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Abstract

The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially 

discovered as a signaling molecule involved in the survival, protection, differentiation and 

proliferation of sympathetic and peripheral sensory neurons, it also participates in the 

regulation of the immune system and endocrine system. NGF biological activity is due to the 

binding of two classes of receptors: the tropomyosin-related kinase A (TrkA), and the low-

affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the 

most frequent mental disorders in developed countries, characterized by heavy drinking, 

despite the negative effects of alcohol on brain development and cognitive functions that 

cause individual’s work, medical, legal, educational and social life problems. In addition, 

alcohol consumption during pregnancy disrupts the development of the fetal brain causing a 

wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum 

disorders (FASD). In this review, we describe crucial findings on the role of NGF in humans 

and animals when exposed to prenatal, chronic alcohol consumption and also on binge 

drinking.

Key words
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Nerve Growth Factor - NGF 

Neurotrophic factors control cell differentiation, proliferation, growth, migration, survival, 

metabolism and apoptosis [1,2]. Neurotrophins belong to the family of neurotrophic factors 

and include polypeptide growth factors, such as nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and NT-4/5 [3]. NGF, expressed both in 

the peripheral and central nervous system, is a neuropeptide that regulates the survival and 

proliferation of neuronal cells [2,4,5]. It was discovered in 1951 by Rita Levi-Montalcini and 

Victor Hamburger from a sarcoma tissue that released a soluble growth factor able to induce 

overgrowth of fibers from sensory or sympathetic nerve cells placed nearby [6,7]. NGF is 

synthesized as a 130 kD precursor, namely proNGF, that is formed by three proteins: -NGF, 

-NGF and -NGF. The third protein is a serine protease that cuts off the  subunit producing 

the 26 kD mature NGF that is biologically active [4,8,9]. 

NGF Receptors

NGF exerts its effects by binding two classes of receptors: the tropomyosin-receptor kinase A 

(TrkA), and the low-affinity NGF receptor p75 (LNGFR/p75NTR) [2,8,10]. TrkA belongs to 

the family receptor of Trk, tyrosine kinases, along with TrkB and TrkC, which regulates 

synaptic strength and plasticity in the nervous system [11]. The receptor p75 is a low-affinity 

neurotrophin receptor and a member of the tumor necrosis factor receptor family [12]. The 

Trk subfamily of receptors is composed of immunoglobulin-C2 domains, amino acid repeats 

full of leucine and cysteine residues in the extracellular domain and a tyrosine kinase domain 

with a small cytoplasmic tail. The p75 receptor has four negatively charged cysteine-rich 

amino acid repeats in the extracellular domain and a single cytoplasmic domain that includes 

a “death” domain [13]. For the TrkA receptor, only the domain nearest to the cell membrane 
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is needed to bind to its ligand [14,15]. The binding of NGF to TrkA starts the 

homodimerization of the receptor and the autophosphorylation of certain tyrosine residues 

within the intracellular domains. This site of phosphorylation (Figure 1) then recruits adapter 

proteins that have src-homology-2 (SH-2) or phosphotyrosine-binding motifs. The adapter 

proteins, after phosphorylation, start several intracellular signaling cascades involved in cell 

survival [8,16]. A pathway activated by the binding between NGF and the receptor TrkA 

involves the mitogen-activated protein kinase (MAPK). This pathway induces the activation 

of Ras, a GTPase that phosphorylates the serine/threonine kinase Raf. This latter activates the 

MAPK cascade which regulates the activity of several transcription factors like the cAMP 

response element-binding protein (CREB), a transcription factor that translocates in the 

nucleus to control the expression of anti-apoptotic genes [16,17]. Although the receptor p75 

does not contain a catalytic motif, it interacts with several proteins that regulate neuronal 

survival and differentiation as well as synaptic plasticity. The binding of NGF to p75 activates 

several signaling pathways. The primary signaling activated by p75 is the Jun kinase-

signaling cascade. This pathway activates p53, a transcriptional factor that can initiate 

apoptosis. Furthermore, this cascade can activate apoptosis by increasing the expression of the 

