
Going Beyond DiffServ in IP Traffic Classification

Davide Aureli∗†, Antonio Cianfrani∗, Alessio Diamanti†‡, José Manuel Sanchez Vilchez‡, Stefano Secci†,
∗Universita’ degli Studi di Roma ”La Sapienza”, 00185 Rome, Italy, Email: firstname.lastname@uniroma1.it

† Cnam, Paris, 75003 Paris, France. Email: firstname.lastname@cnam.fr
‡ Orange Labs , Orange, 92320 Châtillon, France. Email: firstname.lastname@orange.com

Abstract—Quality of Service (QoS) management in IP net-
works today relies on static configuration of classes of service
definitions and related forwarding priorities. Packets are actually
classified according to the DiffServ architecture based on the
RFC 4594, typically thanks to static configuration or filters
matching packet features, at network access equipment. In this
paper, we propose a dynamic classification procedure, referred
to as Learning-powered DiffServ (L-DiffServ), able to detect the
distinctive characteristics of traffic and to dynamically assign ser-
vice classes to IP packets. The idea is to apply semi-unsupervised
Machine Learning techniques, such as Linear Discriminant
Analysis (LDA) and K-Means, with a proper customization to
take into account the issues related to packet-level analysis, i.e.
unbalanced distribution of traffic among classes and selection of
proper IP header related features. The performance evaluation
highlights that L-DiffServ is able to change dynamically the
classification outcome, providing an higher number of classes
than DiffServ. This last result represents the first step toward a
more granular differentiation of IP traffic.

I. INTRODUCTION

Quality of Service (QoS) technologies commonly address
the network link bottleneck issue by introducing protocols to
support priority packets to pass first. Differentiated Services
(DiffServ) is the de-facto QoS protocol used in IP networks,
in most of Internet Service Provider (ISP) networks as well as
in layer-3 operated data-center and entreprise networks. Once
packets are classified into classes of services at a network
access point or router, they can get dropped or delayed in
the queuing system of core routers according to class priority.
DiffServ was proposed as a stateless alternative to the stateful
Integrated Services (IntServ) [1] architecture, suffering from
scalability issues by following an end-to-end layer-4 flow
virtual circuit resource reservation approach.

Indeed, IntServ revealed to be not well suited for hetero-
geneous systems as it requires support at the source terminal,
destination terminal, all intermediate routers and at the appli-
cation as well, which made it practically difficult to happen.
In addition, IntServ-enabled routers to maintain an internal
state for each virtual circuit opened by the resource reserva-
tion protocol [2], which makes them vulnerable to failures.
Therefore, the community turned to DiffServ as a lighter and
stateless approach, not touching at terminals nor applications,
and not requiring all routers on the way to implement it. User
traffic is mapped by edge routers or access points into the
appropriate forwarding class, encoded into the packet header.

978-1-7281-4973-8/20/$31.00 c© 2020 IEEE

This information is then used by the intermediate routers to
differentiate packet processing, as forwarding classes indicate
drop and resource priorities.

In this paper, we propose to go beyond the legacy DiffServ
policy of manually setting QoS classes, in order to be able
to dynamically learn the appearance of new classes worth
being differentiated. Our proposal, called Learning-powered
DiffServ (L-DiffServ), is to dynamically refine the set of
classes in order to increase the granularity of the macro service
classes. We propose a machine learning methodology for de-
termining valuable sub-classes for actual packet classification.
Our solution is composed of three main building blocks: i)
data pre processing, performing features extraction and over-
sampling); ii) dimensionality reduction by means of the Linear
Discriminant Analysis (LDA) procedure; and iii) clustering
and classification, exploiting the K-Means algorithm. We run
our experiments against real data from the MAWI dataset [3],
containing daily IP traces of a transpacific backbone link.

The paper is structured as follows. Section II gives the nec-
essary background. Section III presents our machine learning
methodology. After in Section IV we report the numerical
result. Finally, Section V concludes the paper.

