) =0,

where T}, is the first zero of w,. We recall that 0 < w,(t) < 1, w, is concave (w/(t) < 0)
and decreasing (w!,(t) < 0) for every ¢ in (0,7,,). Moreover we have obtained that

2 _ 1
(4.59) w,(t) = — = Dantt (w, (1) — 1),
and, by integrating, that

1—wp™ " (¢) 1
(4.60) Sp(1—w! (1)) := / - —— dh = | >——=t,
0 h§ (1 . h) a/nJrl

2(n—1) n




Existence and nonexistence for quasilinear elliptic equations with singular
80 quadratic growth terms

for every t in [0,7,). So that S, : [0,1) — [0,S5,(1)) is a nonnegative, continuous and
strictly increasing function. Recalling we have that S, (1) = [,(T,), that is uni-
formly bounded, thus we can extend S, in 1 to have S, : [0,1] — [0, S,(1)]. Then there
exists the inverse function S, ' : [0, S, (1)] — [0,1]. Furthermore we recall that

| magtt T(5+ )
(4.61) T, = RS

In order to have 1 < T,, < 400 for every n we can choose a, = (¢,(n — 1))#1, with ¢, a
positive constant such that

21 (%) .
(4.62) Cp > z =c,, Vn in N.
)

Now we consider the following Cauchly problem

X(0,1)

—yg(t):c Vs fort >0,
(4.63) 0 — 1. n(n = 1)yn(t)
Yn(0) = 0.

For every ¢ in (0,1) we have that ) and (4.63) are the same problem, so that there
exists ¥, (t) = w,(t) classical solution of in (0,1). Since y”(t) = 0 for every t > 1,
we deduce that y,(t) = y,(1) + v, (1)(t — 1) wy (1 ) wh (1)(t — 1) in [1,2). It follows
from (4.59)) and by the definition of «,, that

2 1
4.64 (1) = — | ——— (wy (1) = 1)=.
(4.64) (1) = = | (w7 (0) = D
Since we want that y,,(2) = 0 for every n in N, we search for ¢, such that w/,(1) = —w,(1).

With a little algebra it follows from (4.64) and (4.60) that is possible if and only if, for
every fixed n, we have

By Lemma below there exists a sequence {¢,} such that (4.65) holds for every n,
hence we have that y, belonging to C'((0,2)) is such that

(4.66)  y,(t) = w,(t) in [0,1], yu(t) =w,(1)(2—1)in (1,2], y,(0)=y.(2)=0.

We want that w,(t) < y,(t) in [0,7,]. This is true if and only if 7,, < 2. If, by contra-
diction, T,, > 2 we have w,(t) = y,(t) in [0,1] and —y/(t) < —w!(t) in (1,2], so that,
by w! (1) = y,(1), we deduce w,(t) < y,(t) in (1,2]. It follows from y,(2) = 0 that
0 < w,(2) < 0, that is a contradiction. Then we obtain T, < 2, w,(t) < y,(t) in [0, 7},]

(4.65) w (1)

n
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and, by , that
812 (=)

n—1 .= :
(4.67) cn < () Cn s Vnin N.

Thus {c,} is bounded and, up to subsequences, there exists a positive real number cy
such that

2 . L 8
— = lim ¢, < ¢ = lim ¢, < lim ¢, = -
T n——+o0o n—r—+0o00 n——+00 ™

1 <Ty:= lim T, :WQ/CLO < 2.
n—-+oo 2

As shown in the previous section, it follows from (4.60) that

and, respectively,

(4.68) lim w"™(t) = cos® (%t) and  lim w,(t) =1, for t € (0,T) .

n—-+o0o n—-+o0o

-1
Now we suppose that T, > 1. Fix § = > 0, so that 1 + 8 < T,.. We know that

for n large enough
wa(1+8) < (14 8) = wa()(1— B).
By passing to the limit as n tends to infinity and using (4.68) we obtain 1 < 1 — f3, that
2

is f < 0. This is a contradiction, then T, = 1 and, therefore, coo = —.

0
Recalling that y,(t) = w,(t) in (0,1) and using, once again, (4.68)) we have

n+1 _ 2 E > : —
(4.69) llI+Il yr T (t) = cos <2t and ngrfoo yn(t) =1, for t € (0,1).
It follows from (4.65) and using that v, (1) = w, (1) for every n that
(4.70) Jim y"+1(1) =0 and  lim yn(1) =1,
n—-+0o0
hence, by (4.66), we obtain that y7*!(t) = w,(1)""(2 — t)"*! and that
(4.71) hr+n y"t(t) = 0 and hIE yn(t) = (2—1), for t € (1,2].
n——+0o0

Therefore, by the initial condition y,,(0) = 0, we can extend y,, to an even function defined
n (—2,2) as follows

