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In Lorentz violating theories of gravitation with a preferred foliation a notion of black hole is still possible,
despite the presence of infinitely fast propagating modes. Such event horizons are known as universal
horizons. Their discovery poses the question of whether they satisfy mechanical laws, analogous to the ones
of Killing horizons in Lorentz symmetric theories, and whether they admit a thermodynamical interpretation.
In this paper we study the viability of the first law for several exact universal horizon solutions previously
derived in the literature. Our results show that a simple mechanical and thermodynamical interpretation is
problematic in these cases, and call for a more systematic study of rotating universal horizons.
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I. INTRODUCTION

In general relativity (GR) a black hole (BH) is defined
as a region causally disconnected from spatial infinity. The
notion of causality is provided by the light cones, and is
rooted into the property that physical modes cannot travel
faster than light, i.e. in local Lorentz symmetry (LLS).
If we consider a gravity theory in which LLS is broken,

we can ask what the fate is of the BH concept. In the case
that the species have different, but finite, limiting speeds,
one can still define different BHs for each species. Instead,
when the modes have unlimited speed, it may seem that it is
impossible to define a BH. This conclusion is incorrect.
In fact, in theories where LLS is broken by the

introduction of a preferred foliation, there is a proper
notion of BH. In these theories causality is defined by
the requirement that causal modes move forward with
respect to the preferred time direction. In general the
preferred leaves extend up to spatial infinity; but when a
leaf does not satisfy this property, it bounds a region
disconnected from spatial infinity. In other words, BHs are
the effect of the relative deformation of the leaves. For a
formal treatment see [1].
These Lorentz violating (LV) BHs were first discovered

[2,3] in the context of static solutions of (the infrared
version of) Hořava-Lifshitz (HL) gravity [4–6], a modified
theory of gravitation with a preferred foliation, and of
Einstein-aether (Æ) theory [7,8], in which LLS is broken by
a preferred timelike vector field. The horizon determined
by such BHs is dubbed the universal horizon (UH). It is
important to notice that universal horizons generally exist
alongside a Killing horizon (KH).
The theoretical discovery of universal horizons poses

questions about their analogy with the more familiar
Killing horizons. In particular, given that Killing horizons
obey mechanical laws, and that these laws admit a
thermodynamical interpretation [9], it is natural to ask if
similar laws hold also for universal horizons.

An important progress in this direction has been a tentative
identification of a notion of “universal horizon temperature”
TUH [10–12].However, it is not clear towhich extentTUH is a
temperature [13], or if mechanical and thermodynamical
laws are associated to it: for example, a proof of the zeroth
law has been given in [1] in a widely general setting, while
the validity of a first law is still controversial.
The aim of the present paper is precisely to understand if

black holes with UHs admit a first law of mechanics with a
thermodynamical interpretation. This study was initiated
in [14], before the discovery of universal horizons, using
Wald’s covariant Hamiltonian construction at the Killing
horizon, and no physical interpretation of the first law
emerged. After the discovery of universal horizons, it was
suggested in [15] that the first law ought to be associated
with them.
Following this suggestion, we analyze explicitly a range

of exact UH solutions, to see if they satisfy a first law in
the form

dðMassÞ ¼ TUHdSUH þ ðwork termsÞ: ð1Þ

We interpret (1) as a differential equation to be solved for
SUH. In particular this means that we do not assume a priori
that SUH is proportional to the area of the UH.
Clearly there is some vagueness, because we could

always ascribe any extra term in (1) to a not better specified
form of work. For this reason we restrict ourselves to
the simplest and most natural choices of work terms. In
particular, since the static solutions we consider have a
one parameter dependence, we assume in analogy with GR
that no work term is involved. Similarly, when considering
rotating solutions, we allow only for the work term due to
the change in angular momentum. Moreover, we do not
consider variations of the cosmological constant.
We work with the infrared version of Hořava gravity, in

which most of the known UH exact solutions have been
obtained so far. More specifically, we focus on the healthy
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extension [16] in its covariant formulation [17], also known
as khronometric theory or T-theory.
The paper is organized as follows. In Sec. II we review

the action and the equations of motion of T-theory. In
Sec. III, following [18,19], we derive the Hamiltonian of
T-theory, from which we extract the definition of mass to
be used in (1); in particular in Sec. III C we introduce a
regularization scheme for the Hamiltonian, which allows us
to deal with the general case of nonvanishing asymptotic
shift. In Sec. V we study the first laws of several exact
UH solutions of T-theory, along the lines explained above:
we find that, as the complexity of the solutions increases,
problems emerge with the first law (1). Finally, in the
discussion, we conjecture several wayouts, which consti-
tute possible directions of future analysis.
We use the conventions adapted to the mostly plus
ð−þþþÞmetric signature. The sums of T-theory coupling
constants ci þ cj and ci þ cj þ ck are shortened, respec-
tively, as cij and cijk.

