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UNIFORM ASYMPTOTIC EXPANSIONS BEYOND THE tQSSA FOR
THE GOLDBETER--KOSHLAND SWITCH\ast 
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Abstract. In this paper we study the mathematical model of the Goldbeter--Koshland switch, or
futile cycle, which is a mechanism that describes several chemical reactions, in particular the so-called
phosphorylation-dephosphorylation cycle. We determine the appropriate perturbation parameter \epsilon 
(related to the kinetic constants and initial conditions of the model) for the application of singular
perturbation techniques. We also determine the inner and outer solutions and the corresponding
uniform expansions, up to the first order in \epsilon , beyond the total quasi-steady state approximation
(tQSSA). These expansions, in particular the inner ones, can be useful for the estimation of the kinetic
parameters of the reaction by means of the interpolation of experimental data. Some numerical results
are discussed. Moreover, in a study case, we determine the center manifold of the system and show
that, at zero order, it is asymptotically equivalent to the tQSSA of the system.
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1. Introduction. The Michaelis--Menten kinetics gives a very good description
of the dynamics of the different enzymes involved in a reaction and represents a
staple of chemical and physiological reaction theory. It inspired much research into
the modeling of intracellular signal transduction networks [6, 13].

The model considers a reaction where a substrate S binds to an enzyme E re-
versibly to form an unstable molecular complex C. The complex can then decay
irreversibly to a product P and the enzyme, which is then free to bind to another
molecule of the substrate.

A scheme of this process is given by

(1.1) S + E
a - \rightharpoonup \leftharpoondown  - 
d

C
k - \rightarrow P + E,

where a, d, k are kinetic parameters (depending on temperature but assumed constant
during the reactions) related to the reaction rates. For notational convenience we will
use variable names to denote both a chemical species and its concentration.

The reaction can be described using the mass action principle, which states that
the growth rate of each reactant is proportional to the instantaneous concentration
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1124 BERSANI, BORRI, MILANESI, TOMASSETTI, AND VELLUCCI

of the reactants themselves, and using conservation laws. This approach leads to the
following (full) system:

(1.2)

\left\{       
dS

dt
=  - a(ET  - C)S + dC,

dC

dt
= a(ET  - C)S  - (d+ k)C,

with the initial conditions

(1.3) S(0) = ST , C(0) = 0

and the conservation laws

(1.4) E + C = E(0) = ET , S + C + P = ST ,

where KM = k+d
a is called the Michaelis constant or affinity constant.

The Michaelis--Menten reaction is characterized by two phases: a short transient
phase of rapid increase of the complex C, and a second, slower phase called the quasi-
steady state phase, where the complex is considered substantially in equilibrium.

The hypothesis of quasi-steady state simplifies the reaction, leading to an ordinary
differential equation (ODE) for the substrate, with initial condition S(0) = ST , while
the complex is assumed to be in a quasi-steady state, i.e., dC

dt \approx 0.
The equations of system (1.2) become

(1.5)

\left\{                 

C(t) \approx  - ET \cdot S(t)
KM + S(t)

,

dS

dt
\approx  - kC(t) \approx  - VmaxS(t)

KM + S(t)
,

S(0) = ST ,

where Vmax = k ET .
The hypothesis of quasi-steady state has been widely discussed in the literature

(see, for example, the review [6]) because this hypothesis has led to many misinterpre-
tations of (1.5). See [22] for the correct mathematical interpretation of the standard
quasi-steady state assumption (sQSSA).

In the past few decades, other researchers have introduced and explored a new
approximation, called total quasi-steady state approximation (tQSSA), which has
been shown to be always roughly valid in the case of an isolated reaction (as in [6]).

Let us consider again the classical Michaelis--Menten kinetics (1.2). Introducing
the total substrate S(t) = S(t) + C(t), we see that (1.2) then becomes

(1.6)

\left\{                   

dS

dt
=  - kC,

dC

dt
= a[C2  - (ET + S +KM )C + ETS],

S(0) = ST ,

C(0) = 0,
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with conservation laws

(1.7) E + C = ET , S + P = ST .

Assuming that the complex is in a quasi steady-state
\bigl( 
dC
dt \approx 0

\bigr) 
, it yields the total

QSSA (tQSSA) [9], which is valid for a broader range of parameters covering both
high and low enzyme concentrations,

(1.8) dS \approx  - k C - (S), S(0) = ST ,

where

(1.9) C - (S) =
(ET +KM + S) - 

\sqrt{} 
(ET +KM + S)2  - 4ETS

2

is the only biologically allowed solution of dC
dt = 0 in the second equation (1.6).

Borghans, de Boer, and Segel [9] determine a necessary condition for the validity
of the tQSSA, imposing the condition that the two timescales of the transient phase
tC and of the QSSA phase tS must be well separated: tC \ll tS . Following reasoning
very similar to [42, 43, 44], they obtain

tC =
1

a(ET + ST +KM )
; tS =

ET + ST +KM

kET

and show that the necessary condition is satisfied when

(1.10)
tC
tS

=
KET

(ET + ST +KM )2
\ll 1 ,

where K = k
a is the Van Slyke--Cullen constant.

It is easy to show that the left-hand side in (1.10) is always less than 1/4. This
means that the tQSSA is always at least roughly valid. Moreover, since (1.10) can be
rewritten in the form\biggl( 

1 +
ET + ST

K
+

d

k

\biggr) \biggl( 
1 +

ST +KM

ET

\biggr) 
\gg 1 ,

as discussed in [9], this approximation is valid, for example, when ET + ST \gg K,
when a \gg k, and, more importantly, at low enzyme concentrations ET \ll ST +KM ,
which implies that when the sQSSA is valid, then so is the tQSSA.

The total approximation has been applied to more complex mechanisms [48, 40,
36]. Among others, we mention the double phosphorylation [36]; the Goldbeter--
Koshland switch, which models the single phosphorylation-dephosphorylation cycle [2,
38, 11, 35]; the double phosphorylation-dephosphorylation cycle; and the ubiquitous
mitogen-activated protein kinase (MAPK) cascade [37, 28, 17, 15, 8], which is one
of the most important mechanisms in the great majority of reaction networks in
eukaryotic cells [26].

A reliable mathematical modeling of protein networks can be a valid tool for
pharmaceutical preclinical research, because its theoretical study can help to identify
the dose and chemical structure of any potential drug acting on the network itself.

It is then important to break up the reaction networks into simpler modules, which
are applied to many processes affecting protein concentrations, e.g., MAPK cascade
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1126 BERSANI, BORRI, MILANESI, TOMASSETTI, AND VELLUCCI

of intracellular signal transduction, gene expression, protein degradation, and RNA
metabolism.

In this paper, in the tQSSA framework, we want to study the asymptotic prop-
erties of the Goldbeter--Koshland (GK) switch, or futile cycle, where a substrate S is
modified to the product P and, vice versa, P is transformed back to S:

(1.11)

\left\{     
S + E

a1 - \rightharpoonup \leftharpoondown  - 
d1

C1
k1 - \rightarrow P + E,

P + F
a2 - \rightharpoonup \leftharpoondown  - 
d2

C2
k2 - \rightarrow S + F.

An example of this process is given by the phosphorylation-dephosphorylation cycle,
where the substrate S is activated by phosphorylation to the form S\ast , and the lat-
ter is transformed back (i.e., inactivated by dephosphorylation) to S. This reaction
describes the ubiquitous mechanism of covalent modification cycles and is very im-
portant in every intracellular pathway, because the process of phosphorylation and
dephosphorylation is one of the most important for activating and deactivating en-
zymes. Actually, the mechanism provides the building blocks of several intracellular
reactions, such as the well-known MAPK cascade.

The fundamental step is to consider (and model) the contribution from interme-
diate complexes using mass action and conservation laws. In this way an ODE is
obtained for each involved complex and substrate, where the concentration variation
for each reactant is proportional to the reactant concentrations. We refer to this as
the full system.

We wish to quote, among others, the following contributions from the literature
on the GK switch.

Papers [11, 38] independently extended the tQSSA for the first time to the GK
switch. Moreover, in [11] the authors coupled two and three GK switches together
to study the effects of feedback in networks of protein kinases and phosphatases.
In [35] it is shown that the tQSSA reproduces zero-order ultrasensitivity in the GK
switch, while the sQSSA, for a wide range of parameter values, is not able to yield
ultrasensitivity whenever it is expected by the theory.

In the 1960s, mathematicians (see, in particular, [22]) interpreted the sQSSA as
the leading order of an asymptotic expansion with respect to a perturbation parameter
\epsilon , which must be assumed small. Heineken, Tsuchiya, and Aris [22] used \epsilon HTA = ET

ST

(where ST and ET are the initial concentration values of the substrate and the enzyme,
respectively), because in the literature it is widely used to impose the condition that
the initial concentration of the enzyme E is much less than the concentration of the
substrate S.

The parameter can also arise by virtue of a biochemical condition imposing the
separation between the two timescales tc and ts characterizing the reaction (see also
[27, 42, 43, 44, 34]). In this way, Segel and Slemrod [44] showed that the sQSSA
can be obtained also as the leading order of an asymptotic expansion in terms of
\epsilon SS = ET

ST+KM
, enlarging the parameter range of validity of the sQSSA.

Dell'Acqua and Bersani [16] proved that in the case of a single reaction, the tQSSA
approximation can also be viewed as the leading order of an asymptotic expansion
with respect to a suitable perturbation parameter \epsilon = ETK

(ET+ST+KM )2 .

That parameter, which corresponds to (1.10), and was introduced in [9], naturally
arises also from the studies by Palsson and collaborators (in particular, see [33, 34]),
where the authors are able to determine a sufficient condition for the validity of any
QSSA, based on the timescale separation, in terms of the trace and the determinant---
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or, equivalently, the eigenvalues---of the Jacobian matrix J of the system of nonlinear
ODEs, governing the mechanism, with J evaluated in its stationary point.

Taking into account that the perturbation parameter is always less than 1/4, its
introduction in terms of timescale separation appears much more natural than the
previous parameters. This result gives a theoretical mathematical foundation for the
choice of the parameter in the tQSSA.

In previous literature the different QSSAs are approached by means of two dif-
ferent tools: Tikhonov's theorem [45, 46, 50, 51, 23] (see Appendix A), which studies
the asymptotic stability of systems of differential equations characterized by the pres-
ence of small perturbation parameters, and center manifold theory, which is one of
the most powerful tools for studying the dimensional reduction of differential sys-
tems. On the one hand, Heineken, Tsuchiya, and Aris [22] and Dvo\v r\'ak and \v Si\v ska
[19] quote Tikhonov's theorem in order to justify the sQSSA, while Khoo and Heg-
land [24] refer to this theorem to apply the tQSSA; on the other hand, other authors
[32, 25] interpret the sQSSA and the tQSSA, respectively, as the slow manifold of the
Michaelis--Menten kinetics. These techniques are well related by Fenichel's fundamen-
tal paper [20], which includes results on the connection between geometric singular
perturbation theory [39, 5] and center manifolds.