II. BACKGROUND

We provide the necessary background on DiffServ and
application of machine learning in traffic classification.

A. DiffServ Architecture

The DiffServ architecture is described in RFC 2474 [4].
It relies on a mechanism to classify and mark packets as
belonging to a specific class of service, using 8 bits for the
Differentiated Services (DS) field in the IP header. This field
is composed of two parts, the 6 most significant bits identify
the DSCP (Differentiated Services Code Point) while the 2
least significant bits define the ECN (Explicit Congestion
Notification). Classification is based only on the DSCP field,
while the ECN field is used for router communication in
congestion detection. Each router is configured to differentiate
traffic based on its set of classes. Complex functions, such as
packet classification, can be carried out at the edge of the
network by access routers, whereas core routers simply apply
per-hop behaviour (PHB) treatment that defines the packet
forwarding properties associated to a specific traffic class. In
theory, a network could have up to 64 different traffic classes
using the 64 (26) available DSCP values, which can give to

the network operator great flexibility. In practice, DiffServ
recommend the following PHB encoding:

• Default Forwarding (DF): PHB applied to any traffic
that does not meet the requirements of any other service
classes. Typically, DF has best-effort forwarding charac-
teristics. The recommended DSCP for DF is 0 [5].

• Expedited Forwarding (EF): PHB with characteristics of
low delay, low loss and low jitter. These characteristics
are suitable for voice, video and other real-time services.
EF traffic is often given strict priority queuing above all
other classes. The recommended DSCP for EF is 46 [6].

• Assured Forwarding (AF): PHB meant to provide as-
surance of delivery as long as the traffic does not exceed
some prefixed rate. Traffic that exceeds the rate faces a
higher probability of being dropped if congestion occurs.
The AF is composed of four separated classes and,
for each each class, three drop precedence levels (high,
medium or low) are present. Twelve separated DSCP
encodings from AF11 to AF43 are thus defined [7].

• Class Selector (CS): it assures backward compatibility
with network devices that still use the IP Precedence field.
Before the DiffServ architecture, IPv4 networks could use
the IP precedence field in the ToS [8] byte of the IPv4
header to mark priority traffic.

B. Machine Learning applied to Traffic Classification

Let us mention relevant works in the literature that apply
machine learning to IP traffic classification, anticipating sim-
ilarities and differences with our approach.

In [9], the average packet size and average duration of the
flows are used to classify flows with K-means; our proposal
instead works at packet-level and target DSCP marking, ensur-
ing a fine-grained classification. The work was carried out on
a dataset created collecting full packet traces from a monitor
attached to their campus Internet link. In the analysis on the
clustering applications they considered only TCP traffic and
not UDP one, whereas we work with both of them detecting
the different class of service to which they are related. Their
results for the choice of cluster number (k) is interesting,
increasing k led to better performance in the evaluation metrics
(Precision and Recall) pointing out that flows of the same
application level showed differences and therefore the presence
of sub-groups within the applications. This idea inspired our
way to establish classes.

In [10] K-means, DBSCAN (unsupervised clustering) and
AutoClass (probabilistic model-based clustering) are applied
to two empirical packet traces. One is the Auckland IV [12],
the other is a full packet trace that they collected at the
University of Calgary. They compared the three methods in
terms of accuracy, showing that both K-Means and DBSCAN
work very well and much more quickly than AutoClass. In our
work, we consider only K-Means because DBSCAN, even if it
obtains excellent performances, is too bound to the parameter
choice (ε and minpts) parameters: they should be redefined
for different contexts.

In [11] authors proposed an automated Class of Service
(CoS) mapping. They classified the traffic into four different
classes, i.e. Bulk Data, Interactive, Multimedia and Transac-
tional. They worked on 4 sets of data: Auckland-IV [12], and
three different traces from Gigascope [13]. They proposed
to extract an identifying vector, composed of statistic flows
features, for the 4 service classes and then test the behaviour of
two classification algorithms, K-nearest neighbors (KNN) and
LDA. In our work LDA is used to reduce the dimensionality
and to detect the variables that maximize the variance between
the classes of our interest ([5]) while for the classification we
use the minimum distance with respect to the centroids ex-
tracted from the K-Means, to obtain a real-time infrastructure.

