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A linear regression model for imprecise random variables is considered. The imprecision

of a random element has been formalized by means of the LR fuzzy random variable,

characterized by a center, a left and a right spread. In order to avoid the non-negativity
conditions the spreads are transformed by means of two invertible functions. To analyze

the generalization performance of that model an appropriate prediction error is intro-

duced, and it is estimated by means of a bootstrap procedure. Furthermore, since the
choice of response transformations could affect the inferential procedures a computa-

tional proposal is introduced for choosing from a family of parametric link functions,

the Box-Cox family, the transformation parameters that minimize the prediction error
of the model.
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1. Introduction and motivation

In many contexts the statistical information is imprecise. In order to manage it the

fuzzy sets are used (see, for more details, Zadeh 33). In the literature, different sta-

tistical procedures for imprecise information are proposed (see, for example, Hung
25, Sun and Wu 31, Sinova et al. 30). In the regression context in the last years

the number of publications is growth (see, An et al. 1, Blanco-Fernández et al. 5,

Cattaneo and Wiencierz 8, D’Urso et al. 15, Giordani 22, Körner and Näther 26). In

this paper we restrict our attention to a family of regression models with imprecise

information previously introduced: Ferraro et al. 18,19 and Ferraro and Giordani 20.

In those works the imprecise elements have been represented by means of a particu-

lar kind of fuzzy sets, the LR family, determined by means of three parameters, the

center, the left and the right spread, and a particular kind of membership function.

LR fuzzy sets are a generalization of intervals. The main difficulty when we treat

with these data is the non-negativity condition of the spreads. The new family of

regression models considers jointly three classical regression models whose responses

are, respectively, the center and the transforms of the left and the right spread of
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the fuzzy response variable, and the explanatory variables are the center, the left

and the right spread of each fuzzy explanatory variable. The idea to consider a

modelling structure based on three connected (or not connected) sub-models has

been already proposed by D’Urso and Gastaldi 13 and D’Urso 12. Those proposals

consist in modelling the centers of the response variable by means of a classical

regression model, and simultaneously modelling the left and the right spread of

the response through simple linear regressions on its estimated center. Those stud-

ies are mainly descriptive, and the parameters are estimated by means of a least

squares procedure. In D’Urso 12 also an unconstrained approach is addressed by

transforming the spreads, but it is important to note that in that case, unlike our

proposal, the transforms are related to the estimated center. In our previous work,

by introducing the transforms, we have avoided a restricted procedure and we have

obtained analytical solutions.

The aim of this paper is twofold. On one hand we aim to analyze the generaliza-

tion performance of that model. This represents a crucial point in many practical

applications and allows us to assess the quality of the model. So, we introduce a

specific prediction error. It is defined taking into account the information related

to three joint models by using an appropriate distance measure. The squared dis-

tance is used as loss function in this context. On the other hand, we study the

relationship between the response transformations and the results of the inferential

procedures. Response transformation is a usual approach used in the linear regres-

sion context (see, for example, Atkinson and Riani 3). In practice, the parametric

power transform proposed by Box and Cox 6 is the most used in the linear regres-

sion model context. In the literature there are many works dealing with this kind

of problem (see, for example, Scallan et al. 29, Edwards and Hamilton 17, Foster et

al. 21, Marazzi and Yohai 27, Hamasaki and Kim 23). This approach is used in or-

der to adjust data to a linear regression model. Response transformations could be

fixed, as we have done in our previous works, but all inferential procedures, such as

estimation, hypothesis tests on the regression parameters, linearity test etc., could

be affected by this choice. For this reason we propose a computational procedure

based on a grid search method in order to look for the parameters of a parametric

family that minimize the prediction error of the model.

The paper is organized in the following way. In the next section some preliminaries

are recalled, in details, the space of fuzzy sets, the concept of fuzzy random variable

and the basis of this work: a linear regression model for imprecise random variables.

In Section 3 an appropriate prediction error is introduced and estimated by means

of a bootstrap procedure. Section 4 contains some simulation studies putting in

evidence the relationship between the choice of the transformation functions and

the inferential procedures. Section 5 focuses on the new computational procedure

for fitting the best parameters of the link functions family in terms of prediction

error. In addition, in order to illustrate the empirical behaviour of this method,

simulation studies are reported in Subsection 5.1. Section 6 contains some real-case

applications. Finally, in Section 7 there are some concluding remarks.
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2. Preliminaries

2.1. Fuzzy sets and fuzzy random variables

A fuzzy set Ã is a subset of the universe U defined through the so-called mem-

bership function µÃ (x), ∀x ∈ U , expressing the extent to which x belongs to Ã.