Moreover, taking inspiration from [36], in [5] the authors study the chemical
reaction of inhibition and determine the appropriate parameter for the application of
Tikhonov's theorem, compute explicitly the equations of the center manifold of the
system, and find sufficient conditions to guarantee that in the phase space the curves
which relate the behavior of the complexes to the substrates by means of the tQSSA
tend asymptotically to the center manifold of the system. In other words, paper [5]
gives another example of connections among Tikhonov's theorem, center manifold,
and tQSSA, after the fundamental article [20].

In order to prove the validity of the tQSSA in the case of successive reactions,
where more parameters appear, in this work we need the generalization of Tikhonov's
theorem [45, 51] to the case of more parameters, as in [46]: Let us consider below the
case of \{ \epsilon j\} mj=1, all of the same order, namely, \epsilon j = \rho j - 1\epsilon for each j = 1, . . . ,m and
\rho j > 0 (\rho 0 = 1). We obtain a system of the form

dx

dt
= f(x,y; t),

\epsilon 
dy

dt
= g(x,y; t),(1.12)

where y = (y1, . . . , ym)t, g = (g1,
1
\rho 1

g2, . . . ,
1

\rho m - 1
gm)t. Then it is possible to apply,

for the system (1.12), Tikhonov's theorem.
The theorem allows us to list in decreasing order the different values of \epsilon j , so that

we can use the greatest among them as perturbation parameter \epsilon .
In this paper, following the suggestions given in [33, 41, 9, 18, 16], we propose a

parameter \epsilon which is always less than 1/4 and consequently is a very good candidate for
asymptotic expansions. This parameter naturally arises from an appropriate scaling
of the variables, for the adimensionalization, based on a suitable equation balancing,
as in [44, 16].

We want to apply perturbation expansions beyond the tQSSA in order to deter-
mine the corrections of order \epsilon . These corrections, though cumbersome, can be very
useful for describing the behavior of the reactants, mainly during the early stages
of the reaction, in order to determine the kinetic parameter values, by means of the
interpolation with experimental data.
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The paper is organized as follows. In section 2 we describe the mathematical
model of the GK switch, introduce the perturbation parameter, and adimensionalize
the equations governing the model. Depending on the parameter values, we study two
different cases (subsections 2.1 and 2.2), determining in both cases the inner and outer
solutions up to the first order in \epsilon and, by means of appropriate matching conditions,
to the uniform expansions. These matching conditions, at first order, are not usual
in singular perturbation problems. Thus, we have to adopt a different approach, as
suggested in [31]. Some numerical results are shown. In section 3 we build the center
manifold for a study case, where all of the parameters are pairwise equal. Finally, we
show that the center manifold, at order 0, is asymptotically equivalent to the tQSSA
of the system that corresponds to our asymptotic expansion at order 0. In section 4
we state some conclusions and perspectives for future research.

2. The mathematical model of the GK switch. As already observed, a
Goldbeter--Koshland (GK) reaction, or futile cycle, is summarized by the scheme
(1.11). By the law of mass action, we get the following system of equations [21]:

(2.1)

\left\{                         

dS

dt
=  - a1SE + d1C1 + k2C2,

dC1

dt
= a1SE  - (d1 + k1)C1,

dP

dt
= k1C1  - a2PF + d2C2,

dC2

dt
= a2PF  - (d2 + k2)C2.

with S(0) = ST , Ci(0) = 0, P (0) = 0. Introducing the total substrates S = S + C1,
P = P +C2 by conservation laws E+C1 = ET , F +C2 = FT , S+P +C1+C2 = ST ,
we have S + P = ST . Thus the system reduces to three independent equations, and
we can write the following Cauchy problem (see, for example, [11, 38, 2, 35]):

(2.2)

\left\{                       

dS

dt
= k2C2  - k1C1,

dC1

dt
= a1[(S  - C1)(ET  - C1) - K1MC1],

dC2

dt
= a2[(ST  - S  - C2)(FT  - C2) - K2MC2],

S(0) = ST , C1(0) = 0, C2(0) = 0.

where KiM = di+ki

ai
are the Michaelis constants.

In [1], in the framework of the monotone systems, it was shown that the unique
equilibrium point of an enzymatic futile cycle has a global convergence property. Thus
it is simple to show that all of the hypotheses of Tikhonov's theorem (see Appendix
A) are fulfilled. Since Tikhonov's theorem is only the first step in the asymptotic
solution of initial value problems of the singular perturbation type in the form of a
series in powers of \epsilon , the main goal of our paper is to approximate the solutions of
the system by asymptotic expansions in terms of a suitable perturbation parameter.
In [14] Dell'Acqua proposes a perturbation parameter which seems not to satisfy the
need for a parameter small for a wide range of parameters.
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In order to fix an appropriate perturbation parameter, on the one hand we could
impose Palsson's conditions [33, 34], which guarantee the separation between the
timescales characterizing the fast transient phase and the QSSA phase, respectively.
These conditions are based on the consideration that in the Jacobian of the system,
we can observe the separation of the eigenvalues of each reaction, which are related
to the timescales, as in [4, 3].

On the other hand, we could follow the method proposed in [27, 42, 43, 44], where
the timescales of the complex formation tC and of the total substrate depletion tS are
estimated in a different way.

Unfortunately, when we try to apply the same technique to the futile cycle, we
run into several difficulties, due to the fact that on the one hand, in the Jacobian
the eigenvalues of the direct and reverse reactions cannot be separated, while on the
other hand, the usual techniques as in [27, 42] cannot give interesting results, due
to the fact that in the futile cycle not one of the reactants is depleted, thus it is
difficult to estimate \Delta S and \Delta P with this technique, even if it is possible to obtain
the parametrization of the asymptotic values of the reactants and of the complexes,
as in [21, 12].

However, let us recall that these methods allow us to obtain at least a rough
estimate of the timescales tC and tS .

In the framework of the sQSSA, Segel and Slemrod [44] showed that the same
parameter \epsilon SS can be determined also with an appropriate scaling of the equations,
based on a suitable balancing of all the terms in the equations. This technique was
applied also for the adimensionalization in [16], in the framework of the tQSSA. In
the single reaction the two scaling parameters \gamma for the adimensionalization of t in the
inner and outer systems represent, in fact, the two timescales in [44, 16], respectively.

Let us remark that, using different techniques, both [9] and [16] arrive at the same
perturbation parameter,

\epsilon =
tC
tS

=
KET

(ET + ST +KM )2
,

which was used also in [33, 41, 18] and arises as the most natural perturbation pa-
rameter.

Thus, in order to determine the asymptotic inner and outer expansions of the
solutions, following the balancing technique used in [44, 16], we propose
(2.3)

\epsilon = max

\biggl\{ 
\epsilon 1 :=

K1ET

(ET +K1M + ST )2
, \epsilon 2 :=

K2FT

(FT +K2M + ST )2
i = 1, 2

\biggr\} 
<

1

4

(where Ki =
ki

ai
are the Van Slyke--Cullen constants) as the perturbation parameter.

This choice will imply the study of two different cases, which may appear a bit
tedious. We could decide to choose a different parameter such as, for example, the
average of \epsilon 1 and \epsilon 2. However, taking in each case the maximum between them
allows us to better test the validity of the approximation and to stress the values of
the kinetic parameters and the initial conditions in order to obtain values of \epsilon even
very close to the upper bound 1/4. Moreover, since the structure of the equation does
not change in a significant way, we decided to study the two cases separately.

Since, in contrast to the mechanism studied in [36, 5, 4], the situation between
the two reactions in (1.11) is not symmetric, because of the asymmetry of the initial
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conditions for S and P , we have to focus our attention on the following two cases:

(2.4) (A) \epsilon = \epsilon 1 =
K1ET

(ET +K1M + ST )2
; (B) \epsilon = \epsilon 2 =

K2FT

(FT +K2M + ST )2
.

2.1. Case (A). \epsilon = \epsilon 1 = K1ET

(ET+K1M+ST )2 .

The first step is the adimensionalization of the system. Following [22, 27, 30, 44,
16], let us consider the change of variables S = \alpha s, Ci = \beta ici (i = 1, 2), and t = \gamma \tau ,
with
(2.5)

\gamma =
1

a1(ET +K1M + ST )
; \alpha = ST ; \beta 1 =

ETST

ET +K1M + ST
; \beta 2 =

FTST

FT +K2M + ST
.

Furthermore, we introduce

\sigma 1 =
ST

ET +K1M + ST
; \eta 1 =

ET

ET +K1M + ST
; \kappa 1M =

K1M

ET +K1M + ST
;

\sigma 2 =
ST

FT +K2M + ST
; \eta 2 =

FT

FT +K2M + ST
; \kappa 2M =

K2M

FT +K2M + ST
,(2.6)

where

(2.7) \sigma i + \eta i + \kappa iM = 1 , i = 1, 2 .

This parameter set provides an adimensionalization of the model equations (see
[16]), thanks to which we obtain the following system of equations for the inner
solutions:
(2.8)\left\{               

ds

d\tau 
= \epsilon 

\biggl[ 
\eta 2k2
\eta 1k1

c2  - c1

\biggr] 
,

dc1
d\tau 

= (s - \eta 1c1)(1 - \sigma 1c1) - \kappa 1Mc1 = \eta 1\sigma 1c
2
1  - (\sigma 1s+ 1 - \sigma 1)c1 + s,

dc2
d\tau 

= h[(1 - s - \eta 2c2)(1 - \sigma 2c2) - \kappa 2Mc2] = h
\bigl[ 
\eta 2\sigma 2c

2
2  - (1 - s\sigma 2)c2 + (1 - s)

\bigr] 
(where h = a2

a1

\sigma 1

\sigma 2
), together with the initial conditions s(0) = 1, c1(0) = 0, c2(0) = 0.

We now write the system of equations that gives the outer solutions. To this aim
we set \gamma := 1

k1\eta 1
, and, putting T = t

\gamma , we see that

(2.9) T =
\gamma 

\gamma 
\tau =

k1\eta 1
a1(ET +K1M + ST )

\tau =
K1ET

(ET +K1M + ST )2
\tau = \epsilon \tau .

So we obtain ds
d\tau = \epsilon ds

dT and, hence, the outer system

(2.10)

\left\{               

ds

dT
=

\eta 2k2
\eta 1k1

c2  - c1,

\epsilon 
dc1
dT

= \eta 1\sigma 1c
2
1  - (\sigma 1s+ \eta 1 + \kappa 1M )c1 + s,

\epsilon 
dc2
dT

= h
\bigl[ 
\eta 2\sigma 2c

2
2  - (\eta 2 + (1 - s)\sigma 2 + \kappa 2M )c2 + (1 - s)

\bigr] 
.
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Let us observe that, applying Tikhonov's theorem [45, 46, 50, 51, 23] and putting
\epsilon = 0, we obtain the following reduced system of differential algebraic equations
(DAEs): \left\{       

ds

dT
=

\eta 2k2
\eta 1k1

c2  - c1,

\eta 1\sigma 1c
2
1  - (\sigma 1s+ \eta 1 + \kappa 1M )c1 + s = 0,

\eta 2\sigma 2c
2
2  - (\eta 2 + (1 - s)\sigma 2 + \kappa 2M )c2 + 1 - s = 0,

which corresponds to the tQSSA of the system in [11, 38, 2, 35]. However, in this
paper we want to apply perturbation expansions beyond the tQSSA and determine
the corrections of order \epsilon .