[14] rather than making a priori assumption for the number
of service classes, they apply K-Means in unsupervised way
for the data exploration part. Here they detect three clusters:
Transactional application (DNS), Interactive application (Tel-
net and FTP) and Bulk Transfer application (HTTP). The refer-
ence feature vectors are the mean packet length per connection,
connection duration and variance of packet interarrival. For
classification they applied KNN evaluating the result according
to the Davies-Bouldin Index, which is not normalized. This is
the main reason to use the Silhouette Coefficient to evaluate
the clustering outcome, making possible to compare results
related to different daily-traces.

III. MACHINE LEARNING METHODOLOGY

This section details our Learning-powered DiffServ (L-
DiffServ) solution for dynamic refinement of DiffServ classes
of services, including dataset processing, oversampling, di-
mensionality reduction, clustering and classification steps.

A. The L-DiffServ architecture
Our proposal consists in generating a new set of service

classes through a hybrid semi-unsupervised machine learning
technique that automatically assesses the new number of
service classes, identifying the sub-classes within existing pre-
set classes, based on features extracted from IP packet flows.
Figure 1 depicts the L-DiffServ workflow.

Fig. 1: L-DiffServ Workflow Overview.

Data preparation is accomplished through Pre-processing,
Oversampling and Dimensionality Reduction. In the pre-
processing phase the numeric values from captured packet

features are normalized, while the categorical ones are trans-
formed into binary; at the end of these operations, we delete
the features with zero variance because they have not infor-
mation for the differentiation between classes. In the oversam-
pling phase, we generate artificial samples of the minoritary
class (the one with less occurrences) to balance the data set. It
is worth noting that we choose to oversample the information
of the less numerous classes rather than undersampling the best
effort class because undersampling could lead to significant
information losses [15]. Finally, we reduce the space dimen-
sionality maximizing the variance between service classes and
projecting the starting dataset into the new dimensional space.

The goal of the Clustering step is to produce a new set
of classes, so that the proposed classification is based on a
grouping done according to the clustering method outcome.
First, we evaluate the clusters obtained through the Silhouette
Coefficient index of goodness [16]; it measures the magnitude
between cohesion (intra-cluster distance) and dispersion (inter-
cluster distance) for each group. Once we obtain the maximum
Silhouette value we establish the optimal number of clusters.
In this way we can assign a new label for each observation
and train the model based on our classification. The end of the
Clustering step coincides with the beginning of Classication
one. We can reclassify a test trace, with the same structure,
applying the transformations used in our methodology, evalu-
ating the minimum euclidean distance between the packet and
centroids extracted from the Clustering step.

We validate this methodology on a public dataset provided
by MawiLab [3] described hereafter.

B. Dataset and Features

The WIDE project publishes daily IP traces of a transpa-
cific link, called the MAWI Archive [3]. Each file contains
15 minutes of traffic flows, captured between 14:00:00 and
14:15:00 local time. This represents usually between 10 and
20 GB of traffic for one file. Before being released, traces are
anonymized to hide any personal information (removing ap-
plication data and scramble IP addresses with the Crypto-PAn
Algorithm [17] following collision-free and prefix-preserving
principles). As of our knowledge, there is no other equivalent
public dataset, spanning many months, we could exploit.

In our analysis, we work on traces of multiple days across
multiple weeks for training and classification. We consider
the trace belonging to the period which goes from 3rd April
2019 to 10th May 2019, considering only Wednesday. The
average size of the traces is 19240.36 MB and the average
number of packets is 252,046,154. In the traffic analysis, we
work only with IPv4 packets along one forwarding direction
by filtering packets through the MAC address. We consider
for each trace 3,000,000 packets of the total trace because of
memory limits; we make a random sample splitting the trace
with 200,000 packets maintaining the percentage of packets
for each service classes. We focus the attention on a specific
day in this section (April 3, 2019).