II. T-THEORY

T-theory is a scalar-tensor theory of gravitation, in which
gravity is described by the usual metric tensor gab and by
a scalar field T. The field T is assumed to determine a
preferred foliation, with timelike unit-normal vector field

ua ¼ −N∇aT N ¼ ð−∇aT∇aTÞ−1=2 ð2Þ

where N is the lapse of the foliation.
The action of T-theory is the following functional of gab

and ua:

S ¼
Z
M

dDx
ffiffiffiffiffiffi−gp

16πG
½R − 2Λþ Lu� ð3Þ

where

Lu ¼ −Zab
cd∇auc∇bud ð4aÞ

Zab
cd ¼ c1gabgcd þ c2δacδbd þ c3δbcδad − c4uaubgcd ð4bÞ

and all the ci’s are coupling constants. The fact that (3)
depends on T only upon ua makes the theory invariant
under arbitrary reparametrizations T → fðTÞ.
T-theory has a strong relation with Æ theory. Indeed Æ

theory has the same action as (3), but it considers ua as a
fundamental vector field, and it enforces the unit-timelike
constraint on ua by means of a Lagrange multiplier.
Conversely, one can also view T-theory as a modification
of Æ theory, in which the vector ua is assumed to be
hypersurface orthogonal. Because of this relation, we refer
to ua as the aether vector.
T-theory is also connected with the infrared limit of

Hořava gravity. Indeed, as shown in [17], if we decompose
the action (3) along the constant T hypersurfaces, we obtain

S¼
Z

dT
Z
ΣT

dD−1yN
ffiffiffi
h
p

16πG
½ ~R−2Λþαa2þβKabKab−γK2�

ð5Þ

where α ¼ c14, β ¼ 1 − c13 and γ ¼ 1þ c2; fyg are
coordinates on ΣT ; h is the determinant of the intrinsic
metric hab of ΣT ; ~R is the Ricci scalar of hab, and we have
defined the extrinsic curvature1

Kab ¼ ∇aub ð6Þ

along with its trace K, and the aether acceleration
aa ¼ ub∇bua.
The action (5) contains only second-order spatial deriv-

atives. It coincides with the infrared action of Hořava
gravity, in which operators of the full HL action with higher
order spatial derivatives are suppressed by a Lorentz
violating scale ΛLV, and they are neglected. Therefore,
we can also view T-theory as the covariantization of
infrared HL gravity. T plays the role of the preferred time
and we refer to it as the khronon field. Correspondingly,
T-theory is often referred to in the literature as khrono-
metric theory.
In order to derive the equations of motion (EOM) for

T-theory, we must vary the action (3) with respect to gab
and T,

δS ¼
Z
M

dDx
ffiffiffiffiffiffi−gp

16πG
½Eabδgab þ 2ETδT� þ

�
boundary

terms

�

ð7Þ

from which we read the EOM

Eab ¼
δS
δgab

¼ Rab −
1

2
Rgab þ Λgab − Tu

ab ¼ 0 ð8aÞ

ET ¼
1

2

δS
δT
¼ ∇aðNÆa

 Þ ¼ 0 ð8bÞ

where the effective stress-energy tensor of the aether is

Tu
ab ¼ c1ð∇aum∇bum −∇mua∇mubÞ þ c4aaab

þ∇mXm
ab þ

1

2
Lugab þ ðÆ · uÞuaub − 2Æ ðaubÞ

ð9Þ

and we defined

1The underleft arrow denotes projections of the indices on the
hypersurface orthogonal to ua.
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Æa ¼
1

2

δS
δua
¼ c4ab∇aub þ∇bðZbc

ad∇cudÞ: ð10Þ

Xm
ab is a function of ua and gab, whose explicit expression

is not needed here [see e.g. Eq. (11) of [20]].
Notice that, in Æ theory, the metric EOM (8a) is left

unchanged, while the aether EOM (8b) becomes

Æ 
a ¼ 0; ð11Þ

from which we also see that any hypersurface orthognal
solution of Æ theory is also a solution of T-theory, while the
converse is not necessarily true [17].

III. THE HAMILTONIAN OF T-THEORY

A. Boundary conditions and boundary terms

We want to derive the Hamiltonian of T-theory, for
which we need to specify a foliation. The analysis can be
performed in any foliation, but we work in the preferred
foliation adapted to the khronon, as in (5).
The actions (3) and (5) are not complete, because

we neglected the boundary terms, which ensure that the
variational problem is well defined. Therefore we have to
specify boundary conditions to fix the boundary terms. We
closely follow the analysis in [19].
We assume that there is a past timelike boundary at

T ¼ T− and a future timelike boundary at T ¼ Tþ. We also
assume the presence of a spacelike boundary located at a
suitable notion of “spatial infinity”: more precisely we
assume that each preferred slice ΣT has an outer boundary
BT with spacelike unit normal sa, in such a way that
the whole manifold has a spacelike outer boundary
B ¼ BT × ½T−; Tþ�. In this section we neglect the possible
presence of inner boundaries, and we postpone their
discussion to Sec. IV.
The natural boundary conditions for the metric are the

