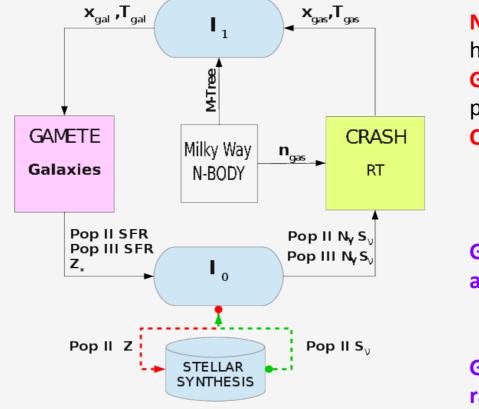
Evolution of galaxies hosting GW150914-like events S. Marassi^{1,*} & L. Graziani^{2,*} M.Ginolfi^{1,3}, R. Schneider¹, M. Mapelli^{4,5}, M. Spera^{4,5}, M.Alparone¹, D. Kawata⁶

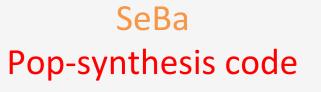
¹Dipartimento di Fisica, Sapienza, Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy ²Scuola Normale Superiore, piazza dei Cavalieri, 7, I-56126 Pisa, Italy ³INAF/Osservatorio Astronomico di Roma, Via di Frascati 33, 00078 Monte Porzio Catone, Italy ⁴INAF/Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122, Padova., Italy ⁵INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy ⁶Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK

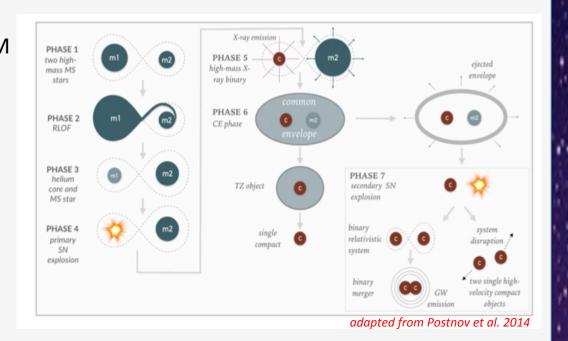
*E-mail: stefania.marassi@roma1.infn.it


*E-mail: luca.graziani@sns.it

★ ABSTRACT

Adopting a novel theoretical model described in Schneider 2017 we have been able to characterize the formation and the coalescence sites of compact binaries in a cosmological context. We couple the binary population synthesis code SeBa with a simulation following the formation of a Milky Way-like halo in a well resolved cosmic volume of 4 cMpc, performed with the GAMESH pipeline. We used this technique to investigate when and where GW150914-like systems form and where they are more likely to reside when they coalesce. In this complementary study we perform a detailed analysis of the evolutionary pathways and the statistical properties of galaxies hosting GW150914-like events.


★ COUPLING GAMESH WITH SeBa


GAMESH = GAMETE + CRASH + Nbody simulation of Milky Way galaxy formation

N-body simulation: dynamical evolution of DM GAMETE simulation: Star formation, metal production

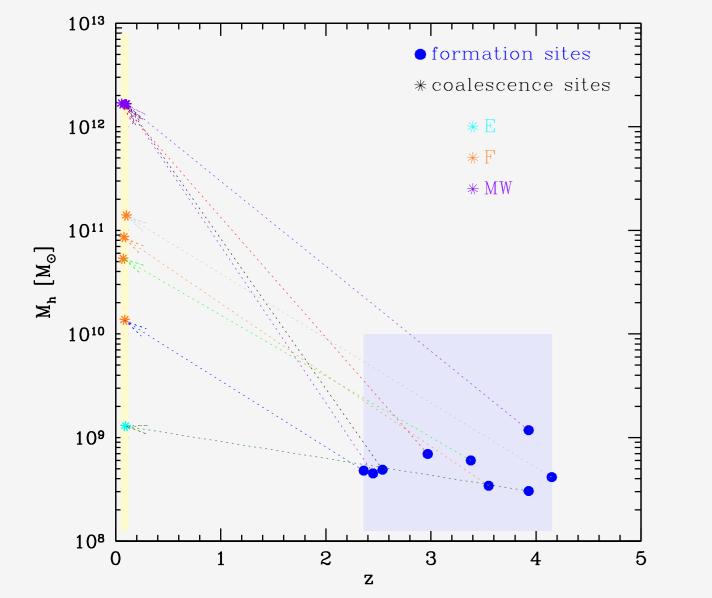
CRASH simulation: RT, gas ionization heating