Let us remark that, following the considerations made in [44], the two parameters
\gamma and \gamma can be considered rough estimates of the two timescales tC1

and tS .

2.1.1. Asymptotic expansions. The parameter \epsilon , appearing in the left-hand
side of the second and third equations of (2.10), arises as the natural perturbation
parameter of our asymptotic expansions.

Let us first focus our attention on the inner solutions expressed by (2.8). Let us
expand the solutions of (2.8) to the form s = s0 + \epsilon s1 + o(\epsilon ), c1 = c10 + \epsilon c11 + o(\epsilon ),
c2 = c20 + \epsilon c21 + o(\epsilon ). Upon substitution in (2.8), we find

(2.11)

\left\{       
ds0
d\tau 

= 0 \Rightarrow s0 = 1,

ds1
d\tau 

=
\eta 2k2
\eta 1k1

c20  - c10 .

At leading order, for c1, we obtain

dc10
d\tau 

= \eta 1\sigma 1c
2
10  - (\sigma 1s0 + \eta 1 + \kappa 1M )c10 + s0,

and, since s0 = 1, \sigma 1 + \eta 1 + \kappa 1M = 1, it follows that

(2.12)
dc10
d\tau 

= \eta 1\sigma 1c
2
10  - c10 + 1 = \eta 1\sigma 1(c10  - c+10)(c10  - c - 10),

where c\pm 10 = 1\pm 
\surd 
1 - 4\eta 1\sigma 1

2\eta 1\sigma 1
> 0. Note that

(2.13) c+10+c - 10 =
1

\eta 1\sigma 1
, c+10 - c - 10 =

\surd 
\Delta 

\eta 1\sigma 1
, c+10c

 - 
10 =

1

\eta 1\sigma 1
,

c+10  - c - 10
c+10

=
\surd 
\Delta c - 10,

where \Delta = 1 - 4\eta 1\sigma 1.
The solution of (2.12) is the following:

(2.14) c10(\tau ) =
1

\eta 1\sigma 1

\Biggl[ 
e
\surd 
\Delta \tau  - 1

c+10e
\surd 
\Delta \tau  - c - 10

\Biggr] 
.

If \tau \ll 1, we have c10(\tau ) \sim \tau . This means that for t \ll 1, C1(t) \sim \beta 1

\gamma t = a1ETST t.
This result can be useful in order to estimate a1 by means of experimental data at the
very beginning of the reaction (see, for example, [22, 7] for similar considerations).

As to dc20
d\tau , from s0 = 1, we have\left\{   

dc20
d\tau 

= hc20[\eta 2\sigma 2c20  - (\eta 2 + \kappa 2M )],

c20(0) = 0,

D
ow

nl
oa

de
d 

06
/0

4/
20

 to
 1

51
.1

00
.3

8.
41

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1132 BERSANI, BORRI, MILANESI, TOMASSETTI, AND VELLUCCI

with the singular solution c20(\tau ) = 0. In conclusion, at order 0 the terms of the
asymptotic expansions of the inner solutions are

\left\{         
s0 = 1,

c10 =
1

\eta 1\sigma 1

\Biggl[ 
e
\surd 
\Delta \tau  - 1

c+10e
\surd 
\Delta \tau  - c - 10

\Biggr] 
,

c20 = 0.

Let us now expand the solutions of the outer system (2.10) to the form s =
\Sigma 0+ \epsilon \Sigma 1+ o(\epsilon ), c1 = \Gamma 10+ \epsilon \Gamma 11+ o(\epsilon ), c2 = \Gamma 20+ \epsilon \Gamma 21+ o(\epsilon ). Substituting in (2.10),
we find at order 0 that

(2.15)

\left\{       
d\Sigma 0

dT
=

\eta 2k2
\eta 1k1

\Gamma 20  - \Gamma 10,

0 = \eta 1\sigma 1\Gamma 
2
10  - (\sigma 1\Sigma 0 + \eta 1 + \kappa 1M )\Gamma 10 +\Sigma 0,

0 = \eta 2\sigma 2\Gamma 
2
20  - (1 - \sigma 2\Sigma 0)\Gamma 20 + (1 - \Sigma 0)

(which corresponds to the tQSSA of the system). The initial conditions are given
by the matching conditions which are commonly prescribed in singular perturbation
theory (see [22, 30, 29, 27, 31, 16]) by lim\tau \rightarrow +\infty s0(\tau ) = 1 = \Sigma 0(0), and by the
following equalities, which are, interestingly, automatically yielded:

(2.16) lim
\tau \rightarrow +\infty 

c10 =
1

c+10\eta 1\sigma 1

= c - 10 = \Gamma 10(0); lim
\tau \rightarrow +\infty 

c20 = 0 = \Gamma 20(0) .

From the two algebraic equations in (2.15) we get

(2.17)

\left\{           
\Gamma 10 =

(\sigma 1\Sigma 0 + 1 - \sigma 1) - 
\sqrt{} 
(\sigma 1\Sigma 0 + 1 - \sigma 1)2  - 4\eta 1\sigma 1\Sigma 0

2\eta 1\sigma 1
,

\Gamma 20 =
(1 - \sigma 2\Sigma 0) - 

\sqrt{} 
(1 - \sigma 2\Sigma 0)2  - 4\eta 2\sigma 2(1 - \Sigma 0)

2\eta 2\sigma 2
,

where we have considered only the biologically significant roots (as done, for example,
in [36, 38, 35]). We thus obtain

d\Sigma 0

dT
=

\eta 2k2
\eta 1k1

\Biggl[ 
(1 - \sigma 2\Sigma 0) - 

\sqrt{} 
(1 - \sigma 2\Sigma 0)2  - 4\eta 2\sigma 2(1 - \Sigma 0)

2\eta 2\sigma 2

\Biggr] 

 - 
(\sigma 1\Sigma 0 + 1 - \sigma 1) - 

\sqrt{} 
(\sigma 1\Sigma 0 + 1 - \sigma 1)2  - 4\eta 1\sigma 1\Sigma 0

2\eta 1\sigma 1
.

(2.18)

The DAE system (2.15), together with its initial conditions, can be numerically
solved. The procedure for obtaining a uniform approximation consists of adding the
inner and the outer approximations and subtracting their common part [30, 27, 31, 16].
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In conclusion, we can write the (adimensional) uniform expansions at zero order as

sun0 (\tau ) = \Sigma 0(\epsilon \tau ) + s0(\tau ) - 1 = \Sigma 0(\epsilon \tau ),

cun10 (\tau ) = \Gamma 10(\epsilon \tau ) + c10(\tau ) - c - 10

=
(\sigma 1\Sigma 0(\epsilon \tau ) + 1 - \sigma 1) - 

\sqrt{} 
(\sigma 1\Sigma 0(\epsilon \tau ) + 1 - \sigma 1)2  - 4\eta 1\sigma 1\Sigma 0(\epsilon \tau )

2\eta 1\sigma 1

+
1

\eta 1\sigma 1

\Biggl[ 
e
\surd 
\Delta \tau  - 1

c+10e
\surd 
\Delta \tau  - c - 10

\Biggr] 
 - c - 10,

cun20 (\tau ) = \Gamma 20(\epsilon \tau ) + c20(\tau )

=
(1 - \Sigma 0(\epsilon \tau )\sigma 2) - 

\sqrt{} 
(1 - \Sigma 0(\epsilon \tau )\sigma 2)2  - 4(1 - \Sigma 0(\epsilon \tau ))\eta 2\sigma 2

2\eta 2\sigma 2
.

Let us now consider the first-order approximation, starting from system (2.8) for
the inner solutions. We have

ds1
d\tau 

=  - c10(\tau ) =  - 1

\eta 1\sigma 1

\Biggl[ 
e
\surd 
\Delta \tau  - 1

c+10e
\surd 
\Delta \tau  - c - 10

\Biggr] 
, s1(0) = 0,(2.19a)

\left\{     
dc11
d\tau = 2\eta 1\sigma 1c10c11  - [\sigma 1s1c10 + (\sigma 1s0 + 1 - \sigma 1)c11] + s1

= 2\eta 1\sigma 1c10c11  - [\sigma 1s1c10 + c11] + s1 = (2\eta 1\sigma 1c10  - 1)c11 + s1(1 - \sigma 1c10),

c11(0) = 0,

(2.19b)

\Biggl\{ 
dc21
d\tau = h[(\sigma 2  - 1)c21  - s1],

c21(0) = 0.
(2.19c)

The solution of (2.19a) is the following:

(2.20) s1(\tau ) =  - c+10\tau +
1

\eta 1\sigma 1
ln

\left[  
\Bigl( 
c+10e

\surd 
\Delta \tau  - c - 10

\Bigr) 
\eta 1\sigma 1

\surd 
\Delta 

\right]  .

For \tau \ll 1, through a Maclaurin expansion in \tau up to second order, we obtain
s1(\tau ) \sim  - 1

2\tau 
2. This means that, at the very beginning of the reaction,

S(t) \sim ST

\biggl[ 
1 - 1

2
a21K1ET t

2

\biggr] 
.

Again, this asymptotic result can be useful in the experimental data interpolation
in order to determine the kinetic parameters of the reaction. Let us underline that the
computation of the first-order correction allows us to determine a much more precise
approximation of S(t) in the early stages of the transient reaction, when experimen-
tal data can be used to determine the kinetic parameters. Let us observe that the
approximation at zero order, S(t) \sim = ST , gives too little information. Apart from the
effect of improving the effectiveness of the approximations, which is useful in itself, the
possibility of giving numerical tools to determine estimates of the kinetic parameters
is one of the main reasons for the computation of the first-order corrections, mainly
of the inner solutions.
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Moreover, we get

(2.21) s1(\tau ) \sim \tau \rightarrow +\infty  - c+10\tau +
1

\eta 1\sigma 1
ln

\biggl[ 
c+10\eta 1\sigma 1\surd 

\Delta 
e
\surd 
\Delta \tau 

\biggr] 
=  - c - 10\tau  - 1

\eta 1\sigma 1
ln(

\surd 
\Delta c - 10)

(i.e., a straight line), which we denote by sas1 (\tau ), such that

(2.22) sas1 (0) =  - 1

\eta 1\sigma 1
ln(

\surd 
\Delta c - 10)

because
c+10\eta 1\sigma 1\surd 

\Delta 
= 1+

\surd 
\Delta 

2
\surd 
\Delta 

and c+10 = 1
c - 10\eta 1\sigma 1

. Let us now solve (2.19b) for c11. The

steps are shown in Appendix B. Asymptotically, we obtain from (B.1)

c11(\tau ) \sim \tau \rightarrow +\infty 
c - 10(\sigma 1c

 - 
10  - 1)\surd 
\Delta 

\tau 

+
1

\eta 1
\surd 
\Delta 

\biggl[ 
c - 10
2

\biggl( 
1 - 1 - 2\eta 1\surd 

\Delta 

\biggr) 
+

1 - \sigma 1c
 - 
10

\sigma 1
ln

\biggl( 
c+10

c+10  - c - 10

\biggr) \biggr] 
=: cas11(\tau )

(2.23)

such that

(2.24) cas11(0) =
 - 1

2\Delta \eta 1\sigma 1
[c - 10\sigma 1(1 - 2\eta 1  - 

\surd 
\Delta ) - 2

\surd 
\Delta (c - 10\sigma 1  - 1) ln (

\surd 
\Delta c - 10)].