(cn ))n+1yn(—t) for t € [-2,0),

so that § belonging to Ci((—2,2)) is a weak solution of (£.11). By Remark [4.7] there is a
unique weak solution of (4. 11i hence ¢, (t) = wu,(t) for every t in (—2,2) and n in N.

n+1 t
Moreover, by Proposition 4.11} setting v,(t) = %—(), we have that v, in C}((—2,2)) is
a weak solution of (4.12)) and, by Remark that there exists a function v such that v,

(1) = {(E D)7y(t)  forte 0.2,
)
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weakly converges to v in Wi ((—2,2)) and almost everywhere in (—2,2). As a consequence

of (4.69), (4.70) and (4.71) we deduce that

2 9 (T
o(t) = — C0s (5 t> fort € (—1,1),
0 fort € [-2,-1] UL, 2],

so that v belongs to C}(—2,2) N C5°(—1,1). Furthermore, with a little algebra, it follows
that v is a classical solution of (4.13]). O

REMARK 4.15. From the proof of Theorem we deduce that u, pointwise converges to
u defined as follows

(2—1t) fortell,2],
u(t) =<1 forte (—1,1),
(241t) forte[-2,—1].
Moreover, by Theorem u, weakly converges to u in Wy>((=2,2)). Hence we have
that
-1 forte(1,2),
u(t)=<¢0  forte(—1,1),
1 forte(-2,-1),

and u is a distributional solution of

—u" = —5_1 + 51 mn (—2,2)7
w(£2) =0.

So that we have completely recovered the result of Theorem [{.1]

To be complete we show the technical lemma that we needed to prove the theorem.
Fix n in N.
212 (%)

7

LEMMA 4.16. Let ¢ belong to (co, +00), with ¢y =
oo oot WIS = TR ()

. Let w.(t) be the classical

solution of
(4.72)

Let T, be the first zero of w.. Then there exists a unique ¢ in (co, +00) such that Tz > 1
and

(4.73) w1 (1) = ﬁs ( 2) ,
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where S : [0,1] — [0, S.(1)] is defined as

1—we™ (1) 1
S.(1—wr (1)) = / : __dn,
0 hz (1 — h)2=1

fort in [0,T,].

PROOF. It follows from the proof of Theorem [4.4] that if ¢ > ¢ then there exists w,(t)
classical solution of (4.72) in [0, T.], with 7, > 1.
Now we define F': (¢, +00) — R as

2 2
c(n—l)QSC ( c>'

It is obvious that w.(t) is continuous on (cp,+00) for every ¢ in [0,7.), so that F' is
continuous. Fix ¢y < ¢; < cy. Recalling that

T - /w_cF(éanﬁ)’
2 TI'(%)

we deduce T,, < T.,. Moreover we state that w,, (t) < w,(t) for every t in (0,T.,].

"

Indeed, since —w (t) > —w (t) near ¢ = 0 and using the initial conditions, we obtain

that we, (t) < we,(t) near t = 0. If, by contradiction, there exists s in (0,7,) such that
We, (8) = we,(s) we have that w, (s) > w,,(s). We know, by (4.59)), that

F(c) = w™(1) —

c

P P R VAT S
Wl (5) = =[G, (W) — D <

2

=17 (we, "(s) = 1)2 = wl,(s),

Cc1

that is a contradiction. Hence we have that w,(t) is monotone increasing in ¢. This implies
that F' also is monotone increasing in c¢. By letting ¢ tend to the boundary of (¢, +00)
and recalling that

lim w”™(1) =0 and lim w!’t*(1) =1,

c c
c—Co c——+00

we deduce

lim F(c) = —#S_l( E) <0 and lim F(¢) = L

c—co C()(n - 1)2 0 Co c—+o00

Applying Bolzano’s theorem we obtain that there exists ¢ such that F'(¢) = 0, that is
(4.73). Since F'is monotone increasing, ¢ is unique. O

REMARK 4.17. It follows from Theorem that if f s nonnegative we cannot obtain
by approzimation a positive solution of (4.10). This implies that the existence results
contained in [4] and [29] are sharp.
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4.6. Open problems

We are now studying the nonexistence of positive solutions of in the N-dimensional
case with f only nonnegative. More precisely we assume that f is a nonnegative L*({2)
function and that there exists w CC Q such that f =0 in Q \ w, and such that for every
w' CC w there exists ¢, > 0 such that f > ¢, in W'.
We observe that from Remark it follows that u, given by Theorem [£.4] is a classical
solution of

—u”" =0 in (—-2,-1)U(1,2),

u(£l) =1,

u(£2) =0.
Our conjecture is that it is true also for NV > 1. More precisely we think that the following
result holds.

CONJECTURE 4.18. Let u be the function given by Theorem [f.1] with M (x) = 1. Then u
1s a classical solution of
—Au=0 inQ\w,
u=1 on Ow,

u =0 on 0f).