Fas receptor ligand [18]. Nerve growth factor binding to the receptor p75 also stimulates the 

activation of NF-KB, thereby promoting neuronal survival [19]. Ligand engagement of p75 

has been shown to activate acid sphingomyelinase, which results in the production of 

ceramide [20]. Ceramide promotes both apoptotic and survival pathways started by p75 

ligation [21]. Ceramide is known to regulate many signaling pathways, such as the ERK, Jun 

kinase, NF-kB signaling pathways as well as the activity of TrkA phosphorylating serine 

residues [22,23]. 
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NGF Functions

Nerve growth factor was initially identified as a signaling molecule involved in growth, 

survival and proliferation of sympathetic and sensory neurons [4,24,25]. It is also involved in 

the regulation of the immune system and the endocrine system including the adipoendocrine 

system [26–28]. Consequently, altered expression of NGF and its receptors are involved in 

many seemingly unrelated diseases including neuronal disorders (Alzheimer’s and other 

neurodegenerative disease) [17,29,30], aging [31], cancer physiology [32–35], ocular diseases 

[36–38], growth and development [33,34,39], autoimmune diseases (rheumatic arthritis, 

multiple sclerosis and other autoimmune diseases) [40], oxidative stress-related diseases [41–

46], neuroinflammation caused by parasitic diseases [47–54] and cardiometabolic diseases 

such as type 2 diabetes mellitus, obesity and metabolic syndrome [55–61]. Furthermore, 

pieces of evidences on humans indicate that NGF and its receptor are known to be altered in 

ethanol-induced toxicity, which is the inducing-cause of brain changes [62,63] and mental 

retardation [64–70]. A subtle role played by NGF was also hypothesized for schizophrenia 

development [71–77] as shown in humans and schizophrenia animal models.

In the peripheral nervous system (PNS) NGF has a central role in the development, 

maintenance and regeneration of mammalian sympathetic and sensory neurons [78]. During 

postnatal life, NGF continues to act as a survival factor for many sympathetic neurons, while 

sensory neurons stop to depend on this growth factor in the postnatal period [2,79]. In the 

central nervous system (CNS) NGF is produced by neurons and glial cells of the cerebral 

cortex, of the hippocampus, of the hypothalamus and acts as a protective factor of cholinergic 

neurons, cells that are involved in the cognitive process such as learning and memorization 

[4,80]. 

Studies carried out during the last few years found that NGF receptors are expressed in 

primary (thymus, bursa of Fabricius, bone marrow) and secondary (spleen, tonsils, lymph 
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nodes) lymphoid organs, as well as in some immunocompetent cells such as thymic epithelial 

cells and bone marrow stromal cells [81–91]. For this reason, both these tissues and cells are 

potential targets for NGF. Moreover, it has been described the role of NGF during 

inflammatory disorders and allergic diseases [92–98]. 

The fact that NGF is secreted in humans’ bloodstream in response to stress and the fact that 

NGF cellular targets have been identified in the endocrine system, suggests that this molecule 

may regulate physiological homeostasis through neuroendocrine mechanisms [4,99,100]. 

NGF is also involved in the acquisition of male and female reproductive capacity and 

stimulates the hypothalamic-pituitary-adrenal axis (Figure 2) increasing the secretion of 

adrenocorticotrophic hormone and corticosteroids [101,102]. In addition, hormones have been 

shown to regulate NGF synthesis and release [103]. The exogenous administration of 

testosterone to female mice increases the synthesis of NGF in the submaxillary salivary 

glands, whereas castration in males highly reduces NGF in the glands [2]. 

Acetylcholine and NGF 

NGF plays a key role in regulating the biochemical and morphological phenotype of basal 

forebrain cholinergic neurons in the fully differentiated central nervous system [104]. 