This means that also c11 behaves asymptotically as a straight line for \tau \rightarrow +\infty .
As to c21(\tau ), the solution is obtained in Appendix B.
Also in this case, we can consider the following asymptotic behavior: We have

c21(\tau ) \sim \tau \rightarrow +\infty 
c - 10

(1 - \sigma 2)
\tau 

 - 
\biggl[ 

c - 10
h(1 - \sigma 2)2

+
1

\eta 1\sigma 1(1 - \sigma 2)
ln

\biggl( 
c+10

c+10  - c - 10

\biggr) \biggr] 
=: cas21(\tau )

(2.25)

(again a straight line) and

(2.26) cas21(0) =
 - 1

h(\sigma 2  - 1)2

\biggl[ 
c - 10 +

h(\sigma 2  - 1)

\eta 1\sigma 1
ln (

\surd 
\Delta c - 10)

\biggr] 
.

Concerning the first-order corrections of the outer solutions, we have

(2.27)

\left\{                 

d\Sigma 1

dT
=

\eta 2k2
\eta 1k1

\Gamma 21  - \Gamma 11,

d\Gamma 10

dT
= 2\eta 1\sigma 1\Gamma 10\Gamma 11  - [(\sigma 1\Sigma 0 + 1 - \sigma 1)\Gamma 11 + \sigma 1\Sigma 1\Gamma 10] + \Sigma 1,

d\Gamma 20

dT
= h \{ 2\eta 2\sigma 2\Gamma 20\Gamma 21  - [(1 - \sigma 2\Sigma 0)\Gamma 21  - \sigma 2\Sigma 1\Gamma 20] - \Sigma 1\} ,

with suitable initial conditions, determined in Appendix B.
This is a DAE system, where \Sigma 1 satisfies a differential equation, while \Gamma 11 and \Gamma 21

solve two algebraic equations. The solutions can be found by numerical integration.
Let us remark that, in this case, the inner solutions diverge for \tau \rightarrow \infty , as

shown in (2.21), (2.23), (2.25). This behavior, which can be observed only passing
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to the first-order corrections, is not common in the literature. Thus, in order to
determine the initial conditions for the outer corrections, we have to adopt a more
general strategy, as suggested in the following very elegant and simple way in [31]:
``The inner expansion of the outer expansion equals the outer expansion of the inner
expansion.""

Thus, we are now able to obtain the first-order corrections of the uniform approx-
imation, by adding the inner and the outer solutions and subtracting the common
parts:

sun1 (\tau ) = s1(\tau ) + \Sigma 1(\epsilon \tau ) + c - 10\tau +
1

\eta 1\sigma 1
ln(

\surd 
\Delta c - 10)

= \Sigma 1(\epsilon \tau ) +
1

\eta 1\sigma 1
ln

\biggl( 
1 - c - 10

c+10
e - 

\surd 
\Delta \tau 

\biggr) 
,

cun11 (\tau ) = c11(\tau ) + \Gamma 11(\epsilon \tau ) - 
c - 10(\sigma 1c

 - 
10  - 1)\surd 
\Delta 

\tau 

+
1

2\Delta \eta 1\sigma 1
[c - 10\sigma 1(1 - 2\eta 1  - 

\surd 
\Delta ) - 2

\surd 
\Delta (c - 10\sigma 1  - 1) ln (

\surd 
\Delta c - 10)] ,

cun21 (\tau ) = c21(\tau ) + \Gamma 21(\epsilon \tau ) - 
c - 10

(1 - \sigma 2)
\tau +

1

h(\sigma 2  - 1)2

\biggl[ 
c - 10 +

h(\sigma 2  - 1)

\eta 1\sigma 1
ln (

\surd 
\Delta c - 10)

\biggr] 
.

2.2. Case (B). \epsilon = \epsilon 2 = K2FT

(FT+K2M+ST )2 .

Taking inspiration from the case (A), let us consider the change of variables S =
\alpha s, Ci = \beta ici (i = 1, 2), t = \gamma \tau with \gamma = 1

a2(FT+K2M+ST ) , \alpha = ST , \beta 1 = ETST

ET+K1M+ST
,

and \beta 2 = FTST

FT+K2M+ST
, recalling that in this case,

(2.28) \epsilon = \epsilon 2 =
FTK2

(FT +K2M + ST )2
.

Let us introduce, as in case (A), \sigma i, \eta i, and \kappa iM . This parameter set provides an
adimensionalization of the model equations, thanks to which we obtain the following
system of equations for the inner solutions:

(2.29)

\left\{               

ds

d\tau 
= \epsilon 

\biggl[ 
c2  - 

\eta 1k1
\eta 2k2

c1

\biggr] 
,

dc1
d\tau 

=
1

h

\bigl[ 
\eta 1\sigma 1c

2
1  - (s\sigma 1 + 1 - \sigma 1)c1 + s

\bigr] 
,

dc2
d\tau 

= \eta 2\sigma 2c
2
2  - (1 - \sigma 2s)c2 + 1 - s.

As in case (A), in order to obtain the system of equations that gives the outer solutions,
we set \gamma := 1

k1\eta 1
and note that putting T = t

\gamma , we see that T = \gamma 
\gamma \tau = \epsilon \tau . Let

us observe that in this case, \gamma and \gamma can be considered a rough estimation of the
timescales tC2 and tP , respectively.

In the end, we obtain the outer system

(2.30)

\left\{               

ds

dT
= c2  - 

\eta 1k1
\eta 2k2

c1,

\epsilon 
dc1
dT

=
1

h

\bigl[ 
\eta 1\sigma 1c

2
1  - (s\sigma 1 + 1 - \sigma 1)c1 + s

\bigr] 
,

\epsilon 
dc2
dT

= \eta 2\sigma 2c
2
2  - (1 - \sigma 2s)c2 + 1 - s.
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2.2.1. Asymptotic expansions. Let us expand the inner solutions (i.e., the
solutions of (2.29)) to the form s = s0 + \epsilon s1 + o(\epsilon ), c1 = c10 + \epsilon c11 + o(\epsilon ), c2 =
c20 + \epsilon c21 + o(\epsilon ). The results for the zero- and first-order approximations can be
summarized as follows (the procedure to obtain them is the same as that in case (A),
so we will only sketch it).

Zero order. As in case (A), it is easy to see that\left\{     
ds0
d\tau = 0 =\Rightarrow s0(\tau ) = 1,
dc10
d\tau = \sigma 2a1

\sigma 1a2

\bigl( 
\eta 1\sigma 1c

2
10  - c10 + 1

\bigr) 
,

dc20
d\tau = \eta 2\sigma 2c

2
20  - (1 - \sigma 2) c20 =\Rightarrow c20(\tau ) = 0,

dc10
d\tau 

=
\sigma 2a1\eta 1
a2

(c10  - c+10)(c10  - c - 10) ,

where c\pm i0 are defined as in (2.13).

Since c10(0) = 0, and calling A := \sigma 2a1

\sigma 1a2

\surd 
\Delta , we obtain by integration

(2.31) c10(\tau ) = c+10c
 - 
10

\biggl[ 
eA\tau  - 1

c+10e
A\tau  - c - 10

\biggr] 
=

1

\eta 1\sigma 1

\biggl[ 
eA\tau  - 1

c+10e
A\tau  - c - 10

\biggr] 
.

If \tau \ll 1, we have c10(\tau ) \sim A\surd 
\Delta 
\tau = \sigma 2a1

\sigma 1a2
\tau . This implies that as in case (A), for t \rightarrow 0,

C1(t) \sim a1ETST t. Finally, we can see that lim\tau \rightarrow \infty c20(\tau ) = 0, lim\tau \rightarrow \infty s0(\tau ) = 1,
lim\tau \rightarrow \infty c10(\tau ) = c - 10. We now turn our attention to the outer solutions. Let us
expand the solutions of (2.30) to the form s = \Sigma 0+ \epsilon \Sigma 1+ o(\epsilon ), c1 = \Gamma 10+ \epsilon \Gamma 11+ o(\epsilon ),
c2 = \Gamma 20 + \epsilon \Gamma 21 + o(\epsilon ).

At zero order we have

(2.32)

\left\{     
d\Sigma 0

dT = \Gamma 20  - \eta 1k1

\eta 2k2
\Gamma 10,

0 = \eta 1\sigma 1\Gamma 
2
10  - (\Sigma 0\sigma 1 + 1 - \sigma 1)\Gamma 10 +\Sigma 0,

0 = \eta 2\sigma 2\Gamma 
2
20  - (1 - \sigma 1\Sigma 0)\Gamma 20 + 1 - \Sigma 0,

from which \Gamma i0 are as in (2.17), while \Sigma 0(0) and \Gamma i0(0) are identical to case (A).
The uniform expansion at zero order is then given by

(2.33)

\left\{                       

sun0 (\tau ) = s0(\tau ) + \Sigma 0(\epsilon \tau ) - 1 = \Sigma 0(\epsilon \tau ),

cun10 (\tau ) = c10(\tau ) + \Gamma 10(\epsilon \tau ) - c - 10

= 1
\eta 1\sigma 1

\Bigl[ 
eA\tau  - 1

c+10e
A\tau  - c - 10

\Bigr] 
+

(\sigma 1\Sigma 0(\epsilon \tau )+\eta 1+\kappa 1M ) - 
\surd 

(\sigma 1\Sigma 0(\epsilon \tau )+\eta 1+\kappa 1M )2 - 4\eta 1\sigma 1\Sigma 0(\epsilon \tau )

2\eta 1\sigma 1
,

cun20 (\tau ) = c20(\tau ) + \Gamma 20(\epsilon \tau ) = \Gamma 20(\epsilon \tau )

=
(1 - \sigma 2\Sigma 0(\epsilon \tau )) - 

\surd 
(1 - \sigma 2\Sigma 0(\epsilon \tau ))2 - 4\eta 2\sigma 2(1 - \Sigma 0(\epsilon \tau ))

2\eta 2\sigma 2
.

First order. For the corrections of the inner solutions, we have

(2.34)

\left\{               

ds1
d\tau = c20  - \eta 1k1

\eta 2k2
c10 =  - k1

\eta 2k2\sigma 1

\Bigl[ 
eA\tau  - 1

c+10e
A\tau  - c - 10

\Bigr] 
,

dc11
d\tau = \sigma 2a1

\sigma 1a2
(2\eta 1\sigma 1c11c10  - c11  - \sigma 1s1c10 + s1)

= \sigma 2a1

\sigma 1a2
[(2\eta 1\sigma 1c10  - 1)c11 + s1(1 - \sigma 1c10)] ,

dc21
d\tau = (\sigma 2  - 1) c21  - s1,

s1(0) = c11(0) = c21(0) = 0.
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This system can be numerically integrated, but, again, we need to know the
asymptotic behavior of the solutions for \tau \rightarrow \infty .