Such a degree ranges from 0 (complete non-membership) to 1 (complete member-

ship). A particular class of fuzzy sets is the LR family, whose members are the

so-called LR fuzzy numbers. Denoting by FLR the space of the LR fuzzy numbers,

the membership function of Ã ∈ FLR can be written as

µÃ(x) =


L
(
Am−x
Al

)
x ≤ Am, Al > 0,

1{Am}(x) x ≤ Am, Al = 0,

R
(
x−Am

Ar

)
x > Am, Ar > 0,

0 x > Am, Ar = 0,

(1)

where the functions L and R are particular non-increasing shape functions from R+

to [0, 1] such that L(0) = R(0) = 1 and L(x) = R(x) = 0,∀x ∈ R \ [0, 1], 1I is the

indicator function of a set I and Am, Al (≥ 0) and Ar (≥ 0) are three real-valued

parameters, namely, the center, the left spread and the right spread, respectively.

Ã is a triangular fuzzy number if L(z) = R(z) = 1 − z, for 0 ≤ z ≤ 1. Given the

shape of the membership function, Ã ∈ FLR can be determined uniquely in terms

of the mapping s : FLR → R3, i.e., s(Ã) = sÃ = (Am, Al, Ar). In what follows it is

indistinctly used Ã ∈ FLR or (Am, Al, Ar). Note that an interval I is a particular

kind of LR fuzzy number where the membership function is 1I , that is equal to 1,

for all x ∈ I, and 0 otherwise. Each fuzzy number can be also defined in terms of

α-level sets. The α-level set (0 < α ≤ 1) of Ã can be also defined as the non-empty

compact convex subset of R, Aα, such that Aα =
{
x ∈ U : µÃ(x) ≥ α

}
. If α = 0,

A0 = cl({x ∈ R : µÃ(x) > 0}).
A distance for LR fuzzy numbers has been introduced by Yang and Ko 32:

D2
LR(Ã, B̃) = (Am −Bm)2 + [(Am − λAl)− (Bm − λBl)]2

+ [(Am + ρAr)− (Bm + ρBr)]2,

where the parameters λ =
∫ 1

0
L−1(ω)dω and ρ =

∫ 1

0
R−1(ω)dω play the role of

taking into account the shape of the membership function. For instance, in case of

triangular fuzzy numbers, it is λ = ρ = 1
2 . As it will be clear, for what follows it is

necessary to embed the space FLR into R3 by preserving the metric. For this reason

a generalization of the Yang and Ko metric has been derived (see Ferraro et al. 18).

Given a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R3, it is

D2
λρ(a, b) = (a1 − b1)2 + ((a1 − λa2)− (b1 − λb2))2 + ((a1 + ρa3)− (b1 + ρb3))2

where λ, ρ ∈ R+. The distance D2
λρ will be used in the following as a tool for

quantifying errors in the regression model we are going to introduce.
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The arithmetics considered in FLR are the natural extensions of the Minkowski sum

and the product by a positive scalar for interval. Going into detail, the sum of Ã

and B̃ in FLR is the LR fuzzy number Ã+ B̃ so that (Am, Al, Ar)+(Bm, Bl, Br) =

(Am + Bm, Al + Bl, Ar + Br) and the product of Ã ∈ FLR by a scalar γ > 0 is

γ(Am, Al, Ar) = (γAm, γAl, γAr).

In order to jointly consider two kinds of uncertainty, randomness and imprecision,

the concept of of fuzzy random variable (FRV) arises. In what follow we limit our

attention to FRVs of LR type (in brief LR FRV). Let (Ω, A, P ) be a probability

space, an LR FRV is a mapping X̃ : Ω → FLR such that the α-level set Xα is

a random compact convex set for any α ∈ [0, 1] (see, for further details, Puri and

Ralescu 28).

2.2. Linear regression model for fuzzy random variables

To study the relationship between an LR fuzzy response variable Ỹ and p LR fuzzy

explanatory variables X̃1, X̃2, ..., X̃p, taking into account not only the randomness

due to the data generation process, but also the information provided by the spreads

of the explanatory variables (the imprecision of the data), which are usually arbi-

trarily ignored, a linear regression model with imprecise elements has been proposed

by Ferraro and Giordani 20. The involved variables are observed on a random sam-

ple of n statistical units, {Ỹi, X̃1i, X̃2i, ..., X̃pi}i=1,...,n. We considered the shape of

the membership functions as fixed, so the fuzzy response and the fuzzy explanatory

variables are determined only by means of three parameters, namely the center and

the left and right spreads. We faced the non-negativity constraints of the spreads

of the response variable by introducing two invertible functions g : (0,+∞) −→ R
and h : (0,+∞) −→ R, in order to make the spreads assuming all the real values. In

that way we did not solve a numerical procedure, we formalized a theoretical model

and we got a complete solution for the model parameters. The model is formalized

as 
Y m = X a

′

m + bm + εm = fm(X) + εm,

g(Y l) = X a
′

l + bl + εl = fl(X) + εl,

h(Y r) = X a
′

r + br + εr = fr(X) + εr,

(2)

where X = (Xm
1 , X

l
1, X

r
1 , ..., X

m
p , X

l
p, X

r
p) is the row-vector of length 3p of all

the components of the explanatory variables, εm, εl and εr are real-valued ran-

dom variables with E(εm|X) = E(εl|X) = E(εr|X) = 0, am = (a1mm, a
1
ml, a

1
mr,

..., apmm, a
p
ml, a

p
mr), al = (a1lm, a

1
ll, a

1
lr, ..., a

p
lm, a

p
ll, a

p
lr) and ar = (a1rm, a

1
rl, a

1
rr,

..., aprm, a
p
rl, a

p
rr) are row-vectors of length 3p of the parameters related to X. The

generic atjj′ is the regression coefficient between the component j ∈ {m, l, r} of