The following characteristics are the features extracted from
every packet header: Internet Header Length (IHL), Differ-

DSCP Value DSCP Class Class Label

48, 56 CS6, CS7 Network and Internetwork Control

40, 46 CS5, EF Critical RTP Voice

32, 34, 36, 38 CS4, AF4 Flash Override

24, 26, 28, 30 CS3, AF3 Flash Voice

16, 18, 20, 22 CS2, AF2 Immediate

8, 10, 12, 14 CS1, AF1 Priority

0 CS0 Best Effort

TABLE I: Mapping between DSCP and class labels, from: [5]

entiated Services Code Point (DSCP), Explicit Congestion
Notification (ECN), Total Length, Flags, Fragment Offset,
Time To Live (TTL), Protocol, Source address, Destination
address, and from the TCP header part we extract Source Port
and Destination Port.

In Table I we report the mapping between the DSCP value
and the service class name we adopt during the analysis
as packet labels. Observing the column Class Label, clearly
we unify the CS class of service both with the AF and
with EF because there are few observation for the backward
compatibility classes.

In the following we show each step of our methodology.

C. Pre Processing

We process the dataset composed of the packet features with
the DSCP marking as label. We do not to consider the features
with zero variance because not important for packets differ-
entiation. Such features revealed to be the Internet Header
Length (IHL), the Flags except for the DF (Do-not-Fragment)
flag, and the Fragment Offset.

For the four categorical variables, i.e., Source and Desti-
nation Address and Source and Destination Port, [17] uses a
different key for each day to anonymize the trace, so we cannot
include IP addresses in our model; instead, we can handle
the Source and Destination Port - our idea is to determine
an identification port for each packet, trying to cover a high
density of information. We cover the ports that allow to keep
90% of packet volume, while the remaining ports with a small
occurrence are transformed into an artificial port of number 0.
Moreover for the packets whose protocol has no defined port,
as ICMP packets, we assign the port number −1; the values
−1 and 0 have not a numerical importance but they affect
the presence or the absence of such port within the packet.
In this way we create the summary variable called Heavy
Port. Finally, in the data Pre-Processing we transform the
categorical variables into binary variables applying One-Hot
Encoding [18] (it transforms a variable with n observations
and d values, to d binary dichotomous variables with n
observations, each observation indicating the presence with
1 or absence with 0 of the variable) while the numerical
variables are normalized. For data normalization we use the
MinMaxScaler function, with the following formula:

Fig. 2: DSCP Distribution in the considered MAWI dataset.

xi −min(x)
max(x)−min(x)

(1)

However, until now, our methodology considers all packets
in an undifferentiated way regarding the DSCP marking.
Nevertheless, observing the service class occurrences there
is a great imbalance in favour of the 0 DSCP label (best-
effort class). Thus, we apply the analysis for the Source
and Destination Port and the normalization part splitting the
beginning data frame into two components: the first one with
only the best-effort data, while in the second one we consider
everything not marked as 0 for DSCP value. In this way we
maintain the information related to best-effort and non best-
effort classes, otherwise the few observations of the non best-
effort classes could disappear under the magnitude of the best-
effort packets. This last consideration opens the door to the
main challenge for our analysis, the data unbalance.

D. Oversampling

Let us comment on the the DSCP distribution from our
trace, focusing on the percentage of packets for each service
class in Figure 2. More than 97% of the traffic is best-effort
traffic, the other services covering the remaining 3%. We
report in the histogram the label Not Known, not listed in
the Table I; it corresponds to DSCP values not recommended
by RFC 4594 [5], most of them being values between 0 and
8. This traffic is known as Scavenger, i.e., traffic with lower
priority than the best-effort class and to which is allocated the
lowest amount of bandwidth.