Dirichlet conditions δgab ¼ 0. On the other hand, as
observed in [19], the natural boundary conditions for the
khronon are the Neumann conditions ∇aδT ¼ 0: they

ensure that the aether vector ua remains parallel to itself,
i.e. that the preferred foliation is preserved at the boundary.
The boundary terms neglected in the variation (7) are�
boundary

terms

�
¼ 1

16πG

Z
∂M
½gab∇mδgab −∇aδgma

þ Aabδgab þ Bma∇aδT −2NÆ 
mδT�ϵm

ð12Þ
where ∂M¼ΣT−

∪ΣTþ∪B, while Aab and Bma are tensors
locally constructed out of gab andua, whichwe donot need to
specify for our purposes [see e.g. Eq. (45) of [20]].
Because of the aforementioned boundary conditions

the third and fourth term in (12) vanish. The first and

second terms are the same as in general relativity, and
therefore they induce the Brown-York boundary term in the
action [21].
The last term vanishes on ΣT−

and ΣTþ because Æ
←

m is
parallel to the preferred slices; moreover it is also expected
to vanish on B, in accordance with the reparametrization
invariance T → fðTÞ. This is valid trivially in all the
explicit solutions considered below, as they are also
solutions of Æ theory, i.e. they satisfy Æ

←
a ¼ 0 globally.

Therefore the only boundary contribution to the action
comes from the Brown-York term

S ¼
Z
M

dDx
ffiffiffiffiffiffi−gp

16πG
½R − 2Λþ Lu� þ

Z
∂M

η
K

8πG
ϵD−1 ð13Þ

where η is equal toþ1 or -1 on the portions of ∂M that are,
respectively, spacelike or timelike; ϵD−1 is the induced
volume element on ∂M; K is the trace of the extrinsic
curvature of ∂M, i.e. K ¼ ∇aua on T− and Tþ, while
K ¼ ∇asa on B.
The full decomposition of the action (13) on the

preferred slices of constant T is therefore

S ¼
Z

Tþ

T−

dT

�Z
ΣT

dD−1yN
ffiffiffi
h
p

16πG
ð ~R − 2Λþ αa2

þ βKabKab − γK2Þ þ
I
BT

dD−2θ

ffiffiffi
σ
p

N
8πG

2K

�
ð14Þ

where 2K ¼ ðgab þ uaubÞ∇asb is the extrinsic curvature of
BT viewed as a hypersurface of B, fθg are coordinates on
BT , and σ is the determinant of the intrinsic metric of BT .

B. Hamiltonian decomposition

We are ready to canonically decompose the action (14).
First of all we define the time evolution vector as

Ta ¼
�∂xa
∂T
�����

y⃗¼const
ð15Þ

which can be split into its “normal” and “tangential”
parts as

Ta ¼ Nua þ Na ð16Þ

where N is the lapse introduced in (2), and Na is the shift.
Next, by observing that

Kab ¼
1

2
£uhab ¼

_hab − 2DðaNbÞ
2N

ð17Þ

we define the momentum conjugate to hab,
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Pab ¼ δL

δ _hab
¼

ffiffiffi
h
p ðβKab − γKhabÞ

16πG
: ð18Þ

As in GR the spatial metric hab is the only dynamical field,
while the lapse and the shift are not dynamical.2

Then the Hamiltonian is3

H ¼
Z
ΣT

dD−1yPab _hab − L

¼
Z
ΣT

dD−1y
16πG

½NH − NaHa�

−
I
BT

dD−2θ
ffiffiffi
σ
p

8πG
½N2K − Nasbpab� ð19Þ

where

H ¼
ffiffiffi
h
p
ðβKabKab − γK2 − αa2 − ~Rþ 2ΛÞ ð20aÞ

Ha ¼ −2DbPb
a ð20bÞ

and

pab ¼ βKab − γKhab: ð21Þ

Equation (19) is the “off-shell” Hamiltonian. To obtain the
“on-shell” Hamiltonian we must impose the EOM for N
and Na. The EOM for Na is simply Ha ¼ 0. To compute
the EOM for N, observe that aa ¼ N−1DaN; then, func-
tionally deriving (5) with respect to N, we get

H ¼ −2
ffiffiffi
h
p

N−1DaðαDaNÞ≡ −2
ffiffiffi
h
p

N−1DaðαNaaÞ: ð22Þ

Therefore the on-shell Hamiltonian is

H¼−
I
BT

dD−2θ
ffiffiffi
σ
p

8πG
½N2Kþ c14Nða · sÞ−Nasbpab�: ð23Þ

Notice that the second term in (23) was neglected in
Eq. (34) of [19], while it is correctly included in
Eq. (52) of [18], which deals only with asymptotically
flat solutions.

C. Definition of mass: dealing with divergences

The mass M is defined as the value of the Hamiltonian
associated with asymptotic time translations. However, as
described in [22], a straightforward application of (23)
would result in a divergent expression, and therefore the
Hamiltonian must be suitably regularized.