Ỹ T =
(
Y m, g(Y l), h(Y r)

)
(where m, l and r refer to the center Y m and the trans-

forms of the spreads g(Y l) and h(Y r), respectively) and the component j′ ∈ {m, l, r}
of the explanatory variables X̃t, t = 1, ..., p, (where m, l and r refer to the corre-

sponding center, left spread and right spread). Finally, bm, bl, br denote the inter-
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cepts. The model is well defined also for real (crisp) explanatory variables (see, for

more details, Ferraro et al. 18,19). In that case all the vectors have length equal to

p. In this context the dependence relationship is strictly related to the shape of the

functions g and h, so we aim at studying the gh-linear dependence between the

fuzzy response and the fuzzy explanatory variables.

In Ferraro et al. 18,19 and Ferraro and Giordani 20 we have fixed the transformation

functions g and h and then we have estimated the regression parameters and the de-

termination coefficient. In this paper the aim is considering a family of transforms,

the Box-Cox transformation model (see, for more details, Box and Cox 6) and, by

means of an algorithm, choosing the optimal parameters of the family. In general,

the transformed spreads, g(Y l) and h(Y r) in model (2), could be expressed as

g(Y l) =


(Y l)k1−1

k1
, k1 6= 0

log(Y l), k1 = 0

(3)

and

h(Y r) =


(Y r)k2−1

k2
, k2 6= 0

log(Y r), k2 = 0

(4)

(see, for more details, Box and Cox 6).

3. Prediction error

To assess the generalization performance of a learning method is very important in

practice 24. This is related to the accuracy and prediction capability and represents

a measure of the quality used for choosing the best model. Hence, to check the

adequacy of our model it is important to introduce a gh-prediction error. The aim

is to predict the values of the response Ỹ T = (Y m, g(Y l), h(Y r)) ∈ R3 (gh-scale

transformation of Ỹ ) by means of the predictors f̂(X) = (f̂m(X), f̂l(X), f̂r(X)) ∈
R3 (X ∈ R3p), where f̂ is estimated on the basis of the training set T . Given

the training set T , the (gh-)prediction error over an independent test sample (also

known as generalization error) is defined as

PET = E
(
L(Ỹ T , f̂(X))/T

)
, (5)

where L is the loss function. The expected (gh-)prediction error is defined as

PE = E(PET ) = E
(
L(Ỹ T , f̂(X))

)
(6)

It is important to note that the expectation in (6) averages over all the random enti-

ties, including the randomness in the training set T . In our case, we consider D2
λρ as

loss function L and a linear model as predictor. Hence, the expected (gh-)prediction
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error is the expected value of the squared distance between the (unobservable) re-

sponse Ỹ T = (Y m, g(Y l), h(Y r)) and the linear regression model, defined in (2),

fitted on the basis of the training set, f̂ =
̂̃
Y T = (Ŷ m, ĝ(Y l), ĥ(Y r)):

PE(k1, k2) = E(D2
λρ(Ỹ

T , f̂(X))) = E(D2
λρ(Ỹ

T ,
̂̃
Y T (k1, k2))) (7)

= E

((
Y m − Ŷ m(k1, k2)

)2
+
((
Y m − λg(Y l)

)
−
(
Ŷ m(k1, k2)− λĝ(Y l)(k1, k2)

))2
+
(

(Y m + ρh(Y r))−
(
Ŷ m(k1, k2) + ρĥ(Y r)(k1, k2)

))2)
.

The expected (gh-)prediction error, PE(k1, k2), depends on the parameters k1 and

k2 of the transformations g and h.

In general, if we consider the expected (gh-)prediction error at an input point x0,

it can be decomposed in the sum of an irreducible error, the squared bias and the

variance:

Proposition 1. Given an input point x0, the expected (gh-)prediction error,

PE(x0), can be decomposed as

PE(x0) = E(D2
λρ(Ỹ

T , f̂(x0))/X = x0) (8)

= 3σ2
εm + λ2σ2

εl
+ ρ2σ2

εr − 2λσεm,εl + 2ρσεm,εr

+D2
λρ(Ef̂(x0), f(x0))

+E(D2
λρ(f̂(x0), Ef̂(x0))),

where, 3σ2
εm + λ2σ2

εl
+ ρ2σ2

εr − 2λσεm,εl + 2ρσεm,εr is the irreducible error,

D2
λρ(Ef̂(x0), f(x0)) is the squared bias and E(D2

λρ(f̂(x0), Ef̂(x0))) is the variance

of f̂(x0).