The difficulty is to prove that v = 1 in dw. A possible way is to prove that {u,} is a
sequence of functions uniformly continuous in n but until now we have not been able to

prove it.
With a similar idea we think that Theorem holds for N > 1. We state that:

CONJECTURE 4.19. Let u,, be the solution of (4.7) given by Theorem with M(x) =

n+1
I. Let v, = u:— 1 be the sequence of solutions of (4.6). Then {v,} is bounded in
n

Wy () N L>2(Q), so that it converges, up to subsequences, to a bounded nonnegative
function v. Moreover v is a weak solution of

V 2
—Av—|—| v| = in w,
v
v=20 on Jw,

and v =0 in Q\ w.

We think that, starting to the one-dimensional function v obtained by Theorem [4.4] we
can prove Conjecture in the radial case w = B;(0) C Q = By(0) C RY, with N > 1.



CHAPTER 5

Existence and regularizing effect for p-Laplacian systems

5.1. Introduction and main assumptions

In this chapter we are concerned with the existence of solutions for the following nonlinear
elliptic system

(5.1) —div(|Vul|P2Vu) + A" | 2u = f,  ue WyP(Q),
' —div(|Ve[P2Ve) = |u]"¢’, p € Wy (),

where ) is an open bounded subset of RY with N > 2, 1 <p < N, A>0,r > 1 and
0<f<p-—1.
In the case § = 0 the system (5.1)) becomes

52) {—div(|Vu|p2Vu) Al 2u=f, ue WIP(Q),

—div(|Ve[P?V) = [ul", p e WyT(Q).

For such value of 0, we show that there exists a regularizing effect for the existence of
solutions with finite energy. Indeed we prove the existence of a weak solution u in VVO1 P(Q)
of the first equation of with f belonging to L™(Q2), with (r + 1) < m < (p*).
Conversely, in the case p = 2 and 0 < 6 < 1 the second equation of the system (5.1]) is
sublinear. This fact does not allow us to use the same method as the previous case and
we are not able to prove the regularizing effect on u. However, we prove a regularizing
effect on the existence of finite energy solution for the second equation of (5.1, that is
we find finite energy solutions even if the right hand side of the second equation does not
belong to the dual space.

Once again we reason by approximation. We first prove the existence of finite energy
solutions for (5.1)) if f is regular using that for regular data the system (5.1)) has variational
nature. Then we prove the regularizing effect by passing to the limit in our approximation.

5.2. Regular data
Let us firstly prove the existence of a weak solution (u, ¢) of (5.1) with data f in L™(f),
m > %. This solution is a saddle point of a functional defined on Wy (Q) x W, (Q).

PROPOSITION 5.1. Let f in L™(QY), with m > , andlet A>0,r>1and0 <6 <p—1.
Then there exists a weak solution (u, ) of (5.1). Moreover, u and ¢ are in L>(2), ¢ >0
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and (u, ) is a saddle point of the functional defined on W, P(Q) x Wy P(Q) as
(5.3)

J(z,n) = fQ V[P — GH fQ VP + 2 fQ )7+ 2] fQ fz it fQ ) z]" < o0,
’ +oo otherwise.

PROOF. Fix iy € Wy ?(Q) and let I; be the functional defined on Wy (Q) as I;(z) :=
J(z,7). We have, by Hélder’s inequality and denoting by C; the constant of the Sobolev
embedding theorem, that

1 A(9+ 1)
L(2) 2 Zlalgo ) ~ 11200y = Csll Fll Loy @ 2 llwgr )

This implies that [, is coercive. Now we prove that [; is weakly lower semicontinuous,
which is that if z, — z in W,?(Q) then

(5.4) I(z) < liminf I1(z,).

n—o0

Since f € L™(Q) C L¥)'(Q) we have that that

lim fzn / fz.

As a consequence of Fatou’s lemma, it also yields
A A
_/(w+)9+1|z|r < liminf—/(¢+)6+1|zn|’".
T Q n—oo T Q

Then, by the weakly lower semicontinuity of the norm, we deduce (5.4)). Hence there exists
a minimum v of I; on Wol’p(Q). Moreover, by the classical theory of elliptic equations, v
is the unique weak solution of the Euler-Lagrange equation

(5.5) — div(|Vu|P2Vo) + AW D) oo = f, v e WP (Q).