For example, in the case of asymptotically flat GR
solutions, the so-called Hawking-Horowitz prescription
reads

M ¼ −
I
BT

dD−2θ
ffiffiffi
σ
p

8πG
N½2K − 2K0� ð24Þ

where the subscript 0 means evaluation over the back-
ground solution.
Notice that this is different from

H − H0 ¼ −
I
BT

dD−2θ
ffiffiffi
σ
p

8πG
½N2K − N0

2K0� ð25Þ

because subleading contributions from N − N0 can
combine with 2K0, yielding additional finite terms when
integrated.
We generalize the Hawking-Horowitz prescription in

order to accommodate a nonvanishing shift at spatial
infinity. This can be done as follows.
First define a local spacetime tetrad eIa, I ¼ 0, 1, 2, 3, and

choose the timelike member of the tetrad such that it
coincides with the unit-timelike normal to the slices of the
foliation: e0a ¼ ua.
Second, in a neighborough of B, define the “4-current”

Ja ¼ ½2K þ c14ða · sÞ�ua þ pabsb ð26Þ

in terms of which the Hamiltonian density is

TaJa ¼ −N½2K þ c14ða · sÞ� þ Nasbpab ð27Þ

where we have used (16) and the fact that ua is orthogonal
to pab.
Project both Ta and Ja along the tetrad internal directions

TI ¼ TaeIa JI ¼ JaeaI : ð28Þ

Then we prescript to regularize the mass as

M ¼
I
BT

dD−2θ
ffiffiffi
σ
p

8πG
TIðJI − JIj0Þ ð29Þ

where again the subscript 0 means subtraction of the
background current. For the same reason as before, this
is not equivalent to H − H0.
From now on we adopt the prescription (29) as our

definition of mass. Notice that this regularization procedure
is not specific to T-theory, and it can be applied to any
theory with a well-defined canonical Hamiltonian.

IV. UNIVERSAL HORIZONS

The analysis of black hole solutions in the context of Æ
theory and Hořava theory revealed the existence of a novel

2Recall that now T is a spacetime label, and therefore it does
not count as a dynamical field. See [17].

3We use bold capital letters H, M, J for the Hamiltonian, the
mass and the angular momentum, respectively.
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type of event horizons, alongside the usual Killing hori-
zons. These new horizons, named universal horizons, act as
future event horizons for modes of arbitrary speed, and
therefore they are the relevant event horizons when Lorentz
symmetry is broken and superluminal dispersion relations
are allowed.
Universal horizons were first found in four-dimensional

static asymptotically flat solutions of Æ theory and T-theory
[2,3,15]. Four-dimensional static asymptotically (anti-) de
Sitter (AdS) universal horizons were found for a specific
choice of the couplings [23]. Four-dimensional static asymp-
totically flat slowly rotating universal horizons in T-theory
were analyzed in [24], while for generic choices of the
couplings they were found to be absent in Æ theory [25].
Three-dimensional fully rotating solutions in T-theory were
studied in [26] in the coupling branch c14 ¼ 0. Three-
dimensional static asymtptotically Lifshitz universal hori-
zons were treated numerically in [19]. Charged static
universal horizons were analyzed in [12,27,28]. Finally,
static and slowly rotating universal horizons in a full (not
truncated) version of Hořava gravity were discussed in [29].
In all these cases, the UH is a leaf of the preferred

foliation. A general framework to study the causal structure
of spacetimes with a preferred foliation was introduced
in [1]. It was found that, in a stationary spacetime with
timelike Killing vector ξ, the necessary and sufficient
conditions for a leaf to be a universal horizon are
ðu · ξÞUH ¼ 0 and ða · ξÞUH ≠ 0.
We are then led to the condition that ua be normal to the

universal horizon. As discussed in [19], this ensures that no
additional boundary term is needed in the action when the
inner boundary is a UH, and moreover that the contribu-
tions to the on-shell Hamiltonian (23) from the UH vanish.
Therefore the expression of the Hamiltonian is unaffected
by the presence of a UH, and the definition of the mass
remains the same.
The quantity ða · ξÞ is directly related to a peeling notion

of surface gravity for universal horizons, first introduced
in [11]

κUH ¼
1

2
ua∇aðu · ξÞj

UH
≡ 1

2
ða · ξÞUH: ð30Þ

It was later proved in [1] that ða · ξÞ ¼ const ≠ 0 on the
UH, i.e. κUH obeys a zeroth law. Moreover it was found in
[10,12,30] that κUH is related to a notion of tunneling
temperature of the universal horizon. In particular, via a
tunneling computation of pair creation at the universal
horizon, the associated tunneling temperature is

TUH ¼
�
N − 1

N

�
κUH
π

; ð31Þ

where N is the dominant UV polynomial behavior of the
dispersion relation of the modes created at the UH, ω ∼ pN .