Cholinergic neurons are characterized by the presence of choline acetyltransferase (ChAT), 

the acetylcholine synthesizing enzyme, choline transporter (CHT) and vesicular acetylcholine 

transporter (VAChT); ChAT has been identified as the most selective marker of cholinergic 

cells [105,106]. In addition to its role as a trophic and survival factor for cholinergic neurons, 

NGF regulates the expression of CHT, ChAT and VAChT [107–109]. Disorders in NGF 

transport and lower processing of proNGF to mature NGF may be the cause for the selective 

degeneration of cholinergic neurons of the basal forebrain in the brain of patients with 

Alzheimer Disease (AD) [106,110]. In recent years, attention has been focused on NGF as a 
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potential therapeutic agent for a variety of neurodegenerative disorders [106]. Karami et al. 

studying the activity of ChAT in the cerebrospinal fluid (CSF) of AD patients with 

encapsulated cell implants releasing NGF (EC-NGF) found, after 12 months following NGF 

treatment, an increase in ChAT and acetylcholinesterase activity in the CSF. Moreover, CSF 

ChAT activity showed a high correlation with patient’s performance in the cognitive test 

during treatment with EC-NGF. These patients remained stable in cognition long after the 

removal of the EC-NGF implants [106]. 

Alcohol Use Disorder

Alcohol use disorders (AUD) are the most frequent and untreated mental disorders in 

developed countries and the American Medical Association defines it as a chronic and 

relapsing disease [111,112]. Nearly 2 billions of people in the world consume alcohol with 

76.3 million who have diagnosable alcohol use disorders [113]. According to the Diagnostic 

and Statistical Manual of Mental Disorders 5th edition (DSM-5) diagnostic criteria, in 2012-

13, respectively 36% of males and 22.7% of females adults in the USA met the criteria for 

alcohol use disorders at some time in their lives [114,115]. The probability of developing 

alcohol use disorders raises with the frequency of binge drinking, even though most heavy 

drinkers do not show the criteria for alcohol dependence [116]. 

Alcohol abuse is associated with many different diseases. Alcohol use has been attributed to 

both negative and positive effects. While cardiovascular protection might be gained from very 

low doses, binge drinking is linked with high mortality [117,118]. The primary causes of 

death that depend on alcohol consumption are injury, alcoholic liver disease, heart diseases, 

stroke, cancer and gastrointestinal diseases [119]. Ethanol is the intoxicating agent in 

alcoholic drinks that leads to abuse and dependence [120]. The risk of damage increases 

steeply when more than 10-20 g of alcohol is consumed in a day. The transition from episodic 
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drinking to binge drinking increases the risk of accidents, injuries, violence and heart diseases 

[121]. 

Alcohol influences a large number of neurotransmitters in the brain that are involved in 

cognition, emotion and motivation [122]. Rewarding, anxiolytic and social facilitating effects 

are due to low doses of alcohol consumption. As the dose raises, alcohol causes cognitive and 

psychomotor disruptions that increases the risks of injury [123]. Alcohol crosses the blood-

brain barrier and widely alters neuronal functions including phospholipid membranes, ion 

channels and receptors, synaptic and network functions, and intracellular signaling molecules 

[124]. Alcohol interacts with many neurotransmitters: it increases directly GABA, glycine, 

nicotinic, acetylcholine and serotonin activity; it indirectly increases dopamine, opioid and 

endocannabinoid activity and inhibits glutamate transmission (Figure 3). These complex 

effects cause acute intoxication [125].

