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Abstract. An analytical model of elastic cables is presented to eval-
uate the influence of the cables sag in the exact positioning of a point
mass end-effector in a two-dimensional space within the context of cable-
driven parallel manipulators. Direct and inverse kinematic problems are
formulated by means of 3n nonlinear equations expressing compatibil-
ity, equilibrium, and targeting conditions. Examples with an increasing
number of cables are proposed to show that, in specific regions of the
workspace, solving the inverse kinematics problem implies very slack
configurations of redundant cables.
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1 Introduction

Cable Driven Parallel Manipulators (CDPMs) have been developed since few
decades and are currently studied because of their inherent advantages with re-
spect their classical counterparts composed by rigid links only. The main element
to consider in the study of the CDPMs is the cable and its correct modeling.
The complexity is related to the use of cables as tools for actuation and ma-
nipulation of payloads. Indeed, cables have the characteristic of being only able
to work in tension, and not in compression leading to many difficulties with
kinematic, static, dynamic analyses and control. Some works are related to the
low inertia of such mechanisms [7]. Applications taking advantage of the large
working volume are the NIST Robocrane [4] and the systems proposed in [13,
2]. When the CDPMs are in a crane configuration, where gravity acts like an
additional cable, not all the end-effector DOFs can be controlled.

Underconstrained cable robots offer several advantages with respect to fully
constrained ones. A smaller number of cables means reduced number of actua-
tors, overall costs and setup time, improved ease of assembly and a lower likeli-
hood of cable interference. Within the context of the underconstrained CDPMs
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kinematics, the challenging problem is that the exact positioning of the end-
effector can be achieved with difficulty. Therefore, loop-closure or kinematic
compatibility and equilibrium equations must be simultaneously solved as pro-
posed in [14] and traditional displacement-analysis problem has been defined as
geometrico-static also expressing some connections between stability and energy
[3]. In [10] is solved the Inverse Kinematics (IK) problem considering the end-
effector pose and evaluating the cables forces and lengths. The IK problem is
solved in [8] with the hypothesis of inextensible cable first, and then using a
parabolic cable profile equation. In [12] both Direct Kinematics (DC) and IK
problems are solved within the context of sagged elastic cables. In [15] an ap-
proach based on energy and optimization was proposed to solve the DK problem.
The energy method was also adopted in [5] to formulate the equations of motion
of CDPMs to take into account cables vibrations. The importance of vibrations
in cable-suspended robots and their mitigation via active control were discussed
in [6]. When dealing with non-trivial cable models and underconstrained cable
robots the main challenge is related to the real-time analysis capability of the
controller. Indeed, simplified models allow fast computation but leading to in-
accurate solutions, while non-trivial cable modeling may lead to ill-conditioned
behavior at certain end-effector positions in the workspace.

In this paper an analytical model for solving numerically the DK and the
IK problems in CDPMs working in a 2D space is presented. In particular, for a
given, arbitrary number n of elastic cables the solution of the IK and equilibrium
problems is calculated starting from the solution of the DK approach and it is
found in terms of the cables incremental lengths and tensions so as to provide
the exact positioning of a point-mass end-effector across the workspace. To this
aim, a kinematic descriptor, namely the vectorial distance between the end-
effector position evaluated through a DK analysis and the target position, is
minimized. It is also shown that there are specific regions in the 2D workspace
where compatible and equilibrium solutions, ensuring the exact positioning of
the end-effector, exist but entail very slack configurations of at least one cable.

2 Problem Formulation

In the two-dimensional (2D) Euclidean space, a system of n elastic cables sub-
jected to fixed boundary condition at one end and connected together at their
free boundary is here considered to study the equilibrium configurations reached
by the cables for assigned target positions of an end-effector point mass M col-
located at the cables free boundaries.