As in case (A), we formally obtain\left\{                                     

s1(\tau ) =
\eta 1k1

\eta 2k2

\Bigl[ 
 - c+10\tau +

\surd 
\Delta 

A\eta 1\sigma 1
ln
\Bigl( 
\eta 1\sigma 1

c+10e
A\tau  - c - 10\surd 
\Delta 

\Bigr) \Bigr] 
,

c21(\tau ) =
\eta 1k1

\eta 2k2
c - 10

\Bigl[ 
1

1 - \sigma 2
\tau + 1

(1 - \sigma 2)2

\bigl( 
e(\sigma 2 - 1)\tau  - 1

\bigr) \Bigr] 
,

 - \eta 1k1

\eta 2k2

\Bigl( 
c+10 - c - 10

A

\Bigr) \Bigl[ 
1

1 - \sigma 2
ln
\Bigl( 

c+10
c+10 - c - 10

\Bigr) \bigl( 
1 - e(\sigma 2 - 1)\tau 

\bigr) 
+
\int \tau 

0
e(1 - \sigma 2)t ln

\Bigl( 
1 - c - 10

c+10
e - At

\Bigr) 
dt
\Bigr] 
,

c11(\tau ) =
\sigma 2a1

\sigma 1a2
e

\sigma 2a1
\sigma 1a2

\int \tau 
0
[2\eta 1\sigma 1c10(t) - 1]dt

\Bigl\{ \int \tau 

0
[s1(\tau )(1

+ - \sigma 1c10(t))]e
\sigma 2a1
\sigma 1a2

\int t
0
[1 - 2\eta 1\sigma 1c10(s)]dsdt

\Bigr\} 
.

Developing s1(\tau ) in Maclaurin expansion with respect to \tau up to the second
order, after tedious but very simple computations, it is possible to show that for
\tau \ll 1, s1(\tau ) \sim  - 1

2
k1\eta 1\sigma 2a1

k2\eta 2\sigma 1a2
\tau 2. This means that at the very beginning of the reaction,

S(t) \sim ST [1  - 1
2a

2
1K1ET t

2] as in case (A). As a consequence, no matter what the
greatest value between \epsilon 1 and \epsilon 2, we obtain the same formula for the approximation
of S(t). This can be very useful for the determination of the parameters by means of
experimental data, because biochemists can rely on a unique formula.

For \tau \rightarrow +\infty , a straightforward computation shows that

s1(\tau ) \sim sas1 (\tau ) :=
\eta 1k1
\eta 2k2

\biggl[ 
 - c - 10\tau  - a2

\sigma 2a1\eta 1
ln
\Bigl( \surd 

\Delta c - 10

\Bigr) \biggr] 
,

(2.35a)

c11(\tau ) \sim cas11(\tau ) :=
\eta 1k1

\eta 2k2
\surd 
\Delta 

\bigl( 
\sigma 1c

 - 
10  - 1

\bigr) \biggl[ 
c - 10\tau  - c - 10

A
+

a2
\sigma 2a1\eta 1

ln
\Bigl( \surd 

\Delta c - 10

\Bigr) \biggr] 
,

(2.35b)

c21(\tau ) \sim cas21(\tau ) :=
\eta 1k1

\eta 2k2(1 - \sigma 2)

\biggl\{ 
c - 10\tau  - 

\biggl[ 
c - 10

1 - \sigma 2
 - a2

\sigma 2a1\eta 1
ln
\Bigl( \surd 

\Delta c - 10

\Bigr) \biggr] \biggr\} 
.

(2.35c)

Passing to the corrections of the outer solutions, at first order we have

(2.36)

\left\{           
d\Sigma 1

dT = \Gamma 21  - \eta 1k1

\eta 2k2
\Gamma 11,

d\Gamma 10

dT = 1
h [2\eta 1\sigma 1\Gamma 10\Gamma 11  - (\Sigma 0\sigma 1 + 1 - \sigma 1)\Gamma 11  - \Sigma 1\sigma 1\Gamma 10 +\Sigma 1] ,

d\Gamma 20

dT = 2\eta 2\sigma 2\Gamma 20\Gamma 21  - (1 - \sigma 2\Sigma 0)\Gamma 21 + \sigma 2\Sigma 1\Gamma 20  - \Sigma 1.

From (2.35a) we have \Sigma 1(0) = sas1 (0) =  - a2k1

\sigma 2a1\eta 2k2
ln(

\surd 
\Delta c - 10), while from (2.36),

\Gamma 11(T ) =
hd\Gamma 10

dT  - (1 - \sigma 1\Gamma 10)\Sigma 1

2\eta 1\sigma 1\Gamma 10  - \Sigma 0\sigma 1  - 1 + \sigma 1
, \Gamma 21(T ) =

d\Gamma 20

dT + (1 - \sigma 2\Gamma 20)\Sigma 1

2\eta 2\sigma 2\Gamma 20  - 1 + \sigma 2\Sigma 0
,

\Gamma 11(0) =
hd\Gamma 10

dT (0) - [1 - \sigma 1\Gamma 10(0)]\Sigma 1(0)

2\eta 1\sigma 1\Gamma 10(0) - 1
, \Gamma 21(0) =

d\Gamma 20

dT (0) + [1 - \sigma 2\Gamma 20(0)]\Sigma 1(0)

2\eta 2\sigma 2\Gamma 20(0) - 1 + \sigma 2
.

D
ow

nl
oa

de
d 

06
/0

4/
20

 to
 1

51
.1

00
.3

8.
41

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1138 BERSANI, BORRI, MILANESI, TOMASSETTI, AND VELLUCCI

Since \Gamma 10(0) = c - 10, \Gamma 20(0) = 0, d\Sigma 0

dT (0) =  - \eta 1k1

\eta 2k2
c - 10, and, differentiating (2.17),

d\Gamma 10

dT (0) =
 - k1c

 - 
10\eta 1

\eta 2k2

\surd 
\Delta 
(1  - \sigma 1c

 - 
10),

d\Gamma 20

dT (0) =
\eta 1k1c

 - 
10

\eta 2k2(1 - \sigma 2)
, one obtains, after tedious but

simple algebra, \Gamma 11(0) = cas11(0), \Gamma 21(0) = cas21(0), as expected from the matching
conditions.

It follows that the uniform correction at first order is given by

sun1 = s1(\tau ) + \Sigma 1(\epsilon \tau ) - sas1 (\tau )

= s1(\tau ) + \Sigma 1(\epsilon \tau ) - 
\biggl\{ 
\eta 1k1
\eta 2k2

\biggl[ 
 - c - 10\tau  - a2

\sigma 2a1\eta 1
ln
\Bigl( \surd 

\Delta c - 10

\Bigr) \biggr] \biggr\} 
= \Sigma 1(\epsilon \tau ) +

\biggl( 
a2k1

\sigma 2a1\eta 2k2

\biggr) 
ln

\biggl( 
1 - c - 10

c+10
e - A\tau 

\biggr) 
,

cun11 = c11(\tau ) + \Gamma 11(\epsilon \tau ) - cas11(\tau )

= c11(\tau ) + \Gamma 11(\epsilon \tau ) - 
\biggl\{ 

\eta 1k1

\eta 2k2
\surd 
\Delta 

\bigl( 
\sigma 1c

 - 
10  - 1

\bigr) \biggl[ 
c - 10\tau  - c - 10

A
+

a2
\sigma 2a1\eta 1

ln
\Bigl( \surd 

\Delta c - 10

\Bigr) \biggr] \biggr\} 
,

cun21 = c21(\tau ) + \Gamma 21(\epsilon \tau ) - cas21(\tau )

= c21(\tau ) + \Gamma 21(\epsilon \tau ) - 
\biggl\{ 

\eta 1k1
\eta 2k2(1 - \sigma 2)

\biggl\{ 
c - 10\tau  - 

\biggl[ 
c - 10

1 - \sigma 2
 - a2

\sigma 2a1\eta 1
ln
\Bigl( \surd 

\Delta c - 10

\Bigr) \biggr] \biggr\} \biggr\} 
.

2.3. Numerical results. In Figures 1, 2, 3 (case (A)) and Figures 4, 5 (case
(B)) we show the behavior of the concentrations of c1, c2, and s in the GK switch. In
Figure 1, since \epsilon = \epsilon 1 = 0.0008 is very small, it is sufficient to use the zero-order ap-
proximation. In Figure 4, since the parameter is still small (\epsilon = \epsilon 2 = 0.0059), the first-
order approximation is sufficiently satisfactory. In Figure 2, where \epsilon = \epsilon 1 = 0.082, the
approximation begins to not be completely satisfactory in reproducing the matching
region for c1, though we can appreciate the improvement of the approximation from
the zero order to the first order and the very good agreement of the matching time,
that is, the time when the reaction passes from the transient phase to the quasi-steady
state phase.

In Figure 3 (\epsilon = \epsilon 1 = 0.12) and Figure 5 (\epsilon = \epsilon 2 = 0.25), the approximation
is shown to fail in reproducing, in particular, the matching region. However, let us
observe that in both cases the values of the parameters were stressed ad hoc in order
to give high and comparable values of \epsilon 1 and \epsilon 2 (in Figure 3, \epsilon = \epsilon 1 = 0.12, \epsilon 2 = 0.11;
in Figure 5, \epsilon = \epsilon 2 = 0.25, \epsilon 1 = 0.22), which implies the prediction of some difficulties
in the efficiency of the approximation.

This result may not seem satisfactory. However, let us recall that in Figure 3 we
would have \epsilon SS

\sim = 1, \epsilon HTA = 2 and, mainly, in Figure 5, we would have \epsilon SS
\sim = 2,

\epsilon HTA = 200, and any sQSSA would have dramatically failed. We can conclude that,
in any case, even in critical cases, the tQSSA is definitely much more reliable than
the sQSSA.

3. Center manifold---a case study. Tikhonov's theorem (see Appendix A)
allows us to determine a stable root of (A.1). In his seminal paper [20], Fenichel
showed that it corresponds to a center manifold of the full system. As shown in
[20, 10], the center manifold is not unique, and there are several ways to obtain it, as
shown in [45, 10, 39, 53].

Since Tikhonov's theorem is only the first step in the asymptotic solution of initial
value problems of singular perturbation type in the form of a series in powers of \epsilon ,
in this section we compare the asymptotic expansions up to zero order, obtained in
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(a) c1 (b) c1 (magnification)

(c) c2 (d) s

Fig. 1. GK switch. Case A. zero order. \epsilon = 0.0008: Comparison between the full system
and its uniform asymptotic expansion beyond the tQSSA. Since \epsilon = 0.0008, it is sufficient to use
only the zero-order term. Parameters: a1 = k1 = 0.1, d1 = 0.1,K1 = 1,K1M = 2, a2 = 1, k2 =
d2 = 0.1,K2 = 0.1,K2M = 0.2, ET = FT = 10, ST = 100, \epsilon = \epsilon 1 = 0.0008, \epsilon 2 = 0.00008, \epsilon SS

\sim =
0.1, \epsilon HTA = 0.1.

the previous section, with the center manifold of the system, which will be obtained
according to [52, 53].