Proof. The expected (gh-)prediction error at an input point x0, PE(x0), is defined

as

PE(x0) = E(D2
λρ(Ỹ

T , f̂(x0))/X = x0)

= E

((
Y m − f̂m(x0)

)2
+
((
Y m − λg(Y l)

)
−
(
f̂m(x0)− λf̂l(x0)

))2
+
(

(Y m + ρh(Y r))−
(
f̂r(x0) + ρf̂r(x0)

))2
/X = x0

)
.
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After a little algebra, it can be written as

PE(x0) = 3E

((
Y m − f̂m(x0)

)2
/X = x0

)
+λ2E

((
g(Y l)− f̂l(x0)

)2
/X = x0

)
+ρ2E

((
h(Y r)− f̂r(x0)

)2
/X = x0

)
−2λE

((
Y m − f̂m(x0)

)(
g(Y l)− f̂l(x0)

)
/X = x0

)
+2ρE

((
Y m − f̂m(x0)

)(
h(Y r)− f̂r(x0)

)
/X = x0

)

Since Y m = fm(X) + εm, g(Y l) = fl(X) + εl, h(Y r) = fr(X) + εr and E(εm/X =

x0) = E(εl/X = x0) = E(εr/X = x0) = 0, we obtain

PE(x0) = 3E

((
fm(x0)− f̂m(x0)

)2
/X = x0

)
+ 3E

(
ε2m/X = x0

)
+λ2E

((
fl(x0)− f̂l(x0)

)2
/X = x0

)
+ λ2E

(
ε2l /X = x0

)
+ρ2E

((
fr(x0)− f̂r(x0)

)2
/X = x0

)
+ ρ2E

(
ε2r/X = x0

)
−2λE

((
fm(x0)− f̂m(x0)

)(
fl(x0)− f̂l(x0)

)
/X = x0

)
− 2λE (εmεl/X = x0)

+2ρE
((
fm(x0)− f̂m(x0)

)(
fr(x0)− f̂r(x0)

)
/X = x0

)
+ 2ρE (εmεr/X = x0)

The above expression is equal to

3E

((
f̂m(x0)− Ef̂m(x0)

)2
/X = x0

)
+ 3E

((
Ef̂m(x0)− fm(x0)

)2
/X = x0

)
+ 3σ2

εm

+λ2E

((
f̂l(x0)− Ef̂l(x0)

)2
/X = x0

)
+ λ2E

((
Ef̂l(x0)− fl(x0)

)2
/X = x0

)
+ λ2σ2

εl

+ρ2E

((
f̂r(x0)− Ef̂r(x0)

)2
/X = x0

)
+ ρ2E

((
Ef̂r(x0)− fr(x0)

)2
/X = x0

)
+ ρ2σ2

εl

−2λE
((
f̂m(x0)− Ef̂m(x0)

)(
f̂l(x0)− Ef̂l(x0)

)
/X = x0

)
−2λE

((
Ef̂m(x0)− fm(x0)

)(
Ef̂l(x0)− fl(x0)

)
/X = x0

)
− 2λσεm,εl

+2ρE
((
f̂m(x0)− Ef̂m(x0)

)(
f̂r(x0)− Ef̂r(x0)

)
/X = x0

)
+2ρE

((
Ef̂m(x0)− fm(x0)

)(
Ef̂r(x0)− fr(x0)

)
/X = x0

)
+ 2ρσεm,εr
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We note that

3E

((
f̂m(x0)− Ef̂m(x0)

)2
/X = x0

)
+ λ2E

((
f̂l(x0)− Ef̂l(x0)

)2
/X = x0

)
+ρ2E

((
f̂r(x0)− Ef̂r(x0)

)2
/X = x0

)
−2λE

((
f̂m(x0)− Ef̂m(x0)

)(
f̂l(x0)− Ef̂l(x0)

)
/X = x0

)
+2ρE

((
f̂m(x0)− Ef̂m(x0)

)(
f̂r(x0)− Ef̂r(x0)

)
/X = x0

)
= E(D2

λρ(f̂(x0), Ef̂(x0)))

and

3E

((
Ef̂m(x0)− fm(x0)

)2
/X = x0

)
+ λ2E

((
Ef̂l(x0)− fl(x0)

)2
/X = x0

)
+ρ2E

((
Ef̂r(x0)− fr(x0)

)2
/X = x0

)
−2λE

((
Ef̂m(x0)− fm(x0)

)(
Ef̂l(x0)− fl(x0)

)
/X = x0

)
+2ρE

((
Ef̂m(x0)− fm(x0)

)(
Ef̂r(x0)− fr(x0)

)
/X = x0

)
= D2

λρ(Ef̂(x0), f(x0)).

Hence, the thesis follows.

In this context there are not realistic parametric distributions, hence, we use an

empirical procedure to estimate the (gh-)prediction error. One possible approach is

the bootstrap technique, described in the following section.