2.1 Continuum Model of Elastic Cables

The analytical model adopted to describe the cables overall 2D kinematics,
illustrated in the schematic representation in Fig. 1, is parametrized by the
space coordinate along the unstretched arclength Si (i = 1, . . . , n) of each ca-

ble. By introducing n fixed Cartesian frames (e
(i)
x , e

(i)
y ) having their origin Oi
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in the fixed boundary of the ith cable, where e
(i)
y represents the upward ver-

tical direction and e
(i)
x is collinear with the horizontal direction, the reference,

unstretched configurations of the cables are described by the position vectors

pi(Si) = x(Si)e
(i)
x +y(Si)e

(i)
y , while the direction of the cables arclength is given

by the unit vector ai = ai,xe
(i)
x + ai,ye

(i)
y . On the other hand, the unstretched

cables configuration is assigned a priori by assuming a trial collocation of the

mass M whose position, in the frame (e
(1)
x , e

(1)
y ) of the first cable, is given by

the position vector p0
M,1 = l1a

0
1, where l1 and a01 = a01,xe

(1)
x + a01,ye

(1)
y are the

distance and the direction, respectively, between the cable fixed end and the
mass M . Accordingly, the position of the fixed end of the ith cable is known and

it is assigned through the vector rOi
= d1ie

(1)
x + h1ie

(1)
y (i = 1, . . . , n), where

d1i and h1i are the horizontal and vertical distances, respectively, between the
fixed ends of the first and the ith cable. The remaining n− 1 expressions of the
mass position vectors p0

M,i with respect to the ith frame, can be determined by

the n − 1 vectorial relations rOi
+ p0

M,i = p0
M,1; the latter, can be written in

component form as d1i + lia
0
i,x = l1a

0
1,x, h1i + lia

0
i,y = l1a

0
1,y, which, together

with the normalization condition (a0i,x)
2 + (a0i,y)

2 = 1, provides the expressions

of li, a
0
i,x, and a0i,y (i = 2, . . . , n), respectively.
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Fig. 1. Schematic representation of the CDPM.

In the continuum formulation here adopted, the flexural deformation mode
of the cables [1] is neglected, thus the only generalized strain of the ith cable is
provided by the stretch νi. The latter, can be defined as νi = dsi/dSi, where si
represents the arclength of the ith cable in the equilibrium configuration and d
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stands for total differentiation. The stress state in the ith cable is given by the
vector ni = Niai, where, by considering a linear elastic constitutive behavior,
the tension Ni can be expressed in terms of the cable stretch as Ni = EAi(νi−1),
being EAi the cable axial stiffness.

By introducing the horizontal Hi and the vertical Vi components of the cable
tension in the ith reference frame, the following equilibrium equations for the
ith cable holds

Niai,x = Hi ,

Niai,y = −Vi +
∫ Si

0
mg dSi .

(1)

where the integral term in the right-hand side of the second equation in (1) rep-
resents the weight of the ith cable having unstretched length Si, i.e., mg Si =∫ Si

0
mg dSi, beingm the cable mass per unit unstretched length and g the gravity

acceleration. By solving Eq.(1) in terms of the directors ai,x and ai,y, and provid-
ing the normalization condition a2i,x+a2i,y = 1, it is possible to obtain th expres-

sion of the tension in the ith cable in the form Ni =
√
S2
i +H2

i + V 2
i − 2SiVi.

By now enforcing the definition of the stretch νi, which implies that dsi =
νidSi, the directors of the ith unit vector ai can be cast in the following form:
ai,x = dxi/dsi = dxi/νidSi, ai,y = dyi/dsi = dyi/νidSi. By combining the
obtained expressions of the directors ai,x and ai,y and the constitutive equation
is then possible to obtain the differential relations between the components of
the position vector pi(Si) of the ith cable and the unstretched arclength Si in
the form

dxi = ai,x

(
Ni

EAi
+ 1

)
dSi, dyi = ai,y

(
Ni

EAi
+ 1

)
dSi, (2)

with: ai,x = Hi/Ni and ai,y = (mg Si − Vi) /Ni. Equation (2), integrated in
[0, Si], provides the equilibrium configuration of the ith cable in terms of the
horizontal and the vertical components of the position vector pi(Si).