Let

(3.1)

\left\{             

ds

d\tau 
= \epsilon 

\biggl[ 
\eta 2k2
\eta 1k1

c2  - c1

\biggr] 
,

dc1
d\tau 

= \eta 1\sigma 1c
2
1  - (\sigma 1s+ 1 - \sigma 1)c1 + s,

dc2
d\tau 

= h
\bigl[ 
\eta 2\sigma 2c

2
2  - (1 - s\sigma 2)c2 + (1 - s)

\bigr] 
,

and, for the sake of simplicity, consider themodel case where \eta 1 = \eta 2 = \eta , k1 = k2 = k,
\kappa 1 = \kappa 2 = \kappa , a1 = a2 = a, and \sigma 1 = \sigma 2 = \sigma . This is the case of the parameters that
are pairwise equal. It implies that ET = FT , K1M = K2M = KM , and \epsilon 1 = \epsilon 2 = \epsilon .

The adimensionalization p = P
ST

brings us to the relation p = 1  - s, from which
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(a) c1 (b) c1 (magnification)

(c) c2 (d) s

Fig. 2. GK switch. Case (A). First order. \epsilon = 0.082: Comparison between the full system
and its uniform first-order asymptotic expansion beyond the tQSSA. In the plots we can clearly
observe the effects of the first-order correction. Parameters: a1 = k1 = 1, d1 = 0.5,K1 = 1,K1M =
1.5, a2 = k2 = 1, d2 = 2,K2 = 1,K2M = 3, ET = 1, FT = 26, ST = 1, \epsilon = \epsilon 1 = 0.082, \epsilon 2 =
0.03 , \epsilon SS = 0.4, \epsilon HTA = 26.

dp
d\tau =  - ds

d\tau . Then

(3.2)

\left\{                       

ds

d\tau 
= \epsilon (c2  - c1) ,

dp

d\tau 
=  - \epsilon (c2  - c1) ,

dc1
d\tau 

= (\sigma  - 1)c1 + s - \sigma sc1 + \eta \sigma c21,

dc2
d\tau 

= (\sigma  - 1)c2 + p - p\sigma c2 + \eta \sigma c22 .

Let us single out the fixed points of the system (3.2). Setting the derivatives of the
first two equations equal to zero, we get c1 = c2, which, substituted in the third and
fourth equations, gives

(3.3)

\Biggl\{ 
\eta \sigma c21  - (\sigma s+ 1 - \sigma )c1 + s = 0,

\eta \sigma c21  - (1 - s\sigma )c1 + (1 - s) = 0,

where we used the fact that p = 1 - s.
Now, subtracting term by term the two equations in (3.3), we have (2s - 1)(1 - 

\sigma c1) = 0. We can discard the solution c1 = 1
\sigma because substituting it in (3.3) leads
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(a) c1 (b) c2

(c) s

Fig. 3. GK switch. Case A. First order. \epsilon = 0.12: Comparison between the full system and its
uniform first-order asymptotic expansion beyond the tQSSA. Since in this case \epsilon = 0.12, in the plots
we can clearly observe that the first-order corrections are not sufficient to guarantee a satisfactory
approximation of the numerical solutions. Parameters: a1 = k1 = 1, d1 = 0.01,K1 = 1,K1M =
1.01, a2 = k2 = 1, d2 = 0.01,K2 = 1,K2M = 1.01, ET = 2, FT = 1, ST = 1, \epsilon = \epsilon 1 = 0.12, \epsilon 2 =
0.11, \epsilon SS

\sim = 1, \epsilon HTA = 2.

to \eta + \sigma = 1, which cannot hold, since it would mean, by (2.7), that \kappa 1M = 0, which
has no physical meaning. Then we obtain s = 1

2 (from which p = 1
2 ), which means

S +C1 = ST

2 , P +C2 = ST

2 . It follows that C1 < ST

2 . Since C1 = \beta 1c1, from (2.5) we

have ETST

ET+K1M+ST
c1 < ST

2 and then c1 < 1
2\eta 1

= 1
2\eta , where in the latter we used the

expression of coefficient \eta 1 in (2.6).
Substituting s = 1

2 in (3.3), we get \eta \sigma c21  - (1  - \sigma 
2 )c1 + 1

2 = 0. The roots are

c\pm 1 =
2 - \sigma \pm 

\surd 
(2 - \sigma )2 - 8\eta \sigma 

4\eta \sigma . We discard c+1 because c+1 > 1
2\eta . In fact, c+1 < 1

2\eta if

2 - \sigma +
\sqrt{} 

(\sigma  - 2)2  - 8\eta \sigma < 2\sigma , i.e., if
\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma < 3\sigma  - 2. It may occur only if

\sigma > 2
3 ; in this case, squaring both members of the inequality, we get 8\sigma (\sigma +\eta  - 1) > 0,

which is impossible because \sigma +\eta < 1. We can then conclude that the only acceptable
fixed point of (3.2) is (s, p, c1, c2) = (12 ,

1
2 , c

 - 
1 , c

 - 
1 ).

Before proceeding with center manifold calculations, we center the system (3.2)
in the fixed point (s, p, c1, c2) = ( 12 ,

1
2 , c

 - 
1 , c

 - 
1 ) through the substitution (s, p, c1, c2) =\bigl( 

\~s+ 1
2 , \~p+

1
2 , \~c1 + c - 1 , \~c2 + c - 1

\bigr) 
. Let us observe that, since p + s = 1, then \~s =  - \~p.
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(a) c1 (b) c1 (magnification)

(c) c2 (d) c2 (magnification)

Fig. 4. GK switch. Case (B). First order. \epsilon = 0.0059: Comparison between the full system and
its uniform first-order asymptotic expansion beyond the tQSSA. In the plots we can clearly observe
the effects of the first-order correction. Parameters: a1 = k1 = 0.1, d1 = 0.1,K1 = 1,K1M =
2, a2 = 0.1, k2 = d2 = 1,K2 = 10,K2M = 20, ET = 10, FT = 10, ST = 100, \epsilon = \epsilon 2 = 0.0059, \epsilon 1 =
0.0008, \epsilon SS

\sim = 0.1, \epsilon HTA = 0.1.

Accordingly, the system (3.2) becomes

(3.4)

\left\{                     

d\~s

d\tau 
= \epsilon (\~c2  - \~c1) ,

d\~p

d\tau 
=  - \epsilon (\~c2  - \~c1) ,

d\~c1
d\tau 

=  - 1

2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma \~c1 + \~s

\bigl( 
1 - \sigma c - 1

\bigr) 
 - \sigma \~s\~c1 + \eta \sigma \~c21,

d\~c2
d\tau 

=  - 1

2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma \~c2 + \~p

\bigl( 
1 - \sigma c - 1

\bigr) 
 - \sigma \~p\~c2 + \eta \sigma \~c22 ,

where we have used the identities (\sigma  - 1)c - 1 + 1
2  - \sigma 

c - 1
2 + \eta \sigma (c - 1 )

2 = 0 and \sigma 
2  - 

1+2\eta \sigma c - 1 =  - 1
2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma . Now, we rewrite (3.4), operating the substitutions

y1 =  - 1
2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma \~c1+\~s

\bigl( 
1 - \sigma c - 1

\bigr) 
, y2 =  - 1

2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma \~c2+\~p

\bigl( 
1 - \sigma c - 1

\bigr) 
,

and then

(3.5) \~c1 = 2
\~s
\bigl( 
1 - \sigma c - 1

\bigr) 
 - y1\sqrt{} 

(\sigma  - 2)2  - 8\eta \sigma 
, \~c2 = 2

\~p
\bigl( 
1 - \sigma c - 1

\bigr) 
 - y2\sqrt{} 

(\sigma  - 2)2  - 8\eta \sigma 
.
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(a) c1 (b) c2 (c) s

Fig. 5. GK switch. Case (B). First order. \epsilon = 0.25: Comparison between the full system
and its uniform first-order asymptotic expansion beyond the tQSSA. Since in this case, \epsilon = 0.25,
in the plots we can clearly observe that the first-order corrections are not sufficient to guarantee a
satisfactory approximation of the numerical solutions. Parameters: a1 = k1 = 1, d1 = 0.01,K1 =
1,K1M = 1.01, a2 = k2 = 1, d2 = 0.01,K2 = 1,K2M = 1.01, ET = 2, FT = 1, ST = 0.01, \epsilon = \epsilon 2 \sim =
0.25, \epsilon 1 = 0.22, \epsilon SS

\sim = 2, \epsilon HTA = 200.

From (3.5) we have, respectively,

dy1
d\tau 

=  - 1

2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma 

d\~c1
d\tau 

+
\bigl( 
1 - \sigma c - 1

\bigr) d\~s
d\tau 

,(3.6a)

dy2
d\tau 

=  - 1

2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma 

d\~c2
d\tau 

+
\bigl( 
1 - \sigma c - 1

\bigr) d\~p
d\tau 

.(3.6b)

Substituting in (3.6a) and (3.6b) the right-hand sides of the third and fourth equations
of the system (3.4)---where \~c1, \~c2 are replaced by (3.5)---and applying the technique
described in [39, 53, 52], the system (3.4) becomes

(3.7)

\left\{                 

d\~s
d\tau = 2\epsilon \surd 

(\sigma  - 2)2 - 8\eta \sigma 

\bigl[ 
(\~p - \~s)

\bigl( 
1 - \sigma c - 1

\bigr) 
+ y1  - y2

\bigr] 
,

d\~p
d\tau =  - 2\epsilon \surd 

(\sigma  - 2)2 - 8\eta \sigma 

\bigl[ 
(\~p - \~s)

\bigl( 
1 - \sigma c - 1

\bigr) 
+ y1  - y2

\bigr] 
,

dy1

d\tau =  - 1
2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma y1 + f1(\~s, \~p, y1, y2, \epsilon ) ,

dy2

d\tau =  - 1
2

\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma y2 + f2(\~s, \~p, y1, y2, \epsilon ) ,

d\epsilon 
d\tau = 0 ,

where we have isolated the linear part in (\~s, \~p, y1, y2, \epsilon ) from the nonlinear parts, i.e.,

f1(\~s, \~p, y1, y2, \epsilon ) := \sigma \~s
\bigl( 
\~s
\bigl( 
1 - \sigma c - 1

\bigr) 
 - y1

\bigr) 
 - 2\eta \sigma 

\bigl( 
\~s
\bigl( 
1 - \sigma c - 1

\bigr) 
 - y1

\bigr) 2\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma 

+
2
\bigl( 
1 - \sigma c - 1

\bigr) 
\epsilon \sqrt{} 

(\sigma  - 2)2  - 8\eta \sigma 

\bigl[ 
(\~p - \~s)

\bigl( 
1 - \sigma c - 1

\bigr) 
+ y1  - y2

\bigr] 
,(3.8a)

f2(\~s, \~p, y1, y2, \epsilon ) := \sigma \~p
\bigl( 
\~p
\bigl( 
1 - \sigma c - 1