Furthermore it is interesting to observe the percentage of
packets related to the other service classes, to have a complete
picture of the available information. The Scavenger class is the
second service with the greatest usage 2.63%. The Expedited
Forwarding (CS5, EF) class and Network & Internetwork
Control (CS6 and CS7) have a good percentage of occurrences:
the first with 0.14% and the second with 0.21%. However,
the four Assured Forwarding (AF) classes have almost no

packets. In fact the packets related to the Priority (CS1, AF1),
Immediate (CS2, AF2), Flash Voice (CS3, AF3) and Flash
Override (CS4, AF4) are only the 0.0008%.

Such unbalanced data distribution represents one of the most
discussed problems in the Machine Learning literature, as it
strongly influences the behaviour of classification algorithms
in favour of a specific class. This problem is known as the
Paradox of Accuracy [19]. In fact, if we limit ourselves to
identify best-effort packets from non best-effort, any classifi-
cation algorithm trained on this data will classify everything
as best-effort getting always more than 90% of Accuracy.

To countermeasure this issue, we exploit the Smote over-
sampling technique presented in [20]. The Smote algorithm
can oversample the service classes for which we have very
few samples, without losing information from the best-effort
class. In this way we obtain a balanced dataset, where each
service class has the same number of occurrences of the best-
effort class, hence we can extract the characteristics which
maximize the differentiation between service classes.

E. Dimensionality Reduction

The dataset matrix after the over-sampling procedure has
10, 611, 286 rows, representing the packets, and 42 columns,
as number of features (including the DSCP label). Our purpose
is to reduce the features only to the ones that allow to
identify the service class each packet belongs to. We reduce
the dimensionality of the space working with the LDA (Linear
Discriminant Analysis) technique [21]: it allows to specify the
number of axis for the new space, thus obtaining a 3D graphic
distribution of the packets. Moreover it works in a supervised
way, being also a classification algorithm; in this way it can
maximize the variance between classes of services; in fact, we
set it to use a variance of 97.8%. In Table II, for each one of
the new 3 LDA axis, we report the rate of correlation between
the original features and the corresponding axis; for each axis,
we report only the top ten components.

Variable Value

Port 123 30.6%

Protocol 17 20.3%

Port 443 6.5%

Protocol 47 2.6%

Protocol 97 1.9%

Protocol 6 1.8%

Protocol 89 1.7%

Port 22 1.7%

Protocol 80 1.6%

Port 8080 1.6%

Variable Value

Port 123 27.1%

Protocol 47 10.6%

Protocol 97 4.6%

Protocol 4 3.2%

Protocol 6 3.1%

Protocol 17 3.0%

Port 22 2.8%

Port 53855 2.8%

Port 53469 2.8%

Port 8080 2.7%

Variable Value

Protocol 47 12.5%

Protocol 97 6.1%

Protocol 4 5.9%

Protocol 17 5.2%

Protocol 6 4.9%

Port 22 4.9%

Port 53855 3.7%

Port 443 3.2%

Port 89 2.9%

Port 8080 2.9%

TABLE II: Linear Discriminant Components

F. Clustering

At this point, the dataset space is projected into the new
dimensional space defined by LDA, and the classification step
begins. We have to cluster packets even if they have already an
assigned label. Our purpose is to increase the granularity of the
current service classes. The starting point is the recommended

Fig. 3: Silhouette as a function of the number of centroids.

classification in RFC 4594 [5], which represents the macro-
classification currently used for the DSCP marking:

• Best-Effort (BE);
• Not Known;
• Assured Forwarding (AF);
• Expedited Forwarding (EF);
• Network & Internetwork Control.

The problem we are going to face is a clustering problem,
where data do not have a label and we cannot observe the
correctness of the results obtained. However, it is essential to
analyze the results according to an index of goodness about the
clustering. Therefore, the fundamental tools are the clustering
algorithm and the measure to evaluate the results. These tools
lead us to determine the optimal number of centroids (k),
which are the new available service classes. For the clustering
algorithm we work with the well-known K-Means [22], while
for the evaluation index we use the Silhouette Coefficient [16].