Alcohol use disorders do not depend only on the person’s moral choices, but are a result of 

the combined effects of many personal, social and biological factors [123]. Cultures that 

promote abuse in alcohol drinking as a lifestyle are responsible for the increase in AUD cases 

in the population [126]. Also, early initiation to alcohol consumption in adolescence is a 

factor that could be responsible for developing AUD in adulthood [127]. More risk factors 

include a family history of alcohol dependence, low parental control and little family support, 

childhood attitude and mood disorders, low self-control and positive association between 

alcohol consumption and social outcomes [128]. Twin studies have estimated that 50-70% of 

the risk of developing alcohol use disorders depends on genetic factors [129]. The most 

studied genetic correlation is with genes that reduce the risk. The liver enzymes that 

metabolize alcohol are alcohol dehydrogenase and the mitochondrial form of aldehyde 

dehydrogenase (ALDH2) [123]. People with a single copy of the allele ALDH*2 have 

defective alcohol metabolism and drinking alcohol causes facial flushing, sweating, 
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tachycardia, nausea, vomiting and headache. These reactions protect against developing 

alcohol use disorders [130]. To date, alleles found to be associated with alcohol dependence 

cause a low increase of the risk of developing alcohol use disorders [131]. These alleles alter 

dopaminergic, opioidergic, GABAergic, serotonergic, cholinergic and glutamatergic 

neurotransmission [132]. 

According to the DSM-5, the diagnosis of alcohol use disorders requires at least two of eleven 

symptoms. Three methods based on structured and short questionnaires such as the Alcohol 

Use Disorders Identification Test (AUDIT), the brief version AUDIT-C, and CAGE can 

identify patients who need further assessment [133–135]. The physical examination evaluates 

the symptoms due to intoxication and withdrawal. The signs of intoxication are slurred 

speech, ataxia and inappropriate affect. Instead, the first signs of alcohol withdrawal are 

restlessness, tachycardia and fine action tremor. Alcohol values are measured in the blood or 

in the breath [123]. Standard blood tests, liver tests and the biomarker -glutamyl 

transpeptidase (gGT) are frequently aberrant in patients with alcohol use disorders, but these 

investigations alone are of little value because of poor sensitivity and specificity [136,137]. 

Many other biomarkers for alcohol use disorders diagnosis are more sensitive and specific, 

but they are not widespread due to their high cost and limited availability. These biomarkers 

comprehend carbohydrate-deficient transferrin, ethyl glucuronide, ethyl sulphate, 

phosphatidyl ethanol and fatty acid ethyl esters [137–139]. 

NGF and Chronic Alcohol Consumption in Humans

NGF is a neurotrophic factor involved in the growth and differentiation of nerve cells and in 

the prevention of damage to mature neurons. NGF is also known for his beneficial effect on 

recovery from cognitive deficits after brain damage [140–142]. In addition, it could play an 
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important role in protecting neurons from cytotoxic damage induced by ethanol [143–145]. 

Several studies have been conducted in alcohol dependent-patients to determine the 

correlation between plasma NGF concentration and alcohol dependence. The next morning 

after admission to the Hangang Sacred Heart Hospital, Lee et al. interviewed and sampled 

forty-one male patients with alcohol dependence and compared them with forty-one healthy 

male subjects. Lee et al. found that the plasma NGF concentration was elevated in AUD 

patients within 24h of abstinence [146]. In the study of Kohler et al. fifteen patients with a 

diagnosis of alcoholism according to the DSM-IV criteria, and fifteen healthy subjects 

participated consecutively in a two weeks withdrawal study. Alcohol dependent subjects 

showed, after the acute withdrawal over two weeks of alcohol abstinence, lower NGF levels 

when compared to the healthy patients. In particular mean NGF concentrations increased 

initially, and then decreased significantly from days three to fourteen [147]. These findings 

are in agreement with epigenetic down-regulation of the NGF gene during alcohol withdrawal 