\bigr) 
 - y2

\bigr) 
 - 2\eta \sigma 

\bigl( 
\~p
\bigl( 
1 - \sigma c - 1

\bigr) 
 - y2

\bigr) 2\sqrt{} 
(\sigma  - 2)2  - 8\eta \sigma 

+ - 
2
\bigl( 
1 - \sigma c - 1

\bigr) 
\epsilon \sqrt{} 

(\sigma  - 2)2  - 8\eta \sigma 

\bigl[ 
(\~p - \~s)

\bigl( 
1 - \sigma c - 1

\bigr) 
+ y1  - y2

\bigr] 
.(3.8b)
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In the end, we obtain the center manifold of (3.7),

y1 (\~s, \~p, \epsilon ) =
4\sigma (1 - \eta  - \sigma )

(\sigma  - 2)2  - 8\eta \sigma 
\~s2 +

4
\bigl( 
1 - \sigma c - 1

\bigr) 2
(\sigma  - 2)2  - 8\eta \sigma 

( - \~s\epsilon + \~p\epsilon ) + o
\bigl( 
| \xi | 2
\bigr) 
,(3.9a)

y2 (\~s, \~p, \epsilon ) =
4\sigma (1 - \eta  - \sigma )

(\sigma  - 2)2  - 8\eta \sigma 
\~p2 +

4
\bigl( 
1 - \sigma c - 1

\bigr) 2
(\sigma  - 2)2  - 8\eta \sigma 

(\~s\epsilon  - \~p\epsilon ) + o
\bigl( 
| \xi | 2
\bigr) 
.(3.9b)

Theorem 3.1. The center manifold obtained in (3.9a) and (3.9b) is asymptoti-
cally equivalent to the roots of the equations obtained by applying the tQSSA (which
corresponds to imposing \epsilon = 0) to the model case of (2.10), that is,

(3.10)

\Biggl\{ 
(\sigma  - 1)c1 + s - \sigma sc1 + \eta \sigma c21 = 0,

 - c2 + 1 - s+ s\sigma c2 + \eta \sigma c22 = 0 .

Proof. Just solve (3.10) in c1 and c2 and consider \epsilon \ll 1.

4. Conclusion. In order to increase our understanding of intracellular mecha-
nisms, it is necessary to deepen our study of the interactions between molecules and
pathways. In this context, mathematical modeling is essential for biologists, as it
allows them to analyze complex processes.

The involved mathematical modeling consists of systems of first-order nonlinear
ordinary differential equations (ODEs). These systems represent kinetic models of
basic modules that make up more complex intracellular mechanisms. Actually, a
widely used approach to modeling intracellular mechanisms is to break up the mecha-
nism network into simpler subnetworks (the modules), which represent simpler mech-
anisms interconnected by inflows and outflows. Examples of these modules are the
phosphorylation-dephosphorylation cycle, the double phosphorylation linear reaction,
inhibition, etc.

The long-term goal of these studies is the reproduction of the global behavior of a
specific cell type, writing the description of the dynamics and control characteristics
of living organisms on physico-chemical bases. To do this, the integration of different
modules is a fundamental step.

In this paper we have studied the asymptotic properties of the Goldbeter-
Koshland (GK) switch, or futile cycle, a very important module, which models several
crucial intracellular phenomena, in particular the phosphorylation-dephosphorylation
cycle. Our studies have been carried out in the tQSSA framework, which has proven
to be always roughly valid for a broad range of parameter values covering both high
and low enzyme concentrations.

Since the sQSSA and tQSSA can also be related to the asymptotic expansion of the
solutions of the ODEs governing the process with respect to an appropriate parameter
[30, 22, 44, 16], the main goal of this paper has been to approximate the solutions
of the system by asymptotic expansions. With the choice of a suitable perturbative
parameter \epsilon , we have applied Tichonov's theorem to the GK switch, determining the
asymptotic expansions up to the first order in \epsilon for the inner and outer solutions and
the corresponding uniform expansions.

We have also given numerical results for different values of the perturbative pa-
rameter \epsilon used in the uniform approximations. Numerical results show the influence
of the initial concentration of dynamical molecular species and the kinetic constants
and guarantee that the predictions made by our analysis are sufficiently accurate.
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For a case study where the parameters of the two reactions are identical, we have
determined the center manifold of the system and shown that it is asymptotically
equivalent to the tQSSA of the system.

The values of the kinetic parameters are, in general, not easy to find. The explicit
expressions of some approximations obtained here---in particular the inner zero-order
approximations---can be very useful for fitting the experimental data in the above
described mechanism. Actually, as a descriptive tool, the analytic approach can
be used as an alternative to simulation but, as a prescriptive tool, it can support
the design of intracellular mechanisms with desired features because the analytic
formulations can be used to identify the actual values of the kinetic parameters so
that the intracellular mechanism behave as intended.

In order to guarantee a good approximation of the time course of the concentra-
tions, for in vitro experimental purposes, it would be sufficient to take values of ET

and ST such that the corresponding values of \epsilon are sufficiently small. This condition is
certainly fulfilled by our choice of the expression giving the perturbation parameter \epsilon ,
which assumes very small values for very large parameter ranges. Roughly speaking,
the results obtained via numerical integration of the equations are typically influenced
by the actual values of the parameters used in simulation. On the contrary, analytic
results can significantly help to capture qualitative characteristics of the networks.

Then, since the uniform expansions provide such a reliable approximation of the
full system, it would be helpful to find the explicit formulas of all of them, up to
the first order. A possible approach might be to use the coordinate transformations
introduced in [49], based on generalized Lambert functions, in order to obtain explicit
formulas also for the outer expansions---at least for the zero order (which is the most
important, from an experimental viewpoint).

Appendix A. Tikhonov theorem. In this appendix we will refer to the well-
known book by Wasow [51] and, in particular, to its relevant section on singular
perturbations. A systematic study of the qualitative aspects of such singular pertur-
bation problems can be found in a series of papers by Tikhonov [45, 46, 47].

We consider differential systems of the form

(A.1)

\left\{       
dx

dt
= f(x, y),

\epsilon 
dy

dt
= g(x, y),

where x is a c-dimensional vector and y an s-dimensional vector. All variables are
real, and \epsilon is positive.

We assume the following:
(A) The functions f and g in (A.1) are continuous in an open region \Omega of the

(x, y)-space.
(B) There is an s-dimensional vector function \phi (x) continuous in \xi 1 \leq x \leq \xi 2

such that the points (x, \phi (x)), for all \xi 1 \leq x \leq \xi 2, are in \Omega and

g(x, \phi (x)) \equiv 0.

(C) There exists a number \eta > 0, independent of x, such that the relations

\| y  - \phi (x)\| < \eta , y \not = \phi (x) in \xi 1 \leq x \leq \xi 2

imply
g(x, y) \not = 0 in \xi 1 \leq x \leq \xi 2.
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The function \phi (x) will be referred to as a root of the equation g(x, y) = 0, which may
have other roots besides \phi (x). A root \phi (x) that satisfies condition (C) will be called
isolated in \xi 1 \leq x \leq \xi 2.

Definition A.1. The system of differential equations

(A.2) \epsilon 
dy

dt
= g(x, y),

in which x is a parameter, will be called the boundary layer equation belonging to the
system (A.1).

To (A.1) there corresponds the reduced (or degenerate) system

(A.3)

\left\{   
dx0

dt
= f(x0, y0),

0 = g(x0, y0).

The solutions of (A.1) and (A.3) define trajectories (x(t, \epsilon ), y(t, \epsilon )) and (x0(t), y0(t))
in the (x, y)-space.

We also assume the following:
(D) The singular point y = \phi (x) of the boundary layer equation (A.2) is asymp-

totically stable for all \xi 1 \leq x \leq \xi 2.
The root \phi (x) will be called, briefly, a stable root in \xi 1 \leq x \leq \xi 2 if assumption (D) is
satisfied.

In accordance with our previous terminology we refer to the problem consisting
of equations (A.1), together with the initial condition

(A.4) x = \alpha , y = \beta for t = 0,

as the full problem. The reduced problem is here defined by

(A.5)

\left\{   
dx

dt
= f(x, \phi (x)),

y = \phi (x),

(A.6) x = \alpha for t = 0.

The differential equation in (A.5) is, of course, obtained by setting \epsilon = 0 in (A.1)
and determining the root y = \phi (x) of the equation g(x, y) = 0. Moreover, we assume
the following:

(E) The full problem, as well as the reduced one, has a unique solution in an
interval 0 \leq t \leq T .

(F) The asymptotic stability of the singular point y = \phi (x) is uniform with respect
to x in \xi 1 \leq x \leq \xi 2.

Let \mu > 0. The set of points in the (x, y)-space for which the inequalities

\| y  - \phi (x)\| < \mu , \xi 1 \leq x \leq \xi 2

hold will be called a ``\mu -tube."" The set

\| y  - \phi (x)\| = \mu , \xi 1 \leq x \leq \xi 2

constitutes the ``lateral boundary"" of the \mu -tube.
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Lemma A.2. Suppose assumptions (A)--(F) are satisfied. Let \mu > 0 be arbitrary
but so small that the closure of the \mu -tube lies in \Omega . Then there exist two numbers
\gamma (\mu ) and \epsilon (\mu ) such that for \epsilon < \epsilon (\mu ) the following is true: Any solution of the full
equation that is in the interior of the \mu -tube for some value \~t of t, 0 \leq \~t \leq T , and in
the closure of the \mu -tube for all t in \~t \leq t < T , does not meet the lateral surface of
the \mu -tube for \~t \leq t < T .

The lemma states that, for small \epsilon , any solution that comes close to the curve
y = \phi (x) in \xi 1 \leq x \leq \xi 2 remains close to it, as long as \xi 1 \leq x \leq \xi 2.

For a convenient formulation of Tikhonov's theorem, according to [51], we intro-
duce one more term.

Definition A.3. A point (\alpha , \beta ) \in \Omega , \xi 1 \leq \alpha \leq \xi 2 is said to lie in the domain of
influence of the stable root y = \phi (x) if the solution of the problem

dy/d\tau = g(\alpha , y), y(0) = \beta 

exists and remains in \Omega for all \tau > 0, and if it tends to \phi (\alpha ), as \tau \rightarrow +\infty .

Theorem A.4 (Tikhonov's theorem). Let Assumptions (A)--(F) be satisfied and
let (\alpha , \beta ) be a point in the domain of influence of the root y = \phi (x). Then the solution
x(t, \epsilon ), y(t, \epsilon ) of the full initial value problem (A.1), (A.4) is linked with the solution
(x0(t), y0(t) = \phi (x0(t))) of the reduced problem (A.5), (A.6) by the limiting relations

lim
\epsilon \rightarrow 0

x(t, \epsilon ) = x0(t), 0 \leq t \leq T0,

lim
\epsilon \rightarrow 0

y(t, \epsilon ) = y0(t) = \phi (x0(t)), 0 < t \leq T0.(A.7)

Here T0 is any number such that y = \phi (x0(t)) is an isolated stable root of g (x0(t), y) =
0 for 0 \leq t \leq T0. The convergence is uniform in 0 \leq t \leq T0, for x(t, \epsilon ), and in any
interval 0 < t1 \leq t \leq T0 for y(t, \epsilon ).