We have, thanks to the results in [69], that

_1
(5.6) ollany + Nollzeey < CillF 15,

where C| is a positive constant not depending on f. We define S : W, ?(Q) — W,”(Q)
as the operator such that v = S(1)). Now we consider the functional defined on W, (Q)
as Is(n) := J(v,n). As before, since § < p — 1, we have that —I, is coercive and weakly
lower semicontinuous. Then there exists a minimum ¢ of —I5, that is a maximum of I,

on Wy (). Let I be a functional defined on W,”(Q) as

9 1
S v = [
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Since ( is a maximum of I5, we have
A 1
ShQ) =B+ [ vup = [ po
r PJa Q

1 A
< L+t / Vol / Fo=200m), ne Wi,
P Ja Q r

so that ¢ is a minimum of I5. We observe that ( > 0 and { # 0 in Q. In fact we have
0—i— 1 0+1
/ V¢ — / (CH ol < — / VTP — /(C+)9+1|U|T = I;(¢7),
Q

then ||C||W01,p(ﬂ) < ||C+||Wg,p(m and so (~ is zero almost everywhere in 2. Now we show

that ¢ # 0. We consider \; to be the first eigenvalue of —A, while ¢, in Wy (Q) is the
associated eigenfunction, that is

—div(|[Vp1[P7?Vr) = Me1]P 201 in Q,

w1 >0 in €2,
p1=0 on 9.
Let t > 0; computing I3 in ty;, we obtain
0+ 1)t .
) = 0 [ v - o [ g
0
0 + 1)\ tP
—( T )M / o — ¢! / O " = et — ot
p Q
0+ 1)\
where ¢; 1= O+ D / ¢! € (0,+00) and ¢y := / @I v|" € (0, +00]. By taking t such
p Q Q
1
—6-1
that ¢;t?P "' —c, < 0, thatis t < )’ , we have I5(tp1) < 0. Then I3(¢) < 0 = I3(0)
C1

and ¢ #Z 0. Since ¢ is a nonnegative minimum of I3, by Proposition [2.22] it is the unique
weak solution of the Euler-Lagrange equation

(5.7) — div(|V¢PVe) = o' ¢!, ¢ e WoT(Q).
Following [17], we have that

(5.8) ICllwr ) + ISl @) < Collvll 7= i 9)
and we deduce, using (5.6, that
(5.9 ¢l ey + ICllze(@ < CUFIEE™T = R,

where C' and Cy are positive constants not depending on f and v. Now we define T :
Wy (Q) — WyP(Q) as the operator such that ¢ = T'(v) = T(S(¢))). We want to prove
that T o S has a fixed point by Schauder’s fixed point theorem. By we have that
Br(0) € W,?(Q) is invariant for T o S. Let {1} € W,”(Q) be a sequence weakly
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convergent to some v and let v, = S(¢,). As a consequence of (5.6]), there exists a
subsequence indexed by v, such that

vn, — v weakly in W,?(Q), and a.e. in Q,
(5.10) * °

Up,, — v weakly-* in L>(2).
Moreover, we have
—div(|ank|p_2ank) =f—A( :{k)9+1|vnk|’"_2@nk = Gn,»

and, using Holder’s inequality, the Poincaré inequality and (5.6)), we obtain

Q
lgnu lzsc0) < Ifller @t Allon, 1=y ln 1954 0y < 1 orn+ACHIF g Nl ) < C-

Then, by Theorem 2.1 in |[15], we obtain that Vu,, converges to Vv almost everywhere
in €. Since

1170, P72V 0n, [ oy = ome s gy < Call Fllmie,
we deduce that
(5.11) Vo, [PV, — |Vo|P~2Vu weakly in (L' ().

We recall that v, satisfies

/Q|ank|p_2VUnk -Vw + A/Q( F ) v | P = /wa, Yw € W, 7(Q).

Letting k tend to infinity, by (5.10)), (5.11) and Vitali’s theorem, we have that

/Q\VUIPQVU -Vw + A/Q(wﬂe“]v\?"%w = /wa, Yu € WP (Q),

so that v is the unique weak solution of (5.5)) and it does not depend on the subsequence.
Hence v, = S(¢,,) converges to v = S(¢) weakly in WyP(Q) and weakly-* in L=(Q).
Then

(5.12) v, |" — [v]" strongly in LI(2) Vg < 400 and ||[v,|"¢Y| 110y < C.
Using (5.9), (5.12) and proceeding in the same way, we obtain that
(= T(v,) — ¢ = T(v) weakly in W, *(Q), and weakly-* in L=(Q),

(5.13)
IV Ca|P2V ¢, — |VC[P2VC weakly in (L (Q))N,

and ( is the unique weak solution of (5.7). Now we want to prove that (, converges to ¢
strongly in Wy ”(Q). In order to obtain this, by Lemma 5 in [16], it is sufficient to prove
the following

(5.14) lim [ ([VGIP2VE — VP2V -V (G =€) =0.

n—0o0 9]
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We have that
5.15 Vnp_2vn—v P2y¢) -V n—C) = V(P — V(|P2v -V,
( )/Q(!C! G IVCP2VC) -V (G0 — O) /Q|<| /chr ¢ V¢

— p—2 . P
L 1962960 T+ 1€y

The second and the third term on the right hand side of (5.15) converge, by (5.13)), to
H(Hivl,p(m. Then it is sufficient to prove that
0

: p _ p
(516) nh—>I20 HCnHWOlP(Q) - HCHWOLP(Q)