[148]. It is known that increased methylation of CpG-sites in the gene promoter reduces 

mRNA expression of the interested gene [149]. Heberlein investigated the correlations 

between alterations in NGF serum concentrations and changes in the methylation of the NGF 

promoter during alcohol withdrawal. Fifty-seven patients with alcohol dependence showed a 

significant decrease in the NGF serum levels from day seven to day fourteen of alcohol 

withdrawal, and a significant increase in methylation of the CpG-sites within the NGF gene 

promoter. These results suggest epigenetic regulation of NGF gene expression during alcohol 

withdrawal [148]. Alterations in proinflammatory cytokines have been associated with 

affective disorders which play an important role in alcohol consumption [150,151]. Recently, 

in alcohol dependence patients undergoing withdrawal, Heberlein and colleagues found a 

linear association between the methylation of the CpG-sites within the NGF gene promoter 

and IL-6 serum levels [152]. In a study conducted on young patients with alcohol use 
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disorders, Lhullier et al. found higher serum levels of NGF when compared to control [153]. 

Taken together these results show that NGF plasma concentration increases during 

intoxication to protect against the toxic effects of alcohol [154], but then decreases during the 

abstinence period. Nevertheless, the number of studies is not sufficient yet for consistent 

results. 

Patients with alcohol dependence show a decline in their cognitive functions even after they 

quit to consume alcohol [155]. Other studies investigated the relationship between NGF 

plasma concentration and the decline in cognitive function of alcohol-dependent patients 

during the abstinence period. The trail-making test B, a test that includes motor components 

and visual scanning, showed an important correlation with the NGF plasma concentration. 

The NGF levels were higher in patients with lower trail-making test B score, indicating faster 

performance speed and a higher executive function. This finding may suggest a protective 

role of NGF in preventing neuronal damage in patients with alcohol dependence [156].

Another investigation demonstrated that withdrawal from chronic consumption of either 

ethanol or heroin caused a significant increase in plasma NGF, suggesting that the resulting 

anxiety condition may trigger the NGF release [157]. Quite interestingly, no changes were 

observed in the levels of bloodstream NGF of non-dependent human subjects used to drink 

alcoholic beverages (mean age 41 years) 30 min before and 60 min after drinking 1 pint of red 

wine [157]. Although the functional significance of these phenomena required further 

investigations, authors hypothesized that the increased levels of circulating NGF might be 

involved in homeostatic adaptive and/or reparative mechanisms. 

NGF and Chronic Alcohol Consumption in Animals 

Dependence and reward are regulated by complex neuronal circuits where the nucleus 

accumbens (NAc) plays a crucial role [158–160]. In the NAc there are projections of neurons 
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that release gamma-aminobutyric acid (GABA), and a small population of interneurons that 

produce either acetylcholine or GABA and different neuropeptides like neuropeptide Y 

(NPY) [161–163]. NPY is a neurotransmitter/neuromodulator implicated in the control of a 

wide range of physiological functions and behaviors, such as alcohol consumption, 

withdrawal and neuronal excitability [164–168]. Pereira et al. studied the effects of chronic 

consumption and subsequent withdrawal on the expression of NPY, acetylcholine and on the 

levels of ChAT in the NAc of abstinent rats that received an intracerebroventricular infusion 

of NGF [169]. During chronic alcohol consumption, the number of NPY-immunoreactive 

neurons increased and returned to control values after withdrawal, whereas the density of 

cholinergic varicosities was reduced by 50% during chronic consumption and by 64% during 

withdrawal. However, the increase in the number of NPY-immunoreactive neurons, the 

increase in the density of cholinergic varicosities and enlargement of cholinergic interneurons, 

after exogenous administration of NGF, suggests that withdrawal changes might be mediated 

by the withdrawal-induced disruption of NGF trophic support [169,170]. Even in the 

hippocampal formation, the cholinergic neurons and the GABAergic interneurons expressing 