Nondimensional form. The nondimensional form of Eq.(2) and of the equilib-
rium equations (1) are obtained here to identify the main mechanical parameters
governing the static configuration of the ith elastic cable. To this end, the span
l1 of the first cable is adopted as characteristic geometric parameter for the
nondimensionalization. Thus, ξi = Si/l1 is the nondimensional arclength in the
unstretched configuration, while x̄i = xi/l1 and ȳi = yi/l1 represent the horizon-
tal and vertical components of the ith cable position vector in the equilibrium
configuration, respectively. Moreover, by assuming f c = mg l1 as characteris-
tic force, the following nondimensional expressions of the components of the
cables tension can be provided: αi = Hi/mg l1, βi = Vi/mg l1. Finally, the
nondimensional tension in the ith cable can be written as N̄i = Ni/mg l1 =
κi(νi − 1), where κi = EAi/mg l1 is the nondimensional cable stiffness, thus
N̄i =

√
ξ2i + α2

i + β2
i − 2ξiβi. By now integrating Eq.(2), the equilibrium config-
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uration of the ith cable, in its nondimensional form, can be calculated as [9]

x̄i(ξi) = x̄i(0) + αi

[
ξi
κi

+ sinh−1
(

ξi−βi

αi

)
+ sinh−1

(
βi

αi

)]
,

ȳi(ξi) = ȳi(0) +
ξi(ξi−2βi)

2κi
+
√
ξ2i + α2

i + β2
i − 2ξiβi −

√
α2
i + β2

i ,
(3)

where sinh−1 is the inverse hyperbolic sine function. Finally, to ensure the fixed
boundary conditions at the cables ends, x̄i(0) = ȳi(0) = 0 (i = 1, . . . , n).

2.2 Equilibrium and Kinematically Compatible Configurations

The system (3) provides the nondimensional expression of the configuration of
the ith cable as function of the elastic stiffness κi and of the internal forces αi

and βi. Although, to ensure that the n cables are in equilibrium under the effect
of the external forces acting on them, the following two relations hold

n∑
i=1

αi = 0,

n∑
i=1

βi −
n∑

i=1

ηi − W̄ = 0, (4)

where W̄ = M g/mg l1 is the nondimensional weight of the point mass M ,
while ηi = mgL0,i/mg l1 represents the nondimensional weight of the ith cable,
which, in turn, corresponds to the ratio between the unstretched length L0,i of
the ith cable and the span l1 of the first cable, i.e., ηi = L0,i/l1.

In addition, kinematic compatibility conditions must be provided in order to
ensure that the free boundaries of the n cables are connected to each other. To
this aim, the following n− 1 vectorial relations hold

r̄Oi + p̄i(ηi)− p̄1(η1) = o, (i = 2, . . . , n) (5)

where r̄Oi = rOi/l1, p̄i(ηi) and p̄1(η1) are the nondimensional position vectors
of the mass M with respect to the fixed end of the ith cable (i.e., when ξi = ηi)
and the first cable (i.e., when ξ1 = η1), respectively, and o is the trivial vector
with null components.

3 Direct vs Inverse Approach

Equation (5), in component form, provides 2(n − 1) compatibility conditions
which, together with the 2 equilibrium equations (4), give the 2n equations that
allow to calculate the 2n unknowns αi and βi (i = 1, . . . , n) ensuring that the
mechanical system is kinematically compatible and in equilibrium. The above
mentioned system of 2n nonlinear equations in 2n unknowns can be solved nu-
merically for selected values of the cables unstretched lengths L0,i, assigned
through the nondimensional parameters ηi, and for a set of trial positions of the
mass M , which, in turn, are provided by the nondimensional position vectors
p̄0
M,i = p0