3.1. Bootstrap estimation

The bootstrap technique is used in many contexts for assessing statistical accu-

racy. In this case is used to directly estimate the (gh-)prediction error. It is based

on re-sampling the training set T . We randomly draw B bootstrap samples with

replacement from the training set, each sample has the same size n of the origi-

nal training set T . Then for each one we compute the (gh-)prediction error. For

each bootstrap sample b we estimate f̂
b
. Each bootstrap sample is considered as a

training set and the original training set as test set. For b = 1, · · · , B

errbootb =
1

n

(∥∥∥Y m − (Xâbm′ + 1 b̂bm

)∥∥∥2 (9)

+
∥∥∥(Y m − λg(Y l)

)
−
(
Xâbm

′
+ 1 b̂bm − λ

(
Xâbl

′
+ 1 b̂bl

))∥∥∥2
+
∥∥∥(Y m + ρh(Y r))−

(
Xâbm

′
+ 1 b̂bm + ρ

(
Xâbr

′
+ 1 b̂br

))∥∥∥2) ,
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where âm, âl(k1), âr(k2), b̂m, b̂l(k1), b̂r(k2) are the parameters estimated on the

basis of the b-th bootstrap sample (for more details, see Ferraro et al. 18, Ferraro

and Giordani 20) and ‖·‖ is the Euclidean norm. The bootstrap (gh-)prediction

error is expressed as

P̂Eboot(k1, k2) =
1

B

B∑
b=1

errbootb . (10)

Hence a direct bootstrap estimate of the (gh-)prediction error is obtained by the

following algorithm.

Algorithm

Step 1: Draw a bootstrap sample b from the training set and compute the estimates

âbm, âbl (k1), âbr(k2), b̂bm, b̂bl (k1), b̂br(k2)

Step 2: Compute the value of the error errbootb .

Step 3: Repeat Step 2 and Step 3 B times to get a set of B errboot.

Step 4: Compute the bootstrap estimator P̂Eboot(k1, k2), by means of a mean of

the B replications of errbootb

3.2. Simulation study

In order to check the adequacy of that approach a simulation study is com-

puted. We consider an LR triangular fuzzy response variable Ỹ , a real explana-

tory variable X1 and an LR triangular fuzzy explanatory variable X̃2. We deal

with the following real random variables: X1, behaving as Unif(−2, 2) ran-

dom variable, Xm
2 behaving as Unif(−1, 1) random variable, X l

2 and Xr
2 as

χ2
1, and εm, εl, εr behaving as a N(0, 0.2). We construct the center Y m as

X1 + 1.2Xm
2 + 0.3X l

2 + 0.5Xr
2 + εm, the left and the right spreads, Y l and Y r

equal to exp
(
0.7X1 +Xm

2 + 0.4X l
2 + 0.3Xr

2 + ε
l

)
and exp

(
−0.8X1 + 1.3Xm

2 +X l
2

+0.4Xr
2 + εr), respectively. Furthermore, we transform the spreads by means of

a logarithmic transformation (g = h = log). For different number of bootstrap

replications B (100, 500, 800 and 1000) we analyze the empirical behaviour of

the bootstrap estimator P̂Eboot. By using N = 1000 iterations of the algorithm

we obtain an empirical distribution of the bootstrap estimator and we compute

Ê(P̂Eboot) =
∑N
j=1 P̂Ebootj/N and M̂SE(P̂Eboot) =

∑N
j=1

(
P̂Ebootj − PE

)2
/N

(see Table 1). It results that even for small sample sizes and a number of bootstrap

replications equal to 100 the estimated mean of PEboot is quite close to the theo-

retical value (.14) and the estimated mean squared error is close to 0. As expected,

for increasing values of the sample sizes and of bootstrap replications the values are

better.
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Table 1. Estimated means and mean squared errors for P̂Eboot for different sample sizes, n, and
different number of bootstrap replications, B.

n B Ê(P̂Eboot) M̂SE(P̂Eboot)

30 100 .1473 .0073

50 100 .1427 .0027

100 100 .1405 5.4294e-004

200 100 .1392 7.8762e-004

30 500 .1480 .0080

50 500 .1417 .0017

100 500 .1402 2.3574e-004

200 500 .1400 1.1857e-005

30 800 .1466 .0066

50 800 .1426 .0026

100 800 .1405 4.6414e-004

200 800 .1406 6.3362e-004

30 1000 .1484 .0020

50 1000 .1420 .0084

100 1000 .1411 .0011

200 1000 .1397 3.4988e-004

4. Inferential procedures and choice of the transforms

The choice of the transformation functions could affect the performance of the

model. In details, in this section we consider a synthetic dataset in order to show

the influence of the shape of the transformation functions on some inferential pro-

cedures. Both in the context of hypothesis test procedures and in the analysis of

the power function, we refer to a specific class of dependence model (borrowed from

the shape of the Box-Cox transform).