Since ¢, is equal to T'(v,) > 0, we have that

/ VG = / o 7¢I,
Q Q

By (5.12) and Vitali’s theorem, we deduce that

. r0+1 __ r0+1 __ p
o N e [

so that is true and is proved. Hence we have proved that if 7, converges to
o weakly in Wy P(Q) then ¢, = T(S(t,)) converges to ¢ = T'(S(v))) strongly in Wy ().
As a consequence we have that 7' o S is a continuous operator and that T'(S(Bg(0))) C
Wol’p(Q) is a compact subset. Then there exists, by Schauder’s fixed point theorem, a
function ¢ in W, (Q) such that ¢ = T(S()) and, since T'(v) > 0 for every v in Wy (1),
© is nonnegative . Moreover let u = S(p), we have that u is a minimum for /; and ¢ is a
maximum for I5. Hence (u, ¢) is a saddle point of J defined by and a weak solution

of . O

5.3. Existence and regularizing effect in the case § =0

In this section we assume # = 0 and we study the regularizing effect on the existence
of finite energy solutions of both equations even if the data do not belong to the dual
space. We recall that the assumption on € implies that we deal with the system (5.2)).
We consider the datum f in LO*1'(Q) and a sequence {f,} such that

fn € L), |ful < |fI Yn € N and f, — f strongly in L(’"“)/(Q)_

By Proposition there exists (un, ©,) in Wy P(Q) x W,P(Q) that satisfies
—div(|Vu,|P2Vu,) + App|un|" U, = fr, (4),
—div(|Ven [P Vien) = |ual", (i),

with ¢, > 0, u, and ¢, in L>*(2). Choosing u,, as test function in (i) and ¢, in (ii) of
(5.17) we have

/ Vunl? + A / paltn]” = / fut, / VP = / it
Q Q [9] Q Q

(5.17)
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Then
(5.18) /\Vun]p+/ |V<pn|p§0/fnun.
Choosing u,} = = UpX{u,>0} a8 test function in (44) we obtain

(5.19) /\V(pn|p V- Vu /]un] /|u,ﬂ”1.
Q

For the term on the left hand side of (| - we have, by Young’s inequality and (5.18)),
that

1 1
(5.20) /!V%\”‘2V¢n'VUZ < _// |V<ﬂnlp+‘/ [V, [P
Q P Ja b Ja

1 1
P Ja P Ja Q

Putting together (5.19) and (5.20)), we obtain

/|u,‘1"|rJrl SC’/fnun.
Q Q

In the same way, using u,, = —UnX{u,<0} as test function in (i), we have

[lwr<c [ g
0 Q
so that

e [t = [ [t < [ < [ il

Then, applying Holder inequality to the right hand side of (5.21] - ) with exponents (r + 1)’
and r + 1, we deduce

(5.22) fuallzreser < U oy
This implies, by (5.18) and Holder’s inequality, that
il
623 [1Vul+ [ Vel < Ol bl < CIIL g,
and
. 41
(5.24) [ onlil < CITT gy

As a consequence of (5.22)), (5.23)) and (5.24]), we have the following lemma.

LEMMA 5.2. Let f in LUV (Q), and let A > 0 and v > 1. Then the weak solution
(tn, on) of (5.17) is such that

[wnlre1(0) + ||un||W01’p(Q) + H(anWOl’p(Q) + /Q enlun|” < C(f),

where C(f) is a positive constant depending only on || f|| L1y (q)-
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The above lemma implies that there exist subsequences still indexed by u, and ¢, and
functions u and ¢ belonging to W, *(Q) such that

U, — u weakly in W,7(Q), and a.e. in €,

(5.25) u, — u weakly in L""(), and strongly in LY(Q) Vq < max{r + 1, p*},
©n — o weakly in W,?(Q), and a.e. in Q.

By applying these convergence results, we can prove the following existence theorem.

THEOREM 5.3. Let A >0, and let r > 1 and f in L™(2), with m > (r 4+ 1)'. Then there
exists a weak solution (u, ) of system (5.2), with u and o in Wy ().

The proof is a consequence of the proof of Theorem in the case 8 = 0. We deduce, by
Theorem the regularizing effect for the solutions of (5.2). We assume

N(p—1)+p

(5.26) (r+1)'<@®)er> N p

and f € L™(Q), withm > (r+1)".

REMARK 5.4. Under these assumptions we note that, if m > (p*)', thanks to the results in

N -1
14], we have that u belongs to Wi P(Q)NLL(Q), with t = M Then, sz < (p*,
0 N
,

N
Np—1)2 +§<; 1 © belongs to WyP(Q) even if the datum of

the second equation of (5.2)) does not belongs to the dual space. We verify that my > (p*)'.
Since

that ism < my =

pNT > (") Np
P) =~
N(p =12 +pp—1)+p Nip—1)+p
it follows thanks to (5.26)). Moreover we have that, if m < (p*) (i.e. the datum f does not
belong to WP (Q) ), then u belongs to WyP(Q). Hence we have a regularizing effect due

to the system: the functions u and o belong to Wol’p(Q) because of the coupling between
the equations. This fact does not follow on being solutions of the single equations.

my = Sr>pt—1,

We now prove summability results for u.