The modes are of course understood to be superluminal,
N > 1.
Notice however that, by means of a collapsing null shell

calculation, [13] concluded that the details of the Hawking
radiation at late time are independent on the UH; moreover
the late time spectrum has the characteristic Killing temper-
ature κKH, at least to leading order in the small parameter
κKH=ΛLV, where ΛLV is the UV Lorentz violating scale
entering in the modified superluminal dispersion relation.
The clarification of this issue is of manifest theoretical
interest. We further comment about the role of Killing
horizons in the final discussion.
Since TUH depends on N, it induces an N-dependence

also on SUH in (1), which in turn implies an awful
species dependence of the entropy SUH. However, in a
UV completion of Hořava Lifshitz, N becomes a
universal constant dictated by the asymptotic Lifshitz
symmetry in the UV. For definiteness we work in the
limit N → ∞, the case of a finite N differing by just a
multiplicative factor.
Now that we have clarified the definition of TUH, we can

proceed with the study of the first law. We consider exact
black hole solutions of T-theory with a universal horizon,
with an increasing level of complexity. In particular, we
first consider the four-dimensional static asymptotically flat
UHs of [15]; then we turn to the four-dimensional static
asymptotically AdS UH obtained in [23]; finally we study
the three-dimensional asymptotically AdS fully rotating
UHs of [26]. We do not consider the charged UHs [12,28],
whose first laws have been already analyzed in the
respective papers.

V. STUDY OF THE FIRST LAW

A. (3 + 1) static asymptotically flat UHs

In [15] two exact static spherically symmetric UH
solutions were derived in (3þ 1) spacetime dimensions.
They were obtained within the two branches of the theory
c123 ¼ 0 and c14 ¼ 0.
The line element has the form

ds2 ¼ −eðrÞdt2 þ dr2

eðrÞ þ r2dΩ2 ð32Þ

while the aether vector has the form

uadxa ¼ ðu · tÞdt − ðs · tÞ
eðrÞ dr ð33Þ

and the unit-timelike constraint u2 ¼ −1 relates the three
functions eðrÞ, ðu · tÞ, and ðs · tÞ as

ðu · tÞ2 − ðs · tÞ2 ¼ eðrÞ: ð34Þ
Here we express the solutions in terms of the coordinates
ðt; r; θ;ϕÞ. From (33), one can switch to the preferred frame
coordinates ðT; r; θ;ϕÞ by the transformation
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dt ¼ dT þ ðs · tÞ
ðu · tÞeðrÞ dr: ð35Þ

It is also convenient to introduce the vector

sadxa ¼ ðs · tÞdt −
ðu · tÞ
eðrÞ dr ð36Þ

which is unit-spacelike and orthogonal to ua everywhere.
When evaluated at the spatial boundary, it coincides with sa
as defined in Sec. III A.
The metric (32) possesses a timelike Killing vector

ta ¼ −ðu · tÞua þ ðs · tÞsa: ð37Þ

The reader can verify explicitly that in the preferred
frame ta ≡ Ta, according to the definition (15).
Therefore N ¼ −ðu · tÞ and Na ¼ ðs · tÞsa. It then follows,
from the definition (27) and (28), and from the observation
that one can choose ua and sa as two spacetime tetrads, that

TIJI ¼ ðu · tÞ½2K þ c14ða · sÞ� þ ðs · tÞ½βsasbKab − γK�:
ð38Þ

To proceed further, we must specify the values of the
functions eðrÞ, ðu · tÞ and ðs · tÞ. We adopt the paramet-
rization given in [23],

c14 ¼ 0 c123 ¼ 0

eðrÞ 1 − 4rUH
3r − c13

3ð1−c13Þ
r4UH
r4 1 − 2rUH

r − ðc14−2c13Þ
2ð1−c13Þ

r2UH
r2

ðu · tÞ −
�
1 − rUH

r

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rUH

3r þ
r2UH
3r2

q
−1þ rUH

r

ðs · tÞ r2UHffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1−c13Þ
p

r2
rUH
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2−c14

2ð1−c13Þ
q

ð39Þ

where in both cases rUH is the radius of the universal
horizon.
From a direct evaluation of (38) we get

TIðJI − JIj0Þ ¼
(
− 4rUH

3r2 þOðr−3Þ if c14 ¼ 0

−2ð1 − c14
2
Þ rUHr2 þOðr−3Þ if c123 ¼ 0

ð40Þ

and therefore

M ¼
(

2rUH
3G if c14 ¼ 0

ð1 − c14
2
Þ rUHG if c123 ¼ 0:

ð41Þ

[The leading terms in (40) come solely from the component
of JI parallel to uI . This corresponds to the fact that ua and
Ta are asymptotically aligned.]
Next, we evaluate TUH [11],

TUH ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3ð1−c13Þ
q

1
2πrUH

if c14 ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2−c14

2ð1−c13Þ
q

1
2πrUH

if c123 ¼ 0:
ð42Þ

Combining (41) and (42), we see that a first law is satisfied
in the form

dM ¼ TUHd

�
α
AUH

4G

�
ð43Þ

where AUH ¼ 4πr2UH is the area of the universal horizon,
and α is a constant equal to

α ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−c13Þ

3

q
if c14 ¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − c14

2
Þð1 − c13Þ

p
if c123 ¼ 0:

ð44Þ

Therefore we are led to interpret αAUH=4G as the entropy
SUH of the universal horizon. The fact that α is different
in the two cases is not an issue, because they are distinct
branches of the theory.