NPY are vulnerable to the effects of chronic alcohol intake and abstinence [171–179]. More 

recently Pereira et al. studied the effects of chronic alcohol consumption and subsequent 

withdrawal in the dentate gyrus, a hippocampus region containing a large population of NPY-

immunoreactive neurons and cholinergic innervation [162,163,180]. In this study, they show 

that NPY expression in the hilus of the dentate gyrus increased after withdrawal and turned 

back to control values after NGF intracerebroventricular infusion [181]. Differently, the levels 

of VAChT were reduced by 24% in chronic alcohol consumption rats and by 46% in 

withdrawn rats, but after the administration of NGF to withdrawn rats, the expression of 

VAChT increased to values above control levels [181]. These findings are in agreement with 
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previous studies showing that exogenous NGF protects the phenotype and prevents 

withdrawal-induced degeneration of the basal forebrain cholinergic neurons. 

NGF and Binge Drinking in Humans

The World Health Organization (WHO) defines binge drinking as consuming at least 60 g of 

alcohol in one drinking episode [182]. Also, the National Institute of Alcoholism and Alcohol 

Abuse (NIAAA) defines binge drinking as a “pattern of drinking that brings alcohol 

concentration to 0.08 g/dL”, a concentration reached in about two hours after five drinks (70 g 

of alcohol) for men and after four drinks (56 g of alcohol) for women [183]. These definitions 

describe binge drinking as episodic and acute alcohol intoxication. Binge drinking is 

widespread in adolescents and young adults and it causes neurodevelopmental impairments, 

violence, injuries, family, school and psychiatric problems and subsequent alcohol 

dependence [184–186]. Heberlain et al. studied the acute effects of alcohol intoxication in 

patients suffering from alcohol dependence. In this study, acute alcohol intoxication was 

related to an increase in NGF plasma levels, which decreased after withdrawal. These results 

indicate that NGF plasma levels may increase to block the toxic effects of alcohol due to 

acute intoxication [154]. 

NGF acts as a soluble mediator for different immune cells and plays a relevant role in the 

immune response [81]. Moreover, significant evidence indicates that ethanol abuse increases 

the risk of infection by impairing the ability of monocytes/macrophages to act as antigen-

presenting cells and by altering the synthesis and release of cytokines [187–192]. To 

investigate whether or not ethanol has similar effects on NGF synthesis in blood cells as in 

the neurons of the CNS, Caroleo et al. studied the effects of acute ethanol exposition in blood 

monocyte-derived macrophages cultured in vitro [193–195]. These cells, isolated from 

peripheral blood of healthy donors, in basal conditions produce little NGF which increases if 
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they are activated by treatment in vitro with lipopolysaccharide (LPS). The acute exposure of 

LPS-activated cultures to ethanol alters NGF synthesis, reduces the expression of TrkA and 

the release of TNF- levels [195]. Acute ethanol intoxication induces also an increase in IL-

10 synthesis, an anti-inflammatory cytokine that decreases the production of proinflammatory 

cytokines like TNF- and IL-1 [191]. 

NGF and binge drinking in animals

Adolescence represents a period in which a significant refinement of the neurotransmitter 

system allows the transition of an immature brain to a more mature and efficient adult brain 

[196]. In particular, during these modifications, cholinergic neurons are subject to 

maturational refinement and reinforcement of cholinergic projections [197–201]. 

Unfortunately, in humans, this period is also identified with a higher frequency of alcohol 

binge drinking which causes loss of cholinergic neurons, loss of choline acetyltransferase 

(ChAT), an increase in NF-κB p65 phosphorylation and an increase in its proinflammatory 

target genes like TNF- [202–211]. These last findings suggest that loss of cholinergic 

neurons may be due to the activation of neuroimmune signaling as a result of binge drinking 

[212]. Recently, Vetreno et al. showed that adolescent intermittent ethanol (AIE) treatment, 

used as a model of human adolescent binge drinking, brought to a decrease in ChAT in 

neurons of the basal forebrain of adult rats and a decrease in high-affinity NGF receptor TrkA 

and a decrease in low-affinity receptor p75NTR, both used as markers of cholinergic neurons. 