PROPOSITION 5.5. Under the assumptions (5.26)), the weak solution u of (5.2)), given by

-1
Theorem belongs to L*(Q2), with s = M
m(p—1)+1

PROOF. We recall that u is obtained from (5.25)) and that (u,, p,) is a weak solution

of the system (5.17). Choosing (u,})? as test function in (i) of (5.17), with v > 1, we
have

(5'27) 7/ |V90n|p72v90n : vurt(u:)fkl - /(UZ>T+W-
Q Q
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Applying Young’s inequality to the left hand side of (5.27) we obtain, by Lemma that

58) [ Ve Ve, Vui) ™ <0 [ (Ve p 0 [ [Fu Py
Q Q Q

=N +C [ [Fuluy.

Now using (u,7)P*"PT! as test function in (i) of (5.17) we have, by Hélder’s inequality,
that
629 [ vurpr <c [ 1vapr e [ ety

Q Q Q

m/

: C/ Falwi 7P < O fllmie (/ (UZ)W(””—Z’H))
Q 0
As a consequence of (5.27), (5.28)) and (5.29)) we obtain

(5.30) /Q(u:{)“” < C(f)+Clfllmoy (/Q(u:lr)m’(pv—pﬂ))

Imposing r + v = m/(py — p+ 1) we have

1
ey

—1 —1 —1
Vzr(m )+tmp-1) S::T+7:m(pr+p )
m(p—1)+1 m(p—1)+1
We verify that v > 1:
r(m—1)4+m(p—1) r+1 ,
= >1& > = 1
7 m(p—1)+1 - "= (r+1),
which it is true by (5.26]). Then, by (5.30)), we deduce
L) < C(f),

where C'(f) is a positive constant depending only on || f|| zm (o). In the same way we obtain,
using u,, as test function, that

1wy [[Ls2) < C(f)-
Then we have
[unllze) = lug sy + llun |2 < C(f),
and u,, converges to u weakly in L*({2), so that u € L*(Q2). O

REMARK 5.6. Comparing this summability result on u with the result contained in (5.25)
we observe that

_ m(pr+p—1) r+1

= > 1 > = 1)
m(p—l)—i—l_r—i_ &S m > . (r+1),
then, if (5.26) holds, L*(2) C L™(Q). Moreover, if m > (p*), it follows from [14] that
N -1
u belongs to L*(Q), with t = M We have that
N —pm

s>tem<m.
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Summarizing we obtain that the best summability results for u are
(5.31) we L), if (r+1) <m<my,
and

we L), ifm>my.

Then we note, by (5.31), that we have also a regularizing effect for the summability of the
solution u.

5.4. Existence and regularizing effect in the dual case

We prove now the existence theorem for a weak solution of (5.1]) for > 0 and f belonging
to L®)'(Q). Let {f,} be a sequence that satisfies

fo € L), |fo] < |f| ¥n € N and f, — f strongly in L' (Q).

Then, by Proposition , there exists a solution (u,,@,) in Wy?(Q) x WyP(Q) of the
system

(5.32)

—div(|Vu, |P~2Vu,) + At u, | " 2u, = f, (I),
—div(|Vn P2 Vion) = |un|"¢?, (11),

with ¢, > 0, u, and ¢,, in L>°(£2). Choosing u,, as test function in (I) and ¢, in (1) we
have

(5.33) /\Vun|p—|—A/g09+1|un|r:/fnun, /|Vgon|p—/|un|T 9+1.
Q

Then

(5.34) /|Vun|p—|—/ |Vg0n|p§0/fnun.
Q Q Q

We obtain, by (5.34) and applying Hélder’s inequality and the Sobolev embedding theo-

rem, that

/\Vun]pgf\Vun\er/\Vgpn\ng/fnun

Q Q Q Q

< Cllif e @llunll o 9y < ClA Nl Loy @ lunllw» o).
so that
630 Jualwgoe < O and lealwire < O IR o
Moreover, by (5.33), we deduce
(5.36) [ el < g,

Choosing u, as test function in (I1) we obtain

/Q V2V, - Vit = / " g, = / [0
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Using Young’s inequality and (5.35)), we find

1 1
/W!’”“ ¢ /\Vsonlp‘QVson-VUZ < —// IWn!”‘/QVWI\p
< [IVal 4o [Vl < CIAIE g

In the same way, choosing u,, as test function in (I7), we deduce

1 6
/Q ur e < ClF Ik,

so that

U A / e+ [ e < ORI

As a consequence of ([5.35 -, and ( -, we have the following lemma.