B. (3 + 1) static asymptotically AdS UHs

As it was shown in [23], a generic feature of (anti-) de
Sitter solutions of T-theory is that the aether vector ua and
the time evolution vector Ta become misaligned at infinity,
unless a misalignment parameter is fine-tuned. The mis-
alignment parameter also induces an effective cosmological
constant in the metric, different from the bare one appearing
in the Lagrangian: even if one starts with a negative bare
cosmological constant, a positive or null effective cosmo-
logical constant is possible. In the following we consider
the case of a negative effective cosmological constant, in
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such a way that the evolution vector Ta is timelike at the
external boundary.
[23] further showed that (3þ 1)-dimensional black holes

with AdS asymptotics are possible in T-theory only when
c14 ¼ 0. Therefore it would be natural to fine-tune the
misalignment to 0 from the very beginning, because any
conclusion involving the misalignment would not have
general validity beyond c14 ¼ 0. However, since our final
results do not depend on the misalignment, we can easily
work in the most generic case.
The solution still has the form (32)–(34), with the

functions eðrÞ, ðu · tÞ, and ðs · tÞ given by [23]

ðu · tÞ ¼ −
r
l

�
1−

rUH
r

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rUH

r
þ ð3r

2
UH þ l2Þðr2UH þ 2rUHrþ 3r2Þ

3r4

s
;

ð45aÞ

ðs · tÞ ¼ r
λ
þ r2UH
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − c13Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2UH þ l2

l2

s
; ð45bÞ

eðrÞ ¼ 1 −
Λ̄r2

3
−
r0
r
−

c13
3ð1 − c13Þ

�
3r2UH þ l2

l2

�
r4UH
r4

;

ð45cÞ

r0 ¼
2rUHð3r2UH þ 2l2Þ

3l2
þ 2r2UH
λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − c13Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2UH þ l2

l2

s
;

ð45dÞ

where λ is the misalignment parameter. The additional
parameter l and the effective cosmological constant Λ̄ are
not independent, but they depend upon λ and the bare
cosmological constant Λ through the relations

Λ̄
3
¼ Λ

3
−
c13 þ 3c2

2λ2
¼ 1

λ2
−

1

l2
: ð46Þ

To compute the mass, observe that now TIðJI − JIj0Þ
receives leading contributions also from the components
of JI parallel to sI . This clearly corresponds to the fact
that ua and Ta are misaligned at infinity. When we subtract
the background JIj0, we must consider l and λ as part of the
maximally symmetric background, obtained by sending
rUH → 0. Hence the mass turns out to be

M ¼ rUHð3r2UH þ 2l2Þ
3l2G

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c13
p

r2UHffiffiffi
3
p

λG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2UH þ l2

l2

s
ð47Þ

while TUH is

TUH ¼
1

2πrUH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c13
p

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2UH þ l2

l2

s
þ rUH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − c13Þ

p
λ

3
75

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2UH þ 2l2

3l2

s
: ð48Þ

Since l and λ are background quantities, to study the first
law we must vary M only with respect to rUH,

∂M
∂rUH ¼

�
9r2UH þ 2l2

3l2G

�264
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2UH þ l2

l2

s
þ rUH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − c13Þ

p
λ

3
75

×

�
3r2UH þ l2

l2

�−1=2
; ð49Þ

from which we see that

1

TUH

∂M
∂rUH ¼

2πrUH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c13
p
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2UH þ 2l2

9r2UH þ 3l2

s
: ð50Þ

It is apparent that a first law in the form (43) cannot be
satisfied. If we enforce the Clausius relation

1

TUH

∂M
∂rUH ¼

∂SUH
∂rUH ð51Þ

we can solve it for SUH, thus obtaining

SUH ¼
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c13
p
18G

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2l4 þ 15l2r2UH þ 27r4UHÞ

q

− l2 ln
�
5l2 þ 18r2UH

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2l4 þ 15l2r2UH þ 27r4UHÞ

q 	�
ð52Þ

modulo an integration constant, that can be chosen such
that SUH ¼ 0 when rUH ¼ 0. We stress that the Clausius
relations (50) and (51), and thus the result (52), do not
depend on the value of λ.
Expression (52) is certainly awkward. While it is known

that, in the case of Killing horizons, the entropy is not
always the area but it depends on the dynamics of the
theory [31], such arguments have not yet been successfully
generalized to Lorentz violating theories (see [14] for a first
attempt and [32] for a later one).
Therefore we must be very cautious about the interpre-

tation of expression (52). It might be signaling that there is
something wrong with the Clausius relation (51), and with
a naive first law in the form (1).
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C. (2 + 1) rotating asymptotically AdS UHs