The Silhouette index is a measure of how similar a cluster
is to its own cluster (Cohesion) compared to other ones
(Separation). The Silhouette ranges from −1 to +1, where
a high value indicates that the object is well matched to its
own cluster and poorly matched to neighbouring clusters. The
formula and notations used to compute the Silhouette index
are as follows:

S(i) =
b(i)− a(i)

max{a(i), b(i)}
if |C(i)| > 1 (2)

• S(i): Silhouette index for cluster C(i);
• a(i): Cohesion;
• b(i): Separation;
• |C(i)|: Number of elements in C(i).
We evaluate the optimal number of clusters (k) to establish

our final proposal for the service classes. The analysis consid-
ers a range of possible values for k, from 5 to 75 with a step
of 5. Figure 3 shows the results of the Silhouette Coefficient.

In each k we compute (2) 100 times for each possible
sample size; in this way we capture the real behaviour of
our packets population without considering all the packets. In
Figure 3 we show the trend according to the variation of the
sample size. At the beginning we have a dramatic increase for

Fig. 4: Silhouette Coefficient & 3D K-Means.

the Silhouette Index passing from 5 to 25 centroids. Then there
is a decrease until 35 centroids and then, for the remaining part
of the line chart, we have a steady behaviour around 0.825. So
we select 25, the peak of our analysis, as the new number of
service classes. It is interesting to check the association among
subclasses and macro classes. In the Figure 4 we show the
result of K-Means with 25 centroids; analyzing each cluster
according to the Silhouette index. In the upper plot, on the left
side, the dotted red line identifies the average value between
all the clusters for the Silhouette Coefficient, equal to 0.908.
In the right side we have the legend related to the 3D-plot
about K-Means clustering. In this legend we can see the sub-
classes identified within the main classes. The best-effort class
is differentiated into 11 sub-categories, while the Not Known
service is divided into 7 different sub-classes. For both Assured
Forwarding (AF) and Critical Voice RTP (EF) we see that
our clustering algorithm finds only one subclass, without sub-
divisions.

G. Classification

For classification we use the K-means algorithm, exploiting
the centroids built during the clustering analysis: in this way
we can obtain the reclassification in real time. The low
complexity of this step is proven by the following result: the
time to reclassify 1 million packets is about 0.51 seconds.
In this way, we can obtain any part of the trace used as a

Fig. 5: L-Diffserv Dynamical Behaviour.

test reclassified according to our new distribution in service
classes.

IV. NUMERICAL ANALYSIS

We can summarize the results in terms of generated sub-
classes fragmentation, for the whole period considered (Apr. 3
to May 8, 2019, one day per week), through the bar chart in
Figure 5. For each of the given 5 classes, we report the number
of subclasses generated - the total number of subclasses is
given by the first column for each date. It is relevant to
observe that the best effort service class is always the most
differentiated one in subclasses, followed by the Scavenger
class. The other service classes, especially AF and EF, show
a low fragmentation; traffic from these classes is therefore not
showing specific behaviors within the class, likely because
existing features are already used in general to distinguish
them (e.g., Port number or Protocol) from the other classes.

An important aspect to highlight is that the number of
subclasses generated for the best effort and Scavenger classes
have a high variability in time - e.g., the number of best effort
subclasses in Apr. 4 is twice the same number in Apr. 24, 2019.
This shows that L-DiffServ is able to capture the dynamicity
in traffic patterns and to adapt traffic aggregation in subclasses.

The capacity to aggregate traffic flows in subclasses can be
beneficial in bottleneck management; large amount of traffic
(of best effort and Scavenger classes) that by default would all
be assigned to two priority levels, can instead by discriminated
by L-DiffServ in up to 23 priority levels, while being reassured
that subclasses are ordered with respect to each other based
on L-DiffServ ordering. Hence traffic loss can be concentrated
to few flows of few subclasses instead of a high number of
flows spanning a large number of subclasses.