Additionally, loss of ChAT after AIE treatment was associated with an increase in pNF-κB 

p65, a neuroimmune marker, in the basal forebrain of adult rats. These changes are blocked 

by the anti-inflammatory drug indomethacin, a non-steroidal molecule able to block 

neuroimmune signaling [212]. Together, these findings indicate that adolescent binge 

drinking induces neuroimmune signaling which may cause loss of cholinergic neurons in the 

adult basal forebrain. 
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The cholinergic system in the hippocampus has an essential role in spatial cognition and is a 

target site of EtOH neurotoxicity [213,214]. Different hypotheses have been used to explain 

ethanol-induced damage of cholinergic neurons, one of these is the direct toxicity of ethanol 

or its metabolite acetaldehyde (AcH). To verify this latter hypothesis, Jamal et al. studied in 

the hippocampus the effects of acute ethanol intoxication in Aldh2 knockout (Aldh2-KO) 

mice that lack the expression of human mitochondrial aldehyde dehydrogenase type 2 

(ALDH2) [215]. Acute ethanol intoxication (2 g/kg) caused a decrease in ChAT expression in 

Aldh2-KO mice, an increase in acetylcholinesterase (AChE) expression and no modification 

in the expression of NGF in both Aldh2-KO and WT mice [215]. These findings indicate that 

a low level of ChAT and a high level of AChE can lead to a reduction in acetylcholine and a 

consequent decrease in cognitive function. Instead, an increase in the expression of NGF with 

consequent trophic support may only occur after chronic exposition to ethanol. 

NGF and Fetal Alcohol Spectrum Disorders

The discovery of alcohol as a teratogen molecule in 1973 and the finding on long-term effects 

of prenatal alcohol exposure indicates that consuming alcohol during pregnancy can alter fetal 

development [216–218]. The effects of alcohol on fetus sphere from the absence of damage to 

abortion, including Fetal Alcohol Spectrum Disorders (FASD) such as Fetus alcohol 

syndrome (FAS), partial FAS (PFAS), associated neonatal congenital defects (Alcohol-

Related Birth Defects, ARBD) and neurological development disorders (Alcohol-Related 

Neurodevelopmental Disorders, ARND) [219,220]. FAS is the main cause of mental 

retardation in the world but is also the foremost preventable cause of neurobehavioral and 

developmental abnormalities [221]. FAS can be suspected in neonatal age by the presence of 

microcephaly and typical facial dysmorphism [222–224]; during childhood, beyond the signs 

already described, psychomotor retardation, behavioral disorders, attention and concentration 
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problems can be detected [224]; during adolescence, in addition to the previous signs 

behavioral, scholastic and social problems can be added [224]. Even though FASD is a 

frequent cause of disability, the exact incidence and prevalence of FASD in the world is not 

clear. This underestimation of the problem leads to an incorrect diagnosis and doesn’t help the 

possible rehabilitation of many children with mental retardation [224]. Paternal alcohol 

consumption may also induce changes in the newborns as shown in humans and also in 

animal models [225,226].

Alcohol consumption during pregnancy induces neuronal cell death in the offspring by 

altering the synthesis and uptake of NGF and the distribution of his receptors [227–230]. In 

rodents, chronic alcohol consumption reduces NGF levels in the hippocampus and reduces the 

ChAT activity in the septum, hippocampus and cortex [231]. Similar results were obtained 

when an acute administration of ethanol to pregnant rats was sufficient to change in the 

offspring the physiological levels of NGF in the hippocampus and the localization of p75 in 

the septum [194]. Alcohol consumption during pregnancy can also damage the proliferation 

and differentiation of neurons leading to deficits in the limbic area responsible for cognitive 

activity [232,233]. In the entorhinal cortex, a region of the hippocampal formation, the 

exposition of pregnant mice to ethanol during mouse fetal life causes neuroanatomical and 

neurofunctional alterations during neurogenesis of the entorhinal cortex. These morphological 

modifications are associated with altered levels of NGF in the entorhinal cortex of prenatal 

alcohol-treated mice [234]. NGF changes in the mouse brain limbic system were also 

disclosed following paternal alcohol consumption [3,226].