Fully rotating BH solutions of astrophysical relevance
have not yet been found in Lorentz violating theories.
(3þ 1) asymptotically flat slowly rotating BHs were
extensively studied in [24,25,33,34]; however they are
not appropriate for a study of the first law, because
deviations with respect to the static case occur at quadratic
level in the angular momentum. In (2þ 1) dimensions fully
rotating BHs were found in T-theory, in the branch c14 ¼ 0
[26]. They are the equivalent of the Banados-Teitelboim-
Zanelli (BTZ) solution in GR. Universal horizons are
possible in these solutions, and therefore they constitute
a working arena in which to test the effects of rotation.
The line element has the form

ds2 ¼ −eðrÞdt2 þ dr2

eðrÞ þ r2ðdϕþ ΩðrÞdtÞ2 ð53Þ

while the aether vector has still the form

uadxa ¼ ðu · tÞdt − ðs · tÞ
eðrÞ dr: ð54Þ

The unit constraint on the aether implies again the relation
(34). As before it is convenient to introduce the unit-
spacelike vector sa orthogonal to the aether

sadxa ¼ ðs · tÞdt −
ðu · tÞ
eðrÞ dr: ð55Þ

The transition to the preferred frame ðT; r;ϕÞ is again
dictated by the change of variables (35).
The line element (53) is axisymmetric with respect to the

Killing vector ϕa ¼ ð0; 0; 1Þ, and possesses time transla-
tional symmetry with respect to the Killing vector

ta ¼ −ðu · tÞua þ ðs · tÞss þΩðrÞϕa: ð56Þ

The reader can again verify that ta coincides with the
preferred time evolution vector Ta.
The functions eðrÞ, ΩðrÞ, ðu · tÞ and ðs · tÞ are4

eðrÞ ¼ −r0 þ
J̄2

4r2
− Λ̄r2 ð57aÞ

ΩðrÞ ¼ −
J
2r2

ð57bÞ

ðu · tÞ ¼ −
1

l

�
r2 − r2UH

r

�
ð57cÞ

ðs · tÞ ¼ r
λ
þ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4UH

l2ð1 − c13Þ
−
J2

4

s
ð57dÞ

where

Λ̄ ¼ Λ −
ð2c2 þ c13Þ

λ2
¼ 1

λ2
−

1

l2
ð58aÞ

J̄2 ¼ J2 −
4c13r4UH

l2ð1 − c13Þ
ð58bÞ

r0 ¼
2r2UH
l2
þ 2

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4UH

l2ð1 − c13Þ
−
J2

4

s
ð58cÞ

and where λ is the misalignment parameter.
The mass, which receives contributions from the mis-

alignment terms, is

M ¼ 1

4G

 
r2UH
l2
þ ð1 − c13Þ

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4UH

l2ð1 − c13Þ
−
J2

4

s !
: ð59Þ

We also need the expression for the total angular momen-
tum J, which can be obtained by replacing Ta with ϕa into
Eqs. (27) and (28),

J ¼ ð1 − c13ÞJ
8G

: ð60Þ

Finally TUH is

TUH ¼
1

lπrUH

"
r2UH
λ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4UH

l2ð1 − c13Þ
−
J2

4

s #
: ð61Þ

For the solution to be well defined, the constraint

r4UH
l2ð1 − c13Þ

−
J2

4
≥ 0 ð62Þ

must be satisfied. When the bound (62) is saturated, an
interesting fact happens in the limit λ → ∞: the function
ðs · tÞ vanishes, and therefore eðrÞ≡ ðu · tÞ2. In turn, this
implies that the universal horizon coincides with the Killing
horizon, i.e. it degenerates into a null leaf. Such a
degenerate UH is not in contradiction with the discussion
of Sec. IV: indeed from (61) κUH vanishes as well, and
therefore the condition for the UH to be a leaf does not
hold anymore. The existence of degenerate UHs was first
pointed out in [35] for c14 ¼ 0, and in [36] for a generic
choice of the couplings. In view of these considerations, in
the following we assume that (62) holds strictly, in such a
way to deal with a nondegenerate UH.
For our purposes, it is convenient to consider separately

the static case J ¼ 0 from the rotating case J ≠ 0.
4We give them in a different parametrization with respect to the

original one in [26], in which we highlight the role of rUH.
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In the static case the Clausius relation becomes

∂SUH
∂rUH ¼

1

TUH

∂M
∂rUH ¼

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c13
p
2G

ð63Þ

from which it follows that5

SUH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c13

p PUH

4G
ð64Þ

where PUH ¼ 2πrUH is the perimeter of the UH. As in the
previous case, the Clausius relation and SUH do not depend
on the value of λ.
The result (64) seems promising. However the situation

changes completely when we consider the rotating case:
indeed it turns out the Clausius relation is not solvable at
all. Let us be more explicit.
Since we are in a rotating setting, we must expect a

work term in the first law (1) of the form ΩUHdJ, where
ΩUH ¼ −ΩðrUHÞ is the frame dragging at the UH. From the
first law

dM ¼ TUHdSUH þΩUHdJ ð65Þ

we obtain the Clausius relations

∂SUH
∂rUH ¼

1

TUH

∂M
∂rUH ð66aÞ

∂SUH
∂J2 ¼

1

TUH

∂M
∂J2 −

ð1 − c13ÞΩUH

16GTUHJ
ð66bÞ

where in the second line we took into account that
J ¼ ð1 − c13ÞJ=8G and that ΩUH is linear in J. By explicit
computation we get