LEMMA 5.7. Let f in L(”*)'(Q), and let A>0,r>1and 0 <60 <p—1. Then the weak
solution (un, ) of (5.32)), given by Proposition is such that

ity + lelbgorey + [ 27l + [l < €O,

where C(f) is a positive constant depending only on || f|| Loy q)-

Once again, by Lemma there exist subsequences still indexed by u, and ¢, and
functions u and ¢ in W,P(Q) such that

(5.38) U, — u weakly in Wol’p(Q), strongly in L9(€2), with ¢ < p*, and a.e. in €,
5.38
©n — @ weakly in W, (), strongly in L(2), with ¢ < p*, and a.e. in Q.

THEOREM 5.8. Let A >0, andletr>1,0<0 <p—1and f in L™(QY), with m > (p*)’.
Then there exists a weak solution (u, @) in Wy (Q) x Wy (Q) of system (5.1).

PROOF. Let u and ¢ be the functions defined in (5.38). We want to pass to the limit
in (I7) of (5.32). We recall that ¢, satisfies

(5.30) / Vul 2V - Vi = / ", Vb € WIP(Q).
Q Q

We want to prove that |u,|"¢? strongly converges to |u|"@’ in L*(Q). Fix o > 0 and let
E C Q. By Lemma [5.7| there exists & € N such that

r r r 7.7 1 r
/|un|wﬁ=/ Iun|¢i+/ |un|¢iék/¢i+=/ Jua M,
E Ef|un|<E} En{lun|>E} E E J{un >k

g%r/wi+@gE’”/g@2+g.
E k E 2
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Since, by (5.38)), ©Y strongly converges to ¢’ in L'(€), applying Vitali’s theorem, there
exists d > 0 such that |E| < § and

/ [unl" 0, SET/ h+2 <o
E E 2

Then, once again using Vitali’s theorem, we have

(5.40) [ |"0? — |u|"p? strongly in L*(Q).

Hence, by Theorem 2.1 in [I5], we obtain that V¢, converges Vi almost everywhere in
Q2. Moreover

IVen P2V oull (v < H%H”‘jp(m <C(f),
so that
(5.41) IVonlP 2V, — [VolP 2V weakly in (LF'(Q))V.

Fix « in W, ?(Q) N L®(Q), we have, by (5.41), that
lim / IVon|P 2V, - Vip = / |Vl|P2Vy - V.
Q

n—oo o)

On the other hand, by (5.40) and Vitali’s theorem, we find

i [ Junfr et = [ fule
By passing to the limit in (5.39), we obtain that
(5.4) [1werve o= [lures. wew@ni=o).
Q Q
Let 1 belong to Wol’p(Q). Choosing 1) = Ty (n) as test function in ([5.42)), we obtain
(5.43) [ 196l V1) = [ ol Tito)

We have that |[Vp[P~2Vp - VTi(n) converges to |Vp|[P 2V - Vi almost everywhere in
and that

VP2V - VTi(n)| < [Vl
with ||Vg0|p’2V<p : V?]‘ in L'(Q). Then, by Lebesgue’s theorem, we deduce

(5.44) hm / IVp|P 2V - VTi(n / VP2V - Vn.
Now we want to let & to infinity on the right hand side of (5.43). We recall that

[ul""Ti(n) = [ul " Tio(n ™) — Jul" " Ti (1),
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where |u|"¢?Ty(nt) and |u|"@?Ty(n~) are nonnegative functions increasing in k. We have
that |u|" Ty (n") converges to |u|"¢nt and |u|"¢?Ty(n™) converges to |u|"p'n~ almost
everywhere in €. It follows from Beppo Levi’s theorem that

klim/|u]”<p9Tk /\uﬁoen* and hm/[uﬁoeTk /|u| o'n,
—00
so that

(5.45) hm |u|rg09Tk hm/|u|”g09T — hm/|u|7"<p9Tk )

/ = [l = [ty
Q Q

Letting k to infinity in (5.43)), by (5.44) and (5.45), we obtain
/ Vel ™*Vp - Vi = / [ul"¢"n, € Wy"(Q).
0 0

Then ¢ in WyP(Q) is a weak solution of the second equation of (5.I). Now we want to
pass to the limit in (I) of (5.32)). We have that u,, satisfies

(5.46) / VP2V, - Vi) + A / o | Pt = /Q fab, Vi € WyP(Q).