GAMESH can follow both mergers and spatial evolution of structures

GAMESH implements self-consistent radiative and chemical feedback

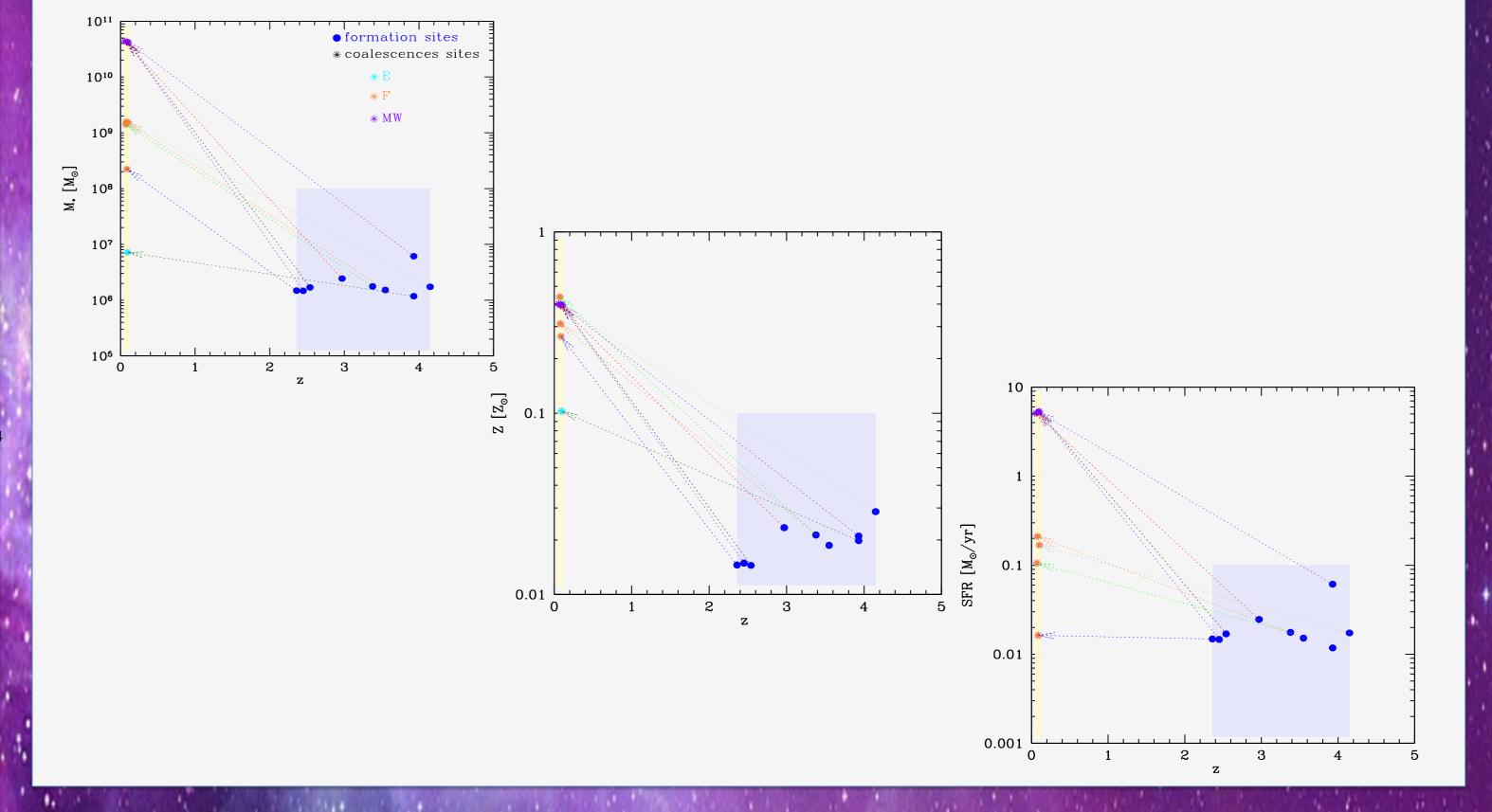
Typical evolutionary track of high-mass binary systems as the ones reproduced in SeBa

★ EVOLUTION OF GALAXIES FROM BLACK HOLE BINARIES FORMATION TO COALESCENCE


Halo/Galaxy - Properties

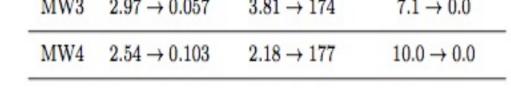
We find only 9 halos capable to host GW150914-like events over more than ~ 13.000 simulated galaxy hosts in the redshift range predicted by LIGO and with the right mass ratio