∂SUH
∂rUH ¼

πr2UH
2Gl

�
r4UH

l2ð1 − c13Þ
−
J2

4

�−1=2
ð67aÞ

∂SUH
∂J2 ¼ −

ð1 − c13Þπl
32GrUH

�
r4UH

l2ð1 − c13Þ
−
J2

4

�−1=2
ð67bÞ

which are again independent from λ.
Now, if we integrate (67b), we obtain

SUH ¼
ð1 − c13Þπl
4GrUH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4UH

l2ð1 − c13Þ
−
J2

4

s
þ fðrUHÞ ð68Þ

where f is a function depending only on rUH. But, if we
differentiate (68) with respect to rUH, the result differs from
(67a) by terms depending also on J, which therefore cannot
be compensated by any choice of f. Actually the derivative
of (68) is not even proportional to (67a), which shows that

the problem cannot be alleviated by averaging the three
terms in (65) with three appropriate constants. Therefore
we end up with a contradiction, and the Clausius relations
are not integrable, as anticipated.

VI. DISCUSSION

How do we interpret the results of Secs. VA–VC? We
looked for a first law in the form (1). The four-dimensional
asymptotically flat case is encouraging, because the pro-
portionality between SUH and the area of the UH suggests
that T-theory respects a form of holographic principle.
However we see that, as soon as we generalize to the

AdS case, SUH becomes a complicated functional of rUH.
Although this is still mathematically acceptable, we do not
have any physical principle or motivation to trust such an
awkward expression.
The situation becomes even worse when we turn our

attention to a class of fully rotating solutions in three
dimensions. In this case, while in the static configuration
the holographic principle is respected, when we switch on
the rotation an expression for SUH does not even exist. On the
top of this, we must add the similar problems highlighted in
[12] in the case of charged universal horizons, in which it is
suggested that a “Smarr mass,” different from the total mass
at infinity, must be defined to satisfy the first law. All of these
evidences seem to imply that a simple version of UH
mechanics, according to (1), is not satisfied by T-theory.
However, such a conclusion would be rather premature,

for two reasons. First, c14 ¼ 0 is a corner sector of the
theory, and it is not clear how our results would generalize to
more generic couplings. Also, it might also be the case that
higher order terms in HL would always end up introducing a
nonzero c14 via radiative corrections. In this case, setting this
particular parameter to 0 in the infrared action would be
inconsistent with the UV completed theory.
Second, AdS is not a natural asymptotic for HL. Indeed

we expect that (a) astrophysical BHs are modeled by flat
asymptotics; and (b) if we use HL as a holographic
gravitational dual of a Lifshitz QFT, we should consider
asymptotic Lifshitz symmetry, rather than AdS (see e.g.
[19,37,38]).
Therefore the results of Secs. V B and V C signal

problems that can occur but in order to see if they constitute
actual drawbacks of the theory, one must investigate what
happens when more physical asymptotics are considered.
For astrophysical BHs, this implies the study of fully
rotating asymptotically flat (3þ 1)-dimensional solutions.
As anticipated, such solutions have not yet been obtained.
Regarding the applications to holography, static asymp-

totically Lifshitz UHs in (2þ 1) dimensions were analyzed
in [19]. It was shown that these UHs possess a first law of
the form

dM ∝ TUHdPUH;5See also Eq. (4.26) of [28].
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in analogy with their static (2þ 1)-dimensional AdS
counterparts [see Eq. (64)]. Whether they are better
behaved when rotation is switched on is a matter for future
research. Nonetheless, from our previous considerations,
we expect the case of Lifshitz asymptotics to be indeed
much more promising.
It is important, however, to consider also the possibility

that problems with the first law at the UH are a general
fact. In this case, a possible strategy would be to
reevaluate the role of Killing horizons. This goes along
the line of [13]. For example, one possible solution to the
problems of Secs. V B and V C is to give away the
regularity of the UH, and to assume that it is a physical
singularity. (That the UH might become a singularity in a
realistic BH collapse was underlined both in [2,13].) In
this way the solution depends on a further free parameter,6

whose freedom can then be exploited to obtain a viable
first law at the Killing horizon.
Finally, it can also be that no first law exists at all, neither

at the UH nor at the Killing horizon. After all, if you look at
T-theory (and at Hořava gravity) as an effective field theory,
the lacking of a first law is not a dramatic conclusion, as we
do not expect fundamental laws to be respected in an
approximate theory.
Of course, for what we said above, it is clear that before

embracing such nonconservative solutions, future efforts
must be directed toward a more systematic analysis of fully
rotating UHs, with better physically motivated asymptotics
and less restricted parameter space. We hope that the
present contribution stimulates further investigations along
these lines in the future.
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