V. CONCLUSIONS

This work aims to provide a methodology, named L-
DiffServ, for reaching dynamic class of service generation
in IP networks. In fact, L-Diffserv differentiates further the

traffic based on an existing high-grain classification, giving
us advices to improve the resource allocation (buffer and
bandwidth) according to this new service classification. As
further work, we want to test the behavior of L-DiffServ in
real-time systems, increasing the amount of packets analyzed.
Finally we want to evaluate the behaviour of the network
under congestion according to the different service classi-
fication methods, describing advantages and disadvantages
of our proposal and the current DiffServ method. We do
also envision extending the methodology for service-level
agreement management in network slicing.

ACKNOWLEDGEMENTS

This work was partially supported by the ANR CANCAN
project (ANR-18-CE25-0011).

REFERENCES

[1] D. Clark, R. Braden, S. Shenker, ”Integrated Services in the Internet
Architecture: An Overview”, RFC 1633, 1994.

[2] L. Zhang et al., ”Resource ReSerVation Protocol (RSVP)Version 1
Functional Specification”, RFC 2205. 1997.

[3] C.S.L. Sony, K. Cho, ”Traffic data repository at the WIDE project”, In
Proceedings of USENIX 2000 Annual Technical Conference: FREENIX
Track, pp. 263-270, 2000.

[4] K. Nichols et al. ”Definition of the differentiated services field (DS field)
in the IPv4 and IPv6 headers”, RFC 2474, 1998.

[5] J. Babiarz, K.H. Chan, F. Baker, ”Configuration guidelines for DiffServ
service classes”, RFC 4594, 2006.

[6] B. Davie et al., ”An Expedited Forwarding PHB (Per-Hop Behavior)”,
RFC 3246, 2002.

[7] J. Heinanen et al., ”Assured forwarding phb group”, RFC 2597, 1999.
[8] D. Grossman, ”New Terminology and Clarifications for Diffserv”, RFC

3260, 2002.
[9] J. Erman et al., ”Identifying and discriminating between web and

peer-to-peer traffic in the network core”, In Proceedings of the 16th
international conference on World Wide Web, pp. 883-892, 2007.

[10] J. Erman, M. Arlitt, A. Mahanti, ”Traffic classification using clustering
algorithms”, In Proceedings of the 2006 SIGCOMM workshop on
Mining network data, pp. 281-286, 2006.

[11] M. Roughan et al., ”Class-of-service mapping for QoS: a statistical
signature-based approach to IP traffic classification”, In Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement, pp.
135-148, 2004.

[12] J. Micheel, I. Graham, N. Brownlee, ”The Auckland data set: an access
link observed”, In Proceedings of the 14th ITC specialists seminar on
access networks and systems, pp. 19-30, 2001.

[13] C. Cranor et al., ”Gigascope: a stream database for network appli-
cations”, In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pp. 647-651, 2003.

[14] T. M. Chen, Y. Zeng, ”Classification of traffic flows into QoS classes
by unsupervised learning and KNN clustering”, KSII Trans. on Internet
and Information Systems, 2009, 3.2: 134-146.

[15] A. Fernndez et al., ”SMOTE for learning from imbalanced data: progress
and challenges, marking the 15-year anniversary”, Journal of artificial
intelligence research, 2018.

[16] P.J. Rousseeuw, ”Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”, Journal of computational and applied
mathematics, 1987.

[17] J. Fan et al., Prex-Preserving IP Address Anonymization, In Computer
Networks 46, pp. 253272, 2004.

[18] S. Raschka, ”Python machine learning”, Packt Publishing Ltd, 2015.
[19] T. Afonja, ”Accuracy Paradox”, Towards Data Science, 2017.
[20] N.V. Chawla et al., ”SMOTE: synthetic minority over-sampling tech-

nique”, Journal of artificial intelligence research 16, pp. 321-357, 2002.
[21] A. Tharwat et al., ”Linear discriminant analysis: A detailed tutorial”, AI

communications 30, No. 2, pp.169-190, 2017.
[22] D. Arthur, S. Vassilvitskii, ”k-means++: The advantages of careful seed-

ing”, In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pp. 1027-1035, 2007.