The choice of the transformation parameters could affect the results of an hypoth-

esis test. Consider the following variables: an LR fuzzy response variable Ỹ , a real

explanatory variable X1 and an LR fuzzy explanatory variable X̃2. In details, we

deal with the following real random variables: X1, behaving as Unif(−2, 2) random

variable, Xm
2 behaving as Unif(−1, 1) random variable, X l

2 and Xr
2 as χ2

1, and ε

behaving as a N(0, 0.2), and we construct the center, the left and the right spreads

as

Y m = X1 +Xm
2 +X l

2 +Xr
2 + ε

Y l =
[
2
(
X1 +Xm

2 +X l
2 +Xr

2 + ε
)

+ 1
] 1

2

Y r =
[
−2
(
X1 +Xm

2 +X l
2 +Xr

2 + ε
)

+ 1
] 1
−2
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A sample of n = 50 units is drawn from the above variables. If we fix the following

transforms

g(Y l) =
(Y l)2 − 1

2

and

h(Y r) =
(Y r)−2 − 1

−2

by means of a bootstrap linear independence testing procedure (see, for more details,

Ferraro et al., 19, and Ferraro and Giordani 20), we obtain a p-value equal to 0, hence

we should reject the null hypothesis of linear independence. For different parameters

of the Box-Cox transform we could reach the same conclusions but, if for example

we use the following parameters

g(Y l) =
(Y l)−2 − 1

−2

and

h(Y r) =
(Y r)2 − 1

2
,

we obtain a bootstrap p-value equal to .4520, hence in this case the null hypothesis

could not be rejected.

We analyze now the power of the linear independence test. We have drawn a sam-

ple of size 50 from the following real random variables: X, behaving as N(0, 1)

random variable, εm behaving as N(0, 1) random variable, εl and εr as N(0, 0.5).

We construct the center, the left and the right spreads in the following way:

Y m = amX + εm

Y l = [2 (alX + εl) + 1]
1
2

Y r = [−2 (arX + εr) + 1]
− 1

2

(11)

As the values of the parameters am, al and ar get large the models tend to the

alternative hypothesis so the percentages of rejection approximate the power of the

test. According to the way we have constructed the data the logical choices of the

parameters of the Box-Cox transforms are, respectively, k1 = 2 and k2 = −2. We

consider two situations: situation A with k1 = 2 and k2 = −2 and situation B

with k1 = 0 and k2 = 0 (usual choice in our previous works). The values of the

percentages of rejection when am = ar = 0 and for increasing values of al are

reported in Table 2. Furthermore, from Figure 1 it is evident that the choice of k1
and k2 affects the power of the test. In particular, the power function tends quickly

to 1 when the appropriate transforms are used. It seems to slowly increase to 1 with

logarithmic transforms.
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Table 2. Empirical percentages of rejection (n = 50).

al situation A situation B

0 6.08 6.20

.1 6.44 6.41

.2 7.17 7.09

.3 8.88 8.17

.4 11.19 9.51

.5 14.94 10.45

.6 19.96 11.24

.7 26.70 12.41

.8 36.67 13.36

.9 46.97 14.07

1.0 58.73 14.41

1.1 70.69 15.27

1.2 80.69 15.88

1.3 87.74 15.41

1.4 93.06 16.17

1.5 96.04 16.48

1.6 97.96 16.97

1.7 99.17 16.56

1.8 99.56 17.29

1.9 99.85 17.19

2.0 99.92 18.52

2.1 99.97 17.10

2.2 100 17.80

2.3 100 18.03

5. Fitting the parameters of the Box-Cox transformations

As showed in Section 4 the inferential procedures related to model (2) could be

influenced by the choice of the transforms. For this reason it is important to take

into account this point. That is, it should be introduced a procedure for looking

for the transformation parameters. Since our aim is to study the generalization

performance of the model, the proposal is to get the transformations in the Box-

Cox family that minimize the (gh-)prediction error, that is

mink1,k2 P̂Eboot(k1, k2). (12)

We introduce a standard grid search method in this context (see, for example, Fos-

ter et al., 2001). The grid is usually defined by a multidimensional array (in our

case we use two dimensions). Each dimension has a range of values. Each range

is divided into a set of equal-valued intervals. In our case, the two dimensions are

represented by the transformation parameters, k1 and k2. For different values of k1
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Fig. 1. Empirical percentages of rejection for increasing values of al in situation A and situation

B
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and k2 we obtain the estimated regression parameters, âm, b̂m, âl(k1), b̂l(k1), âr(k2)

and b̂r(k2), and the (gh-)prediction error estimated by means of a bootstrap pro-

cedure P̂Eboot(k1, k2) reported in a matrix/grid whose rows and columns represent

the values of the parameters k1 and k2. In practice, we consider a specific range

of the values of the parameters. Suitable values for k1 and k2 are in the compact

interval [−2, 2] (see, for more details, Carroll 7). The aim is checking the values in

the grid/matrix that represent the minimum (gh-)prediction error.

In order to obtain the expected results we consider the following algorithm

Algorithm

Step 1: For k1 = −2 and k2 = −2 compute the transformed spreads g(Y l) and

h(Y r), the estimates âm, âl(k1), âr(k2), b̂m, b̂l(k1), b̂r(k2) and the value of

P̂Eboot(k1, k2)

Step 2: Repeat Step 1 for k1 and k2 from −2 to 2 with increments of 0.1 and obtain
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a grid/matrix of size 41 × 41, where the rows represent different values of

k1 and the columns different values of k2.