M,i/l1. Although, due to the elastic feature of the cables, the final po-
sition of the mass (given in the ith reference frame by the vector p̄i(ηi)) will not
be coincident to the assigned trial position.
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Finding a closed-form solution of the system of the 2n nonlinear equations is
challenging and out of the scope of the present work; nevertheless, approximate
solutions can be found numerically by using minimization methods. To this end,
a numerical algorithm for constrained global optimization implemented in the
software Mathematica was used. In particular, the Random Search algorithm ac-
counting for a large number of search points is adopted to minimize the objective
function given by the squared norm of the (2n×1) vector collecting the left-hand
side (LHS) of the system of 2n nonlinear equations. To overcome the limits of
the direct kinematic approach in finding the cables configurations leading to the
mass exact positioning, an inverse kinematic approach is adopted to drive the
position of the end-effector to target collocations. To this end, the target position

vector p̄T , whose components are given in the fixed frame (O1, e
(1)
x , e

(1)
y ) of the

first cable, is introduced to define the difference vector between the position of
the mass evaluated through a direct kinematic analysis and the target position
vector. Since the mass position, in the stretched cables configurations, can be
arbitrary provided with respect to each cable by the sum vector r̄Oi

+ p̄i(ηi),
therefore, it is possible to evaluate n difference vectors ∆p̄i (i = 1, . . . , n) as
∆p̄i = r̄Oi + p̄i(ηi) − p̄T ; the latter turn out to be ∆p̄i ̸= o in the configu-
rations achieved through a direct kinematic approach. On the other hand, the
mass target position is reached when ∆p̄i = o.

Starting from the known configurations attained through the DK, equilibrium
equations (4) and compatibility equations (5) can be written in their incremental
form by introducing the following expressions: αi = α0

i + ∆αi, βi = β0
i + ∆βi

and ηi = η0i +∆ηi, where α0 and β0
i are solution of the direct problem, while η0i

are the assigned parameters providing the unstretched cables lengths. Therefore,
3n incremental unknowns, namely ∆αi, ∆βi, and ∆ηi (i = 1, . . . , n), are intro-
duced and the solution of the inverse kinematic problem can be then numerically
searched by simultaneously solving the set of 3n equations given by

∑n
i=1

(
α0
i +∆αi

)
= 0,∑n

i=1

(
β0
i +∆βi

)
−
∑n

i=1

(
η0i +∆ηi

)
− W̄ = 0,

r̄Oi + p̄i(η
0
i +∆ηi)− p̄1(η

0
1 +∆η1) = o, (i = 2, . . . , n),

||∆p̄i|| = 0, (i = 1, . . . , n),

(6)

where the last of (6) represents n target equations. In accordance with the numer-
ical procedure performed to find the approximate solution of the direct problem,
which depends largely on a good initial guess [12], the numerical global opti-
mization based on the Random Search algorithm is adopted to minimize the
objective function given, for the case of the inverse kinematics, by the squared
norm of the (3n× 1) vector collecting the left-hand side (LHS) of the nonlinear
equations system (6).
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3.1 Mechanical Parameters of the Selected CDPMs

Two cables configurations are investigated, namely, case-study A (CSA) and
case-study B (CSB), respectively. In particular, CSA accounts for three sus-
pended cables having their fixed end at the same height and being symmetri-
cally positioned along the horizontal direction, while in CSB are considered four
cables nonsymmetrically positioned in the workspace. By referring to the me-
chanical parameters reported in [14], in both cases the cables are characterized
by the same axial stiffness EAi = 628.319 N (i = 1, . . . , n) and the end-effector
mass is M = 5.326 × 10−2 kg. Moreover, the positions of the cables fixed end
are assumed as follows: in CSA, d12 = 1 m, d13 = 2 m and h12 = 0 = h13, while
in CSB, d12 = 0.5 m, d13 = 1.25 m, d14 = 2 m, and h12 = −0.1 m , h13 = 0.25
m, h14 = 0.15 m.

0.0 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

0.0

Case (a)

0.0 0.5 1.0 1.5 2.0
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0.0 0.5 1.0 1.5 2.0

-2.0

-1.5
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-0.5

0.0

Case (c)

0.0 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

0.0

Case (d)

Fig. 2. Cables equilibrium configurations (Λ0
i = 1.01) for CSA: direct approach (blue

lines) vs. inverse approach (red lines). The gray dashed lines indicate the distances li
(i = 1, . . . , n); dimensions in [m].