Other growth factors may regulate the survival, differentiation and maintenance of cellular 

phenotype [2,235,236]. NGF, hepatocyte growth factor (HGF) and vascular endothelial 

growth factor (VEGF) are the main growth factors controlling the physiopathology of the 

brain, liver, kidney, and are altered in mice early exposed to ethanol [3,46,229,237]. In aged 
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mice, the exposition to ethanol during fetal life and lactation affects these growth factors: 

NGF was higher in the frontal cortex and hippocampus, HGF was increased in the 

hippocampus and frontal cortex, and VEGF was elevated in the frontal cortex and in the 

hippocampus and lower in the liver [238]. 

During pregnancy, maternal alcohol consumption can indirectly disrupt fetal development by 

altering the function and interactions of maternal and fetal hormones [239] and NGF plays a 

crucial role in the development, maintenance and functions of the endocrine system [4,240–

244]. Ceccanti et al. showed that early administration of ethanol and wine during mouse fetal 

life causes long-lasting changes in the thyroid, testis and adrenal glands of aged mice. In 

particular high levels of NGF were observed in the thyroid and testis of aged mice when 

exposed only to ethanol, while in the adrenal glands high levels of NGF were observed when 

they are exposed to both ethanol and red wine [245]. 

Conclusion

AUD is one of the principal cause of diseases and disabilities in the world. Furthermore, the 

teratogen effects of prenatal alcohol exposure are known to cause severe cognitive and 

behavioral deficits due to functional and anatomical changes within the brain. In the past 

years, different researches have described the role of NGF as a trophic and protective factor 

against the cytotoxic damage induced by ethanol. In particular, important findings show 

increased NGF plasma concentrations during alcohol intoxication and a protective role 

against neuronal degeneration. Future studies will help to understand these mechanisms and 

to develop new therapeutic strategies based on NGF trophic and protective action.   
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Figure Captions

Figure 1

Binding of NGF to TrKA. 

NGF binding to TrkA starts the homodimerization of the receptor and the 

autophosphorylation of tyrosine residues within the intracellular domains. Phosphorylation 

allows recruitment of adapter proteins that have src-homology-2 (SH-2) or phosphotyrosine-

binding motifs. Adapter proteins, after phosphorylation, start intracellular signaling cascades 

involved in cell survival.

Figure 2 

Main roles of NGF in physiological and pathological conditions. 

NGF is involved in growth, survival, proliferation and protection of neurons in the central and 

peripheral nervous system. NGF is also associated with functional activities of the immune 

and endocrine systems and due to its neuroendocrine activity, NGF is implicated in the 

maintenance of the physiological homeostasis. NGF play also a key role in 

neuroinflammation, cardiometabolic diseases, alcoholism, autoimmunity, inflammatory 

disorders, allergic diseases and aging. Furthermore, NGF contributes to the acquisition of 

male and female reproductive capacity. 

Figure 3 

Effects of acute alcohol intoxication on the ventral tegmental area and nucleus 

accumbens. 

The ventral tegmental area is involved in pleasure and reward through dopaminergic 

projection towards the nucleus accumbens, important brain area playing subtle roles in the 

cognitive processing of reward, pleasure and addiction. In the ventral tegmental area, alcohol 

stimulates GABAergic neurotransmission, modulates the expression and activity of 

acetylcholine receptors (nAChR) and activates the release of dopamine and opioid peptides 

which act on the neurons of the nucleus accumbens. These actions enhance dopaminergic 

transmission. Furthermore, alcohol inhibits the release of the excitatory neurotransmitter 

glutamate from nerve terminals that act on neurons in the nucleus accumbens. 
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