Appendix B. Computation of the first-order corrections. Let us solve
equations (2.19b) for c11, (2.19c) for c21, and (2.27) for the first-order corrections of
the outer solutions.

The structure of (2.19b) is similar to equation (18) in [16], so we can directly
write down the solution with the appropriate symbol changes:

c11(\tau ) = N(\tau )

\Biggl\{ \Bigl[ 
e
\surd 
\Delta \tau (

\surd 
\Delta \tau  - 1) + 1

\Bigr] 
(\eta 1c

+
10  - 1)c+10 +

\Delta \tau 2

2
(c+10 + c - 10  - 2c+10c

 - 
10\eta 1)

+ c - 10(\eta 1c
 - 
10  - 1)

\Bigl[ 
 - e - 

\surd 
\Delta \tau (

\surd 
\Delta \tau + 1) + 1

\Bigr] \Biggr\} 

+Q(\tau )

\Biggl\{ 
c+10(\eta 1c

+
10  - 1)

\Biggl[ 
e
\surd 
\Delta \tau ln

\Biggl( 
c+10e

\surd 
\Delta \tau  - c - 10

c+10  - c - 10

\Biggr) 
 - e

\surd 
\Delta \tau + 1

\Biggr] 

+ (c - 10  - c+10) ln

\Biggl( 
c+10e

\surd 
\Delta \tau  - c - 10

c+10  - c - 10

\Biggr) 

+ c - 10(\eta 1c
 - 
10  - 1)

\Biggl[ 
 - e - 

\surd 
\Delta \tau ln

\Biggl( 
c+10e

\surd 
\Delta \tau  - c - 10

c+10  - c - 10

\Biggr) 
 - c+10

c - 10

\surd 
\Delta \tau 

\Biggr] 

+(c+10 + c - 10  - 2\eta 1c
+
10c

 - 
10)

\int e
\surd 

\Delta \tau 

1

1

z
ln

\biggl( 
c+10z  - c - 10
c+10  - c - 10

\biggr) 
dz

\Biggr\} 
,(B.1)
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where

N(\tau ) =  - e
\surd 
\Delta \tau c+10

\Delta \eta 1(c
+
10e

\surd 
\Delta \tau  - c - 10)

2
; Q(\tau ) =

e
\surd 
\Delta \tau 

\surd 
\Delta \eta 1\sigma 2

1(c
+
10e

\surd 
\Delta \tau  - c - 10)

2
.

Though formula (B.1) does not have a closed form, we can consider its asymptotic
behavior. Since\int e

\surd 
\Delta \tau 

1

1

z
ln

\biggl( 
c+10z  - c - 10
c+10  - c - 10

\biggr) 
dz =

\Delta \tau 2

2
+

\surd 
\Delta \tau ln

\biggl( 
c+10

c+10  - c - 10

\biggr) 
+\scrR 0(\tau ),

where \scrR 0(\tau ) is a converging term for \tau \rightarrow +\infty , we obtain from (B.1)

c11(\tau ) \sim \tau \rightarrow +\infty 
c - 10(\sigma 1c

 - 
10  - 1)\surd 
\Delta 

\tau 

+
1

\eta 1
\surd 
\Delta 

\biggl[ 
c - 10
2

\biggl( 
1 - 1 - 2\eta 1\surd 

\Delta 

\biggr) 
+

1 - \sigma 1c
 - 
10

\sigma 1
ln

\biggl( 
c+10

c+10  - c - 10

\biggr) \biggr] 
=: cas11(\tau )

(see equation (42) in [16]) such that

(B.2) cas11(0) =
 - 1

2\Delta \eta 1\sigma 1
[c - 10\sigma 1(1 - 2\eta 1  - 

\surd 
\Delta ) - 2

\surd 
\Delta (c - 10\sigma 1  - 1) ln (

\surd 
\Delta c - 10)].

This means that also c11 behaves asymptotically as a straight line for \tau \rightarrow +\infty .
As to c21(\tau ), the solution of (2.19c) is

(B.3) c21(\tau ) = eh(\sigma 2 - 1)\tau 

\biggl[ 
\scrI 1  - 

h

\eta 1\sigma 1
\scrI 2
\biggr] 
,

where

\scrI 1 =

\int \tau 

0

e
\int u
0

h(1 - \sigma 2)dshc+10udu =
c+10

(1 - \sigma 2)

\biggl[ \biggl( 
\tau  - 1

h(1 - \sigma 2)

\biggr) 
eh(1 - \sigma 2)\tau 

+
1

h(1 - \sigma 2)

\biggr] 
,

\scrI 2 =

\int \tau 

0

eh(1 - \sigma 2)u ln

\Biggl( 
c+10e

\surd 
\Delta u  - c - 10\surd 
\Delta 

\eta 1\sigma 1

\Biggr) 
du

= ln

\biggl( 
c+10

c+10  - c - 10

\biggr) 
eh(1 - \sigma 2)\tau  - 1

h(1 - \sigma 2)
+

\surd 
\Delta 

h(1 - \sigma 2)

\biggl[ 
eh(1 - \sigma 2)\tau \tau  - eh(1 - \sigma 2)\tau  - 1

h(1 - \sigma 2)

\biggr] 
+ \scrI 3,

\scrI 3 =

\int \tau 

0

eh(1 - \sigma 2)u ln

\Biggl( 
1 - c - 10

c+10e
\surd 
\Delta u

\Biggr) 
du.

Also in this case, we can consider the asymptotic behavior. Let us start from \scrI 3,

\scrI 3 \sim \tau \rightarrow +\infty  - c - 10
c+10

\Biggl[ 
e(h(1 - \sigma 2) - 

\surd 
\Delta )\tau  - 1

h(1 - \sigma 2) - 
\surd 
\Delta 

\Biggr] 
+\scrR (\tau ) ,

where \scrR (\tau ) is a converging term for \tau \rightarrow +\infty . Asymptotically, we have

c21(\tau ) \sim \tau \rightarrow +\infty 
c - 10

(1 - \sigma 2)
\tau 

 - 
\biggl[ 

c - 10
h(1 - \sigma 2)2

+
1

\eta 1\sigma 1(1 - \sigma 2)
ln

\biggl( 
c+10

c+10  - c - 10

\biggr) \biggr] 
=: cas21(\tau )

D
ow

nl
oa

de
d 

06
/0

4/
20

 to
 1

51
.1

00
.3

8.
41

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GK SWITCH: UNIFORM ASYMPTOTIC EXPANSIONS 1149

(again a straight line) and

(B.4) cas21(0) =
 - 1

h(\sigma 2  - 1)2

\biggl[ 
c - 10 +

h(\sigma 2  - 1)

\eta 1\sigma 1
ln (

\surd 
\Delta c - 10)

\biggr] 
.

Let us now determine the first-order corrections of the outer solutions (see system
(B.3)). In order to determine the initial conditions, we must observe that, in this
case, the inner solutions diverge for \tau \rightarrow \infty , as shown in (2.21), (2.23), (2.25). This
behavior, which can be observed only passing to the first-order corrections, is not
common in the literature. Thus we have to adopt a more general strategy, as suggested
in the following very elegant and simple way in [31]: ``The inner expansion of the outer
expansion equals the outer expansion of the inner expansion."" Thus, from (2.21) we
obtain the initial condition for \Sigma 1: \Sigma 1(0) = sas1 (0) =  - 1

\eta 1\sigma 1
ln(

\surd 
\Delta c - 10). From (2.27)

we get

(B.5) \Gamma 11 =
d\Gamma 10

dT + (\sigma 1\Gamma 10  - 1)\Sigma 1

2\eta 1\sigma 1\Gamma 10  - (\sigma 1\Sigma 0 + 1 - \sigma 1)
; \Gamma 21 =

d\Gamma 20

dT + h\Sigma 1(1 - \sigma 2\Gamma 20)

h[2\eta 2\sigma 2\Gamma 20 + \sigma 2\Sigma 0  - 1]
,

where d\Gamma 10

dT and d\Gamma 20

dT can be obtained by differentiating (2.17). Let us recall that

\Sigma 0(0) = 1, d\Sigma 0

dT (0) =  - c - 10, \Gamma 10(0) = c - 10, and \Gamma 20(0) = 0. Thus we have

(B.6)
d\Gamma 10

dT
(0) =

c - 10
2\eta 1

\surd 
\Delta 
(1 - 2\eta 1  - 

\surd 
\Delta );

d\Gamma 20

dT
(0) =

c - 10
1 - \sigma 2

.

Hence, from (B.5), we can see that the following matching conditions for \Gamma 11 and \Gamma 21

are automatically satisfied:

(B.7) \Gamma 11(0) =
 - 1

2\Delta \eta 1\sigma 1
[c - 10\sigma 1(1 - 2\eta 1 - 

\surd 
\Delta ) - 2

\surd 
\Delta (c - 10\sigma 1 - 1) ln (

\surd 
\Delta c - 10)] = cas11(0)

and

(B.8) \Gamma 21(0) =
 - 1

h(\sigma 2  - 1)2

\biggl[ 
c - 10 +

h(\sigma 2  - 1)

\eta 1\sigma 1
ln (

\surd 
\Delta c - 10)

\biggr] 
= cas21(0).

This passage can be considered as a very useful tool for testing the correctness of the
computations.

As to \Sigma 1, it only remains to numerically solve the following Cauchy problem:

(B.9)

\left\{     
d\Sigma 1

dT
=

\eta 2k2
\eta 1k1

\Gamma 21  - \Gamma 11,

\Sigma 1(0) =  - 1
\eta 1\sigma 1

ln
\Bigl( \surd 

\Delta c - 10

\Bigr) 
,

where \Gamma 11 and \Gamma 21 are as given in (B.5).
Thus, we are now able to obtain the first-order corrections of the uniform ap-

proximation by adding the inner and outer solutions and subtracting the common
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parts:

sun1 (\tau ) = s1(\tau ) + \Sigma 1(\epsilon \tau ) + c - 10\tau +
1

\eta 1\sigma 1
ln(

\surd 
\Delta c - 10)

= \Sigma 1(\epsilon \tau ) +
1

\eta 1\sigma 1
ln

\biggl( 
1 - c - 10

c+10
e - 

\surd 
\Delta \tau 

\biggr) 
,

cun11 (\tau ) = c11(\tau ) + \Gamma 11(\epsilon \tau ) - 
c - 10(\sigma 1c

 - 
10  - 1)\surd 
\Delta 

\tau 

+
1

2\Delta \eta 1\sigma 1
[c - 10\sigma 1(1 - 2\eta 1  - 

\surd 
\Delta ) - 2

\surd 
\Delta (c - 10\sigma 1  - 1) ln (

\surd 
\Delta c - 10)] ,

cun21 (\tau ) = c21(\tau ) + \Gamma 21(\epsilon \tau ) - 
c - 10

(1 - \sigma 2)
\tau +

1

h(\sigma 2  - 1)2

\biggl[ 
c - 10 +

h(\sigma 2  - 1)

\eta 1\sigma 1
ln (

\surd 
\Delta c - 10)

\biggr] 
.
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