Step 3: Choose the minimum in the matrix obtained in Step 2

Step 4: Select the row and the column of the minimum obtained in Step 3. These

represent the optimal values of the parameters k1 and k2 of the Box-Cox

family

5.1. Simulation studies

In order to illustrate the empirical behaviour of the algorithm we have analyzed a

Monte Carlo simulation. We have created a data set in which the spreads of the

fuzzy response are linearly related with the explanatory ones by means of specific

transforms. We have generated the following variables: an LR fuzzy response vari-

able Ỹ , a real explanatory variable X1 and an LR triangular fuzzy explanatory

variable X̃2. We deal with the following real random variables: X1, behaving as

Unif(−2, 2) random variable, Xm
2 behaving as Unif(−1, 1) random variable, X l

2

and Xr
2 as χ2

1, and εm, εl, εr behaving as a N(0, 0.2). We construct the center, the

left and the right spreads in the following way:

Y m = X1 + 1.2Xm
2 + 0.3X l

2 + 0.5Xr
2 + εm

Y l =
[
1.2
(
0.7X1 +Xm

2 + 0.4X l
2 + 0.3Xr

2 + εl
)

+ 1
] 1

1.2

Y r =
[
−1
(
−0.8X1 + 1.3Xm

2 +X l
2 + 0.4Xr

2 + εr
)

+ 1
]−1 (13)

We draw N = 100 random samples of size n and for each one we estimate the

parameters k1 and k2 of the transforms by means of the introduced computational

procedure. By considering the sequence of N values of the estimated parameters,

that is an empirical distribution, we compute the estimated mean and mean squared

error for different sample sizes n (30, 50, 100 and 200) and different number of boot-

strap replications B (100, 500, 800, 1000). In details, for each estimated parameter,

we compute Ê(k̂j) =
∑N
j=1 k̂j/N and M̂SE(k̂j) =

∑N
j=1

(
k̂j − kj

)2
/N .

As reported in Table 3, the estimated means tend to the real values of the pa-

rameters and the estimated mean squared errors tend to 0 as n increases.

6. Applications

6.1. Quality of trees

We consider a study about a reforestation in a given area of Asturias (Spain),

carried out in the INDUROT institute (University of Oviedo), in which the qual-

ity of the trees has been analyzed (see, for more details, Colubi 9, and Fer-

raro et al. 19). This characteristic has been determined on the basis of subjec-

tive judgments/perceptions, through the observation of some characteristics of the

trees related to the quality (the leaf structure, the root system, the relationship

height/diameter, and so on). The experts perceptions are represented by means of
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Table 3. Estimated means and mean squared errors of k̂1 and k̂2 for different sample sizes, n, and

different number of bootstrap replications, B.

n B Ê(k̂1) M̂SE(k̂1) Ê(k̂2) M̂SE(k̂2)

30 100 1.1490 .3526 .9660 .2977

50 100 1.1750 .0899 .9910 .0708

100 100 1.1870 .0673 .9890 .0508

200 100 1.1890 .0469 .9880 .0354

30 500 1.1790 .0535 .9910 .0286

50 500 1.1860 .0980 .9790 .0765

100 500 1.1810 .00731 .9940 .0443

200 500 1.1840 .0463 .9950 .0260

30 800 1.1800 .1549 .9480 .3002

50 800 1.1740 .0890 .9800 .0648

100 800 1.1900 .0671 .9800 .0490

200 800 1.1900 .0436 .9830 -0376

30 1000 1.1730 .1393 .9430 .2994

50 1000 1.1740 .0901 .9850 .0654

100 1000 1.1800 .0566 .9970 .0411

200 1000 1.1880 .0496 .9870 .0365

a fuzzy-valued scale, in particular, by means of LR triangular fuzzy numbers. In

order to analyze the linear relationship between this characteristic and the height

(X1) and the diameter (X2) of the trees, the values related to 238 trees have been

observed. By means of the proposed procedure for different values of the parameter

k1 and k2 of the Box-Cox family we obtain the results in Table 4.

As reported in Table 4, k1 = −1.1 and k2 = .9 are the optimal parameters of

Box-Cox family and the corresponding estimated (gh-)prediction error is equal to

805.2947. The estimated model with the optimal parameters is



Ŷ m = 0.1374X1 + 1.7937X2 + 19.6094,

(
Ŷ l
)−1.1

− 1

−1.1
= 0.0001X1 − 0.0099X2 + 0.8506,

(
Ŷ r
)0.9
− 1

0.9
= 0.0079X1 − 1.3209X2 + 10.5099,

(14)

hence, Ŷ l = [−1.1 (0.0001X1 − 0.0099X2 + 0.8506) + 1]
− 1

1.1 and Ŷ r =
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Table 4. Bootstrap estimation of the (gh-)prediction error for different values of the parameters

k1 and k2.