The reference configuration of the ith cable is provided by assigning the cable
aspect ratio Λ0

i [9, 11], that is, the ratio between the unstretched cable length L0,i

and the distance li between its fixed end and the mass target position. Conse-
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quently, the nondimensional unstretched length of the ith cable can be calculated
as η0i = Λ0

i li/l1. As demonstrated in [14], the sensitivity of the end-effector mass
positioning with respect to the prescribed parameter Λ0

i is a study of valuable
interest in the case of direct kinematic approach, where the accurate tuning of
Λ0
i may provide an end-effector mass positioning close, although not coincident,

to the target position. On the other hand, in the inverse kinematic approach,
the final cables aspect ratios are provided by the minimization procedure and
can be calculated as Λi =

(
η0i +∆ηi

)
l1/li. Therefore, in both case-studies here

investigated, Λ0
i = 1.01 corresponds to the initial, tentative, aspect ratio for each

cable (i.e., i = 1, . . . , n).

Table 1. CSA: coordinates (in [m]) of the target points compared with the end-effector
mass position reached through the direct and the inverse approach, respectively. Nu-
merical approximation of the LHS of Eq. (6).

Case xT yT xD yD xI yI ||LHS||2 ||LHS||
(a) 0 -0.2 0.0172 -0.2014 0.00169 -0.1999 1.43×10−4 1.19×10−2

(b) 0.3 -1 0.2966 -1.0126 0.3 -1 8.09×10−29 8.99×10−15

(c) 0.5 -1.6 0.5006 -1.6183 0.5 -1.6 2.57×10−29 5.07×10−15

(d) 1 -2 1 -2.0214 1 -2 1.68×10−21 4.09×10−11

In Fig. 2 are shown, for the CSA, the equilibrium configurations undergone
by the cables for 4 selected end-effector positions across the grid of target points
investigated. Accordingly, Tab. 1 shows for the cases displayed in Fig. 2 the final
positions of the end-effector mass attained through the direct approach (i.e.,
xD and yD) and through the inverse approach (i.e., xI and yI) compared with
the selected target positions (i.e., xT and yT ). The last two columns of Tab.
1 report the approximation of the numerical solution of the nonlinear system
(6) in terms of the squared norm ||LHS||2 and of the norm ||LHS|| of its left-
end side expressions. Due to the superimposed value of Λ0

i = 1.01, the cables
configurations attained by the direct kinematics approach (blue lines in Fig. 2)
are non-slack in the whole workspace, although, the final end-effector position
does not match the target points due to the effect of the cables elasticity, as shown
in Tab. 1. On the other hand, the formulation based on the inverse kinematics
(red lines in Fig. 2) allows to obtain the cables elastic configurations such as
to provide the exact mass positioning (see xI and yI in Tab. 1). Nevertheless,
as depicted in Fig. 2 (Case (a)), several target points cannot be reached by
ensuring non-slack Λi ≤ 1 or moderately slack configurations for all the cables.
This results in a higher residual of the LHS of Eq. (6) and in larger cables
aspect ratios Λi >> 1, as shown in Tab. 2 where, together with the values of
Λi, are reported the cables axial forces Ni in the proximity of the mass and the
cables stretched lengths Li. Finally, in Fig. 3, are reported the axial forces in
the proximity of the end-effector and the cables total length for all target points
reached through non-slack or moderately slack configurations.
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Table 2. CSA: results in terms of axial forces Ni (in [N]), cables total stretched lengths
Li (in [m]), and cables aspect ratio Λi.

Case N1 N2 N3 L1 L2 L3 Λ1 Λ2 Λ3

(a) 0.588 0.024 0.042 0.199 4.565 7.854 0.999 4.48 3.91

(b) 0.425 0.119 0.057 1.044 1.221 1.980 0.999 0.999 1.004
(c) 0.314 0.213 0.037 1.676 1.676 2.206 0.999 0.999 1.006
(d) 0.043 0.451 0.043 2.240 2.000 2.240 1.002 0.999 1.002

Fig. 3. Axial forces Ni (in [N]) and total lengths Li (in [m]) for each target position
of CSA (coordinates are in [m]).