13

Fix € > 0. Choosing ¢ = in ([5.46[), we obtain

1/ Vu |p+A/ 0+1|u "~ —a(Gk(u")) :/ f TE(Gk(un))'
€ J{k<un|<k+e} {lun|>k} € {lun|>k} €

Dropping the first nonnegative term, we have

A/ 9+1‘u ‘r 1 <A/ 9+1‘u ‘ E(Gk(un))
{lun|>k+e} {|un|>k} €

Te(Gk(un))’
= /{un|>k} ! = /{un|>k} al

1
A/ S ! < / 1l
{|un|>k+e} {|un|>k}

Letting ¢ tend to zero, by Beppo Levi’s theorem, we obtain

1
(547 [ Y A
(lun|2k} A Jun|2k)

so that
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Once again fix 0 > 0 and let E C Q. By (5.47)), we have

/ 9+l’un| _/ 9+1’Un’ _|_/ 9+1’Un’
E En{lun|<k} En{|un|>k}
1
<wt foreg [
E A |2k}

As a consequence of (5.38) and applying Vitali’s theorem, there exist k and 6 > 0, with
|E| < 6, such that

1

— 1f] <
A J{jun 2R}

ol Q

and l%’“l/ it < g
E
uniformly in n. Then we deduce

(5.48) / OO, < o,

uniformly in n. We recall that by (6-38), @i u,|"" converges to ¢?Tu|
everywhere in €). Thanks to , applying Vitali’s theorem, we obtain that
(5.49) 9+1\un| — " Hu|""! strongly in L'(9).

We have that

=1 almost

—div(\Vun|1”_2Vun) = — AR, Uy + fo = gn,
and, by the assumptions on f and (5.49), that ||gn||z1) < C. Applying Theorem 2.1 in
[15], we obtain that Vu, converges to Vu almost everywhere in (2. Moreover

) p—1
V| VUTZH(LP'(Q))N < ||U||W(},p(ﬂ) < C(f),
then
(5.50) |V, |2V, — |VulP~2Vu weakly in (LP'(Q))V.
By passing to the limit as n tends to infinity in (5.46)), by (5.49) and (5.50), and applying
Lebesgue’s theorem, we deduce that

/ VP2V - Vi) +A/ I |2 = / fib, Vo € WEHP(Q) N Lo(Q).
Q Q Q

Proceeding as when we passed to the limit in (/7), we have

/ |VulP~2Vu - Vo + A/Qg09+1|u|r_2uv = /va, Yo € Wol’p(Q).

Then u in WyP(Q) is a weak solution of the first equation of (5.1) and (u, p) is a weak
solution of (5.1] . n

REMARK 5.9. We want to stress the fact that, in order to prove this theorem, we only
used the results (5.38)) obtained as consequence of the estimates in Lemma[5.7 Since the
results ((5.25) are analogous, proceeding in the same way we can prove, as said before,

Theorem [5.3




98 Existence and regularizing effect for p-Laplacian systems

REMARK 5.10. We observe that, thanks to the results in [17], the second equation of (5.1)
% /
admits a weak solution in W, P(Q) if |u|" € L*(Q), with s > ( P ) . We recall that u

0+1
Nm(p—1 t 0\
belongs to LY(Q), with t = %}m) Then, if . < 6]?1— T ) we deduce once again a
reqularizing effect on ¢ due to the coupling in the system. We have that
t _ < p* >’ PR Npr
- m < msg:= .
roo\0+1 YTUNp-12+pp—1)+pr—0(p—1)(N - p)

For this to be possible we must have that r > p* — 1 — 6. We stress the fact that for 6 =0
we recover the reqularizing effect on ¢ observed in Remark [5.4)

In this case (f > 0) we are not able to prove a regularizing effect on the existence of a
finite energy solution for the first equation of (5.1]). We feel that this is an obstacle only
due to the method used, and that the following conjecture should be true.

CONJECTURE 5.11. Let A > 0, and let r > 1 and 0 < 0 < p — 1. Then there exists
1 < m < (p*) such that if f belongs to L™(Y), with m > m, then there ezists a weak
solution (u, @) in WyP(Q) x WyP(Q) of system (5.1)).

For instance if we assume that |u,| < c¢, in €, for some ¢ > 0, we are able to prove that
this conjecture is true with m = (r + 1+ 6)" and r» > p* — 1 — 6. Indeed, if we consider
the approximate problem (5.32)), choosing u; as test function in (/7), we obtain

(5.51) / Veul Vo, - Vui = / a0t = / it > / 140

So, by Young’s inequality, using ([5.34)) and applying Hélder’s inequality, we deduce from

[E:51) that

1 1 1

—9/ ju | < /\VMMV%‘WZ < —//IV%\”‘/\VUH”

c Ja Q D Ja P Jao
1 1

<1 / Vul? + & / Vuu < C / 1] < Ol fllpeesssor o ltnllrsrsocay -
D Ja P Ja Q

Thus we have, once again, that

ety + Dlgoar + | el + [ a1t < €09,

where C(f) is a positive constant depending only on || f|| ¢+140y (q)-

Thanks to these estimates it follows from Remark that we can pass to the limit in
(5.32). Hence we have proved our conjecture with m = (r + 1 + 0)’.

We note that for 6 = 0 we obtain m = (r + 1), that is, exactly, the result stated in
Theorem (5.3
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