k1 \k2 -2 -1.9 · · · 0.8 0.9 1.0 · · · 1.9 2

-2 807.5 807 · · · 805.9 806.7 806.1 · · · 1123.7 1363.0

-1.9 807.3 807.4 · · · 806.2 805.8 806.5 · · · 1123.9 1364.2

-1.8 807.9 807.9 · · · 806.5 806.1 807.3 · · · 1123.2 1363.5

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

-1.2 807.6 807.3 · · · 806.4 805.8 807.3 · · · 1122.4 1363.3

-1.1 808 807.8 · · · 806.3 805.3 805.7 · · · 1123 1364.6

-1 806.5 807.2 · · · 806 806.2 807.4 · · · 1123 1363.1

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

1.8 1054.5 1055.5 · · · 1052.5 1053.6 1053.9 · · · 1370.3 1610.7

1.9 1228.6 1228.3 · · · 1226.9 1227.7 1228.6 · · · 1544.5 1784.7

2 1525.9 1525.8 · · · 1524.8 1525.9 1524.9 · · · 1842.9 2083.2

[0.9 (0.0079X1 − 1.3209X2 + 10.5099) + 1]
1

0.9 .

6.2. Students’ satisfaction

The second example is about the students’ satisfaction of a course. In order to

evaluate it, their subjective judgments/ perceptions are observed on a sample of

n = 64 students (see, for more details, Ferraro and Giordani 20). For any student,

four characteristics are observed: the overall assessment of the course, the assessment

of the teaching staff, the assessment of the course content and the average mark

(single-valued variable). We managed them in terms of fuzzy variables, in particular

of triangular type (hence λ = ρ = 1/2). For analyzing the linear relationship of the

overall assessment of the course (Ỹ ) on the assessment of the teaching staff (X̃1),

the assessment of the course contents (X̃2) and the average mark (X3), the proposed

linear regression model is employed based on a sample of 64 students.

As shown in Table 5, by means of the introduced fitting parameters procedure

it results that the optimal parameters k1 and k2 are, respectively, 1.2 and −0.8

and the corresponding estimated (gh-)prediction error is 114.7735. In this case the
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Table 5. Bootstrap estimation of the (gh-)prediction error for different values of the parameters

k1 and k2.

k1 \k2 -2 -1.9 · · · -0.9 -0.8 -0.7 · · · 1.9 2

-2 120.4 118.7 · · · 120.3 121.0 120.8 · · · 365.3 522.4

-1.9 121.5 119.6 · · · 120.2 120.7 119.3 · · · 364.0 519.9

-1.8 120.7 120.7 · · · 119.5 119.4 119.7 · · · 372.6 520.4

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

1.1 116.9 115.8 · · · 117.8 116.9 115.8 · · · 361.9 516.4

1.2 114.8 115.7 · · · 116.1 114.8 117.0 · · · 359.2 515.5

1.3 117.1 118.4 · · · 116.8 117.2 115.4 · · · 362.9 516.3

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·

1.8 172.8 170.3 · · · 172.0 170.5 172.8 · · · 414.3 567.2

1.9 215.2 217.9 · · · 218.7 216.1 216.5 · · · 460.3 613.1

2 292.1 294.8 · · · 294.5 291.3 295.6 · · · 539.9 687.5

estimated model with the optimal parameters is

Ŷ m = 1.0796Xm
1 + 0.1253X l

1 − 0.0660Xr
1 − 0.1697Xm

2 − 0.8870X l
2 + 0.6601Xr

2

−1.1203X3 + 34.0597,

(
Ŷ l
)1.2
− 1

1.2
= 0.1887Xm

1 + 0.3669X l
1 + 0.2137Xr

1 − 0.0336Xm
2 + 0.4324X l

2

+0.0770Xr
2 + 0.0464X3 − 13.7152,

(
Ŷ r
)−0.8

− 1

−0.8
= 0.0003Xm

1 + 0.0055X l
1 − 0.0026Xr

1 − 0.0013Xm
2 + 0.0052X l

2

+0.0024Xr
2 + 0.0049X3 + 0.8589,

(15)

hence,

Ŷ l=
[
1.2
(
0.1887Xm

1 +0.3669X l
1+0.2137Xr

1−0.0336Xm
2 +0.4324X l

2+0.0770Xr
2+0.0464X3−13.7152

)
+ 1
] 1

1.2

and

Ŷ r=
[
−0.8

(
0.0003Xm

1 +0.0055X l
1−0.0026Xr

1−0.0013Xm
2 +0.0052X l

2+0.0024Xr
2+0.0049X3+0.8589

)
+ 1
]− 1

0.8 .

7. Concluding remarks

In this paper we have analyzed the performance of a linear regression model with

LR fuzzy elements. We have introduced a (gh-)prediction error to check the model

mariabrigidaferraro
Evidenziato
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quality and we have analyzed a bootstrap approach for estimating it. Since trans-

forms of the left and the right spread of the fuzzy response are used and the choice

of those functions could affect the inferential results, a computational procedure for

fitting the best parameters of the link functions family (Box-Cox) is addressed. The

procedure is based on a grid search method for choosing the parameters minimizing

the (gh-)prediction error. The adequacy of the proposal has been checked by means

of simulation and real case studies, and the obtained results are those expected in

this context.
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