To show the capability of the proposed model to deal with generic cables ar-
rangements, the case of four, nonsymmetrically positioned cables (i.e., the CSB)
is investigated next. Figure 4 shows the cables configurations for selected the
target points; in particular, case (a) shows very slack configurations attained in
a selected target point positioned along the boundary of the workspace (i.e., gray
points at x = 0 m) by the three cables positioned far away from the boundary,
while cases (b), (c) and (d) show the non-slack and the moderately slack config-
urations undergone by all cables to reach the target points inside the workspace.
Blue and red lines represent the configurations obtained via the DK and the IK
approach, respectively. In Tab. 3 and Tab. 4 are reported the numerical errors
and the cables mechanical parameters for the selected four cases of CSB. In Fig.
5 are shown, for CSB, the axial forces in correspondence with the end-effector
and the cables total length for all target points reached through non-slack or
moderately slack configurations.
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Table 3. CSB: coordinates (in [m]) of the target points compared with the end-effector
mass position reached through the direct and the inverse approach, respectively. Nu-
merical approximation of the LHS of Eq. (6).

Case xT yT xD yD xI yI ||LHS||2 ||LHS||
(a) 0 -0.5 0.0396 -0.5039 0.0034 -0.4999 1.1×10−4 1.1×10−2

(b) 0.25 -0.975 0.2525 -0.9854 0.25 -0.975 5.9×10−28 2.4×10−14

(c) 0.5 -1.2125 0.5056 -1.2244 0.5 -1.2125 2.7×10−15 5.2×10−8

(d) 1.75 -1.925 1.7387 -1.9463 1.75 -1.925 1.6×10−27 4.1×10−14
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Fig. 4. Cables equilibrium configurations (Λ0
i = 1.01) for CSB: direct approach (blue

lines) vs. inverse approach (red lines). The gray dashed lines provide the distances li
(i = 1, . . . , n); dimensions are in [m].

A deeper investigation of the cables configurations in the neighborhood of
the target points positioned along the workspace boundaries (i.e., xT = 0 m and
xT = 2 m) was performed next to define the workspace of the CDPM where the
cables are non-slack or moderately slack (i.e., Λi ≈ 1). For both case-studies (i.e.,
CSA and CSB) a thicker grid of target points was used to determine, via the
inverse kinematic approach, the end-effector positions where all cables exhibit
a moderately slack configuration, i.e., Λi < 1.1. In Fig. 6 are shown in red
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Table 4. CSB: results in terms of axial forces Ni (in [N]), cables total stretched lengths
Li (in [m]), and cables aspect ratio Λi.

Case N1 N2 N3 N4 L1 L2 L3 L4 Λ1 Λ2 Λ3 Λ4

(a) 0.703 0.034 0.066 0.0799 0.499 6.634 12.78 15.2 0.999 10.36 8.767 7.226

(b) 0.376 0.139 0.019 0.042 1.007 0.910 1.594 2.095 0.9994 0.9998 1.0079 1.0071
(c) 0.083 0.424 0.015 0.027 1.312 1.112 1.654 2.048 1.0 0.9993 1.0063 1.0106

(d) 0.041 0.020 0.025 0.467 2.618 2.235 2.234 2.090 1.0062 1.0104 1.0009 0.9992

Fig. 5. Axial forces Ni (in [N]) and total lengths Li (in [m]) for each target position
of CSB (coordinates are in [m]).

the target points for which at least one cable results very slack (i.e. Λ > 1.1),
therefore redundant, while black points indicate the target positions reached by
non-slack or moderately slack cables configurations.
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y

Fig. 6. Target points for CSA (left) and CSB (right) where at least one cable possesses
a very slack configuration (red) and where all cables are non-slack or moderately slack
(black); coordinates are in [m].
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4 Conclusions

The studies performed in this paper show that the exact positioning of the
end-effector in specific area of the workspace of CDPMs may imply a large sag
in “redundant” cables. This occurrence is due to the small contribute of these
cables to the equilibrium of the end-effector and cannot be studied with simplified
models of CDPMs. The presented model permits to determine reachable portion
of the workspace when the maximum cable sag is given.
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