★ EVOLUTION OF A CHANNELS ENDING IN THE GALAXY/DM HALO E1


10-

10

gID	$z_f ightarrow z_c$	$\sim T_{vir} \ [10^4 \ {\rm K}]$	$\sim d_{\rm MW}$ [100 kpc]
F1	3.93 ightarrow 0.095	$2.20 \rightarrow 1.50$	$24.2 \rightarrow 7.4$
F2	$2.36 \rightarrow 0.087$	$2.05 \rightarrow 7.23$	$19.9 \rightarrow 4.4$
F3	$3.55 \rightarrow 0.080$	$2.20 \rightarrow 24.5$	$21.5 \rightarrow 11.6$
E1	$3.38 \rightarrow 0.072$	$3.10 \rightarrow 17.66$	$25.0 \rightarrow 27.4$
E2	$4.15 \rightarrow 0.103$	$2.83 \rightarrow 34.20$	$24.7 \rightarrow 34.4$
MW1	$2.45 \rightarrow 0.095$	2.01 ightarrow 176	$7.2 \rightarrow 0.0$
MW2	$3.93 \rightarrow 0.095$	5.43 ightarrow 176	11.6 ightarrow 0.0
MWO	0.07 0.057	0.01 . 174	71 .00


Stellar mass, SFR and metallicity of Galaxies hosting the birth and coalescence events of BH binary systems candidate to have properties as predicted for the observed GW150914-like events

10

★ REFERENCES

Dark matter mass of halos hosting the BHB formation (blue dots) and coalescence (star-like points), as function of redshift

Properties of dark matter halos in which the formation and coalescence of BHBs occur.

0.01 0.001 0.01 ∑ ≥ 10⁸ [Z_e] N ⁵ 0.0001 10-5 0.001 **Observational counterpart: for example the** descendants of E1 have PGC1446233 analogue (from the ALLSMOG survey)

gID/Obs.	$z_c ightarrow z_s; z_{obs}$	Z [12+log(O/H)]	$\log({ m M_{\star}})~[{ m M_{\odot}}]$	$\log({ m SFR})~[{ m M}_{\odot}/{ m yr}]$
F1/UGC4483 ^b	$0.095 \to 0.0; 0.0005$	$? \rightarrow 7.68; 7.46 \pm 0.02$ $^{\rm d}$	$6.85 \to 6.87; 6.89 \pm 0.22$	$(quenched) \rightarrow (quenched); -2.21 \pm 0.18$
F2	0.087	? →?	$5.90 \rightarrow 8.35$	-1.82 ightarrow -1.79
F3	0.080	?→?	6.26 ightarrow 9.19	$-1.82 \rightarrow -0.68$
E1/PGC1446233 ^a	$0.072 \to 0.02; 0.023$	$? \rightarrow 8.39; 8.38\ ^{\rm c}$	$9.15 \to 9.19; 9.11 \pm 0.09$	$-0.98 \rightarrow -1.05; -0.94 \pm 0.28$
E2	0.103	? →?	$6.36 \rightarrow 9.18$	$-1.77 \rightarrow -0.77$
MW1	0.095	? →?	$5.90 \rightarrow 10.63$	-1.82 ightarrow 0.72
MW2	0.095	? →?	$6.69 \rightarrow 10.63$	-1.21 ightarrow 0.72
MW3	0.057	? →?	$6.38 \rightarrow 10.64$	-1.60 ightarrow 0.71
MW4	0.103	? →?	$6.08 \rightarrow 10.62$	$-1.77 \rightarrow 0.73$

• We perform a detailed analysis of the evolutionary pathways and the statistical properties of galaxies hosting GW150914-like events.

6

7.

10

- We find three classes of halos hosting coalescence events: systems belonging to the main MW progenitor (MW-systems), systems belonging to MW satellites (F-systems), halos hosting dwarf galaxies that can dynamically escape the global infall onto the central Milky Way (E-systems).
- Measurements of the physical properties of the host galaxy provide constraints on the formation mechanism of the binary.
- Our analysis open the possibility to search in observational catalogs comparing the physical properties of the simulated GW150914-like event hosting galaxies and give access to build a more efficient detection strategy.

GAMESH+SeBa paper: Schneider, Graziani, Marassi, Spera, Mapelli M, Alparone , de Bennassuti M, 2017, MNRAS, 471, L105 GAMESH papers: Graziani, Salvadori, Schneider, Kawata, de Bennassuti, Maselli, 2015, MNRAS, 449, 3137 Graziani, de Bennassuti, Schneider, Kawata, Salvadori, 2017, MNRAS, 469, 1101 Ginolfi, Graziani, Schneider, Marassi, Valiante, Dell'Agli, Ventura, Hunt, 2017, MNRAS SeBa papers: Mapelli, Zampieri, Ripamonti, Bressan, 2013, MNRAS, 429, 2298 Portegies Zwart S. F., Verbunt F., 1996, A&A, 309,179 Lamberts, Garrison-Kimmel, Clausen, Hopkins, 2016, MNRAS